
Non-cooperative Polymorphic P Systems and
Parallel Communicating ET0L Systems⋆

Anna Kuczik and György Vaszil

Faculty of Informatics, University of Debrecen
Kassai út 26, 4028 Debrecen, Hungary

kuczik.anna@inf.unideb.hu

vaszil.gyorgy@inf.unideb.hu

Abstract. We demonstrate that languages of non-cooperative polymor-
phic P systems can be generated by nonreturning parallel communicating
ET0L systems, and discuss a further topic for research, namely the iden-
tification of the subclass of parallel communicating ET0L systems for
which the converse of the statement holds, that is, the precise character-
ization of languages of non-cooperative polymorphic P systems in terms
of the parallel communicating Lindenmayer system model.

1 Introduction

Polymorphic P systems were introduced in[1], they represent a membrane system
model where the multiset rewriting rules associated to the regions are not fixed,
but dynamically deduced from the contents of certain regions of the systems
which dynamically change during the computational process. The study of the
non-cooperative variant was started in [2]. A polymorphic P system is non-
cooperative, if the left-hand sides of the rules always contain at most one symbol,
that is, a multiset with at most one element.

Non-cooperative systems with so called finitely representable regions were in-
vestigated in [3]. A region is finitely representable (FIN-representable in short),
if the set of possible multisets that can appear as the contents of the region in
question during any computation is finite. In [3] we have shown that languages
of non-cooperative polymorphic systems where all regions (besides the skin re-
gion) are FIN-representable coincide with the Parikh sets of languages of ET0L
systems.

Here we consider the general, not necessarily finitely representable case, and
establish a relationship of the languages of such P systems and parallel commu-
nicating ET0L systems.

⋆ Supported by the University of Debrecen Scientific Research Bridging Fund
(DETKA).

2 Preliminaries and Definitions

In this section, we define the basic definitions and notions we will use. For more
information about formal language theory, see [7], and [5, 6] for details about
membrane computing.

An alphabet V is a finite non-empty set of symbols. A string (or word) over
V is a finite sequence of elements of V , the set of all strings over V is denoted by
V ∗, and V + = V ∗ \ {λ} where λ denotes the empty string. For a string w ∈ V ∗,
we denote by |w|S the number of occurrences of the letters x ∈ S ⊆ V in w,
but if S = {x} is a singleton, we write |w|x instead of |w|{x}. If we fix an order
V = {a1, a2, . . . , an} of the letters, then the vector (|w|a1

, |w|a2
, . . . , |w|an

) is
called the Parikh vector of the word w ∈ V ∗.

If N denotes the set of nonnegative integers, then a multiset over a set U is
a mapping M : U → N where M(a), for all a ∈ U , is the multiplicity of a in the
multiset M . If U is finite, U = {a1, a2, . . . an}, then M can also be represented

by a string w = a
M(a1)
1 a

M(a2)
2 . . . a

M(an)
n (and all permutations of this string)

where aj denotes the string obtained by concatenating j ∈ N occurrences of the
letter a ∈ V (with a0 = λ).

Lindenmayer systems, of L systems are parallel rewriting mechanisms, see
[4, 8] for more information. In the following, we define ET0L systems, which are
extended, tabled, and interactionless versions of L systems.

An ET0L system is a quadruple G = (V, T, U, ω) where V is an alphabet, T ⊆
V is a terminal alphabet, ω ∈ V + is the initial word of G, and U = (P1, . . . , Pm)
where Pi, 1 ≤ i ≤ m, are finite sets of context-free productions over V (called
tables), such that for each a ∈ V , there is at least one rule a → w, w ∈ V ∗ in
each table.

In each computational step, G rewrites all the symbols of the current sen-
tential form in parallel with the rules of one of the tables in U , this choice is
non-deterministic. The language generated by G consists of all terminal strings
which can be generated by a series of rewriting steps (computational steps), that
is, by a derivation, starting from the initial word.

A parallel communicating ET0L system (PC ET0L system, in short) with
n components is a (n+3) tuple Γ = (N,K, T,G1, . . . , Gn), where N is a non-
terminal alphabet, T is a terminal alphabet and K is an alphabet of query
symbols (K = {K1, . . . ,Kn}). The components are ET0L systems, Gi = (N ∪
K ∪ T, T, Ui, ωi) with nonterminal and terminal alphabets as above, a table Ui

of rewriting rules Ui = {Pi,1, . . . , Pi,ki
}, and an axiom ωi ∈ (N ∪T)∗, 1 ≤ i ≤ n.

One of the components Gm, m ∈ {1, . . . , n}, is called the master grammar of Γ .
An n-tuple (x1, . . . , xn), where xi ∈ (V ∪ K)∗, 1 ≤ i ≤ n, is called a

configuration of Γ .
Let Γ be a PC ET0L system as above, and let (x1, . . . , xn), (y1, . . . , yn) be

two configurations of Γ. A direct derivation step denoted by (x1, . . . , xn) ⇒
(y1, . . . , yn), is defined as follows.

1. There is no xi which contains any query symbol; that is, xi ∈ V ∗ for
1 ≤ i ≤ n. Then for each i, 1 ≤ i ≤ n, xi ⇒Gi

yi (yi is obtained from xi by a
direct derivation step in Gi).

2. There is some xi, 1 ≤ i ≤ n, which contains at least one occurrence of a
query symbol. In this case (y1, . . . , yn) is obtained from (x1, . . . , xn) as follows:

For each xi with |xi|K ̸= 0 we write xi = z1Ki1z2Ki2 . . . ztKitzt+1, where
zj ∈ V ∗, 1 ≤ j ≤ t + 1, and Kil ∈ K, 1 ≤ l ≤ t. If |xil |K = 0 for each
il, 1 ≤ l ≤ t, then yi = z1xi1z2xi2 . . . ztxitzt+1 and yil = xil , 1 ≤ l ≤ t. If
|xil |K ̸= 0 for some il, 1 ≤ l ≤ t, then yi = xi. For all j, 1 ≤ j ≤ n, for which yj
is not specified above, yj = xj .

Remark 1. We have only gave the definition of the so-called non-returning mode
of communication of PC ET0L systems in the previous paragraph, since this is
the variant that we will need in this paper.

The language generated by a PC ET0L system Γ = (N,K, T,G1, . . . , Gn),
where Gi = (N ∪K ∪ T, T, Pi, ωi), 1 ≤ i ≤ n, is

L(Γ) = {αm ∈ T ∗|(ω1, . . . , ωn) ⇒∗ (α1, . . . , αn)}

where Gm, m ∈ {1, . . . , n}, is the master grammar of Γ , and ⇒∗ is the reflexive
and transitive closure of ⇒.

We are not interested in the character string generated by the ET0L system
as a sequence of letters, but only in the multiples of the different letters, i.e. the
Parikh vectors of the words. This is necessary because we will connect the ET0L
languages to the multiset languages of the P systems. We denote by Ps(Γ) the
set of Parikh vectors corresponding to the strings of L(Γ) (Parikh set of L(Γ)),
and by PsNPC(ET0L) the class of Parikh sets corresponding to the class of
languages generated by PC ET0L systems.

Example 1. Consider a PC ET0L grammar system

Γ = (N,K, T,G1, G2)

with N = ∅, K = {K1,K2}, T = {a} and Gi = (N ∪K∪T, T, Ui, ωi), 1 ≤ i ≤ 2,
where

ω1 = a,

U1 = {P1,1} with P1,1 = {a → K2},

and

ω2 = aa,

U2 = {P2,1, P2,2} with P2,1 = {a → a}, P2,2 = {a → aa}.

The derivations of Γ start in the configuration (ω1, ω2) = (a, aa) and the
first rewriting step results in (K2, w2) where K2 is a query symbol requesting the
sentential form of the second component, and w2 is either aa or aaaa, depending
on the table that was used by G2. In short, we have

(a, aa) ⇒ (K2, a
i1) ⇒ (ai1 , ai1)

where i1 ∈ {2, 4}, and the last step is a communication step. Continuing the
derivation we get

(ai1 , ai1) ⇒ ((K2)
i1 , ai2) ⇒ ((ai2)i1 , ai2)

where i2 = i1 or i2 = 2 · i1 depending again on the table used by G2. If in
each rewriting step the second component uses its first table, then the number
of symbols in the sentential form of the first component doubles after each com-
munication. If the second table is used by G2 in each rewriting step, then the
number of symbols is four times as high after the second step, as it was after
the first step, eight times as high after the third step as after the second, and so

on, reaching 2
n·(n+1)

2 after the nth step. If the table choice of G2 varies between
these these possibilities, then the number of symbols is somewhere in between
the two extremes. After the nth communication step (which is directly following
the nth rewriting step), we have a configuration

(a(2
m), ain), where n ≤ m ≤ n · (n+ 1)

2
,

thus, if G1 is the master component, then

L(Γ) = {am | 2n ≤ m ≤ 2
n·(n+1)

2 for some n ≥ 0}.

Polymorphic membrane systems were introduced in [1]. The rules in poly-
morphic P systems are defined by the contents of specific membrane regions
corresponding to the left- and right-hand sides of the rule. As a result, the rules
belonging to the regions change(s) during the computation. These rules are called
dynamic rules.

A polymorphic P system is a tuple

Π = (O, T, µ, ws, ⟨w1L, w1R⟩ , . . . , ⟨wnL, wnR⟩ , ho),

where O is the alphabet of objects, T ⊆ O is the set of terminal objects, µ is
the membrane structure consisting of 2n + 1 membranes labelled by a symbol
from the set H = {s, 1L, 1R, . . . , nL, nR}, the elements of the multiset ws are
the initial contents of the skin membrane, the pairs of multisets ⟨wiL, wiR⟩ cor-
respond to the initial contents of membranes iL and iR, 1 ≤ i ≤ n, and ho ∈ H
is the label of the output membrane.

The rules of a polymorphic membrane system are not given statically in the
initial configuration. In each step, they are dynamically derived based on the
contents of the left and right (iL and iR, 1 ≤ i ≤ n) membrane pairs. Thus, if
the membranes iL and iR belonging to the ith membrane pair contain multisets
u and v respectively, then in the next step the contents of their parent membrane
is transformed as if the multiset rewriting rule u → v were present.

If there is at least one rule in a system Π where the number of objects in u
(the multiset on the left-hand side) can grow to be greater than one, then we
say that Π is a cooperative system, otherwise, it is a non-cooperative system.

The set of vectors Ps(Π) generated by a polymorphic P system Π with the
terminal alphabet T ⊆ O is the set of vectors representing the multisets of the
terminal objects appearing in the output region ho in a halting configuration of
Π which is reached by a computation starting in the initial configuration of the
system. The class of vector languages generated by non-cooperative polymorphic
P systems is denoted by PsOP (polym, ncoo).

3 : a → b
4 : b → a
5 : c → d

2 : a → c
7 : b → a
8 : a → e

6 : a → b

a aa

a
1L 1R

s

Fig. 1: The initial configuration of the polymorphic P system Π2 of Example 2.

Remark 2. If the regions labeled by hL and hR for some h ∈ {1, . . . , n} are
elementary regions, then the rule represented by their contents ⟨whL, whR⟩ stays
the same during the whole computation (it is a non-dynamic rule or static rule).
In what follows we sometimes use a simplified notation rh : whL → whR in this
case.

Example 2. Consider the polymorphic P system

Π2 = (O, T, µ, ws, ⟨w1L, w1R⟩, . . . , ⟨w8L, w8R⟩, s)

whereO = T = {a, b, c, d, e}, and the membrane structure is µ = [[. . .]1L [. . .]1R]s,
where the child membranes of 1L are []2L []2R . . . []5L []5R and the children of
1R are []6L []6R . . . []8L []8R. Let

ws = a, w1L = a, w1R = aa,

and using the simplified notation for static rules, let the rules applicable in 1L
be

r2 : a → c, r3 : a → b, r4 : b → a, r5 : c → d,

and the rules applicable in 1R be

r6 : a → b, r7 : b → a, r8 : a → e,

as can also be seen in Figure 1.

3 FIN-representable Subsystems of Polymorphic Systems

The idea of FIN-representability was introduced in [3]. For a polymorphic P sys-
tem Π = (O, T, µ, ws, ⟨w1L, w1R⟩, . . . , ⟨wnL, wnR⟩, ho), let wj,h for some h ∈
{s, 1L, 1R, . . . , nL, nR} denote the multiset contained by region h after the jth
step of the computation of Π for some j ≥ 0. We call w′

j,h an element of the
successor set of wj,h, denoted as w′

j,h ∈ σj,h(wj,h), if w
′
j,h can be obtained from

wj,h by the rules associated to the region h, as determined by the configuration
of Π which is reached in the jth step of the computation.

If for the same wj,h as above, we fix σ0
j,h(wj,h) = {wj,h} for any j ≥ 0, and

for k ≥ 0 we have σk+1
j,h = σj+k,h(σ

k
j,h(wj,h)) (where we extend the range of the

function from multisets to sets of multisets in the natural way), then we can
define

σ∗
j,h =

⋃
k≥0

σk
j,h(wj,h).

A region h of Π is finitely representable or FIN-representable in short, if the set
of successor multisets of the initial contents of h, wh, is finite, that is, σ

∗
0,h(wh)

is finite.
We say that a finite transition system M = (Q, q0, δ) represents the rule

configurations of a FIN-representable polymorphic P system Π if the contents
of the pairs of membranes labelled by 1L, 1R, . . . , nL, nR of the configuration
sequences of Π = (O, T, µ, ws, ⟨w1L, w1R⟩, . . . , ⟨wnL, wnR⟩, s)

(ws, w1L, w1R, . . . , wnL, wnR) = (w0
s , w

0
1L, w

0
1R, . . . , w

0
nL, w

0
nR) ⇒

⇒ (w1
s , w

1
1L, w

1
1R, . . . , w

1
nL, w

1
nR) ⇒ . . . ⇒ (wi

s, w
i
1L, w

i
1R, . . . , w

i
nL, w

i
nR) ⇒ . . .

are in a one-to-one correspondence with the state sequences

q0 = q0 ⇒ q1 ⇒ . . . ⇒ qi ⇒ . . .

of the transition system M . Moreover, qh, h ≥ 0, is a halting state of M , if and
only if no rules are applicable in any of the regions 1L, 1R, . . . , nL, nR in the
corresponding configuration (wh

s , w
h
1L, w

h
1R, . . . , w

h
nL, w

h
nR) of Π.

Based on this correspondence, the configuration sequences of Π can be ab-
breviated as the sequence

(ws, q0) = (w0
s , q

0) ⇒ (w1
s , q

1) ⇒ . . . ⇒ (wi
s, q

i) ⇒ . . .

combining the contents of the (not necessarily finitely representable) skin region
and the current state of the finite representation of the rest of the system.

In [3] we have shown how to construct such a transition system for any
FIN-representable membrane system. Polymorphic P systems are not FIN-repre-
sentable in general, but we can still use finite transition systems to represent
FIN-representable regions. Since left-hand membranes of non-cooperative poly-
morphic systems (the membranes labeled with iL, 1 ≤ i ≤ n) may contain at

(a) The membrane structure µ of the P system Π2.

(b) The membranes with labels iL, iR for i ∈ trim(µ) = {1, 6, 7, 8} in the membrane
structure µ of the P system Π2. Also, lchild(s) = {1}, lchild(1) = {6, 7, 8}.

Fig. 2: The tree representation of the membrane structure of the P system Π2

of Example 2 and its trimmed version.

most one symbol (and this symbol can only be rewritten by chain rules-rules hav-
ing one symbol on both the left- and right-hand sides), the left-hand membranes
of any non-cooperative P system must always be FIN-representable. Moreover,
the finite representation of any left-hand membrane sufficiently represents the
regions that are inside it, so once we have the finite representation of a left-
hand membrane, we do not need to pay further attention to any of its child
membranes.

To formalize this idea, let h ∈ trim(µ) if the pair of membranes labeled by
hL, hR are not contained in any (FIN-representable) left-hand membrane of µ.
To define trim(µ), consider the tree representation of the membrane structure
µ where the root is labeled by s, and each node has an equal number of children
that are labeled by left-labels iL and right-labels iR, i ∈ {1, . . . , n}. Let us
consider the paths in this tree leading from the root s towards the leaves of
the tree (which correspond the elementary membranes in the deepest level of
µ), and let {i1L, . . . , ikL} ⊆ {1L, . . . , nL} be those left-labels which label the
nodes that are encountered as the first left-labels on these paths. Then trim(µ) =
{i1, . . . , ik} is the corresponding set of indices. Let also i ∈ lchild(h) ⊆ {1, . . . , n}
for some h ∈ trim(µ) if the membrane labeled by iL is directly contained in a
membrane labeled by s or hR. An example demonstrating these notions can be
seen in Figure 2.

A transition system representing the FIN-representable region hL for some
h ∈ {1, . . . , n} is defined as MhL = (QhL, qhL,0, δhL), where QhL is the finite set
of states, qhL,0 is the initial state, and δhL is the state transition relation.

a

b

c

d

Fig. 3: Graphical demonstration of the possible membrane contents of the region
1L of the P system Π2 of Example 2 with arrows indicating the initial contents
and the successor relation between the multisets.

A state qhL ∈ QhL of such a transition system represents two important
properties concerning the region hL in question:

1. What is the current symbol whL = xhL ∈ O contained by the region. This
symbol is denoted by symbol(qhL).

2. Whether all regions contained by hL reached a halting state. In this case,
that is, if no rule is applicable in hL and in any of the regions contained by
hL, we have δhL(qhL) = ∅.

Now, using the states of the transition systems MjL = (QjL, qjL,0, δjL) for
j ∈ trim(µ) = {i1, . . . , ik}, we can abbreviate a configuration

(ws, w1L, w1R, . . . , wnL, wnR)

of the polymorphic P system Π above as

(ws, qi1L, wi1R, . . . , qikL, wikR)

where qjL are the states from the finite state sets of the transition system MjL.
The way how these state representations change is described by the state

transition function δjL of the transition system. If w′
s and w′

ijR
can be obtained

from ws and wijR, respectively, for all 1 ≤ j ≤ k, using the appropriate rules
symbol(qijL) → wijR implied by the current configuration of the system, then

(ws, qi1L, wi1R, . . . , qikL, wikR) ⇒ (w′
s, q

′
i1L, w

′
i1R, . . . , q

′
ikL, w

′
ikR

)

is the abbreviated notation of a possible computational step in Π, where q′ijL ∈
δijL(qijL), or q

′
ijL

= qjL if δijL(qijL) = ∅.

Example 3. Let us construct the transition system M1L = (Q1L, q1L,0, δ1L) rep-
resenting the FIN-representable region 1L of the P system Π2 of Example 2.

The possible contents of the region can be seen on Figure 3, so we need
the states Q1L = {q1L,0, q1L,1, q1L,2, q1L,3} where the initial state is q1L,0, and
symbol(q1L,0) = a, symbol(q1L,1) = b, symbol(q1L,2) = c, symbol(q1L,3) = d.
The transition relation is defined as

δ1L(q1L,0) = {q1L,1, q1L,2}, δ1L(q1L,1) = {q1L,0},
δ1L(q1L,2) = {q1L,3}, δ1L(q1L,3) = ∅.

Note that q1L,3 represents a halting state of region 1L.
Now the computational step

(a, ⟨a, aa⟩, ⟨w2L, w2R⟩, ⟨w3L, w3R⟩, ⟨w4L, w4R⟩, ⟨w5L, w5R⟩,
⟨w6L, w6R⟩, ⟨w7L, w7R⟩, ⟨w8L, w8R⟩) =

(a, ⟨a, aa⟩, ⟨a, c⟩, ⟨a, b⟩, ⟨b, a⟩, ⟨c, d⟩, ⟨a, b⟩, ⟨b, a⟩, ⟨a, e⟩) ⇒
(aa, ⟨c, bb⟩, ⟨a, c⟩, ⟨a, b⟩, ⟨b, a⟩, ⟨c, d⟩, ⟨a, b⟩, ⟨b, a⟩, ⟨a, e⟩)

of Π2 can be abbreviated as

(a, ⟨q1L,0, aa⟩, ⟨w6L, w6R⟩, ⟨w7L, w7R⟩, ⟨w8L, w8R⟩) =
(a, ⟨q1L,0, aa⟩, ⟨a, b⟩, ⟨b, a⟩, ⟨a, e⟩) ⇒

(aa, ⟨q1L,2, bb⟩, ⟨a, b⟩, ⟨b, a⟩, ⟨a, e⟩).

4 PC ET0L Systems and Non-cooperative Polymorphic
P Systems

In this section we show that languages of non-cooperative P systems can be
generated by parallel communicating ET0L systems.

Theorem 1. PsOP (polym, ncoo) ⊆ PsNPC(ET0L).

Proof. LetΠ = (O, T, µ, ws, ⟨w1L, w1R⟩, . . . , ⟨wnL, wnR⟩, s) be a non-cooperative
polymorphic P system. Since Π is non-cooperative, its left-hand regions are FIN-
representable, so they are represented by the finite transition systems MiL =
(QiL, qiL,0, δiL), 1 ≤ i ≤ n. In the following construction, we are interested in
the ones that are the outmost, that is, the ones that are directly contained in a
right-hand region, that is, in the regions jL for j ∈ trim(µ).

We construct a PC ET0L system Γ , such that Ps(Γ) = Ps(Π). We need
components for all regions that are not necessarily FIN-representable, that is,
for the skin, and for all right-hand regions which are not contained in left-hand
regions, and we also have n+ 2 assistant components in addition.

Before continuing the presentation of the PC ET0L system, we introduce a
number of notations that will ease the description of Γ .

If lchild(h) = {i1, . . . , ikh
} for a region h ∈ trim(µ), let Q̄lchild(h) = Qi1L ×

. . .×Qikh
L denote the direct product of the sets QjL, the state sets of the tran-

sition systems MjL = (QjL, qjL,0, δjL) for all labels j ∈ lchild(h) (representing
the FIN-representable children of membrane h).

Let also, for some q̄ ∈ Q̄lchild(h), symbol(q̄) = {x | x = symbol(qijL), 1 ≤ j ≤
kh} be the set of symbols corresponding the contents of the regions in lchild(h)
in the configuration represented by the component states of q̄. Moreover, let
q̄′ ∈ succ(q̄) for some q̄′ = (q′i1L, . . . , q

′
ikh

L), q̄ = (qi1L, . . . , qikh
L) ∈ Q̄lchild(h), if

and only if, q′ijL ∈ δijL(qijL). If δijL(qijL) = ∅, then q′ijL = qijL, 1 ≤ j ≤ kh.

We say that q̄ = (qi1L, . . . , qikh
L) ∈ Q̄lchild(h) is all-final, if all components of

the direct product are final states, that is, if δijL(qijL) = ∅, for all 1 ≤ j ≤ kh.

Let us denote by wh,i for some w ∈ V ∗ the string gh,i(w), where we extend
gh,i : O → V to strings, and for a ∈ O, gh,i(a) = ah,i, the symbol labeled with
the indices h ∈ {s, jR | j ∈ trim(µ)}, i ∈ {0, 1, . . . , d + 1}. Here d denotes the
maximal depth of the trimmed membrane structure, that is d = max(D) where
D = {the depth of (jL) | j ∈ trim(µ)} (we assume that the skin membrane is
not elementary).

If trim(µ) = {i1, . . . , ik}, then let

Γ = (V,K, T,Gs, G
′
s, Gi1R, G

′
i1R . . . , GikR, G

′
ikR

, Gc, Gm)

where Gm is the master component,

V = O ∪ {ah,i | a ∈ O, h ∈ {s, jR | j ∈ trim(µ)}, 0 ≤ i ≤ d+ 1} ∪
{[q̄]ih | q̄ ∈ Q̄lchild(h), h ∈ {s, jR | j ∈ trim(µ)}, 0 ≤ i ≤ d+ 1} ∪
{Sc, S

′
c, S

′′
c , Sm, S′

h | h ∈ {s, jR | j ∈ trim(µ)}}

is the alphabet of nonterminals, and the set K = {KjR,K
′
jR | j ∈ trim(µ)} ∪

{Ks,K
′
s,Kc,Km} is the alphabet of query symbols.

The components GI = (V ∪ K,T, ωI , UI), I ∈ {jR, jR′ | j ∈ trim(µ)} ∪
{s, s′, c,m} of Γ are defined as follows.

(1) If h ∈ {jR | j ∈ trim(µ)} is an elementary region, then let

ωh = wh,0
h , and

Uh = {Ph} with

Ph = {ah,i → ah,i+1, ah,d+1 → ah,0 | a ∈ O, 0 ≤ i ≤ d}.

These components maintain the non-dynamical right-hand sides of the rules
corresponding to the membrane label h. The symbols in these regions will be
replacing the left-hand sides of the corresponding dynamical rules by commu-
nication. The communication will be initiated with queries introduced by the
components generating the string corresponding to their parent regions (the re-
gions where the rules they represent can be applied). Since the simulation of one
P system step will be done in d + 2 rewriting steps, the symbols are indexed,
and the indices are changed in a circular manner.

(2) If h ∈ {s, jR | j ∈ trim(µ)} is a non-elementary region, then let

ωh = wh,0
h [q̄0]

0
h, where lchild(h) = {i1, . . . , ikh

} and q̄0 = (qi1L,0, . . . , qikh
L,0)

with qijL,0 being the initial state of MijL, 1 ≤ j ≤ kh.

This initial string (and the sentential form of such a component in general) is
an indexed representation of the contents of membrane h (indexed with h and a
value from i ∈ {0, 1, . . . , d+1}), augmented with a symbol corresponding to the
states of the transition systems representing the contents of the left-hand children
of region h. The configuration of the left-child regions of h are represented as
the direct product of the states of the transition systems MjL, j ∈ lchild(h),
corresponding to the left-children of h.

Now, the tables of the component associated to region h ∈ {s, jR | j ∈
trim(µ)}, as above, are defined in the following way.

Uh = {Ph,q̄ | q̄ ∈ Q̄lchild(h)}, where

Ph,q̄ = {[q̄]0h → [q̄]1h, [r̄]0h → F | r̄ ̸= q̄, r̄ ∈ Q̄lchild(h)} ∪
{[q̄]ih → [q̄]i+1

h | 1 ≤ i ≤ k − 1, k = level(h)} ∪
{ah,k → KijR, bh,k → bh,k+1 | k = level(h), a ∈ symb(q̄),

b ̸∈ symb(q̄)} ∪
{ah,i → ah,i+1, ah,d+1 → ah,0 | 0 ≤ i ≤ d, i ̸= k, a ∈ O} ∪
{ag,i → ag,i+1, ag,d+1 → ah,0 | k = level(h), k + 1 ≤ i ≤ d,

g ̸= h, a ∈ O}∪

{[q̄]kh → [q̄′]k+1
h , [q̄′]ih → [q̄′]i+1

h , [q̄′]d+1
h → [q̄′]0h | q̄′ ∈ succ(q̄),

k = level(h), k + 1 ≤ i ≤ d} ∪
{[t̄]ig → λ | t̄ ∈ Q̄lchild(g), g ∈ {s, jR | j ∈ trim(µ)}
0 ≤ i ≤ d+ 1}.

The tables above simulate the application of the current instances of the
dynamical rules to the contents of the right-hand regions h. Each possible com-
bination of rules can be applied.

The left-hand sides of the rules available in region h are represented by the
states of the transition systems corresponding to the left-children of h, that is, by
the symbol q̄ ∈ Q̄lchild(h). The table Ph,q̄ corresponding to this symbol (indexed
by this symbol) can be applied if an indexed version of the nonterminal [q̄]h is
present in the sentential form (otherwise the trap symbol F is introduced). After
k steps, where k is the depth of membrane h, the symbols on the left-hand sides
of the dynamical rules introduce the query symbol querying the components
which correspond to the right-hand sides of the rules in question, simulating
this way the execution of the current instances of the corresponding dynamical
rules. The delay depending on the depth of membrane h is necessary in order to
start the rule application from the skin membrane, and then to continue step-
by-step towards the deeper regions. This is important, since the changing of the
dynamical rules should only be simulated after they were applied in their current
form.

In the step when the queries are introduced, the configuration change of the
FIN-representable left-hand regions are also simulated by the changing of the
symbol q̄ representing the states of the transition systems to q̄′ ∈ succ(q̄), the
representation of a possible successor configuration. If q̄′ ̸= q̄, then the table Ph,q′

corresponding to the new configuration will be applied in the next simulating
cycle.

In addition to the components described so far, we also need two additional
ones in order to be able to finish the simulation. The task of these components

is to check whether the simulated configuration of the P system is a halting
configuration (only in this case, the finishing of the simulation is allowed), and
then to delete the nonterminal symbols from the generated string.

(3) Components G′
h = (V ∪ K,T, S′

h, U
′
h), h ∈ {s, jR | j ∈ trim(µ)} are

defined as

ω′
h = S′

h,

U ′
h = {P ′

h} where

P ′
h = {S′

h → Kc, Sc → Kc, S′
c → Kh} ∪

{[q̄]1h → λ, [r̄]1h → F | q̄, r̄ ∈ Q̄lchild(h) where q̄ is all-final,

r̄ is not all-final} ∪
{ah,1 → F, bh,1 → λ | a, b ∈ O, a ∈ symb(q̄), b ̸∈ symb(q̄)}.

These components check whether the simulated configuration is a halting
configuration of the P system Π. When the sentential form of Gc turns to S′

c,
Γ attempts to finish the generative process. First it initiates the checking phase
of the derivation by making these primed components query their unprimed
counterparts. Once the sentential forms are transferred from Gh to G′

h, these
erase all symbols from all strings if all the left-hand configurations are halting,
and moreover, if no further rewriting is possible with the current instance of
the dynamical rules. If these conditions hold, the sentential forms disappear,
otherwise the trap symbol F is introduced.

(4) Components Gc and Gm are defined as follows.

ωc = Sc,

Tc = {Pc} with

Pc = {Sc → Sc, Sc → S′
c, S

′
c → S′

c}.

When this component changes its sentential form to S′
c, the final checking

phase of the simulation process is initiated, as explained above.
The result of the derivation is produced by component Gm, the master com-

ponent which is defined below.

ωm = Sm,

Tm = {Pm} with

Pm = {Sm → Kc, Sc → Kc, S′
c → KsS

′′
c ,

S′′
c → K ′

sK
′
i1R . . .K ′

ikR
| where trim(µ) = {i1, . . . , ik}} ∪

{as,1 → a | a ∈ T} ∪ {as,1 → λ | a ∈ V − T}.

When Gc turns its sentential form to S′
c, this component receives the sen-

tential form of component Gs (which corresponds to the output region of Π),
then erases all nonterminals, and also queries the primed components G′

h to
make sure that no trap symbol was introduced, that is, the computation of Π

was correctly simulated by Γ . If all went well, the word corresponding to the
terminal contents of the skin region is generated.

To show that the PC ET0L system Γ simulates the P system Π, consider
the abbreviated version of the initial configuration of Π, as introduced in the
previous section,

(ws, qi1L, wi1R, . . . , qikL, wikR)

where trim(µ) = {11, . . . , ik}. This corresponds to the initial configuration of Γ

(ws,0
s [q̄s,0]

0
s, S

′
s, w

1R,0
1R [q̄1R,0]

0
1R, S

′
1R, . . . , w

nR,0
nR [q̄nR,0]

0
nR, S

′
nR, Sc, Sm)

in the following way. In general, symbols of type [q̄]jh, h ∈ {s, 1R, . . . , nR}
represent an element of the direct product of the state sets of MiL where
iL ∈ lchild(h). In the initial confguration above, a symbol [q̄0]

0
h represents the

left-hand sides of the rules that can be used in region h in the initial configura-
tion, since q̄0 is the direct product of the initial configurations of the transition
systems MiL, iL ∈ lchild(h). If we let xiL be the symbol which is contained by a
region iL ∈ lchild(h) in the initial configuration, then occurrences of this symbol
in wh should be rewritten by the current state of the dynamical rule xiL → wiR.
This will be achieved by communication, by replacing occurrences of xk

iL (for
some k) in the sentential form of Gh with the sentential form of component GiR.
The replacement takes place in the order of the depth of the rule in question,
starting with the rules in the skin region (the rules with left-hand regions of
depth 1).

The initial step of Γ is

(ws,0
s [q̄s,0]

0
s, S

′
s, w

1R,0
1R [q̄1R,0]

0
1R, S

′
1R, . . . , w

nR,0
nR [q̄nR,0]

0
nR, S

′
nR, Sc, Sm) ⇒

(ws,1
s [q̄s,0]

1
s,Kc, w

1R,1
1R [q̄1R,0]

1
1R,Kc, . . . , w

nR,1
nR [q̄nR,0]

1
nR,Kc, Sc, Sm),

and then we get

(ws,1
s [q̄s,0]

1
s, Sc, w

1R,1
1R [q̄1R,0]

1
1R, Sc, . . . , w

nR,1
nR [q̄nR,0]

1
nR, Sc, Sc, Sm),

after the following communication. The tables Ph,q̄0 had to be used in each
component Gh, h ∈ {s, jR | j ∈ trim(µ)} (or the trap symbol F would have
been introduced). By continuing to use the same tables, the rule applications in
the skin region (the region with depth k = 1) are simulated.

(ws,1
s [q̄s,0]

1
s, Sc, w

1R,1
1R [q̄1R,0]

1
1R, Sc, . . . , w

nR,1
nR [q̄nR,0]

1
nR, Sc, Sc, Sm) ⇒

(us,2[q̄s,0]
2
s,Kc, w

1R,2
1R [q̄1R,0]

2
1R,Kc, . . . , w

nR,2
nR [q̄nR,0]

2
nR,Kc, Sc, Sm)

where us,2, the sentential form of Gs (the component corresponding to the skin
region) is the result of rewriting each symbol in symb(q̄s,0) to the appropriate
query symbols (where q̄s,0 is the representation of the initial states of all the
regions jL with j ∈ lchild(s)). ”Appropriate” means here that if region iL is the
left-hand region and iR is the right-hand region of rule i, and xiL is the contents

of region iL, then all occurrences of xiL ∈ symbol(q̄s,0) in ws,0
s are rewritten to

KiR in us,1, which are replaced by the contents of region 1R in the following
communication step.

Continuing this way, step-by-step, eventually reaching the deepest regions of
Π with the simulation, we arrive to a configuration

(vs,d+1
s [q̄s]

d+1
s , α, v1R,d+1

1R [q̄1R]
d+1
1R , α, . . . , vnR,d+1

nR [q̄nR]
d+1
nR , α, Sc, Sm),

and then

(vs,0s [q̄s]
0
s, α, v

1R,0
1R [q̄1R]

0
1R, α, . . . , v

nR,0
nR [q̄nR]

0
nR, α, Sc, Sm),

where vh,0h is such, that vh is the string corresponding to the contents of region
h ∈ {s, jR | j ∈ trim(µ)} after the first rewriting step, while q̄h is the represen-
tation of the the contents of each region jL ∈ lchild(h) (these are the left-hand
regions of the rules that are applicable in region h).

The derivation simulating the functioning of Π might continue this way in
a similar fashion, until Gc introduces the nonterminal S′

c. If this happens in the
appropriate step, we have

(vs,0s [q̄s]
0
s,Kc, v

1R,0
1R [q̄1R]

0
1R,Kc, . . . , v

nR,0
nR [q̄nR]

0
nR,Kc, S

′
c,Kc) ⇒

(vs,0s [q̄s]
0
s, S

′
c, v

1R,0
1R [q̄1R]

0
1R, S

′
c, . . . , v

nR,0
nR [q̄nR]

0
nR, S

′
c, S

′
c, S

′
c) ⇒

(vs,1s [q̄s]
1
s,Ks, v

1R,1
1R [q̄1R]

1
1R,K1R, . . . , v

nR,1
nR [q̄nR]

1
nR,KnR, S

′
c,KsS

′′
c),

and then

(vs,1s [q̄s]
1
s, v

s,1
s [q̄s]

1
s, v

1R,1
1R [q̄1R]

1
1R, v

1R,1
1R [q̄1R]

1
1R, . . .

. . . , vnR,1
nR [q̄nR]

1
nR, v

nR,1
nR [q̄nR]

1
nR, S

′
c, v

s,1
s [q̄s]

1
sS

′′
c).

Now, if for any h ∈ {s, jR | j ∈ trim(µ)}, none of the strings vh,1h can be
rewritten with the current instances of the dynamical rules, and moreover, all q̄h
represent state combinations where all the elements are halting states, then G′

h

all produce the empty string, and Gm generates a terminal word v′ containing
the terminal objects from vs, and then the derivation is finished as

(vs,2s [q̄s]
2
s, λ, v

1R,2
1R [q̄1R]

2
1R, λ, . . . , v

nR,2
nR [q̄nR]

2
nR, λ, S

′
c, v

′K ′
sK

′
1R . . .K ′

nR) ⇒

(vs,2s [q̄s]
2
s, λ, v

1R,2
1R [q̄1R]

2
1R, λ, . . . , v

nR,2
nR [q̄nR]

2
nR, λ, S

′
c, v

′),

or otherwise the trap symbol F is introduced, and the derivation cannot be
successful any more.

5 Conclusions and Topics for Investigation

We have continued the investigations concerning the generative power of non-
cooperative polymorphic P systems, and we have shown that they can be simu-
lated by nonreturning PC ET0L systems, thus, that the class of Parikh sets of

nonreturning PC ET0L languages include the class of languages generated by
non-cooperative polymorphic P systems.

It seems to be clear that the simulation does not work in the other direction,
namely that polymorphic P systems cannot simulate PC ET0L systems in a
straightforward manner, because the communication structure of parallel com-
municating systems can be more complicated then those which could be imitated
by the simple tree-like membrane structure of P systems. On the other hand, it
seems to be possible to simulate computations of centralized PC ET0L systems
(systems where only the master component can introduce queries). The exact
characterization of languages of non-cooperative polymorphic systems with PC
ET0L systems having some kind of a simplified communication structure seems
to be an interesting topic for further research which we also plan to investigate
in the future.

References

1. Alhazov, A., Ivanov, S., Rogozhin, Y.: Polymorphic P systems. In: Gheorghe, M.,
Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing.
Lecture Notes in Computer Science, vol. 6501, pp. 81–94. Springer-Verlag, Berlin,
Heidelberg (2011)

2. Ivanov, S.: Polymorphic P systems with non-cooperative rules and no ingredients. In:
Gheorghe, M., Rozenberg, G., Salomaa, A., Sośık, P., Zandron, C. (eds.) Membrane
Computing. Lecture Notes in Computer Science, vol. 8961, pp. 258–273. Springer
International Publishing, Cham (2014)

3. Kuczik, A., Vaszil, G.: Simple variants of non-cooperative polymorphic P sys-
tems. Journal of Membrane Computing (2024). https://doi.org/10.1007/s41965-024-
00145-0

4. Lindenmayer, A.: Mathematical models for cellular interactions in development
I. Filaments with one-sided inputs. Journal of Theoretical Biology 18(3), 280–299
(1968)

5. Păun, G.: Membrane Computing: An Introduction. Springer-Verlag, Berlin, Heidel-
berg (2002)

6. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford (2010)

7. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer-Verlag,
Berlin Heidelberg (1997)

8. Rozenberg, G., Salomaa, A.: Lindenmayer systems: impacts on theoretical com-
puter science, computer graphics, and developmental biology. Springer Science and
Business Media, Berlin, Heidelberg (1992)

