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Abstract. This paper explores an application of Membrane Systems,
also known as P Systems, in the field of epidemiological research. The
objective is to use the theoretical foundations of P Systems to enhance
our understanding of epidemiological dynamics, and develop a model
that integrates various aspects for simulating complex scenarios of com-
municable diseases. The article draws inspiration from existing research
that employs P Systems to model epidemiological processes, particularly
in the context of COVID-19. These studies yet highlight the advantages
of using membrane models, such as the scalability, flexibility, and ability
to capture hierarchical relationships within scenarios.
The proposed model incorporates a population structure, with individual
properties and infection transmission rules, in order to generate a disease
dynamics, according to a dynamic behavior logic which creates realistic
simulation scenarios. The analysis of experimental results reveals valu-
able insights, including the impact of vaccination coverage, the timing of
contagion peaks, and the predictive accuracy of the model. The results
emphasize the importance of vaccination in controlling the spread of in-
fectious diseases, and highlight the influence of population awareness and
caution on disease dynamics.

Keywords: Epidemiological model · information based dynamic behav-
ior · membrane systems · probabilistic strategy

1 Introduction

By Epidemiological modeling we refer to the prediction of the trend of infectious
diseases through mathematical and computational tools. Considering the impact
of COVID-19 pandemic, this field of research has undergone new developments
and directions in recent years. Epidemiological models can provide new insights
into the epidemiology of infectious diseases, and suggest criteria for the design
of more efficient control strategies. In this work, a computational model of a
parallel and distributed type, called membrane system, is applied to the field of
epidemiological research. Membrane systems are an unconventional computation
model inspired by the functioning of cells, which makes it natural to think of its
use to represent different types of biological processes [1,2,3,4].
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The potential of membrane systems to describe population dynamics is not
applied only to the epidemiological field. Interesting investigations assessing the
risk of population extinction related to the population size dynamics in specific
ecological contexts [5,6,7,8] and cellular contexts [9,10,11] have also appeared in
the literature.

Very recently, two specific examples of epidemiological modeling have ap-
peared, that inspired the present work. The first one is LOIMOS, an epidemiolog-
ical simulator developed by Baquero et al. in 2021 [12]. LOIMOS uses transition
P Systems with communication rules, active membranes and a stochastic simu-
lator engine to model predictive multilevel scenarios. It also integrates various
elements for simulating epidemiological scenarios, such as population structures,
individual characteristics, disease dynamics, and intervention strategies. Each
membrane represents a compartment within the scenario, such as places (e.g.,
schools, houses) and individuals (people), with specific labels symbolizing key
elements and objects representing attributes like age, roles, infections and health
statuses. Rules define interactions and processes within the scenario, including
contagion, mobility, scheduling, recovery, and mortality. One of the advantages
of models like LOIMOS is their compartmentalization of structures and agents,
allowing for easier introductions of new potential features and adaptation to dif-
ferent scenarios. Additionally, hierarchies between elements are naturally defined
in P systems, providing a more intuitive representation of complex scenarios.

The second work considers the application of Population Dynamic P Systems
(PDP) models to understand epidemic dynamics and evaluate control strate-
gies. Such a study, by Colomer et al. (2021) [14] focuses on modeling the effects
of vaccination and contact tracing on handling the COVID-19 outbreak using
a stochastic PDP model, which allows to represent pandemic dynamics under
various scenarios, including different control measures and epidemiological con-
ditions. The considered scenarios included factors like disease transmission, mo-
bility and government interventions. Furthermore, the model considers the char-
acteristics of the population, disease evolution and impact of interventions, pro-
viding insights about the effectiveness of different control strategies. Simulation
outcomes reported reductions in estimated deaths and infections with increasing
vaccination rates, particularly when combined with social control measures. The
objective of this work is the development of a model for the spread and control
of infectious diseases based on Membrane Systems, that extends the works ap-
peared so far. The resulting model must be able to recognize and validate the
dynamic patterns of infectious diseases and suggest evolutionary predictions in
different scenarios. More specifically, the challenges faced in this study are the
extension of the application of Membrane Systems in research, by adapting their
characteristics into solutions to achieve the proposed goal, including evaluating
population dynamics, transmission dynamics, the impact of vaccination and the
impact of human behavior. By implementing the provided model, it is possi-
ble to improve the understanding of infectious disease dynamics, by producing
simulation results of various complex scenarios. This approach also offers the
opportunity to validate the predictive ability of the model, and to evaluate the
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effectiveness of different strategies that may be adopted to control the diffusion
of the infection.

In the following, we describe an epidemiological model based on P Systems,
incorporating behavioral logic dynamics. We outline the fundamental compo-
nents of the model, including its structure, the chemical substances involved
and the reactions used to represent complex processes in a computational form.
We also explore the various characteristics and capabilities of a Membrane Sys-
tem, such as communication among chemical components and rewriting rules.
Unlike similar models, the key extensions of this model include:

– Behavioral Dynamics Integration: The population adopts behaviors in re-
sponse to changes in the epidemiological situation. These include adaptive
behaviors based on infection prevalence, which dynamically influence infec-
tion rates and vaccination processes.

– Population Movements: Individuals move throughout the simulation scenario
with varying probabilities based on the epidemiological context of the desti-
nation.

– Scalability and Adaptability: The model allows the number of membranes
to be changed to represent different geographic entities (such as cities and
provinces), also adjusting their population sizes.

– Dynamic Behavioral Logic Mechanism: The model does not consider static
intervention thresholds represented as numerical values. Instead, it uses dy-
namic behavioral logic, reflecting more realistic and responsive changes in
population behavior based on current epidemiological data.

The rest of the paper is organized as follows: in section 2 we provide a theoret-
ical background on Membrane Systems, introducing their key components. This
section serves as a foundation for understanding the functioning of Membrane
Systems. In section 3, ”Model Definition”, we outline the structure of the model
designed to analyze epidemiological scenarios for generic communicable diseases.
Every component is described, starting with the membrane structure, followed
by the objects involved in the model. We then delve into information modeling
and human behavior, ending in the definition of all the rules that govern the
simulation scenarios. The dynamics related to the progression of infection are
explained in section 4. New rules are introduced, such as Incubation Rules and
rules for the transition to infected and recovered state. Furthermore, the hospi-
talization process is addressed. Section 5 is about the routines of the individuals
within the implemented population. Scheduled activities for different groups of
people trigger movement rules and infection rules based on the location where
the infection occurs. Section 6 discusses the simulation results, with compar-
isons over different vaccination coverage levels and an accurate analysis on the
role of behavioral dynamics in the proposed case study. The final section briefly
summarizes the paper and offers some insights into future directions.
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2 Prerequisites

In this section, we recall some theoretical notions relating to Membrane Systems
are included which will be needed in the following. For further information about
Membrane systems, we refer the reader to [29].

Definition 1. Formally, a Membrane System can be defined as:

Π = (V,H, µ,M1, ...,Mn, R)

where:

– V : is the alphabet of objects;
– H: is the set of labels for membranes;
– µ: represents the membrane structure;
– Mi: is a string of symbols over V (initial multiset of symbols in region i);
– R: finite set of evolution rules.

The functioning of P Systems consists of interactions between membranes
and the transfer of chemicals inside them. Elements within a region can be
involved in reactions described by rewriting rules, with a resulting replacement
of chemicals. Reactions are transitions executed in a region, described by means
of a rewriting rule and a target destination, where chemicals on the left are
replaced by chemicals on the right. Multiple transitions form a computation.
Examples:

– a→ xy (Non Cooperative, a symbol is turned into a multiset independently
from the context);

– ab→ xy (Cooperative, the reaction evaluates the chemicals in order to reach
the goal in a faster way);

– ac→ xc (Catalyst, in this case the chemical c is called catalyst and triggers
a reaction, turning a into x);

The possible target destinations are here, out, inj :

– here = the result stays in the same region;
– out = the result is sent outside the membrane;
– inj = the result is sent into the membrane j.

Rules are applied with priority; if no priority stands out, then non-determinism
decides the order of rule application.

A configuration of such a system is described by the multisets of chemicals
associated with each region, and by the membrane structure. Starting with the
initial configuration, rules are applied in a maximal parallel way to obtain new
configurations. When no rules can be applied in a computation step, then the
computation halts, and the result is the set of object expelled through the skin
membrane (or, alternatively, in a specific output membrane, defined in the sys-
tem).
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An alternative approach for studying epidemiology complex problems is PDP
models. These have been recently applied to analyze the dynamics of COVID-
19 under various scenarios to compare the impact of different control measures,
highlighting the effectiveness of vaccination and contact tracing, especially when
combined with social measures like distancing and mask-wearing [14]. By taking
as input parameters inherent to the disease, the simulation (which takes place
in several steps with a time unit of one day) offers insights about the disease
and the effectiveness of interventions. The simulation steps include PCR testing,
incubation, infection, recovery and mobility.

3 Model Definition

In this section, the definition of a dynamical system model will be discussed
with the aim of studying and analyzing the epidemiological scenarios for generic
communicable diseases. As stated in the introduction, the objective of this work
is to produce an epidemiological model, based on P Systems, to analyze sim-
ulation results of populations with dynamic behavioral logic. By implementing
this model, the goal is to enhance understanding of infectious disease dynamics,
produce simulation results for various complex scenarios, validate the model’s
predictive ability, and evaluate the effectiveness of different control strategies to
manage infection spread.

We considered the 12 provinces of the Lombardy region, Italy, for the sim-
ulations from which to obtain data. Individuals move across provinces and ac-
cess places of interest, represented as additional membranes nested in provinces.
Given that the model offers margins of scalability and adaptability, the scenario
can be changed to various wider and different areas.

3.1 Membrane Structure

The membrane structure delineates the layout of the considered simulation sce-
nario. The model considers membranes as places into which human individuals
can move to or from. Taking advantage of this aspect, it is possible to introduce
a tree-like membrane structure, starting from the outermost element denoted by
Eco-Membrane, represented by the skin membrane. The Eco-Membrane contains
all the different Province-Membranes included in the scenario. Unlike the more
specialized inner membranes, this one only serves as a general delimiter, and it
does not play a crucial role in the model.

Province-Membranes, distinguished according to their labels, contain more
specific Place-Membranes. This general framework allows modeling places where
individuals move for various activities during daily life, thus allowing integrating
the simulation of spatial and social aspects in disease transmission. Within each
province membrane it is possible to identify different places:

– Schools;
– Work places;
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– Hospitals;

– Common Areas, that is places where everyone passes through to go from one
area to another.

These elements are common places visited during the individual’s daily life. This
organization allows the framework to be scalable and efficient in terms of tracking
the influence of relevant aspects such as infections, vaccinations, new daily cases
and deaths. As a simulation scenario for the data collection of this work, the
provinces of the region Lombardy, in Italy, were represented, denoted by their
corresponding labels:

HP = {MI,MB,BS,BG,CR,CO,LC,LO,PV, SO,MN, V A}.

Place-Membranes serve as specialized membranes that represent sites where
individuals stay for a specific part of their daily routine. Place-Membranes are
identified by the labels in HL = {SCi,WPj , CAk, HPl} where the subscripts
i, j, k and l indicate the i-th school, the j-th workplace, the k-th Common Area
and the l-th Hospital respectively. The labeling system allows for scalability
and improves tracking of information at a deeper level in relation to Province-
Membranes. In general, Place-Membranes allow human interaction to trigger
infection processes.

3.2 Objects

With the term “Object” we refer to elements involved in the P System. Different
elements and characteristics within the simulation environment may function as
supporting elements, such as time indicators or serve to distinguish different
types of individuals.

Symbols and notations are introduced, since they are useful to add character-
istics related to different aspects of an epidemiological context, such as infection
or vaccination. The main objects involved are:

– Hour object: Houri with 0 ≤ i ≤ 23, it denotes the time of day and regulates
the behavior of individuals.

– Infection Number Object ϕ where 1 ≤ ϕ ≤ n where n is the number of
people in the considered place. It is a local object present in every place that
indicates the number of infected people in the considered Place-Membrane.
It is used to calculate the probability of contagion.

– Day object: di with 1 ≤ i ≤ 7 and indicates the day of the week.

– Young object: g, represents an individual between the ages of 6 and 19. His
trips are mainly to go to school and the common areas.

– Adult object: a, represents an adult aged aged between 20 and 59. It mainly
travels to workplaces and to the common areas.

– Elderly object: an. indicates an elderly person aged 60 or older. Generally
they only move towards the common area.
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Each “individual” object reports information in the form of a subscript indicating
the province of origin, the province of destination of its movements and a number
that sequentially identifies it. The young individual gi moving from MB to MI
is represented as gi,MB,MI .

Additional alphabet symbols are used to represent information relating to
infection, vaccination status and the use of masks by individuals:

– Incubating infection: addition of the suffix Iinc, indicating that an individ-
ual, upon contracting an infection, has an initial incubation time for the
virus. If it does not have this suffix, then it is healthy. Example of an early
infected young person gi with this suffix: giIinc.

– Infection: addition of the suffix I. When an individual fully developed an
infection (after the incubating period), then we add the suffix I.

– Vaccination: the suffix V is added; young uninfected and vaccinated individ-
uals are represented as giV .

In line with the modeling methodology used in the PDP model [14], individu-
als within the epidemiological scenario are represented as objects. This approach
allows for the characterization of individual attributes and roles.

3.3 Information-based Human Behavior

Much of recent research on modelling the coupled dynamics of vaccinating be-
havior and disease dynamics has been conducted by investigators from natural
sciences, including physics, applied mathematics and epidemiology [18]. In this
model, human behavior plays an important role in infection rewriting rules, by
quantifying information to simulate human reactions to stimuli, such as rising
infection cases. In general, as the number of infectious cases increases, human
behavior becomes more cautious to avoid infection. This interaction can be mod-
elled as a non-negative decreasing function, where the number of infections serves
as variable. Consider M as the information about infection cases and N as the
total population:

ψ(M) =
1

1 + aM
N

(1)

where a > 0. Suppose f = M
N and a = 1

f∗ where 1
f∗ is the fraction that halves

the risk of contagion and f∗ is very small:

ψ(f) =
1

1 + f
f∗

(2)

is the equivalent form.

3.4 Vaccination Dynamics

Vaccination can significantly reduce the spread of infection and a higher percent-
age of vaccinated individuals results in a lower infection risk. The simulation will
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consider different percentages of vaccinated population: 20%, 40%, 60% and 80%
coverage producing varied results. Considering M as the number of infected in-
dividuals in a scenario and N the total population, f = M

N is the ratio between
the two parameters. Since 1

f∗ is the fraction that halves the contagion risk, let’s

introduce x = f
f∗ where f∗ is a very low value. To model the willingness to get

vaccinated, an increasing function can be used:

ω(x) = 1 +A
xn

1 + xn
(3)

where:

– Consider f = M
N as the ratio of infected individuals to the total population;

– x = f
f∗ where f∗ is a very low value (e.g., 0.01). The x parameter is normal-

ized, making it suitable for modeling;
– A is the amplitude parameter of the modulation.

For a young individual, the vaccination process can be described as:

gj
P (v) ω(x)−−−−−−→ gjV (4)

with P (0) ≤ P (v) ≤ P (MAX) representing the probability interval to get vac-
cinated.

By considering data and information on Vaccine Initial Effectiveness gathered
from various sources, such as the studies on the SARS-CoV-2 Delta VOC in
Scotland [15], the effectiveness of the ChAdOx1 vaccine in the elderly during
SARS-CoV-2 Gamma variant transmission in Brazil [16], and the influence of
age on the effectiveness and duration of protection in Vaxzevria and CoronaVac
vaccines [17], it is possible to model the reduction in infection. Official data
states that a complete 2-dose cycle of Oxford-AstraZeneca COVID-19 vaccine
has an expected effectiveness value of 81%, varying in a range between 72-87%.

The vaccine effectiveness can be assigned to each vaccinated individual through
a probability density function, where the expected value is E[x] = 81%. Assum-
ing a uniform distribution within the given range, the following formula is used
for a continuous uniform distribution:

f(x) =
1

b− a

where:

– f(x) is the probability density function,
– a is the lower bound of the range (in this case set to 72),
– b is the upper bound of the range (in this case set to 87).

Thus, the probability density function for the effectiveness of the vaccine is:

f(x) =
1

87− 72
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An effectiveness value can be assigned by calculating the cumulative probability
picking a random number:

V (gj) = rand ∗ (b− a) + a

A vaccine duration is also assigned to each individual. Vaccine effectiveness
and duration are proportional and strictly related: after having calculated a vac-
cine effectiveness within the specified range, a correlated duration is generated,
representing the period for which the vaccine’s protective effect is sustained.

3.5 Infection Rules

The infection rates presented in the LOIMOS work [12] classify individuals based
on groups that take into account age, health status and possible symptoms
resulting from the infection. The rates of transmission in various settings and
through various agents of transmission in the population are based on estimates
drawn from scientific evidence such as [19,20,21,22,23,24,25,26] and public data.

Table 1. Base infection rates for each combination of age group and membrane type
and are taken from the LOIMOS work [12]

School Common Area Hospital Workplace

Young 0.03 0.02 0.05 –

Adult – 0.02 0.05 0.02

Elderly – 0.2 0.5 –

Therefore, in this work, the general idea behind the rules is to describe a dy-
namic process of infection among individuals in specific places. The probability
of infection, based on the number of infected individuals present in a specific
place, vaccination status of the involved individuals and caution factor, deter-
mines whether or not to place an individual into an incubation state. The rules
are thus applied within the same environment and objects are marked with their
health status. The infection rules for different types of PlaceMembranes involv-
ing young individuals, both vaccinated and non vaccinated, can be summarized
and generalized as follows:

gj gkI Houri dl ϕ
Infection Probability−−−−−−−−−−−−−→ gjIinc gkI Houri dl ϕ (5)

– Infection Probability:
• Modeled as Base Infection Rate · ϕ

total individuals · ψ(M)
– Components:

• Base Infection Rate: Specific to the type of membrane (e.g., Hospital or
School).

• ϕ: Current infection count in the location.
• Houri and dl: respectively i-th hour of the day and l-th day of the week.
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• total individuals: Total number of individuals in the same membrane.
• ψ(M): Decreasing function that models awareness of contagiousness.
• gj : Healthy young individual, identified by the subscript j.
• gkI: Infected young individual, identified by the subscript k.
• gjIinc: Young individual incubating the virus.

4 Evolution of Infection

In this section, the dynamics related to the evolution of an infection are de-
scribed. Once an healthy individual gets in contact with an infected one, the
first individual can get also get infected: it can enters an incubation state with
a certain probability. The article [28] provides additional evidence for a median
incubation period for COVID-19 of approximately 5 days, similar to SARS.

In another work by Holshue et al. [27] it is reported that “The initial respi-
ratory specimens (nasopharyngeal and oropharyngeal swabs) obtained from this
patient on day 4 of his illness were positive for 2019-nCoV. [...] The oropha-
ryngeal specimen tested negative for 2019-nCoV on illness day 12” , suggesting
that the infection lasts for approximately 7 days. Based on these data, in future
simulations on this model, parameters will be set for the duration of the virus
incubation phases and the infectivity of the individual, where this can transmit
the disease to susceptible individuals.

Definition parameter Value References

Average duration of the virus incuba-
tion (days).

5 [Lauer et al. 2020, Heet al. 2020, Hol-
shue et al. 2020] [28]

Average duration of virus infection
(days).

7 [Holshue et al. 2020, Chen et al. 2020;
Hellewell et al. 2020, Anderson et al.
2020, Bi et al. 2020] [27]

4.1 Virus Incubation Rules

When a healthy individual gets in contact with an infected one, the virus can
be transmitted from the latter to the former with a certain probability. If this
happens, then the virus is in an incubation state that lasts for 5 days. The first
day is represented by the object Iinc without any subscripts.

In the following rule, a young individual has just got infected; when the
day object advances to the next, the subscript 4 indicates that the first day of
incubation passed.

gjIinc di+1 −→ gjIinc4 di+1 (6)

– gjIinc: young individual incubating the virus;
– gjIinc4: young individual on the second day of incubation;
– di+1: day object progression.
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The second rule explains how the advancement of the day object decrements
the Iincx counter, reducing it one by one. The counter is decremented by one
as a single day passes.

gjIincx di+1 −→ gjIincx−1 di+1 with 2 ≤ x ≤ 4 (7)

The last one describes the end of the incubation process. When the incubation
process ends, the counter on object Iinc1 reaches the value 1. Then, the one-day
advance causes the individual to move from the incubation phase to an infected
state, in which the virus is transmissible.

gjIinc1 di+1 −→ gjI di+1 (8)

– gjIinc1: young individual incubating the virus on the last day, which is day
1;

– gjI: young infected individual;
– di+1: day object progression.

4.2 Transition to Recovery

After the incubation period, the infection evolves through different stages, cul-
minating in recovery and the acquisition of natural immunity. The following
rules outline the progression of infection and the transition to a recovered state.
For COVID-19, the infected state lasts for 7 days circa [27]. This transition is
modeled as follows:

gjI di+1 −→ gjI6 di+1 (9)

where:

– gjIx: young infected individual;
– gjI6: young infected individual on the second day of infection state;
– di+1: day object progression.

gjIx di+1 −→ gjIx−1 di+1 with 2 ≤ x ≤ 6 (10)

where:

– gjIx: young infected individual on day x;
– gjIx−1: young individual on the next day (x− 1) of infected state;
– di+1: day object progression.

This rule captures the transition from being infected to recovering after a spec-
ified duration. Once the infection object reaches day 1, the following day the
individual is considered recovered with acquired natural immunity:

gjI1 di+1 −→ gjImm di+1 (11)

where:
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– gjI1: young infected individual on the last infection state day;
– gjImm: young recovered individual with natural acquired immunity;
– di+1: day object progression.

Finally, once an individual is considered recovered, natural acquired immunity
is granted.

4.3 Hospitalization

Some infected individuals may develop critical conditions, requiring treatment
and therefore hospitalization. This process is designed to reflect real-world sce-
narios where individuals infected with a disease may require medical attention
and specialized care; to achieve this, the hospitalization process is simplified by
reducing hospitalization to a probabilistic process based only on two constant
rates of hospitalization and death.

Considering a generic elderly individual, the hospitalization process can be
defined as follows:

aniI
0.003−−−→ aniIH(inHPj

) (12)

where:

– aniI: elderly infected individual;
– aniIH: hospitalized elderly individual;
– The (inHPj

) element indicates that the individual is transferred to an hos-
pital membrane.

During hospitalization, a death threshold decides whether the individual in ques-
tion is excluded from the active part of the population:

aniIH
0.0005−−−−→ aniD (13)

where:

– anIH: hospitalized elderly individual;
– aniD: the individual is considered as deceased. The object no longer partic-

ipates in daily activities and is “removed” from the model.

We stress the fact that objects representing deceased individuals are not actually
removed, since they will be useful for data collection. Such individuals are only
excluded from the context, as they are no longer able to start infection processes
or to access PlaceMembranes.

4.4 Movement Rules

The movements of individuals belonging to a specific province can be generally
described as follows:

gX,Y Houri dayj
movement probability−−−−−−−−−−−−−−→ (gX,Y Houri dayj , inY ) (14)

where Y ∈ HP \{X} and X ̸= Y . The elements in the rewriting rules can be
interpreted as follows:
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1. gX,Y : a generic young individual traveling from province X to province Y ;

2. Houri dayj : time and day of the simulation;

3. movement probability: it is defined as (1− ϕY

total populationY
). This means that

the willing to move towards an arrival point is defined by the epidemiological
context of the destination province.

In simpler terms, a person who is characterized by a destination province differ-
ent from the origin one will move to a different Province-Membrane according
to this rule. The transition is determined by the epidemic situation of the des-
tination province, described as a probability.

5 Routines of Individuals

In this section, the behavioral patterns and daily routines of individuals, are
described, including the schedules that outline the stages of the day. LOIMOS
[12] introduced daily routines that can be reused and implemented. The activ-
ities keep people busy from morning to night, including different locations and
different scenarios involving various infection contexts.

5.1 Schedules for Young Individuals

Children 0–12 years old Monday to Friday:

– 08:00 to 09:00 common area.

– 09:00 to 17:00 school for children.

– 5.00pm to 6.00pm (20%), to 7.00pm (48%), to 8.00pm (32%) common area.
Children may be delayed on their way home for 1, 2 or 3 h.

– 18:00,19:00 or 20:00 to 08:00 home.

Children 13–19 years old Monday to Friday (similar to that for children 0-12,
but considering High schools, possibly placed in location far from their home):

– 08:00 to 09:00 common area.

– 09:00 to 17:00 High school.

– 5.00pm to 6.00pm (20%), to 7.00pm (48%), to 8.00pm (32%) common area.
Teenagers may be delayed on theirs way home for 1, 2 or 3 h.

– 18:00,19:00,20:00 to 08:00 home.

Therefore, once the necessary journeys have been made, the individuals can start
their own routine. Let’s say a young individual has to go to school; the common
area must be crossed. Said so, the considered person will stay from 8:00 to 9:00
in the common area.
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5.2 Schedules for Workers

Workers from Monday to Friday follow a routine that is very similar to the young
individuals’ schedule:

– 07:00 to 08:00 in common area.
– 08:00 to 17:00 at work.
– 17:00 to 19:00 in common area.
– 19:00 to 07:00 at home.

The rules for this category have very similar patterns to the ones involved for
young individuals. Once the necessary movements have been made towards the
destination Province-Membrane, the workers enter their respective workplace
through the common area.

5.3 Schedules for Elderly

The elderly goes out to do some tasks in the common area. Every day for 6
specific hours a day there is a 10% probability of going out to perform a task.
This outing can be for 1h with a 40% probability, for 2h with a 24% probability
and for 3h with a 36% probability [12].

6 Discussion

Once the simulation scenario is set, it is possible to draw conclusions from the
results obtained from the simulations. The implemented scenario represents the
Lombardy region structure, where we initially set a population of 25,000 in-
dividuals (the size will be improved in future simulations in order to improve
the simulation performance), where cases of infection are introduced. Besides a
general diffusion of infections, with the simulations of our model we aimed at
studying two specific related aspects: the impact of control measures and the
population behavioral dynamics.

The implementation of control measures aimed at mitigating the virus trans-
mission is one of the most studied aspects in epidemiology. Vaccination cam-
paigns are one among the most popular interventions applied in social context
to contain the spread of infection. Understanding the effectiveness of such inter-
vention is crucial to define the goodness of the model.

As depicted in Fig. 1, which compares simulations over 365 days with dif-
ferent levels of vaccination coverage, notable differences are presented in the
outcomes. From left to right, representing no vaccination, 20%, 40%, 60%, and
80% vaccination coverage, there is a clear trend of decreasing peak values for
each case under analysis. Vaccination coverage leads to a reduction in prevalence
of the virus, number of new daily cases and number of deaths.

The second aspect, the behavioral dynamics, represents a fundamental point
in the proposed case study. In general, dynamic behavior logic integrates with
the infection process, in order to create realistic and complex scenarios, as well as
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Fig. 1. Comparison between simulations of 365 days with medium levels of behavior in
response to contagion, subjected to different vaccination coverage. From left to right:
no vaccination, 20%, 40%, 60%, and 80%. The values in the columns indicate the peak
value of each case under analysis.

converting a trivial probabilistic infection process based on a basic infection rate
into a realistic stochastic process composed of multiple parameters. The equation
2 explains that when f and f∗ match, the value returned by the function is 1

2 ;
therefore the value of f∗ indicates the fraction of infected individuals such that
individuals will adopt a behavior that will halve the probability of infection. At
this point it is easier to detail how the behavior is modeled: if f∗ = 0.1 then the
probability of infection will be halved when a tenth of the considered population
is infected. For f > 0.1 the probability of infection will be further reduced.

To analyze the impact of behavior modeling in an epidemiological context,
we consider f∗ as a “Caution Parameter”. The following data reflects what has
been explained above:
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Table 2. Summary table of peak metrics from different simulations performed with
variable Caution Parameter.

Caution Vaccine Metric Max Day
Parameter Coverage Value of Occurrence

0.01 0
Prevalence 1956 23

New Daily Cases 345 19
Deaths 284 359

0.1 0
Prevalence 4024 23

New Daily Cases 723 20
Deaths 245 145

1 0
Prevalence 5089 24

New Daily Cases 962 21
Deaths 293 63

10 0
Prevalence 5197 27

New Daily Cases 926 27
Deaths 315 80

From the observed values it is possible to note a strong influence of the general
behavior of individuals in response to the epidemic: the more the value of the
caution parameter decreases, the more the peak values of the different metrics
considered decrease. The only exception concerns the case of the number of
deaths for the simulation with a caution parameter equal to 0.01: it reports a high
number of deaths, which however reaches its peak after 359 days of simulation
out of 365 and after a second wave of infections, due to a less strong prevalence
of the virus compared to other cases, where the infection spreads quickly among
susceptible people, infecting a considerably greater quantity. Further analysis
and data about the model are available at this web address.

7 Conclusions

The paper outlined an application of membrane systems, a computational model
inspired by biological processes, to the field of epidemiological research. The
main objective of this research was to define an epidemiological model which
integrated the behavioral dynamics of individuals in response to the epidemio-
logical context. The modeling process starts from previous works in membrane
computing, and leads to an extension which includes new aspects, linked to the
behavioral dynamics of individuals. In particular, the response of the population
to changes in various epidemiological scenarios are represented by the model. By
defining mathematical functions that vary depending on the number of infected
people, different features may be manipulated. Prevalence therefore plays a fun-
damental role in the mechanisms of the implemented scenarios, as it is exploited
as a variable for both infection and vaccination processes.

https://www.academia.edu/120094634/A_Dynamic_Behavior_Epidemiological_Model_By_Membrane_Systems_Supplementary_Material?source=swp_share
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Our model shows a certain degree of scalability: it is possible to implement
scenarios that can vary in size, by adding or decreasing the number of membranes
to represent provinces and places, and by modifying the number of individuals
in the population. Model adaptability is ensured by the generated results, since
vaccination campaigns mitigate virus transmission, by emphasizing the relation-
ship between vaccination coverage and all i) the timing of peak values regarding
prevalence, ii) the new daily cases, and iii) deaths. On the other hand, behavioral
dynamics (characterizing this model) shapes the spread of infectious diseases by
illustrating how individuals’ behavior in response to the epidemics can either
promote or reduce disease transmission. According to preliminary results ob-
tained by simulations, our model manages to offer a correct representation of
the observed trend of infections, and the impact of countermeasures and human
behaviors. More specifically:

– Validation of Outbreak Patterns, by simulating scenarios with given
conditions, showed the model’s ability to replicate epidemic dynamics;

– Validation for Vaccination confirmed that vaccination campaigns mit-
igate virus transmission, highlighting the relationship between vaccination
coverage and the timing of peaks values regarding prevalence, new daily cases
and deaths;

– Behavioral Dynamics are the main aspect in this model: they are able
to shape the spread of infectious diseases. The model highlighted how the
behavior of individuals in response to the epidemic can either favor or reduce
the spread of the disease.

In conclusion, some validation results confirm the model’s ability to faith-
fully represent the dynamics of infectious disease transmission and intervention
strategies.

Considering the achievements and the potential offered by this research, it
would be of interest to explore some of the possible directions for future devel-
opments. Although effective, the current model does not provide a few charac-
teristics that could make it even more precise. Possible improvements include:

– Implementation of Vital Dynamics. Vital dynamics, including birth and
death rates, can increase the realism of the model by replenishing the sus-
ceptible population with newborns and taking into account mortality rates.
This can support dynamics such as endemicity of the disease.

– Incorporation of Lockdowns and Closures. The model could be ex-
panded to incorporate either the implementation of lockdowns or the clo-
sure of schools and workplaces once a predetermined threshold of infections
is reached.

– Addition of Tracing Activity. Incorporating the ability to track and an-
alyze movements and interactions of individuals within a population helps
to identify and monitor individuals who have been in close contact with con-
firmed cases of a communicable disease, to better understand the movements
of individuals, to identify potential areas of increased transmission risk.
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– Simulation of additional scenarios. Simulating additional scenarios will
be useful to determine crucial parameters, such as optimal vaccination rates
and vaccination priority groups, and to refine the prediction of infection
waves.

– Further validation and sensitivity analysis. A deeper validation with
a sensitivity analysis of the model based on empirical data can highlight
unnoticed model limitations and potentialities.
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