
Computational completeness of minimal
communication with small number of cells

Erzsébet Csuhaj-Varjú1 and Sergey Verlan2

1 Department of Algorithms and Their Applications,
Faculty of Informatics,

ELTE Eötvös Loránd University, Budapest,
Pázmány Péter sétány 1/c, 1117, Hungary

csuhaj@inf.elte.hu
2 Univ Paris Est Creteil, LACL, F-94010, Creteil, France

verlan@u-pec.fr

Abstract. Generalized communicating P systems (GCPSs for short)
are a common generalization of tissue-like P systems (networks of cells)
where each interaction rule can move only two objects through the cells.
Depending on the source and target cells, nine types of such rules are
distinguished. Previous works have shown that several GCPSs families
where the GCPSs use only one type of rules and have only three cells
are computationally complete computing devices. In this paper, we show
that GCPSs with only parallel-shift rules and only four cells, and GCPSs
with only presence-move rules and only three cells are computationally
complete as well. With these new results, we contribute to the research
goal of providing a sharp lower bound on the number of cells needed
to achieve computational completeness for all families of GCPSs where
GCPSs use only one type of interaction rules.

1 Introduction

Purely communicating P systems are membrane systems that operate with mov-
ing objects across regions or cells and between regions and their common envi-
ronment. These models have been studied for a long time, since many of these
P system versions are computationally complete, i.e. in their case, to achieve
computational completeness, no evolution is needed, only communication. This
computing power is ensured by the fact that, in order to perform a state transi-
tion, the necessary number of copies of a given object type in the environment is
always available for communication between the P system and the environment.
About purely communicating P systems, the reader can find information in the
book [9].

An important variant of purely communicating P systems is the general-
ized communicating P system (or the GCPSs), introduced in [18], with the aim
of providing a common generalization for the purely communicating P system
models.

2 Erzsébet Csuhaj-Varjú and Sergey Verlan

A generalized communicating P system is a P system having a hypergraph
structure (a network of cells) where each node represents a cell and each hyper-
edge corresponds to a rule. Each node contains a multiset of objects that can be
communicated. The system is embedded in an environment, considered as cell
0. The environment may have certain objects in an arbitrary number of copies
and certain objects only in a finite number of copies.

The cells of the generalized communicating P system and the environment
interact by using the communication (interaction) rules. Communication means
a move of objects between the cells according to prescribed interaction (commu-
nication) rules.

The form of an interaction rule is (i, a)(j, b) → (k, a)(l, b) where a and b
are objects and i, j, k, l are labels for the input and the output cells. Such a rule
means that an object a from cell i and an object b from cell j move synchronously
(in one step) to cell k and cell l, respectively. The reader may notice the simple
form of the rules, i.e., they describe the movement of only two objects. In the
case of the communication between the P system and the environment, there is
a restriction, namely, that at every computation step from the environment only
a finite number of objects is allowed to enter any cell.

In each computation step, the rules are applied in a maximally parallel man-
ner, i.e. a multiset of rules with maximal number of elements is performed at
the same time. This derivation variant is common in P systems theory.

A computation step may change the multisets of objects in the cells, which
form the configuration of the GCPS. These multisets represent the contents of the
cells. A computation in a GCPS is a sequence of configurations directly following
each other, starting from the initial configuration to a halting configuration. The
result of the computation is the number of objects in a distinguished cell, called
the output cell.

The generalized communicating P system has been inspired and can be con-
sidered as generalization of several known models in bio-inspired computing.
For example, such model is the symport/antiport P system [14] that provides
a formalization of the biological process of co-transport in terms of membrane
systems. A simplification of the symport/antiport P system, called the P system
with conditional-uniport rules was introduced in [17] to model communication
through ion channels. The GNPS model, defined in [18], aimed at unifying the
definition of the previous two concepts. In this model more complex rules are
defined, which correspond to hypergraph communication. This concept inspired
the formal framework for P systems [11] which captures many formal features of
P system variants [10,6,19,20]. The concept of the GCPS is also closely related
to Petri nets [4,3].

One of the most challenging problems is the minimum number of cells the
GPCS should have for a given computational power and to what extent its
interaction rules can be simplified.

It has been shown that generalized communicating P systems with restric-
tions on the form of rules are able to generate any recursively enumerable set
of numbers. In [5], nine possible restrictions on the interaction rules (modulo

Title Suppressed Due to Excessive Length 3

symmetry) were distinguished, called GCPSs with minimal interaction: split,
join, symport2, antiport1, chain, conditional-uniport-in, conditional-uniport-out,
parallel-shift, and presence move.

Furthermore, computational completeness can be obtained with a small num-
ber of cells and a simple underlying hypergraph architecture [7,5,4,9,17,18,12].
For example, GCPSs with only three cells and with only join rules, or only split
rules, or only chain rules are computationally complete [7]. In these cases, any
rule operates with three cells. It is also shown that GCPSs with only conditional-
uniport-in rules, only two cells and their common environment are Turing com-
plete. Furthermore, there exist k > 0 such that the family of recursively enumer-
able sets of integers greater than or equal to k is equal to the family of sets of
numbers generated by GCPSs with only conditional uniport-out rules, only two
cells and their common environment. These two latter results were presented in
[8]. It is also shown that the maximal computational power can also be obtained
if the alphabet of objects of the GPCSs is a singleton [4].

In this paper, we prove that GCPSs with only parallel-shift rules and only
four cells, and GCPSs with only presence-move rules and only three cells are
computationally complete. With these results, we contribute to the research
goal of providing a sharp lower bound on the number of cells needed to achieve
computational completeness for all families of GCPSs where GCPSs use only one
type of interaction rules. The presence-move rule moves the object b from cell j
to cell l, provided that there is an object a in cell i and i, j, l are pairwise different
cells. For pairwise different numbers i, j, k, l, the parallel-shift rule moves objects
a and b from two different cells to another two different cells.

The paper is organized as follows. Section 2 gives the definitions and intro-
duces the model. The two main results are presented in Section 3. Finally, in
Section 4 open problems for the further research are suggested.

2 Definitions

The reader is supposed to be familiar with formal language theory and membrane
computing; for further details consult [16] and [15]. NRE denotes the family of
recursively enumerable sets of natural numbers. Nk denotes the set of natural
numbers greater or equal to k and NkRE denotes the family of recursively
enumerable sets of numbers with numbers greater than or equal to k.

For a finite multiset of symbols X over an alphabet V , supp(X) denotes the
set of symbols in X (the support of X) and |X| denotes the total number of its
symbols (its size). The number of occurrences of symbol x in X is denoted by
|X|x.

Throughout the paper, every finite multiset X is presented as a string w,
where X and w have the same number of occurrences of symbol a, for each
a ∈ V . The empty multiset is denoted by λ.

If no confusion arises, then the set of all finite multisets over V is denoted
by V ∗.

4 Erzsébet Csuhaj-Varjú and Sergey Verlan

A counter automaton is a 5-tuple M = (Q,R, q0, qf , P), where Q is a finite
non-empty set, called the set of states, R = {A1, . . . , Ak}, k ≥ 1, is a set of
counters, called also registers, q0 ∈ Q is the initial state, and qf ∈ Q is the
final state. P is a set of instructions of the following forms: (p,A+, q, s), where
p, q, s ∈ Q, p ̸= qf , A ∈ R, called an increment instruction, or (p,A−, q), where
p, q ∈ Q, p ̸= qf , A ∈ R, called a decrement instruction, or (p,A0, q), where
p, q ∈ Q, p ̸= qf , A ∈ R, called a zero-check instruction. Without loosing the
generality, it can be supposed that for every p ∈ Q, (p ̸= qf), there is exactly
one instruction of the form either (p,A+, q, s) or (p,A−, q), or (p,A0, q).

A configuration of a counter automaton M , defined above, is a (k + 1)-
tuple (q,m1, . . . ,mk), where q ∈ Q and m1, . . . ,mk are non-negative integers;
q is the current state of M and m1, . . . ,mk are the current numbers stored in
the registers (the current contents of the registers or the value of the registers)
A1, . . . Ak, respectively.

A transition of the counter automaton consists in executing an instruction.
An increment instruction (p,A+, q, s) ∈ P is performed if M is in state p, the
number stored in register A is increased by 1, and after thatM enters either state
q or state s, chosen non-deterministically. A decrement instruction (p,A−, q) ∈ P
is performed if M is in state p, and if the number stored in register A is positive,
then it is decreased by 1, and then M enters state q. If the number stored in
register A is zero, then the computation “blocks” and the corresponding non-
deterministic computation branch is considered to fail. A zero-check instruction
(p,A0, q) ∈ P is performed if M is in state p, and if the number stored in
register A is 0, then the contents of A remains unchanged and M enters state q.
If the contents of register A is not zero, then the computation “blocks” and the
corresponding non-deterministic computation branch is considered to fail.

A counter automaton M = (Q,R, q0, qf , P), with k registers, given as above,
generates a non-negative integer n, if starting from the initial configuration
(q0, 0, 0, . . . , 0) it enters (in a non-deterministic manner) the final configuration
(qf , n, 0, . . . , 0). The set of non-negative integers generated by M is denoted by
N(M).

We remark that counter automata are very closely related to register ma-
chines [13]. In fact, a in register machine the operations of minus and zero check
are combined in a single instruction (p,A−, r, s) that corresponds to instructions
(p,A−, r) and (p,A0, s) of the counter automaton.

Next we recall the basic definitions concerning generalized communicating P
systems [18].

A generalized communicating P system (a GCPS) of degree n, where n ≥ 1,
is an (n+ 4)-tuple Π = (O,E,w1, . . . , wn, R, h) where

1. O is an alphabet, called the set of objects of Π;

2. E ⊆ O; called the set of environmental objects of Π;

3. wi ∈ O∗, 1 ≤ i ≤ n, is the multiset of objects initially associated to cell i;

4. R is a finite set of interaction rules or communication rules of the form
(i, a)(j, b) → (k, a)(l, b), where a, b ∈ O, 0 ≤ i, j, k, l ≤ n, and if i = 0 and

Title Suppressed Due to Excessive Length 5

j = 0, then {a, b} ∩ (O \ E) ̸= ∅; i.e., at least one of a and b is not element
of E.

5. h ∈ {1, . . . , n} is the output cell.

The system consists of n cells, labeled by natural numbers from 1 to n,
which contain multisets of objects over O. Initially, cell i contains multiset wi

(the initial contents of cell i is wi). An additional special cell, labeled by 0 and
called the environment is distinguished. The environment contains objects of E
in an infinite number of copies.

The cells interact by means of the rules (i, a)(j, b) → (k, a)(l, b), with a, b ∈ O
and 0 ≤ i, j, k, l ≤ n. As the result of the application of the rule, object a moves
from cell i to cell k and b moves from cell j to cell l. If two objects from the
environment move to some other cell or cells, then at least one of them must not
appear in the environment in an infinite number of copies.

The structure of the system is a hypergraph implicitly deduced from the set
of rules. Indeed, a rule (i, a)(j, b) → (k, a)(l, b) induces an hyperedge {i, k, j, l}.
A generalization of GNPS using more cells in a rule and also performing the
rewriting lead to the notion of the formal framework for P systems [11].

A configuration of a GCPS Π, as above, is an (n + 1)-tuple (z0, z1, . . . , zn)
with z0 ∈ (O \ E)∗ and zi ∈ O∗, for all 1 ≤ i ≤ n; z0 is the multiset of objects
present in the environment in a finite number of copies, whereas, for all 1 ≤ i ≤ n,
zi is the multiset of objects present inside cell i. The initial configuration of Π
is the (n+ 1)-tuple (λ,w1, . . . , wn).

Given a multiset of rules R over R and a configuration u = (z0, z1, . . . , zn)
of Π, we say that R is applicable to u if all its elements can be applied simulta-
neously to the objects of multisets z0, z1, . . . , zn such that every object is used
by at most one rule. If there is no multiset R′ where R is a proper submultiset
of R′ can be applied to configuration u = (z0, z1, . . . , zn) of Π, then a new con-
figuration u′ = (z′0, z

′
1, . . . , z

′
n) is obtained by applying R in a non-deterministic

maximally parallel manner.
One such application of a multiset of rules satisfying the conditions listed

above represents a transition in Π from configuration u to configuration u′. A
transition sequence is said to be a successful generation by Π if it starts with
the initial configuration of Π and ends with a halting configuration, i.e., with a
configuration where no further transition step can be performed.

In this paper, we deviate from the standard notation of the configuration to
make it easier to follow the movement between cells. Instead of u = (z0, z1, . . . ,
zn), we will use the notation u = (0, z0)(1, z1) · · · (n, zn). The numbers 1, . . . , n
refer to the label of the cell, and zi refers to the contents of cell i.

Π generates a non-negative integer n if there is a successful generation by
Π such that n is the size of the multiset of objects present inside the output
cell in the halting configuration. The set of non-negative integers generated by a
GCPS Π in this way is denoted by N(Π). If instead of counting all the objects
present inside the output cell in the halting configuration at the end of successful
generations of Π we consider only the number of objects from a nonempty subset
O′ ⊆ O, then we denote the corresponding set of numbers generated by NO′(Π).

6 Erzsébet Csuhaj-Varjú and Sergey Verlan

In the following we recall the notions of the possible restrictions on the in-
teraction rules (modulo symmetry). We distinguish the following cases, called
GCPSs with minimal interaction:

1. i = j = k ̸= l: the conditional-uniport-out rule (the uout rule) sends b to
cell l provided that a and b are in cell i [17];

2. i = k = l ̸= j: the conditional-uniport-in rule (the uin rule) brings b to cell
i provided that a is in that cell [17];

3. i = j, k = l, i ̸= k : the symport2 rule (the sym2 rule) corresponds to the
minimal symport rule [15], i.e., a and b move together from cell i to k;

4. i = l, j = k, i ̸= j : the antiport1 rule (the anti1 rule) corresponds to the
minimal antiport rule [15], i.e., a and b are exchanged in cells i and k;

5. i = k and i ̸= j, i ̸= l, j ̸= l: the presence-move rule (the presence rule)
moves the object b from cell j to l, provided that there is an object a in cell
i and i, j, l are pairwise different cells;

6. i = j, i ̸= k, i ̸= l, k ̸= l : the split rule sends a and b from cell i to cells k
and l, respectively;

7. k = l, i ̸= j, k ̸= i, k ̸= j : the join rule brings a and b together to cell k;
8. l = i, i ̸= j, i ̸= k and j ̸= k : the chain rule moves a from cell i to cell k while

b is moved from cell j to cell i, i.e., to the cell where a located previously;
9. i, j, k, l are pairwise different numbers: the parallel-shift rule (the shift rule)

moves a and b from two different cells to another two different cells.

NOtPn(x) denotes the set of numbers generated by generalized communi-
cating P systems with minimal interaction of degree n, n ≥ 1, and with rules
of type x, where x ∈ {uout, uin, sym2, anti1, presence, split, join, chain, shift}.
NOtP∗(x) is the notation for

⋃∞
n=1 NOtPn(x).

3 Results

We shall start with the case of GCPSs having only parallel shift rules. We show
that every recursively enumerable set of non-negative integers can be computed
by a GCPSs with only parallel shift rules and four cells. Notice that to apply
the parallel shift rule four cells are involved.

Theorem 1. NOtP4(pshift) ⊇ NRE.

Proof. To prove that any recursively enumerable set of non-negative integers can
be generated by a GCPS with four cells and with only parallel shift rules, we
show that to any register machine M we can construct a simulating GCPS Π
with four cells and only parallel shift rules.

Let M = (Q,R, q0, qf , P) be a register machine, with R = {A1, . . . , Ak},
k ≥ 1, defined as in Section 2. We give a GCPS Π = (O,E,w1, w2, w3, w4, R, 1)
with only parallel shift rules such that any halting transition sequence of Π
corresponds to a halting transition sequence of M . Furthermore, the numbers
generated by these two transition sequences are the same.

Title Suppressed Due to Excessive Length 7

Let Π have the following components. (Since it is clear from the context, we
use the symbol Aj also in case of Π).

O = Q ∪ {Aj | 1 ≤ j ≤ k} ∪ {p1 | p ∈ Q} ∪ {p2 | (p,Aj−, q, s) ∈ P}.
E = {Aj | 1 ≤ j ≤ k}.
We note that integer n, n ≥ 0 stored in register Aj in M , 1 ≤ j ≤ k, is

represented by An
j in Π.

We give the initial configuration ofΠ. Let w1 = {q0}, w2 = {p2 | (p,A−, q, s) ∈
P}, w3 = ∅ and let w4 = Q \ {q0} ∪ {p1 | p ∈ Q}.

We give the sets of rules of Π which simulate the instructions of M and then
provide the necessary details of the proof.

We start with simulating the instructions for increment in M .
For any instruction (p,Ai+, q, s) of M , where Ai ∈ R, the set of rules in P

consists of the following rules.

p.1.1 : (1, p)(4, p1) → (3, p)(2, p1)

p.2.1 : (2, p1)(0, Ai) → (3, p1)(1, Ai)

p.3.1 : (3, p1)(4, q) → (1, p1)(2, q) p.3.2 : (3, p1)(4, s) → (1, p1)(2, s)

p.4.1 : (1, p1)(3, p) → (0, p1)(4, p)

p.5.1 : (0, p1)(2, q) → (4, p1)(1, q) p.5.2 : (0, p1)(2, s) → (4, p1)(1, s)

At the beginning, cell 1 contains p and as many occurrences of symbols Aj ,
1 ≤ j ≤ k, as represent the number stored in the jth register of M . All other
elements of Q are in cell 4, and auxiliary, assistant symbols p1 and p2, for every
p ∈ Q are in cell 4 and cell 2, respectively. At the end of the simulation of the
instruction, one symbol Ai moves from the environment to cell 1, p to cell 4, and
either q ∈ Q or s ∈ Qmoves to cell 1. Furthermore, the other symbols are in their
original location. The procedure is governed by the symbol p1, where its route
guarantees the execution of the rules in the correct order. At the beginning of the
simulation, the GCPS is in configuration (0, [A+]), (1, pu)(2, w1), (3, ∅), (4, w2),
where u is a multiset of elements of {A1, . . . , Ak}, w2 = {p2 | (p,A−, q, s) ∈ P},
w4 = Q \ {q0} ∪ {p1 | p ∈ Q}, and [A+] denotes that there are arbitrarily many
copies of every element of {A1, . . . , Ak} in the environment.

Next, we describe the transitions of Π.
We start with the simulation of the increment instruction. First, by applying

rule p.1.1, p1 moves to cell 2 and in the meantime p leaves cell 1 and enters
cell 3. After that, by rule p.2.1, a symbol Ai moves to cell 1 and p1 leaves cell
2 and enters cell 3. This implies that rule p.2.1. cannot be repeated, thus only
one copy of Ai enters the system. In the following computation steps, either q
or s in Q should move to cell 1, and p1 should return to cell 4. Let us consider
the case of q, the case of s is analogous. Rules p.3.1, p.4.1, and p.5.1, performed
after each other, lead to the required configuration, namely, cell 1 contains q, the
number of Ais increased by one, p is in cell 4, and cell 2 contains w1 and cell 3 is
empty. Notice that the execution of the rule sequence p.3.1, p.4.1, p.5.1 cannot
interfere the execution of the rule sequence p.3.2, p.4.1, and p.5.2, which belongs

8 Erzsébet Csuhaj-Varjú and Sergey Verlan

to s ∈ Q. It can be seen that the above sequence of computation steps simulates
the execution of instruction (p,Ai+, q, s) of M and only that, no interference
with the simulation of other instructions is possible.

We refer to the appendix (picture pshift_plus) for the graphical represen-
tation of the simulation of the increment instruction.

In the following we consider the simulation of the decrement instructions of
M .

For any instruction (p,Ai−, q, s) of M , where Ai ∈ R the set of rules in P
consists of the following rules.

p.1.1 : (1, p)(4, p1) → (3, p)(2, p1)

p.2.1 : (3, p)(2, p2) → (4, p)(1, p2) p.2.2 : (2, p1)(1, Ai) → (3, p1)(0, Ai)

p.3.1 : (1, p2)(3, p1) → (0, p2)(4, p1) p.3.2 : (1, p2)(2, p1) → (3, p2)(4, p1)

p.4.1 : (0, p2)(4, q) → (2, p2)(1, q) p.4.2 : (3, p2)(4, s) → (2, p2)(1, s)

As in the case of the increment instruction, the simulation starts with the
following configuration of Π: (0, [A+]), (1, pu)(2, w1), (3, ∅), (4, w2), where u is
a multiset of elements of {A1, . . . , Ak}, w2 = {p2 | (p,Ai−, q, s) ∈ P},w4 =
Q \ {q0} ∪ {p1 | p ∈ Q}, [A+] denotes that there are arbitrarily many copies
of the elements of {A1, . . . , Ak} in the environment. Cell 1 contains as many
occurrences of Aj , 1 ≤ j ≤ k, as represent the number stored in the jth register
of M . All other elements of Q are in cell 4, and auxiliary, assistant symbols p1
and p2, for every p ∈ Q are in cell 4 and cell 2, respectively. At the end of the
simulation of the instruction, if cell 1 contains at least one copy of Ai, then the
number of symbols Ai is decremented by 1 (one Ai moves to the environment
from cell 1), p and q swap their locations. If cell 1 has no copy of Ai, then p and
s swap their cells and the other symbols are in their original location.

The simulation starts with the application of rule p.1.1. After that p moves
to cell 3 and p1 moves to cell 2. Next, by applying rule p.2.1, p continues its way
to cell 4, its target cell, and p2 moves from cell 2 to cell 1. The following step can
be either the application of rule p.2.2 or the rule p.3.2. In the first case, a copy
of Ai leaves cell 1 and moves to the environment and p1 moves to cell 3. In the
other case, no symbol Ai is in cell 1, thus p.2.2 cannot be applied, furthermore
p.3.1 cannot be applied, too. This rule application is followed by rule p.3.1, which
moves p1 to cell 4 and p2 to the environment. In the absence of Ai in cell 1, the
rule p.3.2 is applied which moves p1 to cell 4 (its original cell) and p2 to cell 3.
The procedure is closed by the application of the rule p.4.1 (if cell 1 had a copy
of Ai) or the rule p.4.2 (if no Ai was present in cell 1. In the first case q and in
the second case s moves to cell 1, and in both cases p2 returns to cell 4. It can be
seen that the above procedure simulates the decrement instruction (p,Ai−, q, s)
of M and only that, no interference with the simulation of other instructions is
possible.

Title Suppressed Due to Excessive Length 9

We refer to the Appendix (pictures pshift_zm_z and pshift_zm_nz) for the
graphical representation of the simulation of the decrement instruction (for the
two cases — when the register is zero and non-zero).

Π simulates the halting of the register machine as follows. Π is defined in
such way that for qf ∈ Q, where qf corresponds to the final state of M , there
is no increment and no decrement instruction of M that can be simulated by Π
starting with qf in the cell 1.

Hence we proved that any halting transition sequence of Π corresponds to
a halting transition sequence of M . Obviously, the numbers generated by these
two transition sequences are the same. This implies that the statement of the
theorem holds.

Since every set of numbers generated by a GCPS is a recursively enumerable
set of non-negative integers, therefore the reverse inclusion holds. This implies
the following corollary.

Corollary 1. NOtP4(pshift) = NRE.

Now, we consider the case of the presence-move (pm) rule.

Theorem 2. NOtP3(pm) ⊇ NRE.

Proof. We show that any recursively enumerable set of non-negative integers can
be generated by a GCPS with three cells and with only presence-move rules.

Let M = (Q,R, q0, qf , P) be a counter automaton, with R = {A1, . . . , Ak},
k ≥ 1, defined as in Section 2. We give a GCPS Π = (O,E,w1, w2, w3, R, 1) with
only presence-move rules such that any halting transition sequence of Π corre-
sponds to a halting transition sequence of M . Furthermore, these two transition
sequences generate the same numbers.

Let Π have the following components. (Since it is clear from the context, we
use the symbol Aj also in case of Π). Let

O = Q ∪ {Aj | 1 ≤ j ≤ k} ∪ {p1, p2 | p ∈ Q} ∪ {p3 | (p,Aj+, q, s) ∈ P}∪
{L1, L2, Z},

E = {Aj | 1 ≤ j ≤ k} ∪ {L1}.
We note that number n, n ≥ 0 stored in register Aj in M , 1 ≤ j ≤ k, is

represented by An
j in Π.

We give the initial configuration. Let w1 = q0, w2 = {Z,L1} and w3 =
Q \ {q0} ∪ {p1, p2, p3 | p ∈ Q} ∪ {Z,L2}.

We give the sets of rules of Π which simulate the instructions of M and only
that and provide the necessary details of the proof.

We start with simulating the instructions for increment in M .

For any instruction (p,Ai+, q, s) of M , the set of rules in P consists of the
following rules.

10 Erzsébet Csuhaj-Varjú and Sergey Verlan

p.1.1 : (1, p)(3, p1) → (1, p)(2, p1)

p.2.1 : (1, p)(3, p2) → (1, p)(0, p2) p.2.2 : (2, p1)(0, Ai) → (2, p1)(3, Ai)

p.3.1 : (0, p2)(3, p3) → (0, p2)(2, p3) p.3.2 : (3, Ai)(2, p1) → (3, Ai)(0, p1)

p.4.1 : (0, p2)(1, p) → (0, p2)(3, p) p.4.2 : (2, p3)(3, Ai) → (2, p3)(1, Ai)

p.4.3 : (0, p1)(3, q) → (0, p1)(2, q) p.4.4 : (0, p1)(3, s) → (0, p1)(2, s)

p.5.1 : (2, p3)(0, p1) → (2, p3)(3, p1) p.5.2 : (0, p2)(2, q) → (0, p2)(1, q)

p.5.3 : (0, p2)(2, s) → (0, p2)(1, s)

p.6.1 : (3, p1)(2, p3) → (3, p1)(0, p3) p.6.2 : (1, q)(0, p2) → (1, q)(3, p2)

p.6.3 : (1, s)(0, p2) → (1, s)(3, p2)

p.7.1 : (1, q)(0, p3) → (1, q)(3, p3) p.7.2 : (1, s)(0, p3) → (1, s)(3, p3)

p.L.1 : (0, p1)(2, L1) → (0, p1)(1, L1) p.L.2 : (0, p2)(2, L1) → (0, p2)(1, L1)

p.L.3 : (0, p3)(2, L1) → (0, p3)(1, L1) p.L.4 : (3, A)(2, L1) → (3, A)(1, L1)

p.L.5 : (2, p1)(0, L1) → (2, p1)(1, L1) p.L.6 : (2, p3)(0, L1) → (2, p3)(1, L1)

L1.1 : (2, Z)(1, L1) → (2, Z)(3, L1) L1.2 : (2, Z)(3, L1) → (2, Z)(1, L1)

The simulation starts in a configuration where cell 1 contains p and a mul-
tiset of symbols Aj , 1 ≤ j ≤ k, which represents the numbers stored in the
corresponding counter of M . In cell 2 there are auxiliary symbols {Z,L1} and
and in cell 3 there are symbols of Q \ {q0}∪ {p1, p2, p3 | p ∈ Q}∪ {Z,L2}, where
each symbol is in one copy. At the end of the simulation of the instruction, cell
1 has one more copy of Ai and a copy of q ∈ Q or s ∈ Q, symbol p in cell 3. All
the other symbols are in the same location (in the same cell) as they were at the
beginning of the computation.

The simulation starts with the rule p.1.1, where in the presence of p in cell
1, p1 moves to cell 2. After that, by applying rules p.2.1 and p.2.2 in parallel, we
obtain a configuration, where p is still in cell 1, p2 is in the environment, p1 is in
cell 2 and a copy of Ai entered cell 3 from the environment. Our aim is to move
Ai to cell 1, p, p1, p2 to cell 3, and q (or s) to cell 1. In the next step, applying
in parallel rules p.3.1 and p.3.2, we make preparations. After then, p3 moves to
cell 2 and p1 moves to the environment. In the meantime, p2 is present in the
environment and Ai is present in cell 3. Recall that each symbol can only be
used in one rule at a time. In the next step, by parallel application of the rules
p.4.1, p.4.2, and p.4.3, in the presence of p2 in the environment, p3 in cell 2, p1
in the environment, p moves to cell 3, Ai moves to cell 1, and q moves to cell 2,
respectively. By the rule p.4.4, s can be taken instead of q. The rest of the work
is to move q or s to cell 1 and return the other symbols to their original location.
Applying the rules p.5.1 and p.5.2 (or p.5.3) in parallel, p1 returns to cell 3 and
q or s, depending on the previous steps, moves to cell 1. These moves take place
in the presence of p3 in cell 2 and p2 in the environment. After that, by parallel
application of rules p.6.1 and p.6.2 or p.6.3 instead of p.6.2, p2 returns to cell 3,
and finally, p3 moves to cell 3 by the rule p.7.1 or p.7.2. It can easily be seen that

Title Suppressed Due to Excessive Length 11

the above procedure simulates the increment instruction of M , we obtain the
required configuration at the end of the transition sequence. It can also be seen
that in the first few steps, rules other than the above rules can also be applied.
To avoid that the transition sequence in Π does not correspond to the transition
sequence in M , we introduced rules that generate infinite transition loops. If
these rules are applied, then an infinite loop arises, and thus the simulation of the
transition fails. These rules guarantee that given symbols are in a given cell in the
right moment or a given symbol stays in a given cell until a right moment. These
rules are p.L.1, . . . p.L.6, and L1.1, L1.2. Rules p.L.1, . . . p.L.4 move symbol L1
to cell 1. After that, rules generate an infinite loop of transitions with symbols L1

and Z. It can easily be seen that these rules simulate the increment instruction
of M and only that.

In the following we present a simulation of the increment instruction. To help
the readability, we indicate only those symbols in the configurations which are
necessary to follow the changes. We note that [A+] denotes that in cell 0, i.e., in
the environment, there are arbitrarily many copies of Ai, for every i, 1 ≤ i ≤ k.
In the case discussed below, symbol p is changed to q, i.e. M enters from state
p to state q. The other possibility, namely, where p changes to s is analogous.

(0, [A+])(1, p)(2, ZL1L2)(3, p1p2p3qs) ⇒p.1.1

(0, [A+])(1, p)(2, p1ZL1L2)(3, p2p3qs) ⇒p.2.1,p.2.2

(0, p2[A
+])(1, p)(2, p1ZL1L2)(3, Aip3qs) ⇒p.3.1,p.3.2

(0, p1p2[A
+])(1, p)(2, p3ZL1L2)(3, Aiqs) ⇒p.4.1,p.4.2,p.4.3

(0, p1p2[A
+])(1, Aip)(2, qp3ZL1L2)(3, ps) ⇒p.5.1,p.5.2

(0, p2[A
+])(1, Aiq)(2, p3ZL1L2)(3, p1ps) ⇒p.6.1,p.6.2

(0, p3[A
+])(1, Aiq)(2, ZL1L2)(3, p1p2ps) ⇒p.7.1,p.7.2

(0, [A+])(1, Aiq)(2, ZL1L2)(3, p1p2p3ps)

A detailed description of the transition tree for the increment instruction, as
a figure, can be found in the Appendix (figure pm_plus), where dashed nodes
correspond to configurations where the loop symbol is activated.

Now, we consider the decrement instruction. For any instruction (p,Ai−, q)
of M , the set of rules in P consists of the following rules.

12 Erzsébet Csuhaj-Varjú and Sergey Verlan

p.1.1 : (1, p)(3, p1) → (1, p)(2, p1)

p.2.1 : (1, p)(3, p2) → (1, p)(0, p2) p.2.2 : (2, p1)(1, Ai) → (2, p1)(0, Ai)

p.3.1 : (0, p2)(2, p1) → (0, p2)(1, p1)

p.4.1 : (1, p1)(0, p2) → (1, p1)(2, p2)

p.5.1 : (2, p2)(1, p1) → (2, p2)(0, p1)

p.6.1 : (0, p1)(3, q) → (0, p1)(1, q) p.6.2 : (2, p2)(1, p) → (2, p2)(3, p)

p.7.1 : (1, q)(0, p1) → (1, q)(3, p1) p.7.2 : (3, p)(2, p2) → (3, p)(0, p2)

p.8.1 : (1, q)(0, p2) → (1, q)(3, p2)

p.L.1 : (0, p1)(2, L1) → (0, p1)(1, L1) p.L.2 : (0, p2)(2, L1) → (0, p2)(1, L1)

p.L.3 : (2, p1)(0, L1) → (2, p1)(1, L1) p.L.4 : (2, p2)(0, L1) → (2, p2)(1, L1)

p.L.5 : (1, p1)(3, L2) → (1, p1)(2, L2)

L2.1 : (3, Z)(2, L2) → (3, Z)(0, L2) L2.2 : (3, Z)(0, L2) → (3, Z)(2, L2)

As in the previous case, the simulation starts with a configuration where cell
1 contains p and a multiset of symbols Aj , 1 ≤ j ≤ k, which represents the
numbers stored in the corresponding counter of M . In cell 2 there are auxiliary
symbols {Z,L1} and and in cell 3 there are symbols of Q\{q0}∪{p1, p2, p3 | p ∈
Q} ∪ {L2, Z}, where each symbol is in one copy. (We note that in the following
we indicate only those symbols in the configurations which are relevant for the
transitions.) At the end of the simulation of the instruction cell 1 will have one
copy of Ai less, if at the beginning and it had at least one Ai in this cell, otherwise
the computation fails. If the computation does not fail, then p from cell 1 and
q from cell 3 swap their locations. All the other symbols are in the same cell as
they were at the beginning of the computation.

The simulation starts with the rule p.1.1, where in the presence of p in cell
1, p1 moves to cell 2. Suppose that cell 1 contains at least one copy of Ai. Then,
by applying rules p.2.1 and p.2.2, we obtain a configuration, where p is still in
cell 1, p2 is in the environment, p1 is in cell 2 and a copy of Ai enters to the
environment from cell 1. If this is not the case, then p.2.2 can be applied, thus
we obtain a configuration where p1 is in cell 1 and p2 is in the environment. In
the next step, p.3.1 is applied and then in the presence of p2 in the environment,
p1 moves to cell 1. Next, in presence of p1 in cell 1, p2 moves to cell 2 from the
environment, and after then, when p2 is in cell 2, p1 leaves to the environment.
In the next step, two rules are applied in parallel, p.6.1 and p.6.2, resulting in
a configuration when q moves to cell 1 from cell 3 and p moves from cell 3 to
cell 1, i.e., they swap their location. In the meantime, p1 remains (is present) in
the environment and p2 in cell 2. What remains to do is, to move p1 and P2 to
their original place, to cell 3. This is done by the assistance of p in cell 3 and
q in cell 1, using rules p.7.1, p.7.2, and p.8.1. The obtained configuration meets
the requirements described above. However, we should point out that if no Ai is
in cell 1, then the computation fails. After performing rules p.1.1 and p.2.1., in
the absence of Ai in cell 1, rule p.L.2 can be applied, and the computation will

Title Suppressed Due to Excessive Length 13

fail. Analogously, if the application of the rules in the computation are not the
ones given above, then some of the rules p.L.1, . . . , p.L.6 and L2.1, L1.2 can be/
are applied, which arises an infinite loop, thus the computation fails.

The reader can see that the given rules simulate the decrement instruction
of M and only that.

As in the case of the simulation of the increment instruction of M , we present
a simulation of the decrement instruction when Ai is present in cell 1. As in the
previous case, we indicate only those symbols in the configurations which are
necessary to follow the changes. Recall that [A+] denotes that in cell 0, i.e., in
the environment, there are arbitrarily many copies of Aj , for every j, 1 ≤ j ≤ k.
In the case described below, one copy on Ai leaves cell 1 and symbol p changes
to q.

(0, [A+])(1, pAi)(2, ZL1)(3, p1p2p3qL2) ⇒p.1.1

(0, [A+])(1, pAi)(2, p1ZL1)(3, p2p3qL2) ⇒p.2.1,p.2.2

(0, p2[A
+]p2Ai)(1, p)(2, p1ZL1)(3, p3qL2) ⇒p.3.1

(0, p2[A
+]Ai)(1, pp1)(2, p3ZL1)(3, p3qL2) ⇒p.4.1

(0, [A+]Ai)(1, pp1)(2, p2p3ZL1)(3, p3qL2) ⇒p.5.1

(0, [A+]Aip1)(1, p)(2, p2p3ZL1)(3, p3qL2) ⇒p.6.1,p.6.2

(0, [A+]Aip1)(1, q)(2, p2p3ZL1)(3, pp3L2) ⇒p.7.1,p.7.2

(0, [A+]AiP2)(1, q)(2, p3ZL1)(3, pp1p3L2) ⇒p.8.1

(0, [A+]Ai)(1, q)(2, p3ZL1)(3, pp1p2p3L2)

A detailed description of the transition tree corresponding to the decrement
instruction, as figures, can be found in the Appendix (figures pm_minus_z and
pm_minus_nz corresponding to the cases when the register is zero, so the com-
putation fails, or non-zero), where dashed nodes correspond to configurations
where the loop symbol is activated.

Finally, we deal with the zero-check instruction. Recall that a zero-check
instruction (p,Ai0, q) ∈ P is performed if M is in state p, and if the number
stored in register Ai is 0, then Ais will store zero in the counter and M enters
state q. If the contents of counter Ai is not zero, then the computation blocks
and the corresponding branch of the computation fails.

For any instruction (p,Ai0, q) of M , the set of rules in P consists of the
following rules.

14 Erzsébet Csuhaj-Varjú and Sergey Verlan

p.1.1 : (1, p)(3, p1) → (1, p)(2, p1)

p.2.1 : (1, p)(3, p2) → (1, p)(0, p2) p.2.2 : (1, Ai)(2, p1) → (1, Ai)(0, p1)

p.3.1 : (0, p2)(2, p1) → (0, p2)(1, p1)

p.4.1 : (1, p1)(0, p2) → (1, p1)(2, p2)

p.5.1 : (2, p2)(1, p) → (2, p2)(3, p) p.5.2 : (1, p1)(3, q) → (1, p1)(2, q)

p.6.1 : (2, q)(1, p1) → (2, q)(3, p1) p.6.2 : (3, p)(2, p2) → (3, p)(0, p2)

p.7.1 : (0, p2)(2, q) → (0, p2)(1, q)

p.8.1 : (1, q)(0, p2) → (1, q)(3, p2)

p.L.1 : (0, p1)(2, L1) → (0, p1)(1, L1) p.L.2 : (0, p2)(2, L1) → (0, p2)(1, L1)

p.L.3 : (2, p2)(0, L1) → (2, p2)(1, L1) p.L.4 : (1, p1)(3, L2) → (1, p1)(2, L2)

The simulation starts in a configuration where cell 1 contains p and a multiset
of symbols Aj , 1 ≤ j ≤ k, which represents the numbers stored in the ith counter
of M . In cell 2 there are auxiliary (loop-generating) symbols {Z,L1, L2} and in
cell 3 there are symbols of Q \ {q0} ∪ {p1, p2, p3 | p ∈ Q} ∪ {Z}, where each
symbol is present in one copy. We note that the execution of the instruction in
M and thus the simulation of the execution of this instruction is successful if
and only if M stores zero in the ith counter and thus there is no occurrence
of Ai in cell 1. At the end of the simulation of the instruction, cell 1 has no
occurrence of Ai, and either p and q or p and s swap their location, depending
on whether or not the execution of he instruction was successful. All the other
symbols are in the same location (in the same cell) as they were at the beginning
of the computation.

We describe the simulation of a successful execution of the instruction. It
starts with the application of rule p.1.1, resulting in a new configuration where
p1 moves from cell 3 to cell 2. In the next step there are two options: If no Ai is
in cell 1, then rule p.2.1 is applied and p2 from cell 3 moves to the environment.
If at least one Ai is present in cell 1, then rules p.2.1 and p.2.2 are applied in
parallel and after that both p1 and p2 move to the environment. In this case,
in the next step rule L.1 is applied that leads to a loop generation. If there was
no occurrence of Ai in cell 1, then, the computation continues with rule p.3.1,
where in the presence of p2 in the environment, p1 moves to cell 1, and in the
next step, by rule p.4.1 symbol p2 returns from the environment to cell 2. This
can only be done if p1 is in cell 1. Now, there are two tasks to complete this
phase of the computation: to swap the locations of p and q and to send back
symbols p1 and p2 to their original locations. Rules p.5.1 and p.5.2 applied in
parallel, result in a configuration where p1 is in cell 1, p2 is in cell 2, p is in cell
3, and q is in cell 2. After that, by rule p.6.1, symbol p1 returns to cell 3. The
next three rules, within the next two steps, p.6.2, p.7.1 and p.7.2 move q to cell
1 and rule p.8.1 moves p2 to cell 3. Thus, we obtain the required configuration
and the simulation in correct. Let us examine the roles of rules L1, L.2, L.3 and

Title Suppressed Due to Excessive Length 15

L.4. Rule L.1 can be applied after p.2.2, when an occurrence of Ai is moved to
the environment. These rules move L1 to cell 1 that will lead to an infinite loop.
Similarly, if rule L.2 is applied whenever p2 is in the environment, L1 moves
to cell 1 and the simulation fails. Rules L.3 and L.4 work analogously: in the
presence of p2 in cell 2 and in the presence of p1 in cell 1, they move L1 to cell 1
and L2 to cell 2, which actions imply an infinite loop. The reader may see that
the rule sets above were constructed in such a way that they result in a correct
derivation if and only if they are used in the above described order.

As in the case of the simulation of the increment and the decrement instruc-
tions of M , we present a simulation of the zero-check instruction when no Ai

is present in cell 1. As in the previous cases, we indicate only those symbols in
the configurations which are necessary to follow the changes. Recall that [A+]
denotes that in cell 0, i.e., in the environment, there are arbitrarily many copies
of Aj , for every j, 1 ≤ j ≤ k. In the case described below, one copy on Ai leaves
cell 1 and symbol p changes to q.

(0, [A+])(1, p)(2, ZL1)(3, p1p2p3qL2) ⇒p.1.1

(0, [A+])(1, p)(2, p1ZL1)(3, p2p3qL2) ⇒p.2.1

(0, [A+]p2)(1, p)(2, p1ZL1)(3, p3qL2) ⇒p.3.1

(0, [A+]p2)(1, pp1)(2, ZL1)(3, p3qL2) ⇒p.4.1

(0, [A+])(1, pp1)(2, p2ZL1)(3, p3qL2) ⇒p.5.1,p.5.2

(0, [A+])(1, p1)(2, qp2ZL1)(3, pp3L2) ⇒p.6.1,p.6.2

(0, [A+]p2)(1,)(2, qZL1)(3, pp1p3L2) ⇒p.7.1

(0, [A+]p2)(1, q)(2, ZL1)(3, pp1p3L2) ⇒p.8.1

(0, [A+])(1, q)(2, ZL1)(3, pp1p2p3L2)

A detailed description of the transition tree for the zero instruction, as fig-
ures, can be found in the Appendix (figures pm_zero_z and pm_zero_nz corre-
sponding to the cases when the register is zero, or non-zero, so the computation
fails), where dashed nodes correspond to configurations where the loop symbol
is activated.

Notice that those rules which involve only auxiliary symbols Z, L1,L2, can
be used in simulating any instruction, thus belong to the whole rule set of Π.

The above rule sets are defined so that after a successful simulation of one
instruction of the counter M , another instruction can be simulated immediately
or Π halts.

Recall that the computation ends inM in the final configuration (qf , n, 0, . . . , 0)
where qf is the final state of M . This corresponds to the case when Π has qf
in cell 1 together with as many occurrences of elements of A1 as the number
stored in the first counter of M . The other auxiliary symbols are in the cells
they were located at the beginning. This implies that N(M) = N(Π), and thus
the statement holds.

16 Erzsébet Csuhaj-Varjú and Sergey Verlan

As in the previous case, we obtain the following corollary.

Corollary 2. NOtP3(pm) = NRE.

4 Conclusion

In this paper we considered GCPSs using either only parallel-shift or only presence-
move rules. We proved that GCPSs with only parallel-shift rules and only four
cells, and GCPSs with only presence-move rules and only three cells are com-
putationally complete as. With these results, we contribute to the research goal
of providing a very small lower bound on the number of cells needed to achieve
computational completeness for all families of GCPSs where GCPSs use only
one type of interaction rules.

In a previous paper [8], we presented a conjecture based on the following
observation. For GCPSs using only one of the nine types of interaction rules,
it holds that if the rule applies to k cells (k = 2, or k =3, or k = 4), then the
minimum number of cells required for its maximal computational power is k
(without the environment as a cell). Such results are obtained for conditional-
uniport-in, split, join, chain rules [7] and now for parallel-shift and presence move
rules. A similar result holds for symport2 rules [2,1]. We guess that fewer than
this number of cells is not sufficient to achieve computational completeness. This
interesting problem is waiting for future research.

We also note that the pictures in the Appendix were generated by a specially
designed simulator that computed all possible rule applications for each step.
The simulator was implemented in Java and the pictures were generated using
the Graphviz library. The simulator is available upon request.

References

1. Artiom Alhazov, Maurice Margenstern, Vladimir Rogozhin, Yurii Rogozhin, and
Sergey Verlan. Communicative P systems with minimal cooperation. In Giancarlo
Mauri, Gheorghe Păun, Mario J. Pérez-Jiménez, Grzegorz Rozenberg, and Arto
Salomaa, editors, International Workshop WMC5, Milano, Italy, 2004, LNCS,
Springer, 2005, volume 3365 of Lecture Notes in Computer Science, pages 161–
177. Springer, 2005.

2. Artiom Alhazov, Yurii Rogozhin, and Sergey Verlan. Minimal cooperation in sym-
port/antiport tissue P systems. International Journal of Foundations of Computer
Science, 18(1):163–180, 2007.

3. Francesco Bernardini, Marian Gheorghe, Maurice Margenstern, and Sergey Verlan.
Producer/consumer in membrane systems and petri nets. In S. Barry Cooper,
Benedikt Löwe, and Andrea Sorbi, editors, Computation and Logic in the Real
World, Third Conference on Computability in Europe, CiE 2007, Siena, Italy, June
18-23, 2007, Proceedings, volume 4497 of Lecture Notes in Computer Science, pages
43–52. Springer, 2007.

4. Erzsébet Csuhaj-Varjú, György Vaszil, and Sergey Verlan. On generalized commu-
nicating P systems with one symbol. In Marian Gheorghe, Thomas Hinze, Gheo-
rghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors, Membrane Computing

Title Suppressed Due to Excessive Length 17

- 11th International Conference, CMC 2010, Jena, Germany, August 24-27, 2010.
Revised Selected Papers, volume 6501 of Lecture Notes in Computer Science, pages
160–174. Springer, 2010.

5. Erzsébet Csuhaj-Varjú and Sergey Verlan. On generalized communicating P sys-
tems with minimal interaction rules. Theoretical Computer Science, 412(1-2):124–
135, 2011.

6. Erzsébet Csuhaj-Varjú and Sergey Verlan. Bi-simulation between P colonies and
P systems with multi-stable catalysts. In Marian Gheorghe, Grzegorz Rozenberg,
Arto Salomaa, and Claudio Zandron, editors, Membrane Computing - 18th In-
ternational Conference, CMC 2017, Bradford, UK, July 25-28, 2017, Revised Se-
lected Papers, volume 10725 of Lecture Notes in Computer Science, pages 105–117.
Springer, 2017.

7. Erzsébet Csuhaj-Varjú and Sergey Verlan. Computationally complete generalized
communicating P systems with three cells. In Marian Gheorghe, Grzegorz Rozen-
berg, Arto Salomaa, and Claudio Zandron, editors, Membrane Computing - 18th
International Conference, CMC 2017, Bradford, UK, July 25-28, 2017, Revised Se-
lected Papers, volume 10725 of Lecture Notes in Computer Science, pages 118–128.
Springer, 2017.

8. Erzsébet Csuhaj-Varjú and Sergey Verlan. Conditional uniport P systems with two
cells. In Lucie Ciencialová, editor, Proceedings of the Twenty-fourth International
Conference on Membrane Computing (CMC2023), 28-31 August, 2023, Opava,
Czech Republic, pages 97–126. Silesian Unversity at Opava, 2023.

9. Rudolf Freund, Artiom Alhazov, Yurii Rogozhin, and Sergey Verlan. Communica-
tion P systems. In Gh. Păun, G. Rozenberg, and A. Salomaa, editors, The Oxford
Handbook of Membrane Computing, pages 118–143. Oxford University Press, 2009.

10. Rudolf Freund, Ignacio Pérez-Hurtado, Agust́ın Riscos-Núñez, and Sergey Ver-
lan. A formalization of membrane systems with dynamically evolving structures.
International Journal of Computer Mathematics, 90(4):801–815, 2013.

11. Rudolf Freund and Sergey Verlan. A formal framework for static (tissue) P systems.
In George Eleftherakis, Petros Kefalas, Gheorghe Păun, Grzegorz Rozenberg, and
Arto Salomaa, editors, Membrane Computing, 8th International Workshop, WMC
2007, Thessaloniki, Greece, June 25-28, 2007 Revised Selected and Invited Papers,
volume 4860 of Lecture Notes in Computer Science, pages 271–284. Springer, 2007.

12. Shankara Narayanan Krishna, Marian Gheorghe, Florentin Ipate, Erzsébet Csuhaj-
Varjú, and Rodica Ceterchi. Further results on generalised communicating P sys-
tems. Theor. Comput. Sci., 701:146–160, 2017.

13. Marvin Minsky. Finite and Infinite Machines. Prentice Hall, Englewood Cliffs,
New Jersey, 1967.

14. Andrei Paun and Gheorghe Păun. The power of communication: P systems with
symport/antiport. New Gener. Comput., 20(3):295–306, 2002.

15. Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors. The Oxford
Handbook of Membrane Computing. Oxford University Press, Oxford, England,
2010.

16. Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages.
Springer-Verlag, Berlin, 1997.

17. Sergey Verlan, Francesco Bernardini, Marian Gheorghe, and Maurice Margenstern.
Computational completeness of tissue P systems with conditional uniport. In
Hendrik Jan Hoogeboom, Gheorghe Paun, Grzegorz Rozenberg, and Arto Salomaa,
editors, Membrane Computing, 7th International Workshop, WMC 2006, Leiden,
The Netherlands, July 17-21, 2006, Revised, Selected, and Invited Papers, volume
4361 of Lecture Notes in Computer Science, pages 521–535. Springer, 2006.

18 Erzsébet Csuhaj-Varjú and Sergey Verlan

18. Sergey Verlan, Francesco Bernardini, Marian Gheorghe, and Maurice Margen-
stern. Generalized communicating P systems. Theoretical Computer Science,
404(1-2):170–184, 2008.

19. Sergey Verlan, Rudolf Freund, Artiom Alhazov, Sergiu Ivanov, and Linqiang Pan.
A formal framework for spiking neural P systems. Journal of Membrane Comput-
ing, 2:355–368, 2020.

20. Sergey Verlan and Gexiang Zhang. A tutorial on the formal framework for spiking
neural P systems. Natural Computing, 22(1):181–194, 2023.

Title Suppressed Due to Excessive Length 19

A Appendix

The appendix contains pictures corresponding to configuration graphs where a
state corresponds to a configuration and there are transitions to all possible
next configurations. These pictures were automatically computed and generated
using a specially designed simulator. Since a single instruction is considered, the
corresponding graphs are trees. The initial configuration is the root of the tree
and it is depicted on the left. There are two types of leaves. The dashed leaves
correspond to configurations where the loop symbol is activated. To simplify
the pictures we do not make the distinction between L1 and L2 loop symbols
and use L for both of them. Obviously, these configurations further perform an
infinite loop, so the corresponding computation fails. The solid leaves correspond
to configurations where the computation is successful.

The pictures are named as follows:

– pshift_plus.pdf — the configuration graph for the increment instruction
of the parallel shift increment instruction construction;

– pshift_zm_nz.pdf — the configuration graph for the decrement instruction
of the parallel shift decrement instruction construction when the register is
non-zero;

– pshift_zm_z.pdf — the configuration graph for the decrement instruction
of the parallel shift decrement instruction construction when the register is
zero;

– pm_plus.pdf — the configuration graph for the increment instruction of the
presence move increment instruction construction;

– pm_minus_z.pdf — the configuration graph for the decrement instruction
of the presence move decrement instruction construction when the register
is zero;

– pm_minus_nz.pdf — the configuration graph for the decrement instruction
of the presence move decrement instruction construction when the register
is non-zero;

– pm_zero_z.pdf — the configuration graph for the zero-check instruction of
the presence move zero-check instruction construction when the register is
zero;

– pm_zero_nz.pdf — the configuration graph for the zero-check instruction
of the presence move zero-check instruction construction when the register
is non-zero.

pshift_plus
(0, [A,4])(1, A p)(2,)(3,)(4, p1 q s) (0, [A,4])(1, A)(2, p1)(3, p)(4, q s) (0, [A,3])(1, [A,2])(2,)(3, p p1)(4, q s)

(0, [A,3])(1, [A,2] p1)(2, q)(3, p)(4, s)

(0, [A,3])(1, [A,2] p)(2, s)(3, p)(4, q)

(0, [A,3] p1)(1, [A,2])(2, q)(3,)(4, p s) (0, [A,3])(1, [A,2] q)(2,)(3,)(4, p p1 s)

pshift_zm_nz
(0, [A,4])(1, [A,2] p)(2, p2)(3,)(4, p1 q s) (0, [A,4])(1, [A,2])(2, p1 p2)(3, p)(4, q s) (0, [A,5])(1, A p2)(2,)(3, p1)(4, p q s) (0, [A,5] p2)(1, A)(2,)(3,)(4, p p1 q s) (0, [A,5])(1, A q)(2, p2)(3,)(4, p p1 s)

pshift_zm_z
(0, [A,4])(1, p)(2, p2)(3,)(4, p1 q s) (0, [A,4])(1,)(2, p1 p2)(3, p)(4, q s) (0, [A,4])(1, p2)(2, p1)(3,)(4, p q s) (0, [A,4])(1,)(2,)(3, p2)(4, p p1 q s) (0, [A,4])(1, s)(2, p2)(3,)(4, p p1 q)

pm_plus

(0, [A,4])(1, A p)(2,)(3, p1 p2 p3 q s)

(0, [A,4])(1, A p)(2, p1)(3, p2 p3 q s)

(0, [A,4] p2)(1, A p)(2,)(3, p1 p3 q s)

(0, [A,4] p2)(1, A L p)(2, p1)(3, p3 q s)

(0, [A,3] p2)(1, A p)(2, p1)(3, A p3 q s)

(0, [A,4] p2)(1, A)(2,)(3, p p1 p3 q s)

(0, [A,4] p2)(1, A p)(2, p1 p3)(3, q s)

(0, [A,4] p2)(1, A)(2, p3)(3, p p1 q s)

(0, [A,4] p2)(1, A L)(2,)(3, p p1 p3 q s)

(0, [A,4] p2)(1, A [L,2])(2, p1 p3)(3, p q s)

(0, [A,4] p2)(1, A [L,3] p)(2, p1 p3)(3, q s)

(0, [A,3] p2)(1, A [L,2] p)(2, p1 p3)(3, A q s)

(0, [A,3] p2)(1, A L)(2, p1 p3)(3, A p q s)

(0, [A,3] p1 p2)(1, A p)(2, p3)(3, A q s)

(0, [A,3] p1 p2)(1, A)(2,)(3, A p p3 q s)

(0, [A,3] p2)(1, A [L,3] p)(2, p1)(3, A p3 q s)

(0, [A,3] p1 p2)(1, A L p)(2,)(3, A p3 q s)

(0, [A,2] p2)(1, A L p)(2, p1 p3)(3, [A,2] q s)

(0, [A,3] p2)(1, A [L,2])(2, p1)(3, A p p3 q s)

(0, [A,2] p2)(1, A [L,2] p)(2, p1)(3, [A,2] p3 q s)

(0, [A,2] p2)(1, A L)(2, p1)(3, [A,2] p p3 q s)

(0, [A,4] p2)(1, A [L,2])(2, p3)(3, p p1 q s)

(0, [A,4] p2 p3)(1, A L)(2,)(3, p p1 q s)

(0, [A,3] p1 p2)(1, A [L,3])(2, p3)(3, A p q s)

(0, [A,3] p1 p2)(1, A [L,4] p)(2, p3)(3, A q s)

(0, [A,3] p1 p2)(1, [A,2])(2, p3 s)(3, p q)

(0, [A,3] p1 p2)(1, A [L,2])(2, p3 s)(3, A p q)

(0, [A,3] p1 p2)(1, A [L,2])(2, p3 q)(3, A p s)

(0, [A,3] p2)(1, A [L,2] p)(2, p3)(3, A p1 q s)

(0, [A,3] p1 p2)(1, [A,2] L)(2, p3)(3, p q s)

(0, [A,3] p1 p2)(1, [A,2])(2, p3 q)(3, p s)

(0, [A,3] p2)(1, A L)(2, p3)(3, A p p1 q s)

(0, [A,3] p1 p2)(1, [A,2] [L,2] p)(2, p3)(3, q s)

(0, [A,3] p1 p2)(1, [A,2] L p)(2, p3 q)(3, s)

(0, [A,3] p1 p2)(1, [A,2] L p)(2, p3 s)(3, q)

(0, [A,3] p1 p2)(1, A [L,3] p)(2, p3 s)(3, A q)

(0, [A,3] p1 p2)(1, A [L,3] p)(2, p3 q)(3, A s)

(0, [A,3] p1 p2)(1, A [L,3])(2,)(3, A p p3 q s)

(0, [A,3] p1 p2)(1, A [L,2])(2, p3)(3, A p q s)

(0, [A,3] p1 p2)(1, A L)(2, p3 s)(3, A p q)

(0, [A,3] p1 p2)(1, A [L,2])(2, s)(3, A p p3 q)

(0, [A,3] p1 p2)(1, A [L,2])(2, q)(3, A p p3 s)

(0, [A,3] p1 p2)(1, A L)(2, p3 q)(3, A p s)

(0, [A,3] p1 p2)(1, [A,2] L s)(2, p3 q)(3, p)

(0, [A,3] p2)(1, [A,2] s)(2, p3)(3, p p1 q)

(0, [A,3] p1 p2)(1, [A,2] [L,3])(2, p3 s)(3, p q)

(0, [A,3] p1 p2)(1, [A,2] [L,2] s)(2, p3)(3, p q)

(0, [A,3] p2)(1, [A,2] L)(2, p3 s)(3, p p1 q)

(0, [A,3] p1 p2)(1, [A,2] [L,2])(2, p3 q s)(3, p)

(0, [A,3] p1 p2)(1, [A,2] [L,3])(2, p3 q)(3, p s)

(0, [A,3] p1 p2)(1, [A,2] [L,2] q)(2, p3)(3, p s)

(0, [A,3] p1 p2)(1, [A,2] L q)(2, p3 s)(3, p)

(0, [A,3] p2)(1, [A,2] L)(2, p3 q)(3, p p1 s)

(0, [A,3] p2)(1, [A,2] q)(2, p3)(3, p p1 s)

(0, [A,3] p2)(1, [A,2] [L,2] s)(2, p3)(3, p p1 q)

(0, [A,3])(1, [A,2] L s)(2, p3)(3, p p1 p2 q)

(0, [A,3] p3)(1, [A,2] s)(2,)(3, p p1 p2 q)

(0, [A,3] p2 p3)(1, [A,2] L s)(2,)(3, p p1 q)

(0, [A,3] p3)(1, [A,2] q)(2,)(3, p p1 p2 s)

(0, [A,3] p2)(1, [A,2] [L,2] q)(2, p3)(3, p p1 s)

(0, [A,3])(1, [A,2] L q)(2, p3)(3, p p1 p2 s)

(0, [A,3] p2 p3)(1, [A,2] L q)(2,)(3, p p1 s)

(0, [A,3])(1, [A,2] q)(2,)(3, p p1 p2 p3 s)

(0, [A,3] p3)(1, [A,2] L q)(2,)(3, p p1 p2 s)

(0, [A,3] p3)(1, [A,2] L s)(2,)(3, p p1 p2 q)

(0, [A,3])(1, [A,2] s)(2,)(3, p p1 p2 p3 q)

pm_minus_z
(0, [A,4])(1, p)(2,)(3, p1 p2 q)

(0, [A,4])(1, p)(2, p1)(3, p2 q)

(0, [A,4] p2)(1, p)(2,)(3, p1 q)

(0, [A,4] p2)(1, L p)(2, p1)(3, q)

pm_minus_nz

(0, [A,4])(1, [A,3] p)(2,)(3, p1 p2 q)

(0, [A,4])(1, [A,3] p)(2, p1)(3, p2 q)

(0, [A,4] p2)(1, [A,3] p)(2,)(3, p1 q) (0, [A,4] p2)(1, [A,3] L p)(2, p1)(3, q)

(0, [A,5] p2)(1, [A,2] p)(2, p1)(3, q)

(0, [A,6] p2)(1, A L p)(2, p1)(3, q)

(0, [A,5] p2)(1, [A,2] p p1)(2,)(3, q)

(0, [A,5] p2)(1, [A,2] [L,2] p)(2, p1)(3, q)

(0, [A,5])(1, [A,2] p p1)(2, p2)(3, q)

(0, [A,5] L p2)(1, [A,2] L p p1)(2,)(3, q)

(0, [A,5] p1)(1, [A,2] p)(2, p2)(3, q)

(0, [A,5] L)(1, [A,2] L p p1)(2, p2)(3, q)

(0, [A,5] L)(1, [A,2] p1)(2, p2)(3, p q)

(0, [A,5] p1)(1, [A,2] L p q)(2, p2)(3,)

(0, [A,5] p1)(1, [A,2] q)(2, p2)(3, p)

(0, [A,5] p1)(1, [A,2] [L,2] p)(2, p2)(3, q)

(0, [A,5] p1)(1, [A,2] L)(2, p2)(3, p q)

(0, [A,5] p2)(1, [A,2] q)(2,)(3, p p1)

(0, [A,5] p1)(1, [A,2] [L,2] q)(2, p2)(3, p)

(0, [A,5])(1, [A,2] L q)(2, p2)(3, p p1)

(0, [A,5] p1 p2)(1, [A,2] L q)(2,)(3, p)

(0, [A,5])(1, [A,2] q)(2,)(3, p p1 p2)

(0, [A,5] p2)(1, [A,2] L q)(2,)(3, p p1)

pm_zero_z

(0, [A,4])(1, p)(2,)(3, p1 p2 q)

(0, [A,4])(1, p)(2, p1)(3, p2 q)

(0, [A,4] p2)(1, p)(2,)(3, p1 q)

(0, [A,4] p2)(1, p)(2, p1)(3, q)

(0, [A,4] p2)(1, L p)(2, p1)(3, q)

(0, [A,4] p2)(1, p p1)(2,)(3, q)

(0, [A,4] p2)(1, L p p1)(2, q)(3,)

(0, [A,4])(1, p p1)(2, p2)(3, q)

(0, [A,4] L p2)(1, L p p1)(2,)(3, q)

(0, [A,4])(1, p1)(2, p2 q)(3, p)

(0, [A,4] L)(1, p1)(2, p2)(3, p q)

(0, [A,4])(1, L p p1)(2, p2 q)(3,)

(0, [A,4] L)(1, L p p1)(2, p2)(3, q)

(0, [A,4] L)(1, L p1)(2, p2 q)(3, p)

(0, [A,4] L p2)(1, p1)(2, q)(3, p)

(0, [A,4])(1, L)(2, p2 q)(3, p p1)

(0, [A,4] p2)(1,)(2, q)(3, p p1)

(0, [A,4] p2)(1, L)(2, q)(3, p p1)

(0, [A,4] p2)(1, q)(2,)(3, p p1)

(0, [A,4])(1, q)(2,)(3, p p1 p2)

(0, [A,4] p2)(1, L q)(2,)(3, p p1)

pm_zero_nz
(0, [A,4])(1, [A,2] p)(2,)(3, p1 p2 q)

(0, [A,4])(1, [A,2] p)(2, p1)(3, p2 q)

(0, [A,4] p2)(1, [A,2] p)(2,)(3, p1 q)

(0, [A,4] p1 p2)(1, [A,2] p)(2,)(3, q)

(0, [A,4] p2)(1, [A,2] L p)(2, p1)(3, q)

(0, [A,4] p1 p2)(1, [A,2] [L,2] p)(2,)(3, q)

	Computational completeness of minimal communication with small number of cells

