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Abstract. A Boolean network (BN) with n components is a discrete
dynamical system described by the successive iterations of a function
f : {0, 1}n → {0, 1}n. This model finds applications in biology, where
fixed points play a central role. For example in genetic regulation they
correspond to cell phenotypes. In this context, experiments reveal the ex-
istence of positive or negative influences among components: component
i has a positive (resp. negative) influence on component j, meaning that j
tends to mimic (resp. negate) i. The digraph of influences is called signed
interaction digraph (SID), and one SID may correspond to multiple BNs.
The present work opens a new perspective on the well-established study
of fixed points in BNs. Biologists discover the SID of a BN they do not
know, and may ask: given that SID, can it correspond to a BN having
at least k fixed points? Depending on the input, this problem is in P or
complete for NP, NP#P or NEXPTIME.
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1 Introduction

A Boolean network (BN) with n components is a discrete dynamical system
described by the successive iterations of a function

f : {0, 1}n → {0, 1}n, x = (x1, . . . , xn) 7→ f(x) = (f1(x), . . . , fn(x)).

The structure of the network is often described by a signed digraph D, called
signed interaction digraph (SID) of f , catching effective positive and negative
dependencies among components: the vertex set is [n] := {1, . . . , n} and, for all
i, j ∈ [n], there is a positive (resp. negative) arc from i to j if fj(x) − fj(y) is
positive (resp. negative) for some x, y ∈ {0, 1}n that only differ in xi > yi. The
SID provides a very rough information about f . Hence, given a SID D, the set
F (D) of BNs f whose SID is D, is generally huge.

BNs have many applications. In particular, since the seminal papers of Kauff-
man [14, 15] and Thomas [30, 31], they are very classical models for the dynamics
of gene networks. In this context, the first reliable experimental information of-
ten concern the SID of the network, while the actual dynamics are very difficult
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to observe [32, 18]. One is thus faced with the following question: What can be
said about the dynamics described by f according to D only?

Among the many dynamical properties that can be studied, fixed points are
of special interest, since they correspond to stable patterns of gene expression
at the basis of particular cellular phenotypes [31, 3]. As such, they are arguably
the property which has been the most thoroughly studied. The number of fixed
points and its maximization in particular is the subject of a stream of work, e.g.
in [26, 5, 24, 4, 12, 6, 11, 7].

From the complexity point of view, previous works essentially focused on de-
cision problems of the following form: given f and a dynamical property P , what
is the complexity of deciding if the dynamics described by f has the property P .
For instance, it is well-known that deciding if f has a fixed point is NP-complete
in general (see [17] and the references therein), and in P for some families of BNs,
such as monotone or non-expansive BNs [13, 10]. However, as mentioned above,
in practice, f is often unknown while its SID is well approximated. Hence, a
much more natural question is: given a SID D and dynamical property P , what
is the complexity of deciding if the dynamics described by some f ∈ F (D) has
the property P . Up to our knowledge, there is, perhaps surprisingly, no work
concerning this kind of questions.

In this paper, we study this class of decision problems, focusing on the maxi-
mum number of fixed points. More precisely, given a SID D, we denote by φ(D)
the maximum number of fixed points in a BN f ∈ F (D), and we study the
complexity of deciding if φ(D) ≥ k.

After the definitions in Section 2, we first study the problem when the positive
integer k is fixed. We prove in Section 3 that, given a SID D, deciding if φ(D) ≥ k
is in P if k = 1 . We also prove in Section 4 that the same problem is NP-complete
if k ≥ 2. Furthermore, these results remain true if the maximum in-degree ∆(D)
is bounded by any constant d ≥ 2. The case k = 2 is of particular interest since
many works have been devoted to finding necessary conditions for the existence
of multiple fixed points, both in the discrete and continuous settings, see [24, 25,
28, 16] and the references therein. Section 5 considers the case where k is part
of the input. We prove that, given a SID D and a positive integer k, deciding
if φ(D) ≥ k is NEXPTIME-complete, and becomes NP#P-complete if ∆(D) is
bounded by a constant d ≥ 2. Note that, from these results, we immediately
obtain complexity results for the dual decision problem φ(D) < k. A summary
is given in Table 1.

In the case where k is fixed, while proving that the problem φ(D) ≥ k belongs
to NP, we study a decision problem of independent interest, called extension
or consistency problem [9, 8, 2]. Here, the property P consists of a partial BN,
that is, a function h : X → {0, 1}n where X ⊆ {0, 1}n. This partial BN may
represent some experimental observations about the dynamics. Given a SID D,
we prove that we can check in O(|X|2n2) time if there is a BN f ∈ F (D) which
is consistent with h, that is, such that f(x) = h(x) for all x ∈ X. Thus, the task
consists in extending h to a global BN f under the constraint that the SID of f
is D.
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Table 1: Complexity results.

Problem ∆(D) ≤ d k = 1 k ≥ 2 k given in input

φ(D) ≥ k
yes

P

NP-complete
NP#P-complete

no NEXPTIME-complete

φ(D) < k
yes

coNP-complete
coNP#P-complete

no coNEXPTIME-complete

2 Definitions and Notations

Let V be a finite set. A Boolean network (BN) with component set V is defined
as a function f : {0, 1}V → {0, 1}V . A configuration x ∈ {0, 1}V assigns a state
xi ∈ {0, 1} to each component i ∈ V . During an application of f , the state of
component i evolves according to the local function fi : {0, 1}V → {0, 1}, which
is the coordinate i of f , i.e. fi(x) = f(x)i for all x ∈ {0, 1}V . When V = [n], we
write x = (x1, . . . , xn) and f(x) = (f1(x), . . . , fn(x)).

Given a configuration x ∈ {0, 1}V and I ⊆ V , we denote by xI the config-
uration y ∈ {0, 1}I such that yi = xi for all i ∈ I. Given i ∈ V , we denote the
i-base vector ei, that is, (ei)i = 1 and (ei)j = 0 for all j 6= i. If x, y ∈ {0, 1}V
then x⊕y is the configuration z ∈ {0, 1}V such that zi = xi⊕yi for all i ∈ V ,
where the addition is computed modulo two. Hence, x⊕ei is the configuration
obtained from x by flipping component i only.

A signed digraph D = (V,A, σ) is a digraph (V,A) with an arc-labeling
function σ from A to {−1, 0, 1}, that gives a sign (negative, null or positive) to
each arc (i, j), denoted σij . We say that D is simple if it has no null sign. Given a
vertex i and s ∈ {−1, 0, 1}, we denote by Ns

D(i) the set of in-neighbors j of i such
that σij = s, and we drop D in the notations when it is clear from the context.
We call N1(i) (resp. N−1(i)) the set of positive (resp. negative) in-neighbors
of i. We also simply denote N(i) the set of all in-neighbors of i. In the following,
it is very convenient to set σ̃ij = 0 if σij ≥ 0 and σ̃ij = 1 otherwise.

The signed interaction digraph (SID) of a BN f with component set V is
the signed digraph Df = (V,A, σ) defined as follows. First, given i, j ∈ V ,
there is an arc (i, j) ∈ A if and only if there exists a configuration x such
that fj(x⊕ei) 6= fj(x) (i.e. the state of component i influences the state of
component j). Second, the sign σij of an arc (i, j) ∈ A depends on whether the
state of j tends to mimic or negate the state of i, and is defined as

σij =

 1 if fj(x⊕ei) ≥ fj(x) for all x ∈ {0, 1}n with xi = 0,
−1 if fj(x⊕ei) ≤ fj(x) for all x ∈ {0, 1}n with xi = 0,

0 otherwise.

Given j ∈ V , we say that fj is the AND (resp. OR) function if it is the ordinary
logical and (resp. or) but inputs with a negative sign are flipped, i.e

fj(x) =
∧

i∈N(j)

xi⊕σ̃ij (resp. fj(x) =
∨

i∈N(j)

xi⊕σ̃ij ).
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Given a signed digraph D, we know that D is a SID (i.e. there exists a BN
f with Df = D ), if and only if there is no vertex i such that |N(i)| ≤ 2 and
|N0(i)| = 1 [23]. In particular, a simple signed digraph is always a SID.

A fundamental remark regarding the present work is that multiple BNs may
have the same SID. Given a SID D with vertex set V , we denote by F (D) the
set of BNs admitting D as SID:

F (D) = {f : {0, 1}V → {0, 1}V | Df = D}.

The size of F (D) is generally huge. If a component i has in-degree d inD, then the
number of possible local functions fi is doubly exponential according to d, thus

it scales as the number of Boolean functions on d variables, 22d . Hence, |F (D)| is
at least doubly exponential according to its maximum in-degree, denoted ∆(D).
The precise value of |F (D)| is not trivial, see A006126 on the OEIS [1].

A fixed point of f is a configuration x such that f(x) = x, which is equivalent
to fi(x) = xi for all i ∈ [n]. We denote by Φ(f) the set of fixed points of f and
φ(f) = |Φ(f)|. We are interested in a decision problem related to the maximum
number of fixed points of BNs within F (D), denoted

φ(D) = max {φ(f) | f ∈ F (D)} .

More precisely, we will study the complexity of deciding if φ(D) ≥ k, where k is
a positive integer, fixed or not. This gives the two following decision problems.

k-Maximum Fixed Point Problem (k-MFPP)
Input: a SID D.
Question: φ(D) ≥ k?

Maximum Fixed Point Problem (MFPP)
Input: a SID D and an integer k ≥ 1.
Question: φ(D) ≥ k?

Cycles of interactions (in the SID) are known to play a fundamental role in
the dynamical complexity of BN (the cycles we consider are always directed and
without repeated vertices). Indeed, if Df is acyclic then φ(f) = 1 [26]. The sign
of a cycle or a path in a signed digraph is the product of the signs of its arcs.
It is well-known that if all the cycles of Df are positive (resp. negative) then
φ(f) ≥ 1 (resp. φ(f) ≤ 1), see [4, 25]. Hence, if all the cycles of a SID D are
negative, then φ(D) ≤ 1. The previous notions are illustrated in Figure 1.

3 k-Maximum Fixed Point Problem for k = 1

A strongly connected component H in a signed digraph D is trivial if it has a
unique vertex and no arc, and initial if D has no arc (i, j) where j is in H but
not i. We first have a lemma to concentrate on simple signed digraphs.
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1

23

f1(x) = ¬x3
f2(x) = x1 ∨ ¬x2
f3(x) = x1 ∨ (¬x2 ∧ x3)

g1(x) = ¬x3
g2(x) = x1 ∨ ¬x2
g3(x) = x1∧¬x2∧x3

Fig. 1: Example of simple signed digraph D with two BNs f, g ∈ F (D). BN f has no
fixed point, and g has one fixed point (110), which is the maximum for BNs in F (D),
that is φ(D) = 1. Note that D has two positive cycles and two negative cycles.

Lemma 1. For any SID D, there is a simple SID D′ such that φ(D) ≥ 1 ⇐⇒
φ(D′) ≥ 1, and D′ is computable from D in constant parallel time.

Proof. From D, the construction of D′ is made component by component, inde-
pendently, by removing incoming arcs. For j ∈ [n],

– If |N0(j)| ≥ 2 then we delete all incoming arcs of j. If there exists f ∈ F (D)
and y ∈ Φ(f), then we can take f ′ ∈ F (D′) equal to f , except for f ′j(x) = yj
(a constant). Conversely, if there exists f ′ ∈ F (D′) and y ∈ Φ(f ′), then we
can take f ∈ F (D) equal to f ′, except for

fj(x) = (bj ⊕
⊕

i∈N0(j)

xi) ∧
∧

i∈N(j)\N0(j)

(xi⊕σ̃ij)

with bj =
⊕

i∈N0(j) yi, in the case yj = 0 (the case yj = 1 is symmetric, with

OR instead of AND function). We have f ′j(y) = fj(y) = yj hence y ∈ Φ(f).

– If |N0(j)| = 1, then we delete this arc. One can check that, if y ∈ Φ(f)
with f ∈ F (D) (resp. y ∈ Φ(f ′) with f ′ ∈ F (D′)), then there exists i ∈
N(j) \N0(j) such that yi⊕σ̃ij = yj . Consequently, if there exists f ∈ F (D)
and y ∈ Φ(f) then we can take f ′ ∈ F (D′) equal to f , except that f ′j is the
AND function if yj = 0 and the OR function otherwise. Conversely, suppose
there exists f ′ ∈ F (D′) and y ∈ Φ(f ′), and let {k} = N0(j). In the case
yj = 0, we can construct a function f ∈ F (D) equal to f ′, except for

fj(x) =
(
(xi⊕σ̃ij) ∨ (xk⊕yk)

)
∧

∧
`∈N(j)\{i,k}

(
(x`⊕σ̃`j) ∨ (xk⊕¬yk)

)
.

We have fj(y) = 0 = yj because the left hand side of the conjunction is
false, thus y ∈ Φ(f) (the case yj = 1 is symmetric by switching OR and
AND functions, and replacing yk with ¬yk). ut

Lemma 2. Let D be a simple SID. Then φ(D) ≥ 1 if and only if each non-trivial
initial strongly connected component of D contains a positive cycle.

Proof. The left to right implication has been proved by Aracena [4, Corollary 3].
For the converse, suppose that D = (V,A, σ) has p initial strongly connected
components H1, . . . ,Hp. For all k ∈ [p], if Hk is trivial then ik denotes the unique
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vertex it contains, and otherwise we select a positive cycle Ck in Hk and an arc
(jk, ik) inside. Then, D can be spanned by a forest of p vertex disjoint trees
T1, . . . , Tp rooted in i1, . . . , ip such that if Hk is not trivial then the path from ik
to jk contained in Tk is the one contained in Ck. For all k ∈ [p] and all vertices
j in Tk, we denote by Pkj the path from ik to j contained in Tk (if j = ik this
path is of length zero and positive by convention).

Now, we define f ∈ F (D) as follows. First, for all k ∈ [p], if Hk is trivial then
fik is the constant 0 function, and otherwise fik is the AND function. Second,
for all k ∈ [p] and all vertices j 6= ik in Tk, fj is the AND function if Pkj is
positive and the OR function otherwise. Next, we define x ∈ {0, 1}V as follows:
for all j ∈ V , xj = 0 if and only if Pkj is positive (thus xik = 0 for all k ∈ [p]).

We claim that x ∈ Φ(f). Indeed, given k ∈ [p] and a vertex j 6= ik in Tk, it
is easy to prove that fj(x) = xj by induction on the length of Pkj . Next, if Hk

is trivial then fik(x) = 0. Otherwise, (jk, ik) is an arc of Hk. Let s be the sign
of the path Pkjk , which is in Ck by construction. Since Ck is positive, s = σjkik .
So if σjkik = 1 then xjk = 0 and thus fik(x) = 0, and if σjkik = −1 then xjk = 1

and thus fik(x) = 0. In all cases, fik(x) = 0 = xik . We deduce that x ∈ Φ(f). ut

Thus, to decide if φ(D) ≥ 1, it is sufficient to compute the non-trivial initial
strongly connected components of D (this can be done in linear time [29]) and
to check if they contain a positive cycle. As described below, this checking can
be done in polynomial time using the following difficult theorem independently
proved by Robertson, Seymour and Thomas [27] and McCuaig [20].

Theorem 1 ([20, 27]). There exists a polynomial time algorithm for deciding
if a given digraph contains a cycle of even length.

Let D be a signed digraph with n vertices, and let D̃ be obtained from D
by replacing each positive arc by a path of length two, with two negative arcs,
where the internal vertex is new. Then D̃ has at most n+ n2 vertices, and it is
easy to see that D has a positive cycle if and only if D̃ has a cycle of even length
[21]. We then deduce the following theorem.

Theorem 2. 1-MFPP is in P.

4 k-Maximum Fixed Point Problem for k ≥ 2

Theorem 3. For any k ≥ 2, k-MFPP is NP-complete, even with ∆(D) ≤ 2.

Theorem 3 is obtained from Lemmas 9, 5 and 6.

Lemma 3. For any k ≥ 2, k-MFPP is in NP.

Proof (sketch, see details in Appendix A). First, consider the case where ∆(D) ≤
d for some constant d. Then a certificate of φ(D) ≥ k could consist in a network
f ∈ F (D) and k distinct fixed points x(1), . . . , x(k). The fact that f ∈ F (D), and
f(x(i)) = x(i) with distinct x(i) for all i ∈ [k], is checked in polynomial time.
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However, when ∆(D) is not bounded, F (D) can be of doubly exponential
size in n. Thus, some functions f require an exponential space to be encoded.
Instead, one can give as a certificate a partial function h : X → {0, 1}n with
X ⊆ {0, 1}n such that f(x) = h(x) for any x ∈ X. In the set X, we put k
fixed points and configurations which assert the effectiveness of the arcs. To
check the certificate it is sufficient to ensure that there are no inconsistencies
(independently for each local function). As a result, the problem is in NP. ut

A shorter certificate (only the k fixed points) is possible when D is simple (see
appendix B). This result from the following theorem. Note that the extending
partial Boolean functions is a well established topic [9, 8].

Theorem 4. Let D be a simple SIG with vertex set V and consider a partial
BN h : X → {0, 1}V with X ⊆ {0, 1}V . There is a O(|X|2|V |2)-time algorithm
to decide if there exists an extension of h in F (D).

We now prove that 2-MFPP is NP-hard. We will use observations from [4].

Lemma 4 ([4]). Let D = (V,A, σ) be a simple signed digraph, f ∈ F (D) and
x, y two distinct fixed points of f . Then there exists a positive cycle C in D such
that, for any arc (i, j) in C, we have xi⊕σ̃ij = xj 6= yj = yi⊕σ̃ij.

Remark 1. If the positive cycle C in Lemma 4 has only positive arcs, then either
xi < yi for all vertex i in C, or xi > yi for all vertex i in C.

Remark 2. Given f ∈ F (D) and x, y two distinct fixed points of f , for any
feedback vertex set I of D we have xI 6= yI .

Lemma 5. The problem 2-MFPP is NP-hard, even with ∆(D) ≤ 2.

Proof. We reduce 3SAT to our problem. Let us consider a 3SAT instance ψ with
n variables λ1, . . . , λn and m clauses µ1, . . . , µm. We define the signed digraph
Dψ = (V,A, σ), where |V | = 4n+ 2m+ 1, as follows (see Figure 2).

First, V = R∪P ∪L∪ L̄∪S ∪T with R = {ri | i ∈ [n]}, P = {pi | i ∈ [0, n]},
L = {`i | i ∈ [n]}, L̄ = {¯̀i | i ∈ [n]}, S = {si | i ∈ [m]}, and T = {ti | i ∈ [m]}.
To simplify the notation let s0 = p0 and sm+1 = pn. Second,

A :=
⋃

i∈[n]
{(pi−1, `i), (pi−1, ¯̀

i), (`i, pi), (¯̀
i, pi), (ri, `i), (ri, ¯̀

i)}

∪
⋃

j∈[m]
{(ti, si), (si, si−1)} ∪ {(pn, sm)}

∪{(`i, tj) | i ∈ [n], j ∈ [m] if λi appears positively in µj}
∪{(¯̀

i, tj) | i ∈ [n], j ∈ [m] if λi appears negatively in µj}.

Arcs in {(si, ti) | i ∈ [m]}∪{(ri, `i) | i ∈ [n]} are negative, all others are positive.
Let us first prove that if ψ is satisfiable then there exists a BN f ∈ F (Dψ)

with has at least two fixed points. Consider a valid assignment v : {λ1, . . . λn} →
{⊥,>}. Let I⊥ = {i ∈ [n] | v(λi) = ⊥} and I> = {i ∈ [n] | v(λi) = >}. We
define f ∈ F (Dψ) as follows.
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– For all i ∈ I⊥ (resp. I>), fri is the constant 0 (resp. 1) function.
– For all i ∈ [n], f`i and f¯̀

i
are both AND functions.

– For all i ∈ [0, n], fpi is the OR function.
– For all i ∈ [m], fsi and fti are the AND functions.

The two following configurations x and y are distinct fixed points of f , and
therefore φ(Dψ) ≥ 2: for all j ∈ V ,

xj =

{
1 if j ∈ {ri | i ∈ I>}
0 otherwise

yj =

{
1 if j ∈ {ri | i ∈ I>} ∪ P ∪ S ∪ {`i | i ∈ I⊥} ∪ {¯̀i |∈ I>}
0 otherwise.

Now, we prove that if φ(Dψ) ≥ 2 then ψ is satisfiable. Consider a BN f ∈
F (Dψ) with two distinct fixed points x and y. Remark that {p0} is a feedback
vertex set of Dψ. In other words, all cycles of Dψ contain p0. We deduce from
Remark 2 that xp0 6= yp0 and that φ(Dψ) ≤ 2. Without loss of generality,
suppose that xp0 < yp0 . Remark also that any cycle containing one of the vertices
t1, . . . , tm is negative, and that no positive cycle in Dψ contains any negative arc.
Thus, according to Remark 1, there exists a cycle C such that xj < yj for every
vertex j in C. In other words, xP < yP and xS < yS and for every i ∈ [n] either
C contains `i and we have x`i < y`i , or it contains ¯̀

i and we have x¯̀
i
< y¯̀

i
.

We construct the following assignment v from C.

v(λi) =

{
⊥ if C contains `i,
> if C contains ¯̀

i.

For the sake of contradiction, suppose that v does not satisfy the formula. As
a consequence, there is a clause µj which is false with assignment v. In other
words, any variable which appears positively in the clause is assigned to false
and any variable which appears negatively is assigned to true.

Let us prove that xtj < ytj . Since any incoming arc of tj is positive, and since
x and y are fixed points, it is sufficient to prove that, for every in-neighbor ` of
tj , we have x` < y`. By definition of Dψ, any in-neighbor of tj corresponds to a
variable λi of the clause. If λi appears positively (resp. negatively) in clause µj
then the in-neighbor of tj corresponding to λi is `i (resp. ¯̀

i). Since v(λi) = ⊥
(resp. >) because the clause is false then C contains `i (resp. ¯̀

i) and we have
x`i < y`i (resp. x¯̀

i
< y¯̀

i
). As a result, xtj < ytj .

Now, the vertex sj has two in-neighbors. One of them is sj+1 and we have
σsj+1sj = 1 and xsj+1

< ysj+1
. The other is tj with σtjsj = −1 and xtj < ytj .

Hence, there are two possible local functions for fsi :

– fsj (z) = zsj+1 ∨ ¬ztj , and then xsj = fsj (x) = xsj+1 ∨ ¬xtj = 0 ∨ ¬0 = 1.
– fsi(z) = zsi+1

∧ ¬ztj , and then ysj = fsj (y) = ysj+1
∧ ¬ytj = 1 ∧ ¬1 = 0.

In both cases, we do not have xsj < ysj , which is a contradiction since sj is
in C. As a result, the 3SAT instance ψ is satisfiable. Additionally, remark that
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φ(Dψ) ≥ 1 because, with the constant 1 function for the vertices in R, and the
OR local function everywhere else, the configuration zi = 1 for all i is a fixed
point. We can conclude that φ(Dψ) = 1 when ψ is unsatisfiable.

To get a bounded degree ∆(Dψ) ≤ 2, notice that only vertices in T have in-
degree three, which can be decreased by adding an intermediate vertex (see the
right picture in Figure 2) while preserving the correctness of the reduction. ut

p0

`1

¯̀
1

p1

`2

¯̀
2

p2

`3

¯̀
3

p3

`4

¯̀
4

p4

r1 r2 r3 r4

s1 s2 s3 s4 s5

t1 t2 t3 t4 t5

ti

 

ti

t′i

Fig. 2: Example of construction in the reduction from 3SAT to k-MFPP (Lemma 5).
This signed digraph Dψ implements the following 3SAT instance ψ:
(λ1 ∨λ2 ∨λ3)∧ (¬λ1 ∨λ2 ∨λ4)∧ (λ1 ∨¬λ2 ∨¬λ3)∧ (¬λ1 ∨¬λ2 ∨λ3)∧ (λ1 ∨λ3 ∨¬λ4)
which is satisfiable if and only if φ(Dψ) ≥ 2, otherwise φ(Dψ) = 1.

We can extend the NP-hardness reduction to any k ≥ 2.

Lemma 6. For any k ≥ 2, k-MFPP is NP-hard, even with ∆(D) ≤ 2.

Proof. Let ` = blog2(k − 1)c, i.e. 2` < k ≤ 2`+1. Given a formula, consider the
digraph D from Lemma 5, and add ` new isolated vertices with positive loops.
Then 1 or 2 fixed points on Dψ become respectively 2` or 2`+1 fixed points. ut

Remark 3. For ∆(D) ≤ 1, |F (D)| = 1 since each local function is the identity
or the negation, and computing φ(D) is in O(|D|), hence k-MFPP ∈ P.

5 Maximum Fixed Point Problem

Theorem 5. When ∆(D) ≤ d, MFPP is NP#P-complete.

In this first part of the section, we prove Theorem 5, from Lemmas 7 and 8.
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Lemma 7. When ∆(D) ≤ d, MFPPis in NP#P.

Proof. An algorithm in NP#P to solve MFPP is, on input D, k:

1. guess local functions fi for i ∈ [n] (polynomial from ∆(D) ≤ d),
2. construct ψ = (f1(x) = x1) ∧ · · · ∧ (fn(x) = xn) on variables x1, . . . , xn,
3. compute the number of solutions of ψ with the #P oracle, that is φ(f),
4. accept if and only if φ(f) ≥ k.

A non-deterministic branch accepts if and only if φ(D) ≥ k. ut

Lemma 8. When ∆(D) ≤ d, MFPPis NP#P-hard.

Proof (sketch, see details in Appendix C). We consider the following problem.

Existential-Majority-3SAT (E-Maj3SAT)
Input: A 3SAT formula ψ on {λ1, . . . , λn} and s ∈ [n]
Question: Is there an assignment v of λ1, . . . , λs such that the majority
of assignments of λs+1, . . . , λn satisfy ψ?

We know that E-Maj3SAT is NPPP-complete [19] and that NP#P = NPPP

(direct extension of P#P = PPP [22]). Consequently, it is sufficient to prove that
we can reduce E-Maj3SAT to MFPP. To represent an instance (ψ, s) of E-
Maj3SAT, we construct a digraphDψ,s similar to the digraphDψ constructed in
Lemma 5 except that we add a positive loop to the q = n−s vertices rs+1, . . . , rn.
We claim that φ(Dψ,s) = α+ 2q, with

α = max
v:{λ1,...,λs}→{⊥,>}

|{u : {λs+1, . . . , λn} → {⊥,>} | v ∪ u satisfies ψ}|.

Indeed, consider f ∈ F (Dψ,s) with φ(f) = φ(Dψ,s). As in Lemma 5, the func-
tions fi for i ∈ {`1, ¯̀

1, . . . , `s, ¯̀
s} correspond to an assignment v of λ1, . . . , λs.

Moreover, each valuation u of λs+1, . . . , λn corresponds to one (resp. two) fixed
points if the assignment v ∪ u makes ψ false (resp. true). As a consequence, the
reduction is correct by setting k = 3

22q. ut

In this second part, we study MFPP with unbounded maximum degree.

Theorem 6. When ∆(D) is unbounded, MFPP is NEXPTIME-complete.

Proof (sketch, see details in Appendix D). It is easy to see that the problem
MFPP with unbounded degree is in NEXPTIME. Indeed, to know if φ(D) ≥ k
it is sufficient to guess a function f ∈ F (D) (encoded in exponential space), to
compute φ(f) (in exponential time) and then accept if φ(f) ≥ k, reject otherwise.
A non-deterministic branch accepts if and only if φ(D) ≥ k.

For the hardness, we reduce from Succint-3SAT [22], which is 3SAT where
ψ has n = 2ñ variables, m = 2m̃ clauses, and is given by a circuit C with:

– m̃ input bits for the clauses, and 2 for the three literal positions,
– ñ output bits to give the corresponding variable, and 1 for its polarity.
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D is acyclic, has in-degree at most 2, and has simple OR, AND, NOT, identity
or constant functions. The idea is to generalize the construction from the proof
of Theorem 3, with one literal for each node of the circuit C (top part), and
additional clauses implementing the circuit (bottom part). With non-trivial ad-
ditional elements, choosing local functions correspond to choosing an assignment.
There will be a maximum of one (resp. two) fixed point for each non-satisfied
(resp. satisfied) clause. As a result, ψ is satisfiable if and only if φ(D) ≥ 2m. ut

6 Conclusion

This first work raises many open questions. First, is the problem 1-MFPP P-
complete? We proved that it is equivalent to the problem of finding an even
cycle in a digraph, for which the P versus NP-complete status remained open
until [20, 27]. Now we know that the problem is in P, but is it a tight bound?

Several natural extensions of the present results may be addressed. What
happens to the complexity when we study the minimum number of fixed points
instead of the maximum? And for digraphs with only positive arcs? What about
limit cycles of period greater than one instead of fixed points? Understanding
the complexity of computing bounds on dynamical properties of BNs respect-
ing a given interaction digraph is a new and promising approach, both on the
theoretical and practical points of view.
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A k-MFPP ∈ NP for k ≥ 2, proof of Lemma 3

Lemma 9. For any k ≥ 2, k-MFPP is in NP.

Proof. Consider a SID D = (V,A, σ) where V = [n]. Suppose that k ≤ 2n, oth-
erwise the answer is yes. Given j ∈ [n] and s, s′ ∈ {−1, 0, 1}, we set N{s,s

′}(j) =
Ns(j) ∪ Ns′(j). For any j ∈ [n], let I(j) = N{−1,1}(j) and b(j) ∈ {0, 1}n such

that for any i ∈ I(j), b
(j)
i = σ̃ij . To check that φ(D) ≥ k one can use the

following algorithm (choose in is non-deterministic).

Algorithm 1 φ(D) ≥ k
Require: A signed interaction digraph D.
1: for j ∈ [n] do
2: Xj ← ∅
3: end for
4: FIXED POINTS← ∅
5: for p ∈ [k] do
6: x← choose in

(
{0, 1}n \ FIXED POINTS

)
.

7: FIXED POINTS← FIXED POINTS ∪ {x}
8: for j ∈ [n] do
9: Xj ← Xj ∪ {(x, xj)}

10: end for
11: end for
12: for j ∈ [n] do
13: for i ∈ N(j) do
14: if i ∈ N{−1,0}(j) then
15: x← choose in

(
{x ∈ {0, 1}n | xi = 0})

16: Xj ← Xj ∪ {(x, 1)}
17: Xj ← Xj ∪ {(x+ ei, 0)}
18: end if
19: if i ∈ N{0,1}(j) then
20: x← choose in

(
{x ∈ {0, 1}n | xi = 0})

21: Xj ← Xj ∪ {(x, 0)}
22: Xj ← Xj ∪ {(x+ ei, 1)}
23: end if
24: end for
25: end for
26: for j ∈ [n] do
27: for (x, y) ∈ Xj do
28: for (x′, y′) ∈ Xj do
29: if xN0(j) = x′N0(j) and (x′ + b(j))I(j) ≤ (x+ b(j))I(j) and y′ > y then
30: return False
31: end if
32: end for
33: end for
34: end for
35: return True
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We can see that executed on a non-deterministic machine, this algorithm
stops in a polynomial time, O(n∆(D)2) where n is the size of V and ∆(D) is
the maximum incoming degree of D. It stops as well in O(m2) steps where m is
the size of A.

Now, let us see why this algorithm works. In other words, why a non-
deterministic branch of this algorithm returns true if and only if the answer
of the problem is yes.

First, suppose there exists f ∈ F (D) with k fixed points. One can consider
the following execution. First, the k configurations chosen in line 6 are k fixed
points of f . Second, the configuration x chosen in line 13 is a configuration such
that 0 = fj(x) < fj(x + ei) = 1. This configuration exists since i ∈ N{−1,0}(j)
and f ∈ F (D). Similarly, the configuration chosen line in 18 is a configuration
x such that fj(x) > fj(x + ei). Because f ∈ F (D), the condition on line 27 is
never satisfied. This execution of the algorithm then returns “True”.

Second, suppose that the algorithm returns “True”. Consider an accepting
branch of the execution. Let us define f ∈ F (n) and prove that f ∈ F (D). For
each j ∈ [n] and x ∈ {0, 1}n, we define fj(x) as follows: fj(x) = 1 if and only if
there exist (x′, 1) ∈ Xj such that

xN0(j) = x′N0(j) and (x′ + b(j))I(j) ≤ (x+ b(j))I(j).

Consider the SID D′ = (V,A′, σ′) of f and let us show that D = D′. Fix
j ∈ [n] and let us see that for any s ∈ {−1, 0, 1}, we have Ns

D′(j) = Ns
D(j). First,

prove that ND′(j) ⊆ ND(j). Take i ∈ ND′(j). There exists x ∈ {0, 1}n such that
fj(x) = 1 6= 0 = fj(x + ei). By definition of fj , there exists (x′, 1) ∈ Xj such
that

xN0
D(j) = x′N0

D(j) and (x′ + b(j))I(j) ≤ (x+ b(j))I(j).

Now, if i 6∈ ND(j), we also have

(x+ ei)N0
D(j) = x′N0

D(j) and (x′ + b(j))I(j) ≤ (x+ ei + b(j))I(j).

Thus, fi(x+ ei) = 1, a contradiction. Hence, i ∈ N(j) and ND′(j) ⊆ ND(j).
The instruction lines 13, 14, 15 and 18, 19, 20, ensure the following: if i ∈

N
{−1,0}
D (j) then i ∈ N{−1,0}

D′ (j), and if i ∈ N{0,1}D (j) then i ∈ N{0,1}D′ (j). As a
result, N0

D(j) ⊆ N0
D′(j). It is now sufficient to prove that N−1

D (j) ∩N0
D′(j) = ∅

and that N1
D(j)∩ ∈ N0

D′(j) = ∅. Consider i ∈ N−1
D (j) and suppose for the sake

of contradiction that i ∈ N0
D′(j). It means that there exists x ∈ {0, 1}n with

xi = 0 such that 0 = fj(x) < fj(x + ei) = 1. Thus, there exists (x′, 1) in Xj

such that

(x+ ei)N0
D(j) = x′N0

D(j) and (x′ + b(j))I(j) ≤ (x+ ei + b(j))I(j).

Since i ∈ N−1
D (j), we have b

(j)
` = σ̃ij = 1. Then,

(x′ + b(j))I(j) ≤ (x+ ei + b(j))I(j) ≤ (x+ b(j))I(j).

Hence, fj(x) = 1, a contradiction. Thus, i ∈ N−1
D (j), N−1

D (j) ∩N0
D′(j) = ∅ and

N−1
D′ (j) ⊆ N−1

D (j).
The proof of N1

D′(j) ⊆ N1
D(j) is similar. ut
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B The extension problem, proof of Theorem 7

Let D be a simple signed digraph with vertex set V , and let h be a partial BNs
on V , that is, a function h : X → {0, 1}V where X ⊆ {0, 1}V . A D-extension of
h is a BN f ∈ F (D) which is consistent with h, that is, such that fi(x) = hi(x)
for all x ∈ X and i ∈ V with hi(x) ∈ {0, 1}.

Theorem 7. Let D be a simple signed digraph with vertex set V and consider
a partial BN h : X → {0, 1}V with X ⊆ {0, 1}V . There is a O(|X|2|V |2)-time
algorithm to decide if there exists a D-extension of h.

The proof involves three lemmas and some additional definitions. Let≤ be the
partial order on {0, 1}n defined by x ≤ y if and only if xi ≤ yi for all i ∈ [n]. An
antichain is a subset {0, 1}n that does not contain distinct comparable elements.
Given A ⊆ {0, 1}n, we denote by A− the set of x ∈ {0, 1}n such that x ≤ a for
some a ∈ A, and we denote by A+ the set of x ∈ {0, 1}n such that a ≤ x for
some a ∈ A. Let f : {0, 1}n → {0, 1} be a Boolean function (BF). f is monotone
if x ≤ y implies f(x) ≤ f(y). f depends on input i ∈ [n] if f(x) 6= f(x + ei) for
some x ∈ {0, 1}n, and f is total if it depends on its n inputs. A partial BF is
a function h : X → {0, 1}, where X ⊆ {0, 1}n. A monotone extension of h is a
total monotone BF f which is consistent with h, i.e. f(x) = h(x) for all x ∈ X
with h(x) ∈ {0, 1}.

The first lemma is a simple characterization of the partial BFs that admit a
monotone extension.

Lemma 10. Let h : X → {0, 1} be a partial BF. Let A be the set of maximal
elements of h−1(0) and let B be the set of minimal elements of h−1(1). Then h
has a monotone extension if and only if, among the three conditions below, (1)
is true and at least one of (2) and (3) is true:

(1) There is no a ∈ A and b ∈ B with b ≤ a.
(2) For all i ∈ [n], there exists a ∈ A with ai = 0 or b ∈ B with bi = 1.
(3) A− ∪B+ 6= {0, 1}n.

Proof. Suppose first that h has a monotone extension f . Then it is clear (1) is
true. Suppose that the condition (2) is false, and let us prove that this forces the
condition (3) to be true. Since (2) is false, there exists i ∈ [n] such that ai = 1

for all a ∈ A and bi = 0 for all b ∈ B. Since f depends on input i, there exists
x ∈ {0, 1}n such that f(x) 6= f(x+ei). Suppose, without loss, that xi = 0. Then
x ≤ x + ei thus f(x) = 0 and f(x + ei) = 1. If x ≤ a for some a ∈ A, then
x+ ei ≤ a (since ai = 1) but then f(x+ ei) ≤ f(a) = h(x) = 0, a contradiction.
Thus, x 6∈ A−. Furthermore, if b ≤ x for some b ∈ B, then 1 = f(b) ≤ f(x), a
contradiction. Thus, x 6∈ B+. Hence, x 6∈ A− ∪B+ thus (3) is true.

Suppose now that (1) is true and that at least one of (2) and (3) is true. Let
I be the set of i ∈ [n] such that ai = 1 for all a ∈ A and bi = 0 for all b ∈ B.
Thus, I = ∅ is equivalent to (2). Let Z := {0, 1}n \ (A− ∪B+). We have

∀i ∈ I, z ∈ Z ⇐⇒ z + ei ∈ Z.
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Indeed, suppose that z ∈ Z. If z + ei ≤ a for some a ∈ A, then z ≤ a since
ai = 1, a contradiction. If b ≤ z + ei for some b ∈ B, then b ≤ z since bi = 0, a
contradiction. Thus, z + ei ∈ Z and this proves the equivalence. Now we fix an
element z of {0, 1}n as follows:

1. If I = ∅, which is equivalent to (2), then z is any member of A,
2. If I 6= ∅, then (3) is true, thus Z 6= ∅, and z is any minimal element of Z.

By the equivalence above and the choice of z, we have

I 6= ∅ ⇒ zi = 0 ∀i ∈ I.

Suppose that I 6= ∅ and a ≤ z for some a ∈ A. For all i ∈ I we then have ai = 1

and thus zi = 1, which contradicts the above implication. Thus,

I 6= ∅ ⇒ z 6∈ A+.

Let us now define f : {0, 1}n → {0, 1} as follows:

f(x) :=

{
0 if x ∈ A− or x ≤ z or x ∈ B− \ (B ∪A+),

1 otherwise.

Let us prove that f is consistent with h. Indeed, if x ∈ h−1(0) then x ∈ A−
and thus f(x) = 0 = h(x). If x ∈ h−1(1) then x ∈ B+ thus x 6∈ A− and
x 6∈ B− \B. Furthermore, since z belongs to A ∪ Z, which is disjoint from B+,
we cannot have x ≤ z. Thus, f(x) = 1 = h(x).

We now prove that f is monotone. Suppose that x ≤ y and f(x) = 1. If
y ∈ A− then x ∈ A− and f(x) = 0, a contradiction. If y ≤ z then x ≤ z and
f(x) = 0, a contradiction. If y ∈ B− \ (B ∪ A+) then x ∈ B− \ B, and since
f(x) = 1 we deduce that x ∈ A+, but then y ∈ A+, a contradiction. Thus,
f(y) = 1. This proves that f is monotone.

It remains to prove that f depends on its n inputs. Let i ∈ [n]. We consider
three cases.

1. Suppose that there exists a ∈ A with ai = 0. We have f(a) = 0. Suppose, for
a contradiction, that f(a+ ei) = 0. Since it is clear that a+ ei ∈ A+ \ A−,
we deduce that a ≤ a + ei ≤ z, and thus z ∈ A+. By the implication
above, I = ∅. So, by the choice of z, we have z ∈ A, hence a + ei ∈ A−, a
contradiction. Thus, f(a+ ei) = 1 and f depends on input i.

2. Suppose that there exists b ∈ B with bi = 1. As proved above, we have
f(b) = 1. Since b + ei ∈ B− \ B, if b + ei 6∈ A+, then f(b + ei) = 0 thus f
depends on input i. If b + ei ∈ A+ then there exists a ∈ A with a ≤ b + ei.
Thus, ai = 0 and, by the first case, f depends again on input i.

3. Suppose that i ∈ I. We have f(z) = 0 and, by the implication above, zi = 0,
thus z + ei 6≤ z. By the equivalence above, z + ei ∈ Z and thus z + ei 6∈ A−.
Since i ∈ I and zi = 0, we have z + ei 6∈ B−. We deduce that f(b+ ei) = 1,
and thus f depends on input i.

ut
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The second lemma shows that the condition (3) in the previous lemma is
easy to test.

Lemma 11. Let A and B be two antichains of {0, 1}n such that there is no
a ∈ A and b ∈ B with b ≤ a. The following two conditions are equivalent:

(1) A− ∪B+ = {0, 1}n.
(2) A ∪B 6= ∅ and x+ ei ∈ A− ∪B+ for all x ∈ A ∪B and i ∈ [n].

Proof. If (1) is true then we trivially have (2). For the converse, suppose that (2)
is true. We prove that (1) is true by induction on n. The case n = 1 is obvious, so
suppose that n ≥ 2. Suppose first that B = ∅, and let a ∈ A. If ai = 0 for some
i ∈ [n] then a ≤ a + ei and thus a + ei 6∈ A−, since A is an antichain, and this
contradicts (2). We deduce that ai = 1 for all i ∈ [n], and thus A− = {0, 1}n.
We prove similarly that B+ = {0, 1}n if A = ∅. So suppose that A 6= ∅ and
B 6= ∅. Let A0 be the set of a ∈ A with an = 0 and let A1 := A \ A0. Let B0

and B1 be defined similarly. Suppose that A1 ∪ B1 = ∅ and let a ∈ A0. Then
a+ en 6∈ A− since a ≤ a+ en and A is an antichain. Thus, a+ en ∈ B+, that is,
there exists b ∈ B with b ≤ a+en. Since B1 is empty, bn = 0 thus b ≤ a and this
contradicts our assumptions on A and B. Thus, A1 ∪ B1 6= ∅. Since there is no
a ∈ A1 and b ∈ B1 with b ≤ a, and since x+ ei ∈ A−1 ∪ B

+
1 for all x ∈ A1 ∪ B1

and i ∈ [n− 1], by induction hypothesis, A−1 ∪B
+
1 is the set of x ∈ {0, 1}n with

xn = 1. We prove similarly that A−0 ∪B
+
0 is the set of x ∈ {0, 1}n with xn = 0.

We conclude that A− ∪B+ = {0, 1}n. ut

The third lemma puts together the two previous ones and shows that there
is fast algorithm for the monotone extension problem.

Lemma 12. There is a O(|X|2n)-time algorithm that takes as input a partial
BF h : X → {0, 1} with X ⊆ {0, 1}n, and decides if a monotone extension of h
exists.

Proof. The algorithm is as follows. We compute the set A of maximal elements
of X0 = h−1(0) and the set B of minimal elements of X1 = h−1(1). This can be
done in O(|X|2n). Then, we test the conditions (1), (2) and (3) of Lemma 10.
The first can be tested in O(|X|2n) and the second in O(|X|n). The third can
be tested in O(|X|2n) using the equivalence of Lemma 11. By Lemma 10, h has
a monotone extension if and only if (1) is true and (2) or (3) is true. ut

We are now in position to prove Theorem 7.

Proof (of Theorem 7). Let D be a simple signed digraph with vertex set V and
let h : X → {0, 1} a partial BN on V . Let i ∈ V and let Fi(D) = {fi | f ∈ F (D)}
be the set of possible local functions for the component i. Let I be the set of
in-neighbors of i in D. Since local functions in Fi(D) only depend on inputs in I,
we can regard them as functions from {0, 1}I to {0, 1}. Then, we say that hi has
a D-extension if there exists fi ∈ Fi(D) consistent with hi, i.e. g(xI) = hi(x)
for all x ∈ X with hi(x) ∈ {0, 1}. Clearly, to prove the theorem, it is sufficient
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to prove that we can decide in O(|X|2|V |) if hi has a D-extension. Note that
if I = ∅, then hi has a D-extension if and only if there is no x, y ∈ X with
hi(x) = 0 and hi(y) = 1. So we assume in the following that I 6= ∅.

Let J be the set of negative in-neighbors of i in D, and let eJ be the con-
figuration in {0, 1}I defined by (eJ)j = 1 if and only if j ∈ J . For each BF

fi : {0, 1}I → {0, 1} we define the BF f̃i : {0, 1}I → {0, 1} as follows:

∀x ∈ {0, 1}I , f̃i(x+ eJ) = fi(x).

Note that
˜̃
fi = fi. Furthermore, it is an easy exercise to prove that

fi ∈ Fi(D) ⇐⇒ f̃i is total and monotone.

If there is x, y ∈ X with xI = yI and hi(x) = 0 and hi(x) = 1, then hi
has clearly no D-extension. So assume that there is such x, y. This allows us to
define, without ambiguity, the partial BF h̃i on {xI + eJ : x ∈ X} by:

∀x ∈ X, h̃i(xI + eJ) = hi(x).

It is easy to see that

fi is a D-extension of hi ⇐⇒ f̃i is a monotone extension of h̃i

Now, by Lemma 12, there is a O(|X|2|I|)-time algorithm to decide if h̃i has a
monotone extension, and by the equivalence above, we can decide with the same
complexity if hi has a D-extension. ut

C Maximum Fixed Point Problem, proof of Lemma 8

Lemma 8 states that when ∆(D) ≤ d, the problem MFPP is NP#P-hard.

Proof (Lemma 8). We consider the following problem.

Existential-Majority-3SAT (E-Maj3SAT)
Input: ψ a formula on {λ1, . . . , λn} and s ∈ [n]
Question: There exists an assignment v of λ1, . . . , λs such that the
majority of assignments of λs+1, . . . , λn satisfy ψ?

We know that E-Maj3SAT is NPPP-complete [19] and that NP#P = NPPP

(direct extension of P#P = PPP [22]). Consequently, it is sufficient to prove that
we can reduce E-Maj3SAT to MFPP. To represent an instance (ψ, s) of E-
Maj3SAT, we construct a digraph Dψ,s = (V,A, σ) (see Figure 3) similar to
the digraph Dψ constructed in Lemma 5 except that we add a positive loop to
the q = n− s vertices rs+1, . . . , rn. We claim that φ(Dψ,s) = α+ 2q, with

α = max
v:{λ1,...,λs}→{⊥,>}

|{u : {λs+1, . . . , λn} → {⊥,>} | v ∪ u satisfies ψ}|,
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Fig. 3: Example of reduction from E-Maj3SAT to MFPP restricted to D with a
bounded degree. Here is represented Dψ,2 for the formula ψ from Figure 2, i.e. the
E-Maj3SAT problem asks for the existence of v : {λ1, λ2} → {⊥,>} such that the
majority of v′ : {λ3, λ4} → {⊥,>} satisfy ψ. This problem is satisfiable if and only if
φ(Dψ,2) ≥ 3

2
22.

where v ∪ u is the assignment of λ1, . . . , λn resulting from v and u.

In one direction, consider an assignment v of λ1, . . . , λs such that there are
α assignments u of λs+1, . . . , λn which make ψ true. Let us prove that there
exists f such that φ(f) ≥ α + 2q. We define f as in Lemma 5, except for
j ∈ {rs+1, . . . , rn} where fj is the function fj(x) = xj instead of a constant
function. Now, for any assignment u of λs+1, . . . , λn, let I>u = {i | v∪u(λi) = >}
and I⊥u = {i | v ∪ u(λi) = ⊥}. Let us define xu and yu as

∀j ∈ [n], xuj = 1 if j ∈ {ri | i ∈ I>u } and 0 otherwise, and

∀j ∈ [n], yuj = 1 if j ∈
⋃
i∈I>u

{ri, `i} ∪
⋃
i∈I⊥u

{¯̀i} ∪ P ∪ S and 0 otherwise.

One easily checks that all the 2q configurations xu are distinct fixed points of f
and that a configuration yu is another fixed point when v∪u is a valid assignment
of ψ. As a result, φ(f) ≥ α+ 2q. Thus, φ(Dψ,s) ≥ α+ 2q.

In the other direction, consider a function f ∈ F (Dψ,s) which maximizes
φ(f). Let β + 2q be the number of fixed point of f ∈ F (Dψ,s). We know that
β ≥ α, and want to prove that β ≤ α. Let us prove that we can construct
an assignment v of λ1, . . . , λs, such that there are at least β assignments u of
λs+1, . . . , λn such that v ∪ u satisfy ψ.
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Let us consider the set A of configuration a ∈ {0, 1}q such that there exist
two distinct fixed points xa, ya ∈ Φ(f) such that

xa{rs+1,...,rn} = ya{rs+1,...,rn} = a.

If A = ∅ then two distinct fixed points have different values on {rs+1, . . . , rn}
therefore φ(f) ≤ 2q, and from what precedes we have φ(f) = φ(Dψ,s) = 2q i.e.
β = α = 0. Therefore, we can consider that A 6= ∅.

Note that {rs+1, . . . , rn} ∪ {p0} is a feedback vertex set of Dψ,s. Thus, by
Remark 2, for any a ∈ A, xap0 6= yap0 . Without loss of generality, we consider
xap0 < yap0 . Furthermore, by Remark 1, there exists a positive cycle Ca such that:

– Ca contains S ∪ P and either `i or ¯̀
i for any i ∈ [n], and

– for any j ∈ Ca, xaj < yaj (because all arcs of Ca are positive).

Let us define the assignment v of λ1, . . . , λs as follows, for any i ∈ [s].

– If f`i is the AND (resp. OR) function and fri is the constant 1 (resp. 0)
function, then we set v(λi) = >. We can see that in this case, for any a ∈ A,
we have xa`i = ya`i = 0 (resp. 1). As a result, any Ca contains ¯̀

i.
– Otherwise, we set v(λi) = ⊥. We can see that in this case, for any a ∈ A,
xa`i 6= ya`i and we can consider that Ca contains `i.

Let us now define an assignment ua of λs+1, . . . , λn for each a ∈ A, as follows.
For any i ∈ [q]:

– if Ca contains `s+i then ua(λs+i) = ⊥, and
– if Ca contains ¯̀

s+i then ua(λs+i) = >.

With the same reasoning as in Lemma 5, we know that for any a ∈ A, v∪ua is
a valid assignment of ψ. It is now sufficient to prove that for any distinct a, a′ ∈ A,
ua 6= ua

′
. Let i be such that ai 6= a′i. Let us prove that ua(λs+i) 6= ua

′
(λs+i).

Without loss of generality let ai = 0 and a′i = 1.

– If ua(λs+i) = ⊥ then Ca contains `s+i, and f`s+i is the AND function. Thus,

f`s+i(x
a′) = f`s+i(y

a′) = ¬1∧· · · = 0. As a consequence Ca
′

does not contain

`s+i and thus ua(λs+i) 6= ua
′
(λs+i).

– If ua(λs+i) = > then Ca contains ¯̀
s+i, and f¯̀

s+i
is the OR function. Thus,

f¯̀
s+i

(xa
′
) = f¯̀

s+i
(ya

′
) = 1∨ · · · = 1. As a consequence Ca

′
does not contain

¯̀
s+i and thus ua(λs+i) 6= ua

′
(λs+i).

As a result, for each a ∈ A the two distinct fixed points xa, ya correspond
to an assignment ua such that v ∪ ua satisfies ψ. Therefore, we have β ≤ α,
hence β = α and φ(Dψ,s) = α + 2q. This means that α ≥ 2q−1 if and only if
φ(Dψ,s) ≥ 3

22q, which concludes the reduction from E-Maj3SAT to MFPP.
Remark that Dψ,s is a digraph of maximum in-degree 3. More precisely, only

vertices of T = {ti | i ∈ [m]} can have an in-degree superior to 2. Furthermore,
using the same trick as in Lemma 5, we can add intermediate components to
limit the maximum in-degree to 2. ut
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D Maximum Fixed Point Problem, proof of Theorem 6

Proof (Theorem 6). Below we prove only the NEXPTIME-hardness of MFPP
with unbounded degree.
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. . .

Fig. 4: Circuit encoding a 3SAT formula ψ with m = 2m̃ clauses and n = 2ñ variables.

To prove that the problem is NEXPTIME-hard, we reduce from Succint-
3SAT which is NEXPTIME-hard [22]. Let D be an instance of circuit which
encodes a Succint-3SAT problem with n = 2ñ variables λ1, . . . , λn and m = 2m̃

clauses µ1, . . . , µm. To lighten the notations, let us denote as well the variables by
λw for w ∈ {0, 1}ñ and the clauses by µu for u ∈ {0, 1}m̃. The circuit C encodes
a formula ψ as follows (and as represented in Figure 4). Given the input:

– in {u1, . . . , um̃}, the index u ∈ [m] of a clause, and
– in {γ1, γ2}, the position γ ∈ {1, 2, 3} of a literal in the clause µu,

the circuit C outputs:

– in {w1, . . . , wñ}, the index w ∈ [n] of the γth variable in the clause µu, and
– in {ρ}, the polarity of this literal (0 for ¬λw, and 1 for λw).

We denote {h1, . . . , hη} the set of vertices between the inputs and outputs. The
circuit C has a total of m̃ + ñ + η + 3 vertices, is acyclic, and apart from the
inputs each vertex of D computes one of the following function:

– a constant function (0 or 1) from 0 in-neighbor, or
– a NOT function from 1 in-neighbor, or
– an AND or OR function from 2 in-neighbors, or
– only for the outputs: an identity function from 1 in-neighbor.

From D, the reduction consists in constructing the digraph DC represented
in Figure 5. The idea is to encode the circuit C (itself encoding the formula
ψ) within simple constraints in disjunctive normal form, and use again the con-
struction from Lemma 5. Furthermore, additional elements (positive loops and
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null arcs) will enforce the BN to correspond to a valuation on λ1, . . . , λn, and
have two fixed points for each satisfied clause of the formula ψ. As a consequence
we will have φ(DC) ≥ 2m if and only if ψ is satisfiable.

u1 u2 . . . um̃ γ1 γ2 h1 h2
. . . hη w1 w1 . . . wñ ρ ν

π1 π2

. . . . . . . . . . . .

. . .. . .

Λρ ∨ ¬Λν¬Λν ∨ Λρ¬Λh1 ∨ Λu1 ∨ Λu2Λh1 ∨ ¬Λu2Λh1 ∨ ¬Λu1Λγ1 ∨ Λγ2

(Λγ1 , Λγ2) 6= 00 Λh1 = Λu1 ∨ Λu2 Λρ = Λν

Fig. 5: Digraph DC encoding the Succint-3SAT instance C, which is a circuit itself
encoding a formula ψ (see Figure 4). Null arcs on the top are dashed in black and red.
We have φ(D) ≥ 2m = 2m̃+1 if and only if ψ is satisfiable.

Let us define the set of meta-variables (to distinguish them from the variables
of ψ)

Λ =
{
Λi | i ∈ V ′

}
with V ′ = U ∪ {γ1, γ2} ∪H ∪ {ρ, ν},

U = {u1, . . . , um̃}, and H = {h1, . . . , hη}. On these meta-variables, we define
the 3SAT meta-formula Ψ as follows.

– Add the clause Λγ1 ∨ Λγ2 ,
– For each hi ∈ H,

• if hi is a constant 0 in circuit C then add the clause ¬Λhi ,
• if hi is a constant 1 in circuit C then add the clause Λhi ,
• if hi is a NOT of hj in circuit C then add the clauses

(Λhi ∨ Λhj ) ∧ (¬Λhi ∨ ¬Λhj ),



Complexity of maximum fixed point problem in Boolean Networks 23

• if hi is an OR of hj and hk in circuit C then add the clauses

(Λhi ∨ ¬Λhj ) ∧ (Λhi ∨ ¬Λhk) ∧ (¬Λhi ∨ Λhj ∨ Λhk),

• if hi is an AND of hj and hk in circuit C then add the clauses

(¬Λhi ∨ Λhj ) ∧ (¬Λhi ∨ Λhk) ∧ (Λhi ∨ ¬Λhj ∨ ¬Λhk).

– For each i ∈W ∪ {ρ} of in-neighbor hj in circuit C, add the clauses

(Λi ∨ ¬Λhj ) ∧ (¬Λi ∨ Λhj ).

– Add the clause (Λν ∨ ¬Λρ) ∧ (¬Λν ∨ Λρ).

Now, we construct the digraph DΨ corresponding to the meta-formula Ψ on the
meta-variable set Λ, as in the proof of Lemma 5. For each i ∈ Λ we simply denote
i instead of ri (the top component in Figure 2).

To get DC from DΨ , we add a positive loop on components of the set U , plus
two vertices {π1, π2} and the following arcs:

– for i ∈ {1, 2} and j ∈ {γ1, γ2, ν}, an arc from πi to j labeled 0,
– for i ∈ [m̃] and j ∈ {γ1, γ2}, an arc from ui to j labeled 0,
– for i ∈ [ñ], an arc from wi to ν labeled 0.
– for j ∈ H ∪W ∪ {ρ}, an arc from the in-neighbors of j in D and labeled
• 1 if j computes the identity, AND or OR function in D, and
• −1 if j computes the NOT function in D.

The construction of DC is finished. The purpose of this last part is to enforce
that for any f ∈ F (DC), there are two fixed points sharing the same value u on
components {u1, . . . , um̃} if and only if the corresponding clause µu is satisfied
by the assignment v given in fν (more precisely by the literal given in fγ1 , fγ2).

We claim that φ(DC) = α+m, with

α = max
v:{λ1,...,λn}→{⊥,>}

|{µi | i ∈ [m] such that v satisfies µi}| .

Proving the claim finishes the proof with k = 2m, since φ(D) ≥ 2m if and only
if ψ is satisfiable.

In one direction, to prove φ(DC) ≥ α + m, let us consider an assignment
v : {λ1, . . . , λn} → {⊥,>} which satisfies α clauses of ψ. Let us prove the
existence of f ∈ F (DC) such that φ(f) ≥ α+m. The BN f is constructed from
v as follows. We set fπ1

: x 7→ 0 and fπ2
: x 7→ 0. Note that as a result, each

fixed point x ∈ Φ(f) respects x{π1,π2} = 00. Regarding fν , we set

fν(x) =

xπ1 ⊕ xπ2 ⊕
⊕

i∈W xi if xπ1 = 1 or xπ2 = 1,
1 if x{π1,π2} = 00 and v(λi) = > with i = xW ,
0 otherwise.
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The first part of the definition of fν ensures that the arcs between the in-
neighbors of ν and ν are all effective. The two last parts enforce that fν encodes
v. In other words, for any x ∈ Φ(x), fν(x) equals 1 if and only if v(λw) = > with
w = xW . We set similarly fγ1 and fγ2 , so that we have the following. For any
x ∈ Φ(f), f{γ1,γ2}(x) = γ with γ the position of a first literal satisfying the clause
µxU with the valuation v (and anything if such a γ does not exist). Furthermore,
we set fui : x 7→ xui for i ∈ [m̃] and each function fj for j ∈ H ∪ W ∪ {ρ}
computes the same function as in the circuit C. The other local functions fi for
i ∈ L ∪ L̄ ∪ P ∪ S ∪ T are identical to those of Lemma 5.

One can check that if two fixed point are identical on the components of U ,
then they are identical in all V ′. Furthermore, the choice of local function fi we
made is similar to Lemma 8. Consequently, we have the following properties.

– Each clause µu corresponds to at least a fixed point xu with xuU = u.
– Consider the following meta-assignment vu : {Λ1, . . . , Λn} → {⊥,>}. We set
vu(Λi) = > if and only if xui = 1 for any i ∈ V ′. The clause µu corresponds
to two distinct fixed points xu and yu if and only if vu is a valid assignment
of Ψ .

Furthermore, for any clause µu with u ∈ {0, 1}m̃ such that v satisfies µu we
have the following properties.

– vu satisfies the clauses of Λ which prevent Λγ1 and Λγ2 to be assigned to
⊥ together. Indeed, xu{γ1,γ2} encodes the position γ of the first literal in µu
which satisfies µu.

– vu satisfies all clauses of Ψ which assert that the circuit is correctly computed
with u and γ in input.

– vu satisfies vu(Λρ) = vu(Λv). Indeed, the assignment v satisfies the clause
µu through the variable λw (with w = xuW ) of polarity xρ. Thus, we have
xuρ = 0 (resp. 1) and v(λw) = ⊥ (resp. >) and then xuν = 0 (resp. 1). As a
result, vu(Λρ) = vu(Λv) = ⊥ (resp. >).

We can conclude that f has two (resp. one) fixed points for each u ∈ {0, 1}m̃
encoding a clause µu satisfied (resp. not satisfied) by v, hence a total of m+ α.

In the other direction, to prove φ(DC) ≤ α +m, let us consider f ∈ F (DC)
which has m + β fixed points. Let us prove the existence of v : {λ1, . . . , λn} →
{⊥,>} which satisfies at least β clauses of ψ.

The valuation v is given by fν as follows, for any w ∈ {0, 1}ñ encoding a
variable λw,

v(λi) =

{
> if rν(fν(x)) = 1 with xπ1 = xπ2 = 0 and xW = rW (w)
⊥ otherwise

where we have the following technical adjustment:

ri(x) =

{
xi if f`i is the AND function
¬xi otherwise.
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As in the proof of Lemma 8, we consider the set A of configurations a ∈
{0, 1}m̃ such that there exist two distinct fixed points xa, ya ∈ Φ(f) such that
xaU = yaU = a. We know that U ∪{p0} is a feedback vertex set of DC . Therefore,
for each a ∈ A there are at most two distinct fixed points x, y with xU = yU = a
(one with xp0 = 0 and the other with yp0 = 1), and as a consequence |A| = β.
Let us see that for each a ∈ A the fixed points xa and ya correspond to a clause
µa of ψ satisfied by v.

We see that for any a ∈ A and the two fixed points xa,ya, if f`i is the AND
(resp. OR) function, then yai = 0 (resp. 1) if and only if Λi = ⊥ (resp. >).
In particular, if we consider that the local function at f`i is always the AND
function, then the rν and rW adjustments disappear from the definition of v.
Without loss of generality, we can consider that this is the case.

From the construction of GΦ as in the proof of Lemmas 5 and 8, two fixed
points xa, ya with xa = ya = a correspond to satisfying Ψ (with truth value of
variable Λi encoded in the difference of xa`Λi

and xa¯̀
Λi

along a positive cycle).

From the clause Λγ1 ∨ Λγ2 in Ψ we cannot have xaγ1 = xaγ2 = 0, hence the
components γ1, γ2 encode a literal position in {1, 2, 3}. The rest of the reasoning
is symmetric to the other direction: from the constraints of circuit C implemented
in the meta-formula Ψ and the equality of components ρ and ν, the pair of fixed
points is such that v satisfies clause µa with the literal at position encoded in
components γ1, γ2 (this literal is the variable encoded on W with the polarity
encoded in ρ, which is positive if and only if the variable is set to > in v). As a
consequence, v satisfies β clauses of ψ. ut


