
2D P Colony for Vicinity Search Optimisation

Miroslav Langer1[0000−0001−5990−7780], Daniel Valenta2[0009−0005−0781−7755],
and Petr Sosík2[0000−0001−7624−3816]

1 VSB-Technical University of Ostrava, Sokolská tř. 2416, Ostrava, Czech Republic
miroslav.langer@vsb.cz

2 Silesian University in Opava, Bezručovo náměstí 1150/13, Opava, Czech Republic
{daniel.valenta,petr.sosik}@fpf.slu.cz

Abstract. P colony is a formal computational model suitable for mod-
elling behaviour of simple agents acting in a shared environment. We
build on the original concept of formal colonies where both the envi-
ronment and agents were implemented by tools of formal grammars. P
colonies transformed this concept into the framework of membrane sys-
tems, i.e., the environment and agents contain abstract discrete objects
and formal rules acting upon them. Adding a 2D geometrical structure
and evolution of the environment resulted in the model of 2D evolving
P colonies. The model is suitable for simulation of phenomena like stig-
mergy, hence also for implementation of multi-agent optimisation strate-
gies. The motivation for such an implementation lies in a possible future
highly parallel and efficient bio-hardware implementation of P systems.
In this paper we use a 2D P colony to implement an ant colony-inspired
optimisation algorithm. The agents – ants – search the environment for
food representing extrema of the objective function. The search is ori-
ented with the help of pheromone trails left by previous agents. The trails
are subject to a decay and they can eventually vanish. The original for-
mulation of ant algorithms counts on ants immediately collecting found
food in the nest. Here we allow the ants to decide randomly whether to
collect the food or to continue the search for another food in the vicinity
of an already found food source. We demonstrate experimentally that
this behaviour improves the search results.

Keywords: 2D P colony · ant colony simulation · P system · evolving
environment · optimisation · bio-inspired computation

1 Introduction

Nature has been a rich source of inspiration for solving complex problems. Re-
searchers and practitioners in the field of optimisation have turned to natural
phenomena and behaviours to develop powerful algorithms. In this article we
focus on one of the prominent approaches – the swarm intelligence. The most
commonly used methods in this area include:

(i) Ant Colony Optimisation (ACO) [4], inspired by the foraging behaviour of
ants depositing pheromones to communicate and find optimal paths. ACO

2 M. Langer, D. Valenta and P. Sosík

algorithms construct solutions iteratively based on pheromone trails. They
are effective for combinatorial optimisation problems.

(ii) Bee Colony Optimisation (BCO), modelled after the behaviour of honey-
bees exploring food sources (potential solutions) and communicating through
dances. BCO balances exploration and exploitation and are well-suited for
dynamic optimisation problems.

(iii) Firefly Algorithm (FA), inspired by the flashing patterns of fireflies. Fireflies
attract each other based on brightness (fitness). FA works well for continuous
optimisation tasks.

As these methods distribute the search across multiple agents, enabling par-
allel exploration, they are particularly suitable for implementation using dis-
tributed systems such as membrane systems. Membrane (P) systems [17] are
bio-inspired computational models based on the structure of biological cells, us-
ing discrete objects abstracting from the way the chemicals interact and pass
through cell membranes. One of the foundation ideas of membrane computing
was its possible future implementation on a bio-hardware which would be mas-
sively parallel and energy efficient. Although these goals proved too demanding
for current biotechnology, there is slow but visible progress, see, e.g., [1]. One
can believe that with new technologies such as Bio-bricks [19] these possibilities
could become real.

Membrane systems are frequently applied in the field of optimisation algo-
rithms. To name a few examples, Deng et al. [5] used P systems to improve the
efficiency and accuracy of reducer lubrication. Huang et al. [11] proposed a new
variant of tissue P system for optimisation of processes with multiple produc-
tive objectives. The detection of malicious URLs was solved with the help of P
systems in Bo et al. [2]. Another promising model used for solving combinatorial
optimisation problems is the Optimisation Spiking Neural P system [6, 7, 23, 24].

Focusing on membrane implementations of swarm optimisation algorithms,
particle swarm optimisation using monodirectional tissue-like P systems was
presented in Wang et al. [22]. Luo et al (see [15]) proposed an ant colony P system
ΠACPS . ΠACPS providing a computational framework allowing for maximally
parallel implementation of ACO algorithms. Ramachandranpillai and Arock used
spiking neural P systems[18] to implement parallel optimisation technique based
on foraging behaviour of ants. From a more general perspective, Gheorghe et
al. [10] used P systems to model biological systems composed of many dynamic
components.

To resume, this work is motivated by the search of efficient implementation
of computation-intensive optimization algorithms by simple cell-like P colonies,
considering their possible future implementations using highly parallel and effi-
cient bio-hardware. We present a novel implementation of the ACO algorithm
which we have improved with the principle of vicinity search, using 2D P colonies
with evolving environment. P colony [13] is an abstract discrete computing model
based on principles of membrane computing [17] and multi-agent grammar sys-
tems called colonies [12]. It defines a community of agents acting in a shared
environment represented by a multiset of abstract discrete objects. Each agent

2D P Colony for Vicinity Search Optimisation 3

contains its own multiset of objects, and is equipped with a set of programs con-
taining a small number of simple rules acting upon these objects. These programs
enable the agent to perform actions and to communicate via the environment
(the blackboard architecture).

The rest of the paper is organised as follows. Section 2 recalls the definition
and principles of 2D P colony with evolving environment. Section 3 shows how
it can implement the Ant Colony Optimisation algorithm with vicinity search.
Section 4 describes the simulation software used for experiments. Simulation
results are presented in Sec. 5. The final section concludes the paper and discusses
future research avenues.

2 2D P Colony with Evolving Environment

In the context of researching simple membrane systems, a 2-dimensional (2D)
variant of P colony was introduced in [3]. It served as a theoretical model for
observing the behaviour of a community of very simple agents residing in a shared
2-dimensional environment. In [14] we equipped the 2D P colony with a set of
rules allowing the environment to evolve. This extension of the 2D P colony was
designed to simulate a simple zoocoenosis like an ant colony, in a more detailed
manner. The resulting 2D P colony with evolving environment was then used
to simulate the behaviour of an ant colony with vanishing pheromone trail. We
recall the definition here.

Definition 1. A 2D P colony with evolving environment (2Dev P COL) is the
construct

Π = (V, e,Env, A1, . . . , Ad, f), d ≥ 1,

where:

– V is the alphabet of the colony. The elements of the alphabet are called ob-
jects.

– e ∈ V is the basic environmental object of the 2D P colony,
– Env is a triplet (m× n,wE , R), where:

• m× n,m, n ∈ N is the size of the environment.
• wE is the initial contents of the environment, it is a matrix of size m×n

of multisets of objects over V \ {e}.
• R is a set of evolutionary rules. Each rule is of the form S → T , where S

is a multiset of objects over V \ {e}, and where T is a multiset of objects
over V . We say that the multiset S evolves to the multiset T .

– Ai, 1 ≤ i ≤ d, is an agent. The number d is called a degree of the colony.
Each agent is a construct Ai = (Oi, Pi, [o, p]) , 0 ≤ o ≤ m, 0 ≤ p ≤ n, where
• Oi is a multiset over V , it determines the initial state (contents) of the

agent, |Oi| = c, c ∈ N. The number c is called a capacity of the colony.
• Pi = {pi,1, . . . , pi,li} , l ≥ 1, 1 ≤ i ≤ k is a finite set of programs for each

agent, where each program contains exactly h ∈ N rules, h is called a
height. Each rule is in the following form:

4 M. Langer, D. Valenta and P. Sosík

∗ a → b, a, b ∈ V is an evolutionary rule,
∗ a ↔ b, a, b ∈ V is a communication rule,
∗ [aq,r] → s, aq,r ∈ V, −1 ≤ q, r ≤ 1, s ∈ {Left, Right, Up, Down} is a

motion rule. [aq,r] is a 3 × 3 matrix representing the neighbourhood
of an agent.

• [o, p], 1 ≤ o ≤ m, 1 ≤ p ≤ n, is an initial position of agent Ai in the 2D
environment,

– f ∈ V is the final object of the colony.

The environment is a 2D m × n grid, where each cell (place) can hold any
number of agents as well as a multiset of objects from V.

Let O be a state (contents) of an agent at some moment. An evolutionary
rule a → b of the agent is applicable if a ∈ O. When the rule is applied, a is
consumed and replaced with b. A communication rule a ↔ b is applicable if
a ∈ O and b ∈ Ei,j , where Ei,j is the contents of the environmental cell at
coordinates [i, j] where the agent is positioned. When the rule is applied, a and
b are mutually exchanged. Finally, a motion rule [aq,r] → s is applicable when
each aq,r, −1 ≤ q, r ≤ 1, either is or is not contained in Ei+q,j+r – we use a
specific notation described in Section 3 to distinguish between these cases. When
the rule is applied, the agent moves one step in the direction s. A program is
applicable if all of its rules are applicable.

A configuration of the 2Dev P COL is given by the state of the environment
– an m× n matrix of multisets of objects over V − {e}, the states of all agents
– the multisets of objects over V , and the coordinates of the agents. An initial
configuration is given by the definition of the 2Dev P colony.

A computational step of the 2Dev P COL is a transition between two con-
secutive configurations consisting of four sub-steps. In the first sub-step, a set
of applicable programs of the agents is determined, according to the current
configuration of the colony. In the second sub-step, for each agent, one appli-
cable program is chosen, subject to the following restriction: each object in the
environment or in an agent can be used in at most one evolutionary or commu-
nication rule in one computational step. In the third sub-step, chosen programs
are executed, i.e., all their rules are applied in parallel.

The fourth sub-step is the evolution of the environment. Let Ai,j , 0 ≤ i ≤ m,
0 ≤ j ≤ n be the multiset of all the objects forming right sides of communication
rules of the programs chosen in the second sub-step for all the agents at position
[i, j]. Consider multisets S1

i,j , . . . S
oi,j
i,j , oi,j ∈ N such that

⋃oi,j
k=0 S

k
i,j = Ei,j \Ai,j .

Then all possible evolutionary rules Sk
i,j → T ∈ R are applied in parallel, i.e.,

only the objects of the environment not changed by actions of the agents in this
step are modified by evolutionary rules of the environment.

The computation is non-deterministic and maximally parallel. The non-
determinism means that if an agent can choose more programs in the second
substep, or more rules of the environment can be applied in one particular 2D
position in the fourth substep, only one program/rule is non-deterministically
chosen. The maximal parallelism means that if an agent has a program that can
be applied due to the principle described above, then the agent must not remain

2D P Colony for Vicinity Search Optimisation 5

inactive. The computation ends by halting when there is no agent that has an
applicable program.

The result of the computation is the number of copies of the final object
placed in the environment at the end of the computation.

Example: consider an agent with programs (21) and (22) described bellow. Let
the agent contain objects E, e and let the place where the agent is located contain
objects F and V. (a) Let this place contain no other agent. Then both programs
(21) and (22) are applicable, one of them is non-deterministically chosen and
executed. (b) If this place contains two agents of the same type, then one of
them executes (21) and the other executes (22). (c) If there is a third agent of
the same type, it remains inactive as the place contains only two symbols the
agents can act upon.

The model of evolving 2D P colony might resemble cellular automata (CA)
which are often coupled with (ant colony) optimization algorithm; let us cite [20]
as one example of many, where the CA-based ACO algorithm is used to model
DDoS attacks in ad hoc networks. The main difference between CA and evolving
2D P colonies is that the P colony contains agents which can move, change their
states, carry information and communicate (via blackboard), therefore the ants
can be directly implemented by these agents.

3 Vicinity Search with Evolving 2D P Colony

In the original formulation of the ACO, the ants were programmed to randomly
search the environment for food. When an ant found the food, it returned back
to the nest leaving a pheromone trail in the environment. When another ant
found this trail, it could follow it to the location of the food. When heading back
to the nest, it reinforced the existing trail. When the source of the food was
exhausted, the trail subsequently evaporated.

However, it has been previously shown [8, 16] that a combination of ant
optimisation with local search improves the performance of the ACO algorithm.
Inspired by these findings, we designed a novel implementation of local vicinity
search within the framework of 2D P colony with evolving environment. For the
purpose of the vicinity search, we allowed the ant to opt between returning to
the nest with a piece of the found food or searching the environment for another
source of food. Recall that the food represents extremes of a function, so that
the presence of an extreme suggests that another (and deeper) extreme might
lay nearby.

The term “vicinity” has no precise geometrical meaning such as a search
diameter or so. It just indicates that the ant starts a new search at the position
of just found food, and since it moves randomly, the vicinity of this position is
searched with a higher probability than more remote places.

6 M. Langer, D. Valenta and P. Sosík

3.1 2Dev P COL for Vicinity Search

We provide a formal definition of the 2Dev P COL followed by a detailed descrip-
tion of groups of programs controlling different phases of the agents’ behaviour,
so that the reader could check the logic of the implemented ACO algorithm.

Definition 2. 2Dev P COL for Vicinity Search

Πvic = (V, e,Env, A, f)

where:

– V = {e, f, F1, . . . , F5, P0, . . . , P9,
N,E, F,EU , Eu, ED, Ed, EL, El, ER, Er, V, Vr, Vl, Vu, Vd},

– Env is a triplet (m× n,wE , R), where:
• m× n,m, n ∈ N is the size of the environment.
• wE is the initial contents of the environment,
• R = {Pi → Pi−1, for 1 ≤ i ≤ 9} ∪ {P0 → e}.

– A = ({E, e}, P, [m,n]), where P contains programs described in following
sections.

Random Motion The first set of programs defines random motion of the agent
in the environment. The object + represents an arbitrary object from the set V ,
which can occur in the environment, except food F1, . . . , F5 and the pheromones
P0, . . . , P9. Random motion is based on a non-deterministic choice of one of the
following programs.

P : ⟨e → e ; E → ER⟩ (1)

P : ⟨e → e ; E → EL⟩ (2)

P : ⟨e → e ; E → EU ⟩ (3)

P : ⟨e → e ; E → ED⟩ (4)

P :

〈+ + +
+ + +
+ + +

 → Right ; ER → Er

〉
(5)

P :

〈+ + +
+ + +
+ + +

 → Left ; EL → El

〉
(6)

P :

〈+ + +
+ + +
+ + +

 → Down ; ED → Ed

〉
(7)

2D P Colony for Vicinity Search Optimisation 7

P :

〈+ + +
+ + +
+ + +

 → Up ; EU → Eu

〉
(8)

P : ⟨e → e ; Er → ER⟩ (9)

P : ⟨e → e ; Er → E⟩ (10)

P : ⟨e → e ; El → EL⟩ (11)

P : ⟨e → e ; El → E⟩ (12)

P : ⟨e → e ; Ed → ED⟩ (13)

P : ⟨e → e ; Ed → E⟩ (14)

P : ⟨e → e ; Eu → EU ⟩ (15)

P : ⟨e → e ; Eu → E⟩ (16)

The first group of programs 1, 2, 3, 4 serves as an initial choice of direction
in which an ant is going to move. These rules can be applied only if the agent
contains symbols E and e.

According to the choice of the direction, one of the motion programs 5, 6, 7, 8
is applied. Note that after an application of the program, the capital subscript is
made lowercase. This allows to control the probability of change of the direction
in which the ant moves.

Programs 9, 11, 13 and 15 ensure that an ant will continue in chosen direction.
The programs 10, 12, 14, 16 serve as a return to the initial state in which an ant
chooses the direction of its further move. The probability of the change of the
direction is given by the ratio of the number of programs 9 and 10, (11 and 12,
15 and 16, or 13 and 14 respectively). As a program of the agent is chosen non-
deterministically from all applicable programs, each of the applicable programs
has the same probability to be chosen. Hence, to avoid very chaotic motion, we
need to control the probability of the direction change. For instance, if there
is one program 9 to continue to the right, and one program 10 to change the
direction, then the probability of change is 0.5. If the ant contains three copies
of the program 9 and one copy of 10, the probability of change is only 0.25. The
topic of random motion was discussed in more details in [14]. Let us recall, that if
we introduce a set of rules without the probability of following the same direction,
the motion of an agent is chaotic and reminds the Brownian motion. For this
reason, we introduce this mechanism where an ant can change its direction with
given probability.

8 M. Langer, D. Valenta and P. Sosík

Found the Food The second set of programs defines behaviour next to food,
and when food is found. The object ∗ represents an arbitrary object from the set
V , which can occur in the environment. The object F represents the occurrence
of food.

P :

〈∗ ∗ (F/∗)
∗ (∗/F) (F/∗)
∗ ∗ (F/∗)

 → Right ; EA → E

〉
(17)

P :

〈(F/∗) ∗ ∗
(F/∗) (∗/F) ∗
(F/∗) ∗ ∗

 → Left ; EA → E

〉
(18)

P :

〈 ∗ ∗ ∗
∗ (∗/F) ∗

(F/∗) (F/∗) (F/∗)

 → Down ; EA → E

〉
(19)

P :

〈((F/∗)) (F/∗) (F/∗)∗ (∗/F) ∗
∗ ∗ ∗

 → Up ; EA → E

〉
(20)

where A = {R,L,U,D, r, l, u, d, ε}, hence arbitrary subscript, including no sub-
script. By the symbol F we understand an arbitrary symbol for the food F1, . . . ,
F5.

By (F/∗) we denote that the mentioned place contains either food or some
other symbol, and we assume also that at least one of the triplets of the symbols
(F/∗) in each rule is F . In contrast, by (∗/F) we understand any symbol except
F.

Once the agent stands on square with food, it can opt between taking the
food back to the nest, or continue in searching for another source. This behaviour
is implemented by the programs:

P : ⟨E ↔ F ; e → e⟩ (21)

P : ⟨E ↔ V ; e → e⟩ (22)

The probability of choosing the behaviour is controlled in the same way as in
the case of the motion change.

Vicinity Search If the ant chose to search the vicinity, it must abandon the
found food. To loose track of the found food, it must move at least two steps
away, otherwise its rules would immediately attract it back to the recently found
food. First, the ant chooses in which direction it moves and it makes the first
step:

P :

〈∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 → Right ; V → Vr

〉
(23)

2D P Colony for Vicinity Search Optimisation 9

P :

〈∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 → Left ; V → Vl

〉
(24)

P :

〈∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 → Down ; V → Vd

〉
(25)

P :

〈∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 → Up ; V → Vu

〉
(26)

Then the ant makes another step in the chosen direction and decides whether it
continues the same direction or changes it:

P :

〈∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 → Right ; Vr → Er

〉
(27)

P :

〈∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 → Left ; Vl → El

〉
(28)

P :

〈∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 → Down ; Vd → Ed

〉
(29)

P :

〈∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 → Up ; Vu → Eu

〉
(30)

Homecoming If the ant chooses to pick the food and bring it to the nest,
while creating or reinforcing a pheromone trail, the following set of programs is
activated:

P : ⟨F → F ; e → P9⟩ (31)

P :

〈
P9 ↔ e ;

∗ ∗ ∗
∗ P P
∗ (∗/P) ∗

 → Right/

∗ ∗ ∗
∗ P ∗
∗ ∗ ∗

 → Right

〉
(32)

P :

〈
P9 ↔ e ;

∗ ∗ ∗
∗ P (∗/P)
∗ P ∗

 → Down/

∗ ∗ ∗
∗ P ∗
∗ ∗ ∗

 → Down

〉
(33)

The object P represents the pheromone trail. The second part of the rule after
the slash can be applied by the agent only when the first part is not applicable.

10 M. Langer, D. Valenta and P. Sosík

If the agent reaches a border of the environment, then the following programs
are applied:

P :

〈
P9 ↔ e ;

∗ ∗ ∗
∗ P ∗
∗ ∗ ∗

 → Down

〉
(34)

P :

〈
P9 ↔ e ;

∗ ∗ ∗
∗ P ∗
∗ ∗ ∗

 → Right

〉
(35)

The border of the environment can be lined using a special symbol that is not
used in any rule, therefore an ant cannot interact with it.

Once the ant reaches the nest, it drops the food and follows a pheromone
trail to food, or, if there are no pheromones, it randomly searches for another
source of food. This is controlled by the following programs:

P :

〈
P9 ↔ e ;

∗ ∗ ∗
∗ P ∗
∗ N ∗

 → Down

〉
(36)

P :

〈
P9 ↔ e ;

∗ ∗ ∗
∗ P N
∗ ∗ ∗

 → Right

〉
(37)

P : ⟨F → f ; e → E⟩ (38)

P : ⟨f ↔ e ; E → E⟩ (39)

The agent changes the symbol F to f , so as the nest could not be considered as
a food source.

Found the Pheromone Trail The next set of programs controls the situation
when an ant runs into pheromone trail.

P :

〈∗ ∗ (P/∗)
∗ (∗/P) (P/∗)
∗ ∗ (P/∗)

 → Right ; EA → E

〉
(40)

P :

〈(P/∗) ∗ ∗
(P/∗) (∗/P) ∗
(P/∗) ∗ ∗

 → Left ; EA → E

〉
(41)

P :

〈 ∗ ∗ ∗
∗ (∗/P) ∗

(P/∗) (P/∗) (P/∗)

 → Down ; EA → E

〉
(42)

2D P Colony for Vicinity Search Optimisation 11

P :

〈(P/∗) (P/∗) (P/∗)∗ (∗/P) ∗
∗ ∗ ∗

 → Up ; EA → E

〉
(43)

By the notation (P/∗) we understand that the corresponding place contains
either one of the pheromone symbols P0, . . . , P9 or some other symbol, and we
assume also that at least one of the triplets of the symbols (P/∗) in each rule is
the pheromone symbol. In contrast, by (∗/P) we understand any symbol except
P.

Following the Pheromone Trail The last set of programs controls the situ-
ation, when an ant follows the pheromone trail.

As discussed in section 5, to simplify the colony definition, the nest is located
in the right lower corner of the environmental grid, hence we need to define only
the rules of the situation, when the food is located in the left and/or above
direction from the nest. The full scope of the rules was discussed in [14].

P :

〈
E → E ;

∗ P ∗
∗ P ∗
∗ ∗ ∗

 → Up

〉
(44)

P :

〈
E → E ;

∗ ∗ ∗
P P ∗
∗ ∗ ∗

 → Left

〉
(45)

4 Software Implementation

Although there exist simulation software bundles for various types of membrane
systems, and even for the case of P colonies there is a solution provided by
Florea and Buiu [9], it would be difficult to implement the model of P colony
with 2D environment and evolutionary rules. Therefore, we have developed a
simple simulator in Python supporting 2D P colonies with evolving environment,
and with extended capabilities for ACO simulations. The simulator operates in
discrete time and space. To simulate the parallel behaviour of the 2D P colony
model, agent rules are applied sequentially but in random order. This approach
mimics the parallel actions of the agents and provides a realistic simulation of
the colony behaviour.

At the moment, the application is sufficient to run experiments with a small
number of agents and a not very large environment. Testing in a 150×100 envi-
ronment with 100 agents took about one minute for 400 iterations on a regular
PC with an Intel i7 processor. However, the application is not yet optimised for
time and memory requirements, so larger environments and more agents and
their programs could be simulated in the future.

The application also modular, allowing future integration of new features.
For example, it currently supports graphical visualisation using the Mathplotlib

12 M. Langer, D. Valenta and P. Sosík

library. We plan to replace it with the PyGame library which is more suitable
for real-time visualisation. Visualisation can be completely disabled to speed up
computation if needed.

In summary, the developed software package serves as a versatile platform
for simulating 2D P colonies and provides capabilities for dynamic / evolving
environments and ACO simulations. Its modular design and planned optimisa-
tions ensure adaptability and scalability for future enhancements and specialised
applications. The simulator design and usage is described in detail in [21].

5 Results

We first describe the testing methodology. We use the same 2D P colony con-
figuration for both basic ACO search and the vicinity search, only the agent
programs are different. The number of agents is 100. The agents/ants act in an
environment of size 150 × 100. An ant is aware of its position in the environ-
ment. The extremes (food) are generated using the Python normal distribution
function numpy.random.normal(10, 5), where parameter 10 is the mean value
and 5 is the standard deviation. Function values greater than 21 are marked as
food (outlier) in the environment. The approximate number of extremes (food)
generated by this function can be seen in Figure 1 on the left. The environment
is re-generated each time the simulation is run. The number of iterations of the
algorithm for each run is 400.

To simplify the colony definition, the nest is located in the right lower cor-
ner of the environmental grid. The position of the nest in the middle of the
environment would be more efficient in the terms of faster exploration of the
environment, but the primary goal here is to verify the assumption whether the
vicinity search can improve the search results.

We ran the simulator 100 times with original agent programs and then 100
times with programs augmented by the vicinity search. The results in Table 1
show how the vicinity search increases the probability of finding extremes of the
studied function. In the case of original agent programs, the agents found an
average of 31 extremes over 100 runs, corresponding < 26 percent of the total
number of extremes. In contrast, for the 2D P colony with the vicinity search,
agents found an average of 66 extremes, corresponding to 55 percent of the total
number of extremes. This means an improvement of more than 29 percent.

Another consequence of the vicinity search is the ability of agents to search
a larger part of the environment in the same number of iterations. The situa-
tion is illustrated in Figure 1 in the middle and to the right. This verifies the
hypothesis that the vicinity search has a positive search effect for environments
with extremes located with normal spatial distribution.

The area marked as ’Deeply searched part of the environment’ in Figure
1 is the part of the environment where agents spend more than 90% of their
exploitation time, hence a global optimum can be found with a high probability
when placed here. It turns out that this area increased by about 29% after
introduction of the vicinity search. Table 1 confirms that in the case of extremes

2D P Colony for Vicinity Search Optimisation 13

distributed according to the normal distribution, the improvement in the number
of found extremes corresponds to the proportion of the deeply searched area.
Finally, it should be noted that for a different distribution of extremes the benefit
of the vicinity search may be different.

Table 1. Comparison of the original ACO implementation and the vicinity search
version (results averaged over 100 runs).

Summary Original ACO Vicinity search Difference
Average number of found extremes 31.38 66 34.62
Percentage of total No. of extremes: 25.75% 55.14% 29.40%

Fig. 1. Environment in detail. Left: extremes located according to a normal distribu-
tion. Middle and on the right: deeply searched part of the environment without and
with the vicinity search.

6 Conclusion

We have introduced a model of 2D P colony with evolving environment
(2Dev P COL) implementing an ant colony optimisation(ACO) algorithm en-
hanced with the vicinity search principle. The model is inspired by improved
versions of ACO with local search. We have provided a detailed formal descrip-
tion of the 2Dev P COL using the vicinity search, and run a batch of simulations
of search of function extremes (represented by food) placed in a 2D environment
according to the normal distribution. Then we compared the results with the
original ACO simulations implemented also by a 2Dev P COL and with identical
experimental settings.

The obtained results confirmed that the introduction of vicinity search im-
proved substantially the search efficiency. The agents were able to deeply explore
much larger part of the environment, which we did not quantify precisely but
illustrated in Fig. 1 (as this is rather a qualitative than a quantitative char-
acteristics). Furthermore, an average number of found extrema increased from

14 M. Langer, D. Valenta and P. Sosík

approx. 26% to 55%. This significant improvement indicates an applicability of
the 2Dev P COL-based algorithms to real life optimisation problems.

There is a room for improvements both in theoretical and implementation
part of this method. Other variants of local search should be implemented and
tested to fine-tune the search efficiency. Also on the software simulator side, there
is a room for speed/memory optimization, and primarily also for implementation
of true parallel processing of individual agents using a GPU.

Acknowledgments.

This work was supported by the Silesian University in Opava under the Student Fund-
ing Plan, project SGS/9/2024.
Research was also supported by the Project of VSB - Technical University in Ostrava,
SP2025/052.

Bibliography

[1] Arteta Albert, A., Díaz-Flores, E., López, L. F. d. M., and Gómez Blas, N.
(2021). An in vivo proposal of cell computing inspired by membrane comput-
ing. Processes, 9(3).

[2] Bo, W., Fang, Z., Wei, L., Cheng, Z., and Hua, Z. (2021). Malicious urls
detection based on a novel optimization algorithm. IEICE Transactions on
Information and Systems, E104.D(4):513–516.

[3] Cienciala, L., Ciencialová, L., and Perdek, M. (2012). 2D P colonies. In
Membrane Computing, volume 7762, pages 161–172. Springer.

[4] Colorni, A., Dorigo, M., and Maniezzo, V. (1991). Distributed optimization
by ant colonies. In European Conference on Artificial Life, pages 134–142.

[5] Deng, X., Dong, J., Wang, S., Luo, B., Feng, H., and Zhang, G. (2022). Re-
ducer lubrication optimization with an optimization spiking neural P system.
Information Sciences, 604:28–44.

[6] Dong, J., Zhang, G., Luo, B., et al. (2022a). A distributed adaptive op-
timization spiking neural P system for approximately solving combinatorial
optimization problems. Information Sciences, 596:1–14.

[7] Dong, J., Zhang, G., Luo, B., et al. (2022b). Multi-learning rate optimiza-
tion spiking neural P systems for solving the discrete optimization problems.
Journal of Membrane Computing, 4:209–221.

[8] Dorigo, M. and Gambardella, L. M. (1997). Ant colony system: a cooperative
learning approach to the traveling salesman problem. IEEE Transactions on
evolutionary computation, 1(1):53–66.

[9] Florea, A. G. and Buiu, C. (2016). Development of a software simulator for
P colonies. applications in robotics. International Journal of Unconventional
Computing, 12(2-3):189–205.

[10] Gheorghe, M., Stamatopoulou, I., Holcombe, M., and Kefalas, P. (2004).
Modelling dynamically organised colonies of bio-entities. In Unconventional
Programming Paradigms, volume 3566. Springer.

[11] Huang, L., Sun, L., Wang, N., and Jin, X. (2007). Multiobjective optimiza-
tion of simulated moving bed by tissue P system. Chinese Journal of Chemical
Engineering, 15(5):683–690.

[12] Kelemen, J. and Kelemenová, A. (1992). A grammar-theoretic treatment
of multiagent systems. Cybernetics and System, 23(6):621–633.

[13] Kelemen, J., Kelemenová, A., and Păun, G. (2004). Preview of P colonies: A
biochemically inspired computing model. In Ninth International Conference
on the Simulation and Synthesis of Living Systems (Alife IX), pages 82–86.

[14] Langer, M. and Valenta, D. (2023). On evolving environment of 2D P
colonies: ant colony simulation. Journal of Membrane Computing, 5(3):117–
128.

[15] Luo, Y., Guo, P., and Zhang, M. (2019). A framework of ant colony P
system. IEEE Access, 7:157655–157666.

16 M. Langer, D. Valenta and P. Sosík

[16] Mavrovouniotis, M., Müller, F. M., and Yang, S. (2016). Ant colony opti-
mization with local search for dynamic traveling salesman problems. IEEE
transactions on cybernetics, 47(7):1743–1756.

[17] Păun, G. (2000). Computing with membranes. Journal of Computer and
System Sciences, 61:108–143.

[18] Ramachandranpillai, R. and Arock, M. (2020). Spiking neural P ant optimi-
sation: a novel approach for ant colony optimisation. Electron. Lett., 56:1320–
1322.

[19] Smolke, C. D. (2009). Building outside of the box: igem and the biobricks
foundation. Nature biotechnology, 27(12):1099–1102.

[20] Thilak, K. D. and Amuthan, A. (2018). Cellular automata-based improved
ant colony-based optimization algorithm for mitigating ddos attacks in vanets.
Future Generation Computer Systems, 82:304–314.

[21] Valenta, D. and Langer, M. (2023). On 2D P colony simulator. In Cien-
cialová, L., editor, Proceedings of the Twenty-fourth International Conference
on Membrane Computing (CMC2023), pages 177–190. Silesian University in
Opava. https://cmc2023.slu.cz/user/pages/files/Proceedings_CMC2023.pdf.

[22] Wang, L., Liu, X., Qu, J., Zhao, Y., Gao, L., and Ren, Q. (2023). An
extended membrane system with monodirectional tissue-like P systems and
enhanced particle swarm optimization for data clustering. Applied Sciences,
13(13):7755.

[23] Zhang, G., Rong, H., Neri, F., and Pérez-jiménez, M. (2014). An opti-
mization spiking neural P ssystem for approximately solving combinatorial
optimization problems. International Journal of Neural Systems, 24(5).

[24] Zhu, M., Yang, Q., Dong, J., Zhang, G., Gou, X., Rong, H., Paul, P., and
Neri, F. (2021). An adaptive optimization spiking neural P system for binary
problems. International Journal of Neural Systems, 31(01).

