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Abstract. In this paper we define spiking neural P circuits (SN P cir-
cuits) as an acyclic variant of spiking neural P systems. We then study
how well genetic algorithms (GA) are able to find an SN P circuit that
computes a given Boolean function, possibly partially defined. The pro-
posed technique can be used to find SN P circuits that solve binary clas-
sification problems. We performed several computer experiments, testing
different mutation operators and several combinations of hyperparame-
ter values. The preliminary results obtained show that the probability of
success of GA strongly depends upon the structure (in particular, the al-
gebraic degree and the number of input/output variables) of the Boolean
function to be computed.

Keywords: Spiking neural P systems · Evolutionary algorithms · Boolean
functions · Binary classification.

1 Introduction

Spiking neural P systems (SN P systems, for short) have been introduced in [13]
as the first neural-like model of membrane systems [22,23], abstracted from the
spiking mechanism of biological neurons. Inspired by spiking neurons, SN P
systems and variants are considered as the third generation of neural network
models, similar to spiking neural networks [18]. Structurally, an SN P system
is a directed graph composed of several neurons, where the nodes are spiking
neurons, and the directed arcs indicate the synaptic connections between neu-
rons. Depending on predefined conditions, neurons emit spike objects (which
represent the electrical impulses emitted by biological neurons); these spikes are
sent to adjacent neurons via synaptic connections. So doing, a computational
model can be defined, that takes appropriately encoded input values from the
environments and computes appropriately encoded output values.

Over the years, several variants have been studied that are inspired by dif-
ferent biological mechanisms. These include astrocytes [29], anti-spikes [21],
the presence of multiple channels [28], inhibition rules [25], dendrite mecha-
nisms [24], polarities [36], structural plasticity [5], communication on request [35],
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autapses [31], delay on synapses [16], plasmids [6], dynamic threshold [27], and
coupling mechanism [26]. Most of these variants have been proven to work as
Turing universal devices for generating or accepting sets of numbers, for com-
puting functions, or for generating languages. Furthermore, SN P systems and
variants have been used for some real-world application problems such as image
fusion [15,4], image segmentation [7], edge detection [39,37,38], medical image
processing [40], financial time series prediction [43], sentiment analysis [12,11,17],
recommendation systems [1], numerical optimization [41,44], and classification
problems [42].

In this paper we introduce an acyclic variant of SN P system, named SN P
circuits. These circuits are composed of layers, each one made of SN P gates. Sim-
ilarly to what happens with traditional Boolean circuits made of and/or/not
gates, a n-input/m-output SN P circuit computes a n-input/m-output Boolean
function f : {0, 1}n → {0, 1}m. As we will see, given a Boolean function, there
may be several SN P circuits that compute it. This depends also on the fact
that the Boolean functions to be calculated will only be partially defined ; that
is, not all input/output (x,y) pairs will be specified. As it will become clear in
the next section, a partially defined Boolean function can also be seen as the
training/testing dataset for a classification problem. Hence, finding a SN P cir-
cuit that correctly computes the given input/output pairs of a Boolean function
corresponds to finding a circuit that solves a given classification problem. Our
goal is to automatically find one of these circuits, using evolutionary techniques.
In particular, our aim is to answer the following research questions:
RQ1 How well (or poorly) do evolutionary algorithms work, in finding the

SN P circuits that compute a given Boolean function/solve a given
classification task?

RQ2 How does the quality of the solutions found vary depending on some
characteristics of the Boolean function (for example, non-linearity)?

Fully answering the first research question requires testing a large number
of evolutionary algorithms, varying the corresponding hyperparameters. This
article reports the results of the first study we have conducted to answer these
questions. For this reason, we will start by considering genetic algorithms (GA),
by far the most famous evolutionary algorithms. We will then define appropriate
crossover and mutation operators for the SN P circuits, and we will perform some
computer experiments to test the behavior of GA when their parameters vary.

The rest of the paper is structured as follows. In Section 2 we give some
mathematical preliminaries, to fix the notation and to establish a common back-
ground of notions. In Section 3 we give the details of the genetic algorithm used
in the following experiments. In particular, we define the crossover and mutation
operators, as well as the parameters that may influence the behavior of our algo-
rithm. In Section 4 we give a detailed description on how the genetic algorithm
and its variation operators (crossover and mutations) have been implemented.
Furthermore, we describe how SN P gates and SN P circuits are represented
in the computer’s memory. Section 5 contains a thorough description of the ex-
periments carried out, as well as an in-depth discussion of the results obtained.
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Section 6 concludes the paper, and provides some ideas and directions for future
research.

2 Mathematical Preliminaries

In what follows, we denote the Boolean values false and true as the integer
numbers 0 and 1, respectively. A Boolean variable is a variable that may assume
a Boolean value. A n-input/m-output Boolean function, for some fixed integers
n,m ≥ 1, is a function of the type f : {0, 1}n → {0, 1}m.

A Boolean circuit is a directed acyclic graph whose internal nodes (named
gates) compute Boolean functions. The nodes of in-degree 0 are called input
nodes and are usually labeled with input variables. The nodes with out-degree 0
are called output nodes. The value of the circuit is computed in the natural way
by giving values to the input variables, applying the gates to these values, and
computing the output values. In what follows we will refer to the usual circuits
— whose gates compute the “standard” Boolean functions and, or and not —
as and/or/not circuits. It can be easily seen that, without loss of generality,
we can arrange the gates of a circuit in layers, such that each gate takes its input
values among the output values of the previous layer (from the input nodes, for
the first layer). Evaluating a circuit thus amounts to computing the Boolean
vector produced by each layer, starting from the first layer and proceeding up to
the output layer. The size of a circuit is the number of gates it contains, while
the depth of a circuit is its number of layers.

A symmetric gate is a gate that computes a Boolean function whose value
only depends upon the number of 1s given as input. As an example, the n-input
and gate is symmetric: its output value is 1 if and only if the number of 1s given
as input is n. Similarly, the n-input or gate is symmetric: its output value is 1
if and only if the number of 1s in input is one of the values 1, 2, . . . , n. Also the
(1-input) not gate is symmetric: its output value is 1 if and only if the number
of 1s given as input is 0. A symmetric gate with n inputs can thus be defined
by giving the set of numbers G ⊆ {0, 1, . . . , n} such that the output of the gate
is 1 if and only if the number of 1s given as input is in G. Other two examples
of symmetric gates are the xor gate, that computes the Boolean xor among
its two input values, and its n-input extension, usually called the Parity gate.
The former is defined by the set xor= {1}, while the latter is defined by the set
Parity= {1, 3, 5, . . . , n} for n odd, or Parity= {1, 3, 5, . . . , n− 1} for n even.

Inspired from SN P systems, let us now define SN P circuits, which are made
of SN P gates.

Definition 1. A spiking neural P gate (SN P gate, for short) is a spiking neu-
ron that contains a subset of the following spiking rules:

ai → a for all i ∈ {0, 1, . . . , ℓ}

for a fixed integer value ℓ ≥ 1.
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As we can see, a SN P gate is a special case of spiking neuron, as defined in
the original version of spiking neural P systems [13], where:

– there are no forgetting rules;
– firing rules have no delay;
– the regular expression that enables the spiking rule of the kind ai → a has

the form E = ai. That is to say, the rule is enabled if and only if the neuron
contains exactly i spikes;

– there may be the firing rule a0 → a, that emits a spike whenever the neuron
contains 0 spikes. This rule is not allowed in the standard model of spiking
neural P systems. It is included here because it can be easily proved that,
without it, it is not possible to compute the not Boolean function. More
in general, without such a rule it is not possible to compute non-monotone
Boolean functions, which are those functions whose output value may pass
from 0 to 1 when one of their arguments passes from 1 to 0.
Note that the use of rules a0 → a can be avoided by changing the encoding
of the inputs and outputs for our gates. Currently, the Boolean values 1 and
0 are represented by the presence of a spike and the absence of spikes, re-
spectively. So, in a sense, the rules a0 → a perform an emptiness/appearance
check. If we want to avoid this type of check we can encode, for example,
the Boolean values 1 and 0 as the presence of two spikes and the presence
of one spike, respectively. Such an encoding requires to change the rules in
the SN P gates accordingly; for example, if an SN P gate has m input lines,
then the minimum number of spikes that may arrive from its input lines is
m, which happens if all the input Boolean values are 0. As a consequence,
all firing rules ai → a in the SN P gate will be defined for i ≥ m.

A SN P gate is a symmetric gate, which is defined by the set G ⊆ {0, 1, . . . , ℓ}
such that the neuron contains a rule of the kind ai → a if and only if i ∈ G.
Clearly, the value of ℓ may differ among SN P gates.

Definition 2. A spiking neural P circuit (SN P circuit, for short) is a circuit
composed of SN P gates.

As mentioned in Section 2, the SN P gates of a SN P circuit can be arranged in
layers, such that each gate takes its input values only among the output values of
the previous layer (from the input nodes, for the first layer). A layer is made up of
SN P gates that are not connected to each other. That is, if two SN P gates belong
to the same layer, then the output of one of the two gates is not used as input
by the other gate. Evaluating a circuit thus amounts to computing the Boolean
vector produced by each layer, starting from the first layer and proceeding up
to the output layer. Precisely, suppose that an SN P circuit computes a function
f : {0, 1}n → {0, 1}m, and that it is made up of k layers. First, we prepare
an input vector for the circuit, consisting of n elements. Each element is the
encoding of the corresponding input Boolean value, and therefore contains zero
or one spike to indicate the Boolean value 0 or 1, respectively. From this input
vector the SN P gates of the first layer take their inputs, according to their own
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input lines. The number of spikes arriving at an SN P gate through its input
lines are summed, and activate a firing rule or a forgetting rule. Consequently
the gate fires or cancels its spikes, thus producing one or zero spikes as output,
corresponding to the Boolean value 1 or 0, respectively. All the Boolean values
produced in this way by the gates of the first layer form a vector of Boolean
values, which constitute the input values for the SN P gates of the second layer.
All the SN P gate layers of the circuit are evaluated in this way, one after the
other, until the k-th layer is evaluated, which produces the circuit’s vector of
output Boolean values.

Let us note that, since we are working with acyclic circuits, whose output
values are computed by evaluating their layers sequentially, it is not necessary
to consider delays greater than 0 in the spiking rules. For the same reason, it is
not even necessary to consider forgetting rules, which delete a certain number
of spikes present in the neuron without making it emit spikes towards adjacent
neurons. If we do not want to make a SN P gate spike for a certain number i
of input spikes, we can simply omit the spiking rule ai → a; the i input spikes
will just remain in the neuron. Of course, this works because SN P circuits are
assumed to be “cleaned” before evaluating them; that is, we assume that each
gate of the SN P circuit contains no spike before being evaluated. This is done so
that the output value of the gates depends only on their input values, and not on
residual spikes left over from previous computations. Alternatively, to facilitate
the reuse of circuits, it can be assumed that for each spiking rule ai → a missing
there is a corresponding forgetting rule ai → λ. In what follows, we will simply
clean each SN P circuit before evaluating it.

In this paper, our aim is to apply genetic algorithms (GA) to find SN P cir-
cuits that compute a given (partially defined) Boolean function. Given a Boolean
function f : {0, 1}n → {0, 1}m, we say that it is partially defined if we only know
some pairs (x,y) such that x ∈ {0, 1}n, y ∈ {0, 1}m, and f(x) = y. For the
input values x ∈ {0, 1}n not comprised in this list of pairs, the function may
assume any output value. Let us note that partially defined Boolean functions
may describe the training/testing dataset of classification problems. In fact, let
us consider a binary classification problem whose output (true or false) de-
pends upon the values of n input Boolean features. These features are given as
input to the classifier as n-tuples of Boolean values, and the classifier produces a
Boolean output value, thus computing a Boolean function. The case in which the
input and the output values are not Boolean can be easily treated by suitably
encoding such values as binary strings.

Simple calculations will show the following facts. The number of Boolean
functions f : {0, 1}n → {0, 1}m is (2m)2

n

; even restricting to the case m = 1, this
number grows in a doubly exponential way with respect to n, being 22

n

. Hence
exploring the entire search space of Boolean functions is impractical already for
a small number of input values, such as n = 8. As many SN P circuits may
compute the same Boolean function, the search space of SN P circuits is even
larger, and finding a specific circuit means looking for the proverbial needle in
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the haystack. This is the reason why we are using evolutionary algorithms as
heuristics for guiding us in this search.

Given a set of pairs (x,y) that partially define a function f : {0, 1}n →
{0, 1}, each pair identifies one row in the truth table of f . How many Boolean
functions are consistent with this partial definition? Denoted by k the unspecified
rows, for each of them the output value can be 0 or 1, and therefore there are
2k possible combinations. Each combination corresponds to a Boolean function
consistent with the given (x,y) pairs, hence the number of Boolean functions
which are coherent with such a partial definition is 2k. This argumentation can
be generalized to functions of the type f : {0, 1}n → {0, 1}m: for each of the
unspecified k rows the output value is any m-tuple of {0, 1}m; therefore, there
are (2m)k = 2k·m possible functions consistent with the given (x,y) pairs.

Therefore, the fewer the pairs that partially define the Boolean function to be
calculated, the more Boolean functions will be consistent with it, and the easier
it will therefore be to find an SN P circuit that calculates it. Conversely, the
more pairs there are that partially define the Boolean function to be calculated,
the more difficult it will be to find an SN P circuit that calculates it.

A final observation is related with the fact that SN P gates are symmetric.
As shown in [9], and/or/not circuits whose size is polynomial in the number
n of inputs, and whose depth is constant — that is, does not depend upon n —
cannot compute the n-input Parity function. As this function can be computed
by a single symmetric gate, circuits that are composed of symmetric gates are
more powerful than traditional and/or/not circuits. Hence, in theory, finding
SN P circuits that compute a given (possibly partially defined) Boolean function
by means of evolutionary techniques should be easier than finding and/or/not
circuits by the same techniques.

3 A Genetic Algorithm for Evolving Spiking Neural P
Circuits

As stated above, our goal is to investigate which are the most suitable evolu-
tionary algorithms [8] for identifying SN P circuits that compute a given, possi-
bly partially defined, Boolean function. In this paper we begin this investigation
starting from the most famous and used evolutionary algorithms in the literature:
Genetic Algorithms (GA). In future work, other evolutionary algorithms will be
tested, such as Genetic Programming [14], Grammatical Evolution [30], Differ-
ential Evolution [33], Evolution Strategies [2], and Memetic Algorithms [20].

Genetic algorithms [19] are meta-heuristic optimization algorithms for solving
both constrained and unconstrained optimization problems based on a natural
selection process that mimics biological evolution. In a genetic algorithm, a pop-
ulation of candidate solutions (called individuals) to an optimization problem is
evolved toward better solutions. Each candidate solution has a set of properties
which can be mutated and altered. The evolution is an iterative process, with
the population in each iteration called a generation. The process usually starts
from a population of randomly generated individuals. In each generation, the
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fitness of every individual in the population is evaluated; the fitness is usually
the value of the objective function in the optimization problem being solved.
The individuals are then randomly selected from the current population, are
recombined and possibly randomly mutated to form offspring, who makes up a
new generation. The new generation of candidate solutions is then used in the
next iteration of the algorithm. Usually, the algorithm terminates when either
a maximum number of generations has been produced, or a satisfactory fitness
level has been reached for the population.

Apart from finding a suitable representation for individuals, and an appro-
priate fitness function, a crucial point in genetic algorithms is defining selection,
crossover and mutation operators. The precise choices made for these operators,
as well as those made for the parameters on which the functioning of the algo-
rithm depends (such as the probability of mutation, the size of the generations,
etc.) will be described in the next section, where the implementation details will
be presented. Here we only give a high-level description of the functioning of
the algorithm, highlighting some possible variations related to the choices of the
operators.

A selection operator is used to choose one or more individuals in the cur-
rent population, for later breeding (e.g., using the crossover operator). Usually,
the selection operator takes into account the fitnesses of the individuals of the
current generation. Among all possible selection operators, in this preliminary
study we decided to use the one most used in the literature, namely the fit-
ness proportionate selection, also known as the roulette-wheel selection. In this
selection method, the probability of choosing an individual for breeding of the
next generation is proportional to its fitness: the better the fitness is, the higher
chance for that individual to be chosen. Furthermore, we decided to make use
of elitism: at each iteration of the GA, a percentage (10%, in this study) of the
individuals with the highest fitness are copied unchanged to the next generation.

Also regarding the crossover operator, there are several possible choices. Let
us first remember that the objective of this operator, also known as recombina-
tion, is to randomly combine the genetic information of two parents to generate
new offspring1. Thus, each individual of the next generation will be generated
by a pair of parents, chosen by the selection operator mentioned above. Each
individual is an SN P circuit, and can be seen as a graph whose nodes are the SN
P gates. Inspired by one-point crossover, which is one of the most used crossover
operators in the literature, a sub-graph of the first parent should be swapped
with a sub-graph of the second parent. Although this approach has already been
attempted in the literature [10,32,34], in this study we decided to adopt a sim-
pler approach: since the parent circuits are formed by layers of SN P gates, we
cut each circuit before a randomly chosen layer; we then combine the first piece
of the first circuit with the second piece of the second circuit, and the second
piece of the first circuit with the first piece of the second circuit. So doing, the

1 To be precise, this corresponds to sexual reproduction in biology. Solutions can
also be generated by cloning an existing solution, which is analogous to asexual
reproduction.
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two parents produce two circuits; as an alternative, we can keep only the one of
the two children that has the highest fitness value, discarding the other. Further
details on the choices made for this study are given in the next section.

The newly generated solutions may be mutated before being added to the
population. This is made by applying one (or more) mutation operators. Also
in this case there are several possibilities; referring to SN P circuits, we can, for
example:

1. randomly modify the set of rules in one or more SN P gates. As a particular
case, when considering and/or/not circuits, some and gates will become
or gates, and vice versa;

2. one or more gates can be added in random positions;
3. one or more randomly chosen gates can be deleted;
4. one or more input lines can be added or removed in randomly chosen gates.

In reality, in this paper we will also use two more drastic mutation operators,
which have a much more important impact on the structure of SN P circuits:

1. removing a randomly chosen layer;
2. adding a new layer at a randomly chosen location.

Finally, the fitness value of an individual will be calculated as follows. Given
a partially defined Boolean function f : {0, 1}n → {0, 1}m, the SN P circuit will
be evaluated on all the input vectors x ∈ {0, 1}n that have been provided in the
specification; the fitness value will simply be the number of times in which the
output of the circuit coincides with the given output value y ∈ {0, 1}m. Calling c
the circuit whose fitness we want to evaluate, the fitness function is thus defined
as follows:

fitness(c, f) = 1− 1

k

( k∑
i=1

(
c(xi) ̸= yi

))
(1)

where (x1,y1), . . . , (xk,yk) are the pairs that (partially) define the Boolean func-
tion f : {0, 1}n → {0, 1}m, and c(xi) is the output produced by circuit c on
input xi. The sum counts the number of times the output of circuit c differs
from the expected output yi. Such a number is averaged over the number k of
input values, and the result is subtracted from 1, so that the fitness value is al-
ways between 0 and 1, with 1 indicating that the circuit always gives the correct
answer, and 0 indicating that the circuit gives the wrong answer every time.

4 Implementation of the Genetic Algorithm

We implemented the GA described above in the Julia programming language [3].
In what follows we give some details about our implementation.

A Boolean function is represented in our software as a list containing the
input/output pairs (x,y) that constitute the (possibly partial) definition of the
function. For simplicity in the implementation, the Boolean values are repre-
sented as the Julia constants false and true, instead of using the binary values
0 and 1.
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A SN P circuit is implemented as a list of layers. The length of the list is the
depth of the circuit. Each layer is a list of SN P gates. In this case, the length
of the list is the size of the layer. The sum of the sizes of the layers is the size of
the circuit (i.e. the number of gates present in the circuit).

A SN P gate is a triple (implemented as a list) of the kind:

[rules inputs number_of_spikes]

where:

– rules is a set (implemented as a list) of non-negative integer numbers. These
numbers represent the cases in which the gate must emit a 1 as output; that
is, the gate emits a 1 if and only if the number of spikes contained in the
gate is equal to one of the numbers of the list;

– inputs is a list that indicates the connections (links) between the gate and
the gates of the previous layer. To be precise, the numbers contained in
this list are indexes over the Boolean vector that contains the result of the
evaluation of the previous layer. That is, these values indicate at which
positions of the vector the gate must take its input values. In case the gate
is in the input layer, the indices refer to the circuit’s vector of input values;

– number_of_spikes indicates the number of spikes currently contained in the
gate. Although in theory a gate can be defined by specifying a number of
spikes present at its creation, in this study each gate initially contains zero
spikes.

As we said in the previous section, we use fitness proportionate selection
to choose individuals who will generate offspring to be included in the next
generation. This means that each individual has a probability of being selected
equal to the value of its fitness divided by the sum of the fitness values of all
individuals in the current population. As a consequence, the larger the fitness
value for a given circuit, the larger the probability to be chosen as a parent for
the next generation. Furthermore, we use elitism: each generation will contain
the 10% of the best individuals — i.e. those having the highest fitness value —
of the previous generation.

Concerning crossover, we propose a procedure that produces a new circuit
(an individual) given two parent circuits. The idea is to exchange genetic in-
formation between two parents in order to create a new individual with new
genetic characteristics. As stated in the previous section, inspired by one-point
crossover, we cut each circuit before a randomly chosen layer; we then combine
the first piece of the first circuit with the second piece of the second circuit, and
the second piece of the first circuit with the first piece of the second circuit. So
doing, the two parents produce two circuits; however, we can keep only the one
of the two children that has the highest fitness value, discarding the other. Called
C1 and C2 the two parent circuits, the procedure generates a new individual,
called Cnew, as shown in Figure 1.

This procedure can be applied to any pair of SN P circuits with at least one
hidden layer. In this paper we assume that the crossover is performed between
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. . .Layer 1

Layer n

Layer n+ 1

Output

q

. . .Layer 1

Layer m− 1

Layer m

Output

q

. . .

Cnew

Fig. 1. Cutting two parent circuits at two crossover points: n for the parent circuit C1

and m− 1 for the parent circuit C2

two circuits having the same number of input and output gates. The crossover
procedure performs the following steps:

1. A random value r is uniformly sampled from the uniform distribution U(a, b),
with a < b < 1 (in our implementation a = 0.4 and b = 0.6). This indicates
the proportion of information preserved from C1.

2. The first circuit, C1, is cut at the first crossover point n = ⌊r · |C1| ⌋.
3. The second circuit C2, on the other hand, is cut at m = ⌊(1− r) · |C2| ⌋ .

To conclude the crossover operation, the two selected chromosomes (sub-circuits)
are combined in a single individual (circuit). The pseudocode of the crossover
procedure is given in Algorithm 1.

Recalling that each neuron contains a set of input connections, two different
cases can occur:

1. The number of neurons of the layer n of C1 is equal to the number of neurons
of layer m− 1 of C2. In this case, no further operation is required, since all
the connections are preserved (Figure 2).
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Algorithm 1 Crossover operation between two circuits C1 and C2

1: procedure Crossover(C1, C2)
2: r ∼ U(a, b) ▷ Uniformly sampling r
3: n← ⌊r · |C1|⌋ ▷ n is the first crossover point for C1

4: m← ⌊(1− r) · |C2|⌋ ▷ m is the second crossover point for C2

5: Cnew ← append (C1[1 : n], C2[m : end]) ▷ Appending the two sub-circuits
6: return Cnew

7: end procedure

4 neurons

4 neurons

Fig. 2. Situation after a crossover where all edges are preserved

2. The number of neurons in the two layers is not the same. This implies that
there might be an invalid input connection to some neurons in the layer m
of the new circuit Cnew (see Figure 3).

2 neurons

4 neurons

Fig. 3. Situation after a crossover with invalid (red) edges

For instance, if layer m − 1 of C2 has four neurons, then the layer m can
have input lines coming from four neurons. After performing the crossover,
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these connections will refer to the layer n of C1. If the number of neurons in
that layer is less than four, then there might be invalid connections.

We propose to remove the invalid edges using a Clean procedure, described
in Algorithm 2. Ideally, this iterative procedure controls that all neurons have
connections to existing neurons. If a neuron has an invalid connection (i.e., an
edge to a non-existing neuron), this is removed. If, after executing the procedure,
the neuron has no edges left, it is removed. Eventually, if a layer remains without
neurons, it will be removed, too.

Algorithm 2 Cleaning a circuit C

1: procedure Clean(C)
2: for i← 1 to |C| do ▷ i indexes the layers
3: for j ← 1 to |Ci| do ▷ j indexes the neurons of the i-th layer
4: in← input lines of the j-th neuron of the i-th layer
5: in← remove all values greater than |Ci−1|
6: if inputs is empty then ▷ The neuron has no input lines
7: delete the j-th neuron of the i-th layer
8: end if
9: end for

10: if |Ci| = 0 then ▷ The layer has no neurons left
11: delete the i-th layer
12: end if
13: end for
14: end procedure

After the crossover operation, the newly produced individuals undergo a
mutation phase. Inspired from genetic variation in biological evolution, the aim of
mutations is to introduce diversity into the population, allowing new individuals
to explore new spaces, and escape local optima. Mutations are implemented as
random changes applied to the circuits produced by the crossover operation. In
this paper, we apply the following set of mutations:

– Adding a new rule to the set of rules in random neurons. For example:

{
a0 → a

a4 → a
−→


a0 → a

a1 → a

a4 → a

– Removing an existing rule from a set of rules of a randomly chosen neuron:
a0 → a

a2 → a

a4 → a

−→

{
a0 → a

a4 → a

– Adding a new gate in a randomly chosen layer;
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– Removing an existing gate in a randomly chosen layer;
– Adding a new input line to a randomly chosen gate;
– Removing existing input lines to a randomly chosen gate.

Notice that, after the application of some mutations (e.g., removing an existing
gate), the Clean procedure must be executed in order to fix invalid edges, gates
or layers.

This set of mutations can easily be extended with new operations. In partic-
ular, we consider two drastic mutation operations that, by adding and removing
entire layers, have a much larger impact to the structure of the SN P circuits:

– Adding a new random layer of gates:

– Removing an existing layer of gates:

Each mutation is applied according to a corresponding value of probability.
It is well known that applying mutations with high frequency (i.e., with large
values of probabilities) may lead to random search behavior, while applying a
small number of mutations may cause premature convergence to sub-optimal
solutions. Fine-tuning the mutation rate and the type of mutation operators is
often an important part of optimizing a genetic algorithm for a specific problem.
For this reason, during the experiments we have adopted a grid-search approach
to find optimal probability values for each mutation.
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Putting all these elements together, we obtain a genetic algorithm to evolve
a population of spiking neural P circuits. Recall that the objective is to, given
a (possibly partially defined) Boolean function f : {0, 1}n → {0, 1}m, find a
SN P circuit that is able to compute f for all the given input/output pairs.
The algorithm, whose pseudocode is shown in Algorithm 3, starts from a ran-
domly generated population P , of whose elements the fitness is calculated. Until
the established criterion to terminate the execution occurs, a new population
of SN P circuits is generated. First, elitism is applied, copying unaltered a per-
centage p (set to 10%, in our experiments) of the best individuals to the new
generation. Then, to fill the rest of the new generation, pairs of parent circuits
are selected form the current population, according to the fitness proportion-
ate selection method; the above described crossover operator is applied to these
parent circuits, and only the fittest among the two children is kept. With small
probabilities, the mutations described above are applied to such a child circuit,
and the result is added to the new generation. For each generation, the maximum
value of the fitness in the population is computed.

In this preliminary study, the stop criterion we have adopted is just a fixed
number of generations. Concerning the other parameters that rule the behavior
of the GA, such as population size, the number of layers and gates in randomly
generated circuits, mutations’ probabilities, etc., we have made some experiments
— using a grid-search approach — starting from a set of empirically found
parameters, depending on the experiment.

Algorithm 3 Genetic Algorithm for finding a SN P circuit that computes a
given Boolean function f

1: procedure Evolve(f)
2: ▷ f is (possibly partially) defined by a list of pairs (x,y) ∈ {0, 1}n × {0, 1}m
3: P ← initial population of randomly generated SN P circuits
4: Fit← fitness values of each circuit in P
5: save the maximum and average fitness values in a list
6: while stopping criterion is not verified do
7: ▷ P ′ and Fit′ constitute the new generation
8: P ′ ← best p percent circuits from P ▷ p typically is in [0, 10]
9: Fit′ ← fitness values of circuits in P ′

10: for i← 1 to (1− p/100) · |P | do
11: parent1, parent2 ← FitnessProportionateSelection(P )
12: child ← Crossover(parent1, parent2) ▷ only the fittest among

the two children is kept
13: add Mutation(child) to P ′

14: add the fitness of child to Fit′

15: end for
16: save the maximum and average fitness values
17: P ← P ′ ▷ substitute P with P ′

18: end while
19: end procedure
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5 Experiments

In order to evaluate the performance of the GA described above in finding SN
P circuits that compute (possibly partially defined) Boolean functions, we per-
formed some computer experiments, which we are now going to describe. Since
these are the first experiments we have performed, we will only consider 1-output
Boolean functions of the type f : {0, 1}n → {0, 1}. Some of them will be com-
pletely specified, whereas others will only be partially specified.

Each experiment is based on the following method. First, two sets of param-
eters are initially defined: EvolutionParameters and MutationProbabilities.
The former set defines some parameters that control the evolution: the number of
simulations, the number of iterations for each simulation, the number of individ-
uals in a population, the minimum and maximum number of layers in randomly
generated circuits, and the stopping criterion. This can be the maximum num-
ber of iterations, the maximum number of fitness evaluations, or a threshold on
the maximum fitness value obtained by the population. On the other hand, the
MutationProbabilities set of parameters defines the probabilities for applying
the mutation operators presented in Section 4.

For each experiment, an initial phase aims to empirically observe some pos-
sible sets of “good” evolution parameters. A good set of parameters is defined as
one obtaining a large average of maximum fitness values, among all the simula-
tions. We focus on average fitness, rather than on the best one, because we are
interested in producing well-behaving circuits from good genetic material, and
not by chance. A grid-search is performed over the observed sets of good parame-
ters, and the best combination thus found is used to perform the same procedure
over the set of mutation probabilities. Informally, we follow this approach:

1. Experimentally observe possibly good sets of evolution parameters.

2. Perform a grid-search in order to find the best among these sets.

3. Fixed the evolution parameters set, experimentally observe possibly good
sets of mutation probabilities.

4. Perform a grid-search in order to find the best set of probabilities.

This approach does not ensure to find the best possible combination of parame-
ters, but it defines a heuristic that guides the process of finding good parameters.
The first steps are performed using a set of mutation parameters, reported in
Table 1, that have been experimentally found to be a good starting point.

Table 1. Default values of mutation probabilities

Add
layer

Remove
layer

Add
neuron

Remove
neuron

Add
rule

Remove
rule

Random
input lines

Probability 0.008 0.080 0.030 0.200 0.005 0.080 0.010
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5.1 Fitting the Parity (xor) function

The first experiments aim to find SN P circuits that compute a simple Boolean
function: Parity, that is, the n-input/1-output xor function. Such a function
is considered simple because it is symmetric, just like SN P gates. Hence, in
theory, one SN P gate suffices to compute it. For this reason, we expect the
GA to show good performance on this function. In what follows we describe the
experiments we have performed regarding the Parity functions of n = 5 and
n = 8 variables. In both cases the Boolean function was completely defined, that
is, all its possible input/output pairs were given.

n = 5 For this experiment, a grid-search over the following combinations of
parameters has been performed:

– Population size: |P | ∈ {20, 30, 40}.
– Minimum number of intermediate layers in randomly generated circuits:

lmin ∈ {1, 2}.
– Maximum number of intermediate layers in randomly generated circuits:

lmax ∈ {lmin, lmin + 1}.

The stopping criterion for this experiment has been set to a maximum of 200
iterations. Each set of parameters has been evaluated for 15 simulations; in the
end only the best circuit, in terms of fitness, is considered. So doing, each set of
parameters generates 15 possible circuits (the best for each simulation); among
these, the average fitness value is computed. The set of parameters achieving
the highest average fitness value is chosen as the best. In case different sets
of parameters show the same highest average fitness value, the one having the
smaller population size (or, in case of equal values, the smaller circuits size) is
chosen, following Occam’s razor principle. The results are presented in Table 2.

Table 2. Some evolutions of SN P circuits with different parameters sets to compute the
xor function with n = 5 input values. Each set has been evaluated for 15 simulations

Population Min layers Max layer Mean
Fitness

Successful
simulations

40 3 4 0.93125 2/15

40 1 2 0.9125 1/15

30 3 3 0.9125 2/15

30 3 4 0.9125 2/15

40 2 3 0.910417 1/15

20 3 4 0.908333 5/15

30 2 3 0.908333 4/15
...

20 1 1 0.879167 1/15
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As it can be seen, the proposed GA is able to quickly evolve a population of
circuits towards high fitness values. In particular, for all parameter configurations
the GA is able to achieve the fitness target value 1 in at least one simulation.
That is, for every parameter configuration at least one simulation obtains a SN
P circuit that computes the prescribed Boolean function perfectly, on all in-
put/output pairs. As stated above, we want to conduct a robust analysis for a
GA that does not rely on luck to find a good SN P circuit; instead, we want to
ensure that a good SN P circuit emerges from a population containing (on aver-
age) good genetic material. For this reason, we select as the “best” configuration
the one achieving the largest average fitness value. For this introductory experi-
ment, no grid-search has been applied over the mutation probabilities, since the
different evolution procedures have already found circuits with the maximum
fitness value. We also note that the function to be approximated has a relatively
small input space.

n = 8 The GA is now tested over a larger input space: the Parity function
of n = 8 input variables, thus having 28 = 256 possible input values. The set of
evolutionary parameters on which grid-search was performed is the following:

– Population size: |P | ∈ {60, 80, 100}.
– Minimum number of intermediate layers in randomly generated circuits:

lmin ∈ {1, 2, 3}.
– Maximum number of intermediate layers in randomly generated circuits:

lmax ∈ {lmin, lmin + 1}.
– Stopping criterion: stop after 500 iterations.
– Number of simulations for each set of parameters: 15.

The space is much larger with respect to the previous experiment, in which the
circuits have to fit truth tables consisting of only 25 = 32 input/output pairs.
The results of this experiment are reported in Table 3.

Table 3. Some evolutions of SN P circuits with different parameters sets to compute
the xor function with n = 8 input values.

Population Min layers Max layer Mean
Fitness

Successful
simulations

100 2 2 0.889844 0/15

100 3 3 0.835417 0/15

60 3 4 0.835156 1/15

80 3 3 0.827604 1/15

60 3 3 0.819792 0/15

60 1 2 0.811979 0/15

100 1 1 0.810156 0/15
...

60 1 1 0.765104 0/15
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Differently from the previous experiment, only two out of 18 sets of param-
eters were able to find a SN P circuit that computes the prescribed Boolean
function perfectly, that is, with a fitness value equal to 1. Nevertheless, we use
the set of parameters achieving the highest average fitness value to execute the
second phase, in which a second grid-search procedure is performed over muta-
tion probabilities. The aim is to increase the average fitness value, and to obtain
more successful simulations.

In particular, starting from the values presented in Table 1, a grid-search is
executed over the following parameters:

– Probability of adding a new layer at each iteration ∈ {0.005, 0.010, 0.015}.
– Probability of adding a new neuron in a random layer ∈ {0.030, 0.050}.
– Probability of removing a neuron from a random layer ∈ {0.05, 0.15, 0.25}.

The obtained results, reported in Table 4, confirm the effectiveness of applying
the grid-search over the mutation probabilities.

Table 4. Some evolutions of SN P circuits over different sets of mutation probabilities
to compute the xor function with n = 8 input values. Each set has been evaluated for
15 simulations

Add layer
probability

Add neuron
probability

Remove neuron
probability

Average

Fitness

Successful

simulations

0.01 0.05 0.05 0.9125 2/15

0.01 0.05 0.25 0.8930 0/15

0.01 0.03 0.15 0.8883 0/15

0.01 0.03 0.25 0.8628 0/15

0.01 0.05 0.15 0.8529 1/15

0.02 0.05 0.05 0.8487 0/15

0.005 0.03 0.05 0.8482 0/15

...

0.02 0.03 0.05 0.8016 0/15

The best average fitness value has been increased up to 0.9125, and it is
possible to find sets of probabilities that yield a higher number of successful
simulations (that is, simulations in which at least one SN P circuit is found
that calculates the Boolean function perfectly): up to 2 over 15, with respect to
the maximum 1 over 15 obtained before applying the grid-search over mutation
probabilities.

We complete the analysis by showing in Figure 4 the growth of fitness value
for each individual in the population, using the best set of parameters.
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Fig. 4. Fitness value of the 15 best circuits of the best simulation. Each i-th line
represents the fitness value of the i-th best circuit at a certain iteration

5.2 Fitting ANF functions

To carry out tests with different types of Boolean functions, in particular with
different degrees of non-linearity, we also considered n-input/1-output functions
f : {0, 1}n → {0, 1} written in the algebraic normal form (ANF):

Pf (x1, . . . , xn) =
⊕

I∈P(n)

aI

(∏
i∈I

xi

)

where P(n) is the power set of {1, . . . , n}, and aI is the coefficient of the mono-
mial defined by the subset I ∈ P(n). As it can be seen, the algebraic normal
form represents a function f : {0, 1}n → {0, 1} as a multivariate polynomial. The
algebraic degree of f is defined as the cardinality of the largest subset I such
that aI ̸= 0, that is, as the largest degree over non-null monomials. In particular,
affine functions are defined as Boolean functions with degree at most 1. Notice
that the ANF is a unique representation of a Boolean function, and in particu-
lar, one can retrieve the truth table back from the ANF coefficients through the
Möbius transform:

f(x1, . . . , xn) =
⊕

I∈P(n):I⊆supp(f)

aI

where supp(f) is the support of f , that is, the set of input vectors x ∈ {0, 1}n
such that f(x) = 1. We expect lower fitness values for these experiments, as
ANF functions are not symmetric and may have a large degree of non-linearity.

Differently from the Parity function with n inputs, which is unique, there
are 2n ANF functions with n input values, since each monomial corresponds to
one possible subset of the n variables. We thus consider two different randomly
generated ANF functions of degree n = 5 to evaluate the GA: f1 and f2, defined
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as follows:

f1(x1, . . . , x5) = 1⊕ x2 ⊕ (x1 ∧ x2)⊕ (x1 ∧ x4)⊕ (x1 ∧ x5)⊕ (x2 ∧ x3) ⊕
(x3 ∧ x5)⊕ (x1 ∧ x2 ∧ x3)⊕ (x1 ∧ x2 ∧ x5)⊕ (x1 ∧ x3 ∧ x4) ⊕
(x1 ∧ x3 ∧ x5)⊕ (x1 ∧ x4 ∧ x5)⊕ (x3 ∧ x4 ∧ x5) ⊕
(x1 ∧ x3 ∧ x4 ∧ x5)⊕ (x2 ∧ x3 ∧ x4 ∧ x5) ⊕
(x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5)

f2(x1, . . . , x5) = x1 ⊕ (x1 ∧ x4)⊕ (x1 ∧ x5)⊕ (x2 ∧ x4)⊕ (x3 ∧ x5) ⊕
(x4 ∧ x5)⊕ (x1 ∧ x2 ∧ x3)⊕ (x1 ∧ x2 ∧ x4)⊕ (x1 ∧ x2 ∧ x5) ⊕
(x2 ∧ x3 ∧ x4)⊕ (x2 ∧ x3 ∧ x5)⊕ (x1 ∧ x2 ∧ x3 ∧ x4) ⊕
(x1 ∧ x3 ∧ x4 ∧ x5)⊕ (x2 ∧ x3 ∧ x4 ∧ x5) ⊕
(x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5)

In particular, we will use both a partial input set, consisting of 80% of all the
possible 25 combinations, and a complete input set. As in previous experiments,
we start from a grid-search over some evolution parameters, in particular:

– Population size: |P | ∈ {75, 100, 125}.
– Minimum number of intermediate layers in randomly generated circuits:

lmin ∈ {1, 2, 3}.
– Maximum number of intermediate layers in randomly generated circuits:

lmax ∈ {lmin, lmin + 1}.

We selected larger values for the population size, with respect to the experiment
on the n = 5 Parity function, since we empirically observed that the ANF
functions require a larger population to achieve good fitness values. The stopping
criterion for this experiment has been set to a maximum of 500 iterations. In
order to achieve a good level of robustness, each set of parameters has been
evaluated for 20 simulations The best three results obtained for each of the two
functions f1, f2 are presented in Table 5.

The first observation that can be made is on the size of the input set. When
using a partial input set (22 examples out of 32), the mean fitness of the best
parameters set reaches, in the case of f1, a value of 0.91818, with 3 successful
simulations out of 20. On the other hand, when considering the entire input
set (32 examples out of 32), the mean fitness has a drop. This confirms that, as
stated in Section 2, the fewer the pairs that partially define the Boolean function
to be calculated, the more Boolean functions will be consistent with it, and the
easier it will therefore be to find an SN P circuit that calculates it.

Considering the two experiments on the complete input set of f1 and f2,
the difference from the Parity function with n = 5 input values (see Table 2),
is evident. The GA showed much larger values of mean fitness and successful
simulations for the Parity function. This result provides evidence in favor of
the question posed in RQ2: the intrinsic characteristics of a Boolean function
makes it harder (or easier) for the GA to find a SN P circuit that fits it.
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Table 5. Best three evolutions of SN P circuits fitting the f1 and the f2 functions.
The latter were evaluated both on a partial and a complete input set.

Input set
size

Population Min layers Max layer Mean
Fitness

Successful
simulations

f1

Partial
(22/32)

100 2 2 0.91818 3/20

125 2 2 0.91591 1/20

100 2 3 0.91136 1/20

Complete
(32/32)

125 1 1 0.89531 1/20

125 3 3 0.89375 0/20

100 1 1 0.88906 0/20

f2

Partial
(22/32)

100 3 4 0.92500 1/20

100 2 3 0.925 1/20

125 1 1 0.92273 1/20

Complete
(32/32)

125 2 3 0.86406 0/20

125 3 3 0.86406 0/20

125 1 1 0.86094 0/20

The obtained mean fitness values in this first phase are very close to each
other. For this reason, we continued the experiment by performing a grid-search
over a sparse amount of probabilities, thus enlarging the space in which the
algorithm can look for possible solutions:

– Probability of adding a new layer at each iteration ∈ {0.005, 0.010, 0.015}.
– Probability of adding a new neuron in a random layer ∈ {0.030, 0.050}.
– Probability of removing a neuron from a random layer ∈ {0.05, 0.15, 0.25}.

The results of the grid-search over these probabilities are presented in Table 6.

Table 6. Best three evolutions of SN P circuits fitting the f1 and the f2 functions,
using the complete input set. A grid-search is applied over some mutation probabilities

Add layer
probability

Add neuron
probability

Remove neuron
probability

Average

Fitness

Successful

simulations

f1

0.001 0.01 0.25 0.90469 0/30

0.003 0.01 0.25 0.90156 0/30

0.003 0.03 0.15 0.89687 1/30

f2

0.003 0.03 0.05 0.87187 0/20

0.005 0.01 0.05 0.86875 0/20

0.003 0.03 0.25 0.8625 0/20
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By applying a grid-search over the probabilities, the GA was able to find a
SN P circuit that achieves the maximum fitness on f1. In general, all the mean
fitness values have increased, with respect to the results illustrated in Table 5. On
the other hand, this approach was not able to find a SN P circuit that perfectly
fits the truth table of the f2 function.

6 Conclusions and Directions for Future Work

In this paper we have defined a new acyclic model of spiking neural P systems,
named SN P circuits, which are able to compute n-input/m-output Boolean
functions. We have then studied how well genetic algorithms (GA) are able to
find an SN P circuit that computes a given Boolean function, possibly partially
defined. We performed several computer experiments, testing different muta-
tion operators and several combinations of hyperparameter values, using several
Boolean functions.

This is the first step of a broader study, whose aim is to establish whether
evolutionary algorithms can be effectively used to design SN P circuits that com-
pute a given (possibly partially defined) Boolean function. As many classification
problems can be described through appropriate Boolean functions, the proposed
technique can also be used to find SN P circuits that solve such classification
problems.

This paper opens many possibilities for future work. Even restricting our
attention to the proposed genetic algorithm, there are at least three possible
improvements:

1. Try to use more advanced (and complicated) crossover operations, that hope-
fully preserve better what the parent SN P circuits have learned about the
structure of the Boolean function to be computed.

2. Perform experiments using other stopping criteria, to make it more suitable
for comparison with other evolutionary techniques. For instance, instead of
considering the number of generations — independent of the population
size — it is more fair to consider the number of fitness evaluations. Thus,
for example, it would be interesting to see which evolutionary algorithm
produces the fittest individuals for a given budget of fitness evaluations.
Furthermore, it makes no sense to continue producing new generations when
the fitness of the best individual produced up to now has reached the optimal
value, or exceeds a pre-established threshold.

3. Perform an ablation study, to show which is the effect of each operator
(selection, elitism, crossover, mutation) on the results obtained by the GA.
To make such a study, further computer experiments are necessary, each
time excluding one of the operators, or using only a subset of the operators,
then comparing the results obtained with those of the complete GA.

Last, but not the least, recall that our goal is to find which evolutionary tech-
nique is more suitable for designing SN P circuits. Thus, in future work, other
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evolutionary algorithms will be tested, such as Genetic Programming, Gram-
matical Evoution, Differential Evolution, Evolution Strategies, and Memetic Al-
gorithms.
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