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1 Introduction

The operation of splicing was introduced by Head [16] in developing an abstract
model of the bio-chemical DNA recombination in the presence of restriction
enzymes. Subsequently there has been a lot of interest and research on splicing
of linear and circular strings [32, 10, 9, 7], as well as on DNA computing [30].

Motivated by a splicing operation on circular strings, the notion of flat splic-
ing on linear strings was introduced by Berstel et al. [6].

Research on flat splicing on strings has been continued by considering a spe-
cial class of splicing, called alphabetic splicing. In this case P systems with rewrit-
ing using regular or linear rules and alphabetic flat splicing rules are considered
[26] and their generative power compared to that of alphabetic flat splicing sys-
tems, as reported in [6], and to Chomsky hierarchy of families of languages. The
generative power of P systems with rewriting, having up to three membranes
and using alphabetic flat splicing rules, has been investigated in [25] and matrix
grammars with flat splicing rules introduced and studied in [11]. The first two
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research investigations previously mentioned combine two bio-inspired computer
science concepts, splicing operations with membrane computing.

The bio-inspired computing model with the generic name of P system was
introduced in the area of membrane computing by Pǎun, first in a technical re-
port [27] and then in a journal paper [28]. There has been a tremendous growth
in research in this area, both in theory and applications in various areas, with
several variants of the basic model of P system having been introduced and in-
vestigated. Some of the early theoretical results have been reported in a research
textbook [29] and then key theoretical developments and diverse applications
have been presented in a comprehensive handbook [31]. A survey paper covers
the most significant research results published up until 2020 [33].

A variant of P systems where the rewriting rules are distributed across the
transitions of an X machine, called Eilenberg P Systems (EPS) or PX Systems,
was introduced in [8] for a smaller set of string rewriting operations and then
extended in [1]. A variant of this string rewriting model running strings in parallel
was introduced and investigated in [4]. In [5] EPS with symbol objects have been
investigated. Other lines of research, on the interaction between P systems and X-
machines, have focused on mapping various classes of P systems into X-machines
[20, 24], on using EPS computation paradigm for modelling biological systems
with dynamic structure [34] or on developing testing methods, similar to those
investigated for EPS models, for systems using various classes of membrane
computing models [17, 18].

In this paper we extend the research on P systems with rewriting using
alphabetic flat splicing [26] and their relationships with Chomsky hierarchy [25],
by considering not only cell-like P systems (AFS.PS), but also tissue P system
models (AFS.TPS). A variant of Eilenberg P systems which uses alphabetic flat
splicing rules, AFS.EPS, is also introduced and investigated.

The key contributions and main results of the paper are: (i) introduction
of a new alphabetic flat splicing rewriting mechanism for Eilenberg P systems,
AFS.EPS, and extension of the existing alphabetic flat splicing P system model,
AFS.PS, to tissue P systems, AFS.TPS; (ii) investigation of the computational
power of these models with respect to descriptional complexity measures such as
number of membranes and states - the latter for Eilenberg P systems; (iii) rela-
tionships amongst classes of languages computed by these computational models
with 2 and 3 membranes; (iv) the proof that the families of languages computed
by specific classes of AFS.PS and AFS.TPS, with m, m ≥ 2, membranes, called
one flow and rule distinguishable, are included in the family of languages com-
puted by AFS.EPS with 2 membranes; and (v) applications computing chain
code picture languages with the models introduced here.

The structure of the paper is the following: after this Introduction, in Sec-
tion 2 are presented key concepts and notations utilised in the paper; Section
3 introduces the main definitions of alphabetic flat splicing tissue (cell) P sys-
tems and Eilenberg P systems; examples illustrating the working of the newly
introduced alphabetic flat splicing systems are presented in Section 4; the main
results are discussed in Section 5 and applications showing how to compute chain
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code picture languages are described in Section 6; finally, conclusions and further
investigations are mentioned in Section 7.

2 Preliminaries

We assume that the readers are familiar with formal languages and P systems.
We refer to [28, 31] for the latter and below we recall some basic definitions and
notations for the former.

Let V be a finite set of characters (or symbols), called alphabet and let V ∗

denotes the free monoid generated by the set of all strings over the alphabet V
under the concatenation operation. A string (or word) x = a1a2 . . . an ∈ V ∗, with
ai ∈ V, 1 ≤ i ≤ n, is a finite sequence of symbols and the number of characters
of x, i.e, n, denotes the length of x. Let λ denotes the empty string, with length
0. Let V + = V ∗ − {λ}. A string v is a substring of x ∈ V ∗ if there are strings
u,w ∈ V ∗ such that x = uvw. The Chomsky family of languages (and their
classes of grammars) are : REG (regular), LIN ( linear), CF (context-free),
CS (context-sensitive) and RE (recursively enumerable). The family of finite
languages is denoted by FIN . The Chomsky hierarchy of family of languages is
given by FIN ⊂ REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE.

Splicing systems use some different operations from the rules of the grammars
mentioned above, as illustrated by the current literature of this area [16, 32, 10,
9, 7]. However, here the notion we adopted was considered in [25]. First, we
consider some basic operations of flat splicing on words from [6]. A flat splicing
rule r is of the form (α|γ − δ|β), where α, β, γ and δ are words over V and are
called handles of r. For two strings x = uαβv and y = γwδ, with u, v, w ∈ V ∗,
an application of the flat splicing rule r = (α|γ − δ|β) to the pair (x, y) yields
the string z = uαγwδβv and we write (x, y) ⊢r z. This means, the application of
the rule r inserts the second word y between α and β in the first word x yielding
the resultant string z. When all the handles of a rule r are symbols in V or the
empty string λ, then the flat splicing rule r is called alphabetic.

A flat splicing system (shortly, FSS) [6] is given as S = (V, I,R), where V
is an alphabet, I is an initial set of strings over V and R is a finite set of flat
splicing rules. The language L generated by S is the smallest language containing
I and such that for any two strings x, y ∈ L and any rule r ∈ R, if the rule r is
applicable to the pair (x, y) producing z, that is, if (x, y) ⊢r z, then z is also in
L. When all the rules of FSS S are alphabetic, then S is called an alphabetic
flat splicing system (shortly, AFSS). When I of a FSS (AFSS) S is a finite
set, a regular language or a context-free language, then FSS (AFSS) S is called
finite, regular or context-free, respectively. The families of languages generated
by FSS (AFSS), with initial sets of strings being finite, regular or context-
free, are denoted by L(FSS,X) (L(AFSS,X)), for X being FIN,REG or CF ,
respectively.

It is known that L(AFSS,CF ) is included in the family of context-free lan-
guages [6]. In other words, alphabetic flat splicing rules and context-free initial
sets will produce only context-free languages.
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3 Basic Definitions

The following definition is very similar to that in [25].

Definition 1. An Alphabetic Flat Splicing Tissue P System (AFS.TPS) with
m membranes is a tuple

Π = (V, µ, F1, . . . Fm, R1, . . . , Rm, i0)

where the membranes are in a bijective relation to 1, . . . ,m; V is a finite set of
symbols, denoting the system’s alphabet; µ is the membrane structure, a graph
with m nodes, each of them corresponding to a membrane and edges describing
connections between membranes, i.e., µ = (A,E), with A = {1, . . . ,m} and
E ⊆ {{x, y}|x, y ∈ A}; F1, . . . Fm are the initial finite subsets of V ∗ of the m
membranes; R1, . . . , Rm are finite sets of splicing rules associated with the m
membranes; and i0 is the label of the output membrane.

Each splicing rule of a membrane i, 1 ≤ i ≤ m, r : (i, (α|γ − δ|β), t), has
a target indicator, t, the label of a membrane connected with i, as indicated
by µ. The two membrane labels that appear in r, are called labels of the host
membrane, i, and target membrane, t. When such a rule, r, is applied to a pair
of strings, (x, y), x = uαβv, y = γwδ from membrane i and producing the result
z = uαγwδβv, i.e, (x, y) ⊢r z, then z is sent to membrane t, as per the target
indicator of r, if {i, t} ∈ E. The string z is kept in the same membrane i, if t = i.
In this case the target indicator may be omitted while describing the splicing
rule. The rules are applied in a maximal parallel mode, which means that in
every membrane, all the strings that can evolve must do so. If more than a rule
is applicable to a string then one of them is non-deterministically chosen. The
parallel behaviour of these systems is similar to that of many string rewriting P
systems, i.e., both at the system level and in each region [28, 29, 31].

Remark 1. In [25] the membrane structure is a tree and the rules are defined in
a slightly different form. Instead of membrane labels, the target indicators of the
rules are from the set {in, out, here}.

Some preliminary concepts are introduced in order to define a computation.
A configuration is a tuple (ω1, . . . , ωm), where ωi, 1 ≤ i ≤ m, is a finite set
of strings {wi,j |wi,j ∈ V ∗, 1 ≤ j ≤ ni} belonging to membrane i. For two
configurations c = (ω1, . . . , ωm) and c′ = (ω′

1, . . . , ω
′
m), if c′ is obtained from c

by evolving c in a maximal parallel manner, then this is denoted by c |= c′ and
is called a transition. More precisely, for the configuration c = (ω1, . . . , ωm), in
each membrane i, 1 ≤ i ≤ m, where ωi = {wi,j |wi,j ∈ V ∗, 1 ≤ j ≤ ni}, ki of the
strings from ωi may evolve, 0 ≤ ki ≤ ni. Let us denote them wi,j1 , . . . , wi,jki

.
For each wi,jh there is a string xi,jh in membrane i and a rule ri,jh such that
(wi,jh , xi,jh) ⊢ri,jh

zi,jh , h ∈ {j1, . . . , jki
}. Each zi,jh is sent to a certain region

according to the target indicator of ri,jh . In this way are obtained the sets of
strings ω′

i, 1 ≤ i ≤ m, that appear in c′.
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A computation of an AFS.TPS is a sequence of configurations, c0, c1, . . . , cn
where c0 = (F1, . . . , Fm) and for any consecutive configurations, ci, ci+1, 0 ≤
i ≤ n − 1, ci |= ci+1. A halting computation is a computation arriving in a
configuration, cn, where no rule is applicable to it.

The language defined (generated or computed) by an AFS.PS, Π, as in Def-
inition 1, denoted by L(Π), is composed of the initial strings from the out-
put membrane, Fi0 , and the strings obtained through halting computations
in the output membrane, i.e., any wi0,j , 1 ≤ j ≤ ni0 , such that there is a
halting computation c0 = (F1, . . . , Fm) |= . . . |= cn = (ω1, . . . , ωm), where
ωi0 = {wi0,1, . . . , wio,ni0

}.
If we indicate by AFS.TPS(m) the AFS.TPS with at most m, m ≥ 1,

membranes, then the corresponding family of generated languages is denoted by
L(AFS.TPS(m)).

Remark 2. We also consider the case when the membrane structure is a tree and
such a model is called Alphabetic Flat Splicing P System (AFS.PS). Similar
to the above mentioned model, we indicate by AFS.PS(m) the AFS.PS with
at most m, m ≥ 1, membranes, and the corresponding family of generated
languages is L(AFS.PS(m)).

Now, we turn our attention to Eilenberg P systems (EPS) and refer to their
definition from [8]. We introduce a variant of Eilenberg P system which has
alphabetic flat splicing rules in the membranes of the P system. The working of
the resulting P system is similar to an EPS except for a few differences, namely,
the output is collected in an inner membrane and some or all the states of the
system can be final states, while in an EPS the result is collected outside the
system and all the states of the system are final states. We call the new variant
Alphabetic Flat Splicing Eilenberg P System (AFS.EPS). Also, all the strings
that reside in an output membrane, when the computation halts, constitute the
language generated by the AFS.EPS.

Definition 2. An Alphabetic Flat Splicing Eilenberg P System (AFS.EPS) is
a tuple

Πe = (V, µ,Q, F1, . . . Fm, C, δ, q0, F, i0)

where V is a finite set of symbols, denoting the system’s alphabet; µ is the
membrane structure with m membranes, as in Definition 1; Q is a finite set of
states; F1, . . . Fm are finite subsets of V ∗, denoting the sets of initial strings of
the m membranes; C is a finite set of components, defined over R1, . . . , Rm, the
finite sets of splicing rules associated with the m membranes, C = {C1, . . . , Cp}.
Each component has the form Ci = (Ri,1, . . . Ri,m) and Ri,j ⊆ Rj , 1 ≤ j ≤ m,
for 1 ≤ i ≤ p. δ is a transition function, δ : Q × C −→ Q; q0 ∈ Q is the initial
state; F ⊆ Q is the set of final states; and i0 the output membrane.

A computation of an AFS.EPS is given by a sequence of configurations
and states. It starts from the initial configuration c0 = (F1, . . . , Fm) and initial
state q0. The system evolves in a maximal parallel manner in the following way:
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given configurations c = (ω1, . . . , ωm), c′ = (ω′
1, . . . , ω

′
m) and states q, q′ ∈ Q,

the AFS.EPS evolves in a maximal parallel manner from the configuration c
and state q into configuration c′ and state q′ if there is a component Ci ∈ C,
1 ≤ i ≤ p, such that δ(q, Ci) = q′ and in at least one membrane j, 1 ≤ j ≤ m,
there are rules in Ri,j applied in parallel to the strings from ωj . All the strings
that can evolve in configuration c and state q must evolve.

A computation halts when the system reaches a final state and none of the
rules of the components associated with the state through the transition function
is applicable.

The language defined (generated or computed) by an AFS.EPS, Πe, as in
Definition 2, denoted by L(Πe), is composed of the initial strings from the out-
put membrane, Fi0 , and the strings obtained through halting computations in
the output membrane, i.e., wi0,j , 1 ≤ j ≤ ni0 , such that there is a halting com-
putation c0 = (F1, . . . , Fm) |= . . . |= cn = (ω1, . . . , ωm) and a sequence of states
q0, . . . , qn, and components Ci0 , . . . , Cin , with δ(qh, Cih) = qh+1, 0 ≤ h ≤ n− 1,
qn is a final state and ωi0 = {wi0,1, . . . , wio,ni0

}.
If we indicate the three parameters, namely, the number of membranes, at

most m, the number of states, at most s, and the number of components, at
most p, then we denote the system by AFS.EPS(m, s, p) and the corresponding
family of generated languages by L(AFS.EPS(m, s, p)).

4 Examples

Example 1. Consider the AFS.PS(3)

Π1 = ({a, x, y, z, t}, [1[2]2[3]3]1, {xayaza, a}, {a}, {a, t}, R1, R2, R3, 3).

The sets of rules are: R1 = {r1 : (1, (x|a− λ|a), 2), r2 : (1, (x|a− λ|a), 3)}; R2 =
{r3 : (2, (y|a − λ|a), 1)}; R3 = {r4 : (3, (z|a − λ|a), 1), r5 : (3, (z|t − λ|a))}. Any
halting computation starts in membrane 1, from xayaza, and stops in membrane
3, which is the output membrane. In the first step of the computation one can
use, in membrane 1, either rule r1 or r2. They produce the same result, xaayaza,
but r1 sends it to membrane 2 whereas r2 to membrane 3. In the next step, if
membrane 2 has been chosen, then rule r3 is applied and the result, xaayaaza,
is resent back to membrane 1. Otherwise, if membrane 3 has been chosen then
either r4 or r5 is utilised. In the first case the string xaayazaa is obtained
and resent to membrane 1, whereas in the second one, the string xaayazta is
obtained and kept in membrane 3, where the computation stops, as no more rule
is applicable. One can observe that the string from membrane 1 where a symbol
a is added to it between x and a is then sent either to membrane 2 or 3, where a
symbol a is inserted between y and a or between z and a, respectively, and resent
back to membrane 1. The computation stops in membrane 3 when the rule r5
inserts a symbol t between z and a and no more rule is applicable in membrane
3 which contains the string. The strings obtained through halting computations
are of the form xap+qyapztaq, p, q ≥ 1. Hence, the language computed by Π1,
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including the initial strings in membrane 3, is L(Π1) = {xap+qyapztaq|p, q ≥
1} ∪ {a, t}.

Example 2. Let us consider the AFS.TPS(3)

Π2 = ({a, x, y, z, t}, µ, {xayaza, a}, {a}, {a, t}, R1, R2, R3, 3).

The membrane structure, a graph, is given by µ = ({1, 2, 3}, {{1, 2}, {2, 3}, {3, 1}).
The sets of rules are: R1 = {r1 : (1, (x|a−λ|a), 2)}; R2 = {r2 : (2, (y|a−λ|a), 3)};
R3 = {r3 : (3, (z|a− λ|a), 1), r4 : (3, (z|t− λ|a))}.

This example is very similar to Example 1. The membranes are connected by
a graph structure, µ, and the rules are adapted accordingly. As in Example 1,
any computation starts in membrane 1 from the initial string xayaza and in the
first step the rule r1 is applied leading to xaayaza which is sent to membrane 2.
In the second step the rule r2 is applied and the string xaayaaza is generated
and sent to membrane 3. In the next step either rule r3 or r4 is applied. In
the first case the string obtained, xaayaazaa is sent to membrane 1. In the
other case, the rule r4 is applied and the string xaayaazta obtained remains
in membrane 3, which is output membrane. The language generated by Π2 is
L(Π2) = {xan+1yan+1ztan|n ≥ 1} ∪ {a, t}.

Example 3. In this example, AFS.EPS with just two membranes are built such
that they compute the languages obtained in previous examples, L(Π1) and
L(Π2).

For L(Π1) one considers the AFS.EPS(2, 3, 5)

Πe
1 = ({a, x, y, z, t}, µ, {xayaza, a}, {a, t}, {q1, q2, q3}, C, δ, q1, {q3}, 2).

This AFS.EPS has two membranes. In membrane 1 is computed what is com-
puted in the AFS.PS in membranes 1 and 2, and membrane 2 of the AFS.EPS
corresponds to membrane 3 of the AFS.PS. The membrane structure is µ =
({1, 2}, {{1, 2}}). The components are from the set C = {Ci|1 ≤ i ≤ 5}. The com-
ponents are defined based on the rules of Π1, slightly modified. The sets of rules
of Πe

1 are R′
1 = {r′1 : (1, (x|a−λ|a)), r′2 : (1, (x|a−λ|a), 2), r′3 : (1, (y|a−λ|a))}, in

membrane 1, and R′
2 = {r′4 : (2, (z|a−λ|a), 1), r′5 : (2, (z|t−λ|a))}, in membrane

2. The components are defined by C1 = ({r′1}, ∅), C2 = ({r′3}, ∅), C3 = ({r′2}, ∅),
C4 = (∅, {r′4}), C5 = (∅, {r′5}) and the transition function by δ(q1, C1) = q2,
δ(q2, C2) = q1, δ(q1, C3) = q3, δ(q3, C4) = q1, δ(q3, C5) = q3. In membrane 1 are
inserted symbols a between x and a either using component C1 or C3. In the
first case an a is inserted between y and a, in membrane 1, through component
C2. In the second case the string is sent to membrane 2, where a symbol a is
inserted between z and a, using component C4, and the string resent back to
membrane 1, or a symbol t is inserted between z and a, using component C5,
and the computation stops. Clearly, L(Πe

1) = L(Π1).

The AFS.EPS presented below generates the language L(Π2) computed by
the AFS.TPS in Example 2.
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The following AFS.EPS(2, 3, 4) is considered

Πe
2 = ({a, x, y, z, t}, µ, {xayaza, a}, {a, t}, {q1, q2, q3}, C, δ, q1, {q3}, 2).

The membrane structure is as in Πe
1 . The set C has four components, based

on the following sets of rules corresponding to the two membranes, obtained
from those of Π2, with adequate changes referring to the labels of the host and
target membranes. The sets of rules are R′

1 = {r′1 : (1, (x|a−λ|a)), r′2 : (1, (y|a−
λ|a), 2)}, in membrane 1 and R′

2 = {r′3 : (2, (z|a−λ|a), 1), r′4 : (2, (z|t−λ|a))}, in
membrane 2. The components are C1 = ({r′1}, ∅), C2 = ({r′2}, ∅), C3 = (∅, {r′3}),
C4 = (∅, {r′4}} and the transition function by δ(q1, C1) = q2, δ(q2, C2) = q3,
δ(q3, C3) = q1, δ(q3, C4) = q3. Clearly, L(Π

e
2) = L(Π2).

5 Main Results

The result below is a direct consequence of Definitions 1 and 2.

Theorem 1. The following relationships hold:
(i) L(AFS.ZPS(m)) ⊆ L(AFS.ZPS(m+ 1)), Z ∈ {T, λ},m ≥ 1.
(ii) L(AFS.EPS(m, s, p)) ⊆ L(AFS.EPS(m′, s′, p′)),m′ ≥ m ≥ 1, s′ ≥ s ≥ 1,
p′ ≥ p ≥ 1.

The following result shows the relationship between AFS.PS, AFS.TPS and
AFS.EPS with the same number of membranes.

Theorem 2. L(AFS.PS(m)) ⊆ L(AFS.TPS(m)) ⊆ L(AFS.EPS(m, 1, 1)) ⊆
L(AFS.EPS(m, s, p)), m, s, p ≥ 1.

Proof. The first inclusion L(AFS.PS(m)) ⊆ L(AFS.TPS(m)), follows imme-
diately from the fact that the tree structure is a particular case of a graph
structure.

Let Π be from AFS.TPS(m), m ≥ 1,

Π = (V, µ, F1, . . . , Fm, R1, . . . , Rm, i0).

Then the following AFS.EPS is constructed

Πe = (V, µ, {q}, F1, . . . , Fm, C, δ, q, {q}, i0),

where C = {C1}, C1 = (R1, . . . , Rm) and δ(q, C1) = q.
Obviously, Πe belongs to the family AFS.EPS(m, 1, 1) and L(Π) = L(Πe).
The final inclusion follows from Theorem 1 (ii).

In [25] it has been proved L(AFS.PS(1)) ⊂ L(AFS.PS(2)) and
L(AFS.PS(3)) − CF ̸= ∅, using for rules targets in, out and here. These re-
sults remain true when membrane labels are used instead. In [6] it has proved
that L(AFSS,CF ) is included in the family of context-free languages, whereas
the later result above shows that L(AFS.PS(3)) contains non context-free lan-
guages.

Now, we establish relationships between the families L(AFS.PS(2)),
L(AFS.PS(3)) and L(AFS.TPS(3)). We start with a preliminary result.
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Lemma 1. L(AFS.TPS(3)) \ L(AFS.PS(3)) ̸= ∅

Proof. Let us consider the language L = {xan+1yanztan|n ≥ 1} ∪ {a} and the
following AFS.TPS(3)

Π = ({a, x, y, z, t}, µ, {a, xayaza}, {a, t}, {a}, R1, R2, R3, 3),

where µ = ({1, 2, 3}, {{1, 2}, {2, 3}, {3, 1}}). R1 contains the rule r1 : (1, (x|a −
λ|a), 2); R2 contains r2 : (2, (y|a−λ|a), 3); r3 : (2, (z|t−λ|a), 3); and R3 contains
r4 : (3, (z|a − λ|a), 1). The language generated is L(Π) = L. The computation
starts in membrane 1 with (xayaza, a) ⊢r1 xa2yaza and continues executing
n times the sequence of rules r2 in R2, r4 in R3, and r1 in R1, n ≥ 0. This
computation leads to the string xan+1yanzan, n ≥ 1. After that, r3 is applied in
R2 introducing t between z and a and the string is sent to membrane 3, where
the computation stops with the string xan+1yanztan, n ≥ 1.

We prove now that L /∈ L(AFS.PS(3)).

Let us suppose the opposite, L ∈ L(AFS.PS(3)). In this case there is an
AFS.PS(3), Π ′, with three membranes such that L(Π ′) = L. The membrane
structure may be either (i) [1[2[3]3]2]1 or (ii) [1[2]2[3]3]1, with one of the mem-
branes being the output membrane. The output membrane contains initial string
a and possibly xap+1yapztap, for p from a finite set of positive integer numbers.
If we denote by α the maximum length of the initial strings, ρ the total num-
ber of rules of Π ′, and τ the maximum number of symbols inserted by any
of the rules, then let us denote k = α + τρ. Let us now consider the string,
w = xan+1yanztan, from L, where n > k. The string is obtained in a halting
computation starting from an initial string, w0, and applying a finite sequence of
rules. Let us also denote by v one of the following strings z, t, zt. In any halting
computation starting from w0 and leading to w, one must get w0 |=∗ w′ |=+ w,
where w′ = x′ah1yah2vah3 , x′ = x or x′ = λ and 0 ≤ hi < k, 1 ≤ i ≤ 3. In the
sequel we refer to each of the substrings between x′ and y, y and v, and after v
as substrings in positions 1, 2 and 3, respectively. Indeed, if one of the substrings
ahi , 1 ≤ i ≤ 3, has more than k occurrences of a and one, both or none of y, v
are present then there is a rule, r, that is applied twice when the substring is
obtained and this can be repeated an arbitrary number of times increasing arbi-
trarily that substring and leading to a halting computation producing a string
with more occurrences of a on that position i than w and the other positions
with the same occurrences as w.

In the computation w′ |=+ w, one must get w′′ = x′ah
′
1yah

′
2vah

′
3 , with at least

one h′
i, 1 ≤ i ≤ 3, such that h′

i ≥ k. Similar to the case above, a rule, r, is applied
a least twice to position i, and the sequence of rules between the two occurrences
of r can be repeated. In the sequence of rules between the two occurrences of
r there must be at least two rules, r′, r′′, applied to the other two positions.
Otherwise, repeating the sequence will increase the number of occurrences only
for some positions. Each of these rules must the have target indicator different
from the label of the membrane where it belongs to. Otherwise, they can be
indefinitely applied.
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In the case of the membrane structure (i) [1[2[3]3]2]1, one distinguishes two
cases: (i.1) if two of the rules appear in the same membrane then in the sequence
above one can replace one of the rules with the other one and consequently
creating an unbalance between the corresponding positions and leading to a
string that is not in L; (i.2) if the rules appear in distinct membranes then one
considers the rules in membranes 2 and 3; let us assume the first rule is in 2
and the second in 3 and let them be either r′, r′′ or r′′, r. In any of these two
circumstances before the rule in 2 and between those in membranes 2 and 3, there
must be a rule from membrane 1, r′1, with target indicator 2 and another rule
from membrane 1, r′′1 , with target indicator 3, respectively. One can replace one
of the r′1, r

′′
1 with the other one and this will increase the number of occurrences

for one position and decrease for the other one, leading to the same conclusion
as above.

In the case of the membrane structure (ii) [1[2]2[3]3]1 the rules r, r′, r′′ appear
in distinct membranes and one of the rules is in membrane 2; then there must
be another rule in membrane 2 within the sequence r, r′, r′′, r such that these
two occurrence have different targets, 1 and 3. These can then be replaced one
with the other one and leading to the same conclusion as above.

Theorem 3. The following relationships hold
(i) L(AFS.PS(3)) ⊂ L(AFS.TPS(3)).
(ii) L(AFS.TPS(2)) ⊂ L(AFS.TPS(3)).

Proof. The first part follows directly from Theorem 2 and Lemma 1.
For the second part, from Theorem 1, we have L(AFS.ZPS(2))⊆ L(AFS.ZPS(3)),

Z ∈ {T, λ}. Also, L(AFS.PS(2)) = L(AFS.TPS(2)), as AFS.PS(2) coincides
with AFS.TPS(2). These combined with the first part of the Theorem, lead to
the result (ii).

The next two results show relationships between particular classes ofAFS.PS,
AFS.TPS and AFS.EPS.

Theorem 4. L(AFS.PS(2)) ⊂ L(AFS.EPS(2, 3, 3)).

Proof. The inclusion follows from Theorem 2. Now, we show the first inclusion.
First, we show that L = {xanztan|n ≥ 1} is in L(AFS.EPS(2, 3, 3)) and not

in L(AFS.PS(2)).
Let us consider the following AFS.EPS from AFS.EPS(2, 3, 3)

Πe = ({a, x, z, t}, [1[2]2]1, {q0, q1, q2}, {xaza, a}, ∅, C, δ, q0, {q2}, 2),

with the set of rules in membrane 1, R1, consisting of r1 : (1, (x|a − λ|a)),
r2 : (1, (z|a − λ|a)), and r3 : (1, (z|t − λ|a), 2); and the empty set of rules in
membrane 2. The components are C1 = ({r1}, ∅), C2 = ({r2}, ∅), C3 = ({r3}, ∅);
and the transition function δ(q0, C1) = q1, δ(q1, C2) = q0, δ(q0, C3) = q2. Clearly,
L(Πe) = L.

Let us suppose L ∈ L(AFS.PS(2)). In this case there is an AFS.PS(2),
Π ′ with two membranes, labelled 1 and 2. One can assume that the membrane
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structure is [1[2]2]1, with 2 being the output membrane. Similar to the proof of
Lemma 1 in any halting computation from an axiom to w = xanztan, for a large
enough n, each rule from a membrane increasing the number of occurrences
of a of one of the two positions, must alternate with a rule from the other
membrane increasing the occurrences of a from the other position. Hence, the
output membrane must contain at least an initial string ap, for some p ≥ 1, that
will be then in the language. But, L does not contain such a string.

Corollary 1. L(AFS.TPS(2)) ⊂ L(AFS.EPS(2, 3, 3)).

Theorem 5. (L(AFS.TPS(3))\L(AFS.TPS(2)))∩L(AFS.EPS(2, 4, 4)) ̸= ∅.

Proof. Let us consider the language from the proof of Lemma 1,
L = {xan+1yanztan|n ≥ 1} ∪ {a}, which satisfies L ∈ L(AFS.TPS(3)) \
L(AFS.TPS(2)).

In order to complete the proof we show that L ∈ L(AFS.EPS(2, 4, 4)).
Let us consider the following AFS.EPS from AFS.EPS(2, 4, 4),

Πe = ({a, x, y, z, , }[1[2]2]1, {q0, q1, q2, q3}, {xayaza, a, t}, {a}, C, δ, q0, {q3}, 2),

with the set of rules in membrane 1, R1, consisting of r1 : (1, (x|a − λ|a)),
r2 : (1, (y|a − λ|a)), r3 : (1, (z|a − λ|a)), r4 : (1, (z|t − λ|a), 2); and no rules in
membrane 2. The components are Ci = ({ri}, ∅), 1 ≤ i ≤ 4; and the transition
function δ(q0, C1) = q1, δ(q1, C2) = q2, δ(q2, C3) = q0, δ(q1, C4) = q3. Clearly,
L(Πe) = L.

We consider now a class of AFS.ZPS, Z ∈ {T, λ}, called one flow and rule
distinguishable. Subsequently we refer to Definition 1.

Definition 3. An AFS.ZPS, Z ∈ {T, λ}, is called one flow AFS.ZPS if at any
step of the computation there is a membrane containing all the evolving strings.

The membrane containing the evolving strings during the computation is not
necessarily unique. Not all the strings stop evolving at the same moment. A rule
that leads to a non-evolving string is called final rule.

The membrane where any computation starts is called starting membrane.

Definition 4. An AFS.ZPS, Z ∈ {T, λ}, is called rule distinguishable AFS.ZPS
if in any rule one of the handles is an initial string and for any rule ri :
(i, (α|γ − δ|β), j) from Ri, and any initial string xi = γwδ of a membrane i,
1 ≤ i ≤ m, there is no rule ri′ : (i′, (α|γ′ − δ′|β), j′) from Ri′ , and any initial
string xi′ = γ′w′δ′ of a membrane i′, 1 ≤ i′ ≤ m, i′ ̸= i, such that xi′ ̸= xi..

An AFS.ZPS is rule distinguishable when any two rules from different mem-
branes, i, i′, that are applicable between the same symbols α, β, must not use
different initial strings, xi, xi′ .

An AFS.ZPS, Z ∈ {T, λ}, satisfying the above definitions is called one flow
and rule distinguishable AFS.ZPS.
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Example 4. Let the following one flow and rule distinguishable AFS.TPS(3)

Πo,d = ({x, a, c, y, b}, µ, F1, F2, F3, R1, R2, R3, 3)

where µ = ({1, 2, 3}, {{1, 2}, {2, 3}, {3, 1}}); F1 = {xa, c, yb}, F2 = {d, t}, F3 =
{a, b, t}; R1 = {r1 : (1, (x|c− λ|a, 2), r2 : (1, (y|c− λ|b, 2)}, R2 = {r3 : (2, (x|d−
λ|c, 3), r4 : (2, (x|t−λ|c, 3), r5 : (2, (y|d−λ|c, 3)}, R3 = {r6 : (3, (x|a−λ|d, 1), r7 :
(3, (y|b− λ|d, 1), r8 : (3, (y|t− λ|d))}; and 3 is the output membrane.

Πo,d is one flow AFS.TPS, with starting membrane 1. Indeed, the com-
putation starts with xa and yb in membrane 1 and in the first step one gets
xca and ycb, respectively, by using r1 and r2. These strings are then sent
to membrane 2, as per the target indicators of r1 and r2. The computation
leads to xtca(dca)n, n ≥ 0, and yt(dcb)n, n ≥ 1. This computation develops
in parallel for the two strings until for one of them a final rule is applied,
r4, for the first string, or r8, for the second one. These final rules are not
applied at the same step, i.e., one of the strings may stop in membrane 3,
whereas the other one continues to travel through the system until the final
rule will stop the computation in the same output membrane. One can notice
that when the final rules are applied, the result may not follow the flow of the
other string, as it does no longer evolve. The language computed by Πo,d is
L(Πo,d) = {xtca(dca)n|n ≥ 0}∪{yt(dcb)n|n ≥ 1}∪{a, b, t}, i.e., the strings gen-
erated in one flow manner, plus the initial strings from the output membrane.

Πo,d is also rule distinguishable AFS.TPS as rules (i, α|γ− δ|β), j) with the
same symbols α, β appear only in the same membrane, α = x, β = c in 2 (r3, r4)
and α = y, β = d in 3 (r7, r8).

The following AFS.TPS(3)

Πo,nd = ({x, a, c, y, b}, µ, F1, F2, F3, R1, R2, R3, 3)

where µ = ({1, 2, 3}, {{1, 2}, {2, 3}, {3, 1}}); F1 = {xa, ac, yb, c}, F2 = {a, d, t},
F3 = {a, b, t}; R1 = {r1 : (1, (x|a − c|a, 2), r2 : (1, (y|c − λ|b, 2)}, R2 = {r3 :
(2, (x|a−λ|a, 3), r4 : (2, (x|t−λ|a, 3), r5 : (2, (y|d−λ|c, 3)}, R3 = {r6 : (3, (x|a−
λ|a, 1), r7 : (3, (y|b− λ|d, 1), r8 : (3, (y|t− λ|d))}; and 3 is the output membrane.

Πo,nd is one flow AFS.TPS with starting membrane 1, but is not rule dis-
tinguishable as rule r1 uses initial string ac in membrane 1 and r3 uses a in 2,
between x and a.

The following AFS.TPS(3)

Πno,nd = ({x, a, c, y, b}, µ, F1, F2, F3, R1, R2, R3, 3)

where µ = ({1, 2, 3}, {{1, 2}, {2, 3}, {3, 1}}); F1 = {xa, ac, c}, F2 = {a, t, yc, d},
F3 = {a, b, t}; R1 = {r1 : (1, (x|a − c|a, 2), r2 : (1, (y|c − λ|b, 2)}, R2 = {r3 :
(2, (x|a−λ|a, 3), r4 : (2, (x|t−λ|a, 3), r5 : (2, (y|d−λ|c, 3)}, R3 = {r6 : (3, (x|a−
λ|a, 1), r7 : (3, (y|b− λ|d, 1), r8 : (3, (y|t− λ|d))}; and 3 is the output membrane.

Πno,nd is not one flow AFS.TPS as a computation starts in membrane 1,
from xa, and another one in 2, from yc. It is also not rule distinguishable, for
the same argument used for Πo,nd.
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Now, one can show that an AFS.ZPS(m), Z ∈ {T, λ}, m ≥ 2, can be simu-
lated by and AFS.EPS with two membranes. This result shows that potential
hierarchies of the languages generated by AFS.ZPS(m), Z ∈ {T, λ}, m ≥ 2, are
all generated by AFS.EPS with two membranes.

Theorem 6. For any one flow and rule distinguishable AFS.ZPS(m), with Z ∈
{T, λ}, m ≥ 2, Π, there is an AFS.EPS(2,m,m2), Πe, such that L(Π) =
L(Πe).

Proof. It is enough to consider the case of one flow and rule distinguishable
AFS.TPS with m, m ≥ 2, membranes.

Let us have the following AFS.TPS

Π = (V, µ, F1, . . . , Fm, R1, . . . , Rm, i0).

The following AFS.EPS is constructed

Πe = (V, µ,Q, F ′
1, F

′
2, C, δ, q0, F, 2),

with 2 membranes, labelled 1 and 2, with 2 corresponding to i0; µ = ({1, 2},
{{1, 2}}); Q has m states, each of them associated with a membrane of Π,
Q = {q1, . . . , qm}; F ′

1 contains the initial strings of F1, . . . , Fm, but Fi0 , whereas
F ′
2 = Fi0 .
For each set of rules Ri, 1 ≤ i ≤ m, one considers the sets Ri,ik = {r|r ∈ Ri,

r is not final rule and its target indicator is ik}, 1 ≤ k ≤ ni. When rules from
Rik , 1 ≤ k ≤ ni, are applied to strings in membrane i, the results are all sent
to membrane ik. Ri,f denotes the set of all final rules that appear in Ri. R

′
i,ik

denotes Ri,ik∪Ri,f . Every set R′
i,ik

includes the final rules, as they lead to results
that do no longer evolve and, when appear, do not have to disturb the flow of
those that continue to evolve by moving to membrane ik. The strings resulted
from final rules go to the target indicators of them and these may differ from
ik. Ri is equal to R′

i1
∪ . . . ∪ R′

ini
. The non-final rules from R′

i,ik
have the form

(i, (α|γ − δ|β), ik). For the final rules from R′
i,ik

the membrane indicators may
be different from ik. One denotes by R′′

i,ik
the set {(e, (α|γ − δ|β), f)|(i, (α|γ −

δ|β), t) ∈ R′
i,ik

where e = 1 if i ̸= i0, otherwise e = 2 and f = 1 if t ̸= i0,
otherwise f = 2}; t is ik for non-final rules and may be different from ik when
the rule is final. In each set R′′

i,ik
the rules use the membrane labels of Πe, i.e.,

either 1 when they indicate a membrane different from i0, or 2 otherwise.
From the construction so far of the sets of rules for Πe, it follows that the

number of rules of this AFS.EPS is the same as the number of rules of Π.
The set of components, C, is {Ci,ik |Ci,ik = (R′

i,ik
, ∅) when i ̸= i0, Ci,ik =

(∅, R′
i,ik

) when i = i0, 1 ≤ i ≤ m, 1 ≤ k ≤ ni ≤ m}.
The maximum number of components is m2.
The transition function is defined by δ(qi, Ci,ik) = qik , qi, qik ∈ Q, 1 ≤ i ≤ m,

1 ≤ k ≤ ni.
q0 = qh, qh ∈ Q, and h is the starting membrane and F = {qi0}.
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The idea of the construction above is the following: the contents and rules
of all the membranes of Π, but i0, are available in membrane 1 of Πe and those
from i0 are contained in membrane 2. The rules of Π are modified such that the
labels of the membranes in Π are mapped into the two membranes of Πe. The
AFS.EPS, Πe, will have a distinct state for each membrane. The component,
Cs,d, utilised by the transition function in a state, qs, associated with membrane s
ofΠ, contains the rules of the membrane s ofΠ having the same target indicator,
membrane d, and maybe final rules. In this case δ(qs, Cs,d) = qd, where qd is the
state in Πe corresponding to membrane d. One flow constraints imposes that
all the evolving strings are always in one membrane and the rule distinguishable
property of Π allows AFS.EPS, Πe, to use in membrane 1, where the contents
of all the membranes of Π, but i0, are included, exactly the rules that correspond
to those of Π.

The computation in Π performs the first step from the starting membrane,
denoted above h. As Π is one flow AFS.TPS, all the strings that evolve in the
first step are in h. The rules applicable to them have the same target indicator
hk, unless are final rules. All the rules are from R′

h,hk
and send the results to

hk. In Πe the computation starts in membrane 1, if h ̸= i0, or 2, otherwise. The
transition function will execute δ(qh, Ch,hk

) = qhk
, allowing only rules from R′′

h,hk

to be utilised. If hk ̸= i0 then the first step ends in membrane 1, otherwise in 2.
As the current state of Πe corresponds to the membrane containing the strings
and Π is a rule distinguishable AFS.TPS, the rules applicable from R′′

h,hk
use

only initial strings from h. The above is true for any membrane of Π containing
the evolving strings and likewise for Πe. Hence, L(Πe) = L(Π).

Remark 3. The AFS.EPS built in the proof of the above theorem, has 2 mem-
branes, m states and at most m2 components over a set of rules with the cardinal
equal to that of the set of rules of the AFS.ZPS, Z ∈ {T, λ}.

6 Applications - Chain Code Picture Languages

Chain code pictures are composed of straight horizontal and vertical unit lines
in the 2D plane. These can be codified as words (strings) over the alphabet
V = {u, d, r, l}, where each character stands for a unit line in the corresponding
direction: up, down, right, left. Since this codification has been introduced in [23],
many studies have been developed of families of such pictures, seen as languages,
and many generative methods have been proposed for them (see for instance [13]
and [14]), and even parallel rewriting in the context of P systems [12].

Here we propose to generate two such languages, the double stairs and next
the diamond, with AFS.ZPS systems, Z ∈ {T, λ}, and AFS.EPS systems.

The double stairs language is {(ur)n(rd)n | n ≤ 1}.
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Figure 2: A chain code picture of two “stairs” of equal height, represented by
the chain code word (ur)3(dl)2d

We will generate a slightly modified language of stairs, with a longer ”plat-
form” on top. The diamond is the above double stairs, completed with its mirror
image w.r.t. the horizontal axis.

Let us denote by Π1 the following AFS.PS with 3 membranes

(V, [1[2]2[3]3]1, F1, F2, ∅, R1, R2, ∅, 3}),

where V = {u, d, r, l}, F1 = {urrd, ru, r} and F2 = {dr}, R1 = {r1 : (1, (u|r −
u|r), 2), r2 : (1, (r|λ−r|r), 3)} andR2 = {r3 : (2, (r|d−r|d), 1)}. The output mem-
brane is 3, which has no initial strings and rules, just collecting the final results
sent by r2. The computation starts from urrd in membrane 1. Using n times the
rules r1 in membrane 1 and r3 in membrane 2, one gets (ur)n+1(rd)n+1, n ≥ 0,
in membrane 1. Finally, r2 is applied yielding (ur)n+1r(rd)n+1, in membrane 3,
n ≥ 0, where the computation halts. Clearly, L(Π1) = {(ur)nr(rd)n | n ≥ 1}.

The next solution to the double stairs (half a diamond) chain code picture
problem is based on an AFS.EPS with two membranes computing the language
L = {(ur)nr(rd)n | n ≥ 1}.

Let us consider the AFS.EPS(2, 3, 3)

Πe
1 = ([1[2]2]1, {u, d, r, l}, {q1, q2, q3}, X1, X2, C, δ, q1, 2, {q3}),

where X1 = {urrd, ru, r, dr}, X2 = ∅, the set of components, C = {C1, C2, C3},
is based on the following sets of rules: R1 = {r1 : (1, (u|r − u|r)), r2 : (1, (r|λ −
r|r), 2), r3 : (1, (r|d − r|d))}, R2 = ∅. The components are C1 = ({r1}, ∅), C2 =
({r3}, ∅), C3 = ({r2}, ∅), and the transition function is δ(q1, C1) = q2, δ(q2, C2) =
q1, δ(q1, C3) = q3. In Πe

1 the computation takes place in membrane 1, and
membrane 2 is just a place collecting the results, with no initial strings and
rules. Clearly, L(Πe

1) = L.
In the application above we have used from the alphabet V only the symbols

u, d, r allowing to build the upper part of the diamond. Next, we consider gener-
ating the entire diamond and for getting the lower part of it we use the symbols
u, d, l. So, we make full use of V for generating this chain code picture.

First, we consider an AFS.TPS for generating the diamond chain code pic-
ture language.

Consider the AFS.TPS(6)

Π2 = (V, µ, F1, . . . , F6, R1, . . . , R6, 6}),

where µ = ({1, . . . , 6}{{1, 2}, {2, 3}, {3, 4}, {4, 1}, {1, 5}, {5, 6}}) and the sets
of initial strings are F1 = {urrddllu, ru, r}, F2 = {dr}, F3 = {ld}, F4 =
{ul}, F5 = {l} and F6 = ∅. The sets of rules are R1 = {r1 : (1, (u|r −
u|r), 2), r5 : (1, (r|λ − r|r), 5)}, R2 = {r2 : (2, (r|d − r|d), 3)}, R3 = {r3 :
(3, (d|l − d|l), 4)}, R4 = {r4 : (4, (l|u − l|u), 1)}, R5 = {r6 : (2, (l|λ − l|l), 3)},
R6 = ∅. The computation starts in membrane 1 with the initial string urrddllu,
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by applying either r1 or r5. If r1 is applied one gets the string ururrddllu
which is sent to membrane 2. The following rules are applied in membranes 2,
3 and 4: r2, r3 and r4, respectively, getting then the string ururrdrddldllulu =
(ur)2(rd)2(dl)2(lu)2. The sequence of rules r1, r2, r3, r4 can be applied several
times until one gets (ur)n+1(rd)n+1(dl)n+1(lu)n+1, where the sequence above
has been applied a total of n times, n ≥ 0. Finally, if r5 is applied the string
obtained (ur)n+1r(rd)n+1(dl)n+1(lu)n+1 is sent to membrane 5 where rules r6
is applied and the result, (ur)n+1r(rd)n+1(dl)n+1l(lu)n+1, is sent to the output
membrane 6. Clearly, the diamond chain code picture language is computed by
the AFS.TPS(6), Π2, i.e., L(Π2) = {(ur)nr(rd)n(dl)nl(lu)n|n ≥ 1}.

One can built anAFS.EPS with two membranes, preciselyAFS.EPS(2, 6, 6),
that will compute the same diamond chain code picture language.

Πe
2 = ([1[2]2]1, {u, d, r, l}, {q1, q2, q3, q4, q5, q6}, X1, X2, C, δ, q1, 2, {q6}).

The sets of initial strings are X1 = {urrddllu, ru, r, dr, ld, ul, l} and X2 = ∅.
The sets of rules are R1 = {r1 : (1, (u|r− u|r)), r2 : (1, (r|d− r|d)), r3 : (1, (d|l−
d|l)), r4 : (1, (l|u − l|u)), r5 : (1(r|λ − r|r)), r6 : (1, (l|λ − l|l), 2)} and R2 = ∅.
The set of components is C = {C1, C2, C3, C4, C5, C6}, where Ci = ({ri}, ∅),
1 ≤ i ≤ 6. The transition function is δ(q1, C1) = q2, δ(q2, C2) = q3, δ(q3, C3) =
q4, δ(q4, C4) = q1, δ(q1, C5) = q5, δ(q5, C6) = q6. q1 is the initial state, 2 is
the output membrane and q6 is the final state. Clearly, the language computed
by Πe

2 through halting computations starting from membrane 1, state q1 and
ending in membrane 2, state q6, is the diamond chain code picture language,
{(ur)nr(rd)n(dl)nl(lu)n | n ≥ 1}.

Remark 4. In the applications above the AFS.ZPS, Z ∈ {T, λ}, are all one flow
and rule distinguishable, allowing to build corresponding AFS.EPS with two
membranes.

7 Conclusions and Further Work

In this paper we extended the research on P systems with rewriting using regular
or linear rules and alphabetic flat splicing rules considered in [26] and that on
the generative power of P systems with rewriting, having up to three membranes
and using alphabetic splicing rules [25], by considering tissue P system models
and a variant of Eilenberg P systems which use alphabetic flat splicing rules.

We have investigated the computational power of these models, relation-
ships amongst classes of languages computed by such models with 2 and 3
membranes and have shown that the families of languages computed by one
flow and rule distinguishable AFS.PS and AFS.TPS with m, m ≥ 2, mem-
branes are included in the family of languages computed by AFS.EPS with 2
membranes. Finally, applications computing chain code picture languages with
the models introduced here are presented. We conjecture that the result pro-
vided in Theorem 3, L(AFS.TPS(2)) ⊂ L(AFS.TPS(3)), can be extended to
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L(AFS.TPS(n)) ⊂ L(AFS.TPS(n + 1)), for arbitrary n, n ≥ 2, and Theorem
6 remains true for AFS.EPS with m, m ≥ 2, membranes if they are one flow
and rule distinguishable.

There are several future research directions that may be considered in con-
nection with the results reported in this paper. Arbitrary flat splicing rules [6]
can be considered together with rewriting P systems. Also, as various other
splicing operations have been identified and studied [16, 32, 10, 9, 7], these are
worth studying in the context of P systems (and Eilenberg P systems). The tis-
sue P systems investigated in the paper have the membranes connected through
a ring graph. What happens when the topology of the graph is different, for
instance, nodes with more than two edges connected to them? Insertion and
deletion systems have been studied in [19, 22, 35] and insertion systems investi-
gated in connection with flat splicing systems in [6]. Insertion and deletion have
been further studied as regulated mechanisms [15, 2] and in the context of P
systems research [21, 3]. Connections between such classes of insertion-deletion
systems and alphabetic flat splicing tissue P systems (and Eilenberg P systems)
represent another line of further research. Another interesting research direction
is given by the relationships between various classes of flat splicing P systems
and matrix grammars using flat splicing operations investigated in [11].
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