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Abstract. This work introduces a new class of reaction automata, named
Chemical Pure Reaction Automata (CPRA), which combines the prop-
erties of chemical reaction automata, introduced and studied by [Okubo
et al., 2016] and the recently defined pure reaction automata [Ascone et
al., 2024]. In contrast with the standard model of chemical reaction au-
tomata, CPRA do not have permanence, ie the result states only consist
of the products of the reactions that take place, while the reactants that
are not consumed are lost.
We investigate the computational power of two variants of CPRA, both
working in the maximally parallel manner. We first prove that determin-
istic CPRA (DCPRA), in which at every state there is a unique result
state common to all multisets of enabled reactions for each input symbol,
are not Turing complete. We then show that non-deterministic CPRA are
Turing complete and thus strictly more powerful than DCPRA: namely,
the set of languages accepted by CPRA in the maximally parallel man-
ner contains the set of languages accepted by standard chemical reaction
automata in the same manner.

Keywords: Reaction system · Reaction automata · Formal language ·
Computability

1 Introduction

Reaction automata, recently introduced by Okubo et al. [27,28,30], are com-
puting devices that accept languages via manipulation of multisets of entities.
Specifically, the states of a reaction automaton are defined as multisets drawn
from a given finite set S of entities, and the transitions between the states are
defined by a finite set of reactions. Each reaction consists of a multiset of re-
actants, a set of inhibitors, and a product multiset, all drawn from the set S.
A reaction can happen in a state only if the multiset of reactants is contained
in the state and none of the inhibitors has nonzero multiplicity: since several
reactions can compete for the resources of a state, their relative dominance must
be established through predetermined criteria known as manners. Reaction au-
tomata are further specified by a fixed initial state, receive input words over a
fixed alphabet, and can accept such words based on a given set of final states.
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Reaction automata can be seen as an extension of the simpler model of re-
action systems [13,14,9], in which the states and the reactants, inhibitors and
products are sets of entities rather than multisets. This initial assumption was
motivated by the hypothesis that, after a certain threshold, the amount of chem-
ical substances in a reaction is not important anymore, since there are enough
of them for the reaction to take place. A crucial implication of this assump-
tion is that any reaction system has only a finite set of possible states, making
computational universality unattainable for such a model.

The properties of both reaction systems [16,15,17,12,7,20,37,5] and reaction
automata [27,25,29,31,38,26] have been extensively studied, as well as several
variations and restrictions of the models [10,34,6,8,24,4]. In this work, we in-
troduce a new class of reaction automata as a variant of Chemical Reaction
Automata (CRA), a model introduced and studied by Okubo et al. [30,31,26],
and of Pure Reaction Automata (PRA), recently introduced by Ascone et al. [3].
Automata in this new class, which, to maintain coherence with the existing ter-
minology, we named Chemical Pure Reaction Automata (CPRA), combine the
characterising properties of CRA, in which no inhibitors are present in the reac-
tions, and PRA, in which the reactants that are not consumed by the reactions
happening at a state are not conserved in the result state, as it happens with
reaction systems, in contrast with the standard CRA.

The addition of multiplicities in reaction automata and the most recent CRA
and CPRA increases the similarity between these models and P systems [32,33].
In particular, like P systems, a multiset of objects or entities is evolved following
rules inspired by the biochemical reactions that happen inside cells. One impor-
tant difference is that in the large majority of P systems, the space is subdivided
into regions by membranes (or cells), they actively participate in the computa-
tion and are essential to expand the computational power of the models [36].
As an example, consider the membrane nesting depth for P systems with active
membranes with charges and its influence in the complexity classes that different
depths characterise [35,21,22]. While investigating different derivation modes for
the selection of reactions (or rules) to be applied is a new research direction
for models related to reaction systems, it is a well-developed field of study for
P systems. In particular, asynchronous and sequential derivations already exist
for P systems in addition to the most common maximal parallelism criterion,
which itself can be declined in different ways. Of particular interest is the case
of maximal parallelism when the P system is used as a generator for numbers of
Parikh sets [2], which has some similarity with the derivation modes for CPRA
studied in this paper. For more details, we refer the reader to the ample literature
on the topic of derivation modes for P systems [18,19,2,1].

Our results. We distinguish two sub-classes of CPRA and determine their
computational power as language acceptors. In Section 3, we consider the re-
stricted model of deterministic CPRA, in which at every state there is a unique
result state common to all multisets of enabled reactions for each input symbol,
and we prove that they are not Turing complete (Theorem 4). To arrive at this
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result, we make an unusual and somewhat surprising use of Dickson’s Lemma,
a standard result in commutative algebra, which we recall in Section 2.1.

In Section 4, we direct our attention to non-deterministic CPRA and prove
that they are strictly more powerful than deterministic CPRA. In particular, the
set of languages accepted by CPRA in the maximally parallel manner contains
the set of languages accepted by standard chemical reaction automata in the
same manner (Theorem 6).

2 Preliminaries

Let S be a finite alphabet and S∗ the set of words over S, that is, all finite
sequences of elements of S. A multiset over S can be defined as a function
V : S → N such that V (a) ∈ N is the multiplicity of a ∈ S in the multiset; S#

denotes the set of all multisets over S. Given V and W two multisets over S, we
can define a partial order given by multiset inclusion and the following multiset
operators:

- Inclusion: V ≤ W if V (a) ≤ W (a) ∀ a ∈ S;
- Sum: (V +W )(a) := V (a) +W (a) ∀ a ∈ S;
- Intersection: (V ∩W )(a) := min{V (a),W (a)} ∀ a ∈ S;
- Difference: (V −W )(a) := V (a)−W (a) ∀ a ∈ S (only defined for W ≤ V );
- Symmetric difference: (V △W )(a) := (V +W )(a)− (V ∩W )(a) ∀ a ∈ S.

We also define a belonging relation for multisets: given V ∈ S# and a ∈ S, a ∈ V
if and only if V (a) ≥ 1, i.e., a letter belongs to V if and only if it has positive
multiplicity. We can thus define the set underlying a multiset V ∈ S# as the set
of letters with positive multiplicity:

set(V ) := {a ∈ S | a ∈ V }.

The following equivalences follow immediately for any V,W ∈ S#:

set(V +W ) = set(V ) ∪ set(W ), set(V ∩W ) = set(V ) ∩ set(W ).

Furthermore, V ≤ W , implies set(V ) ⊆ set(W ), but the converse is not true: eg
given V = {a, a, b} and W = {a, b, c}, it holds set(V ) ⊆ set(W ) but V ̸≤ W .

A set U ⊆ S naturally corresponds to a multiset VU such that VU (a) = 1 if
a ∈ U and VU (a) = 0 otherwise. In particular, for each a ∈ S, we will often denote
the multiset V{a} simply by a. We will denote the empty multiset by 0 ∈ S#. The
total number of elements in a multiset V ∈ S is defined as ∥V ∥ :=

∑
a∈S V (a).

2.1 Topology on S#

In this section, we define a topology on S# and we prove that, under this topol-
ogy, every subset of S# is compact. These results will be useful in Section 3
to determine the computational power of deterministic chemical pure reaction
automata.
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Definition 1. Given V ∈ S#, we define UV := {W ∈ S# | V ≤ W}, and T the
topology over S# generated by the family B := {UV | V ∈ S#}.

Remark 1. The family B is a base for the topology T. Indeed, B covers S#

since S# = U0; and given any UV ,UW ∈ B, the intersection UV ∩UW is equal to
UT where T (a) = max{V (a),W (a)} for all a ∈ S. Moreover, note that V ≤ W
implies UV ⊇ UW .

Given S = {x1, . . . , xn} a finite alphabet of n letters, letK[S] = K[x1, . . . , xn]
be the ring of polynomials in n variables x1, . . . , xn over the field K and let
Π(S) = Π(x1, . . . , xn) be the set of all monomials in K[S].

Remark 2. The following maps:

S# −→ N|S| S# −→ Π(S)

V 7−→ (V (x1), . . . , V (xn)) V 7−→ x
V (x1)
1 · xV (x2)

2 · . . . · xV (xn)
n =: xV

are isomorphisms of monoids. Furthermore, we have that V ≤ W if and only if
xV divides xW .

Definition 2 (monomial ideal). An ideal I ⊆ K[x1, . . . , xn] is monomial
if there exists A ⊆ Nn such that I is generated by the family of monomials
{xα | α ∈ A}, and it is denoted by I = ⟨xα : α ∈ A⟩.

We next report, for completeness, two results by Cox et al. we rely upon.
Lemma 1 can be found at p70 of [11] (therein it is called Lemma 2); Theorem 1
is Theorem 5 at p74 of [11].

Lemma 1 ([11]). Let I = ⟨xα : α ∈ A⟩ be a monomial ideal, then a monomial
xβ lies in I if and only if xβ is divisible by xα for some α ∈ A.

Theorem 1 (Dickson’s lemma [11]). Let I = ⟨xα : α ∈ A⟩ ⊆ K[x1, . . . , xn]
be a monomial ideal, then there exists α1, . . . , αk ∈ A such that I = ⟨xα1 , . . . , xαk⟩.

As a corollary of Dickson’s Lemma, we prove the following result.

Theorem 2. Let X ⊆ S#, then for every open covering of X given by elements
of the basis B, there exists a finite subcovering of X.

Proof. Let U = {UV | V ∈ Y ⊆ S#} ⊆ B be a covering of X. By Dickson’s
Lemma, the monomial ideal I = ⟨xV : V ∈ Y ⟩ equals ⟨xV1 , . . . , xVk⟩ for some
V1, . . . , Vk ∈ Y . We claim that {UV1

, . . . ,UVk
} is a finite subcovering ofX. Indeed,

given W ∈ X there exists V ∈ Y such that W ∈ UV , thus V ≤ W . As pointed
out in Remark 2, V ≤ W if and only if xV divides xW . By Lemma 1, we have
xW ∈ I = ⟨xV1 , . . . , xVk⟩, hence (again applying Lemma 1) we get that xW is
divisible by xVi for some i = 1, . . . , k. Therefore W ≥ Vi, ie W ∈ UVi

. ⊓⊔

Corollary 1. Every subset of S# is compact for the topology T.
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Corollary 2. Given a sequence of multisets {Vn}n∈N ⊆ S#, there exist N,M ∈
N, N ≥ M , such that VN ≥ VM .

Proof. The family of open sets {UVn}n∈N is a covering for {Vn}n∈N. Since by
Corollary 1 every subset is compact, there exists a finite subcovering {UVN1

, . .
. ,UVNk

} of {Vn}n∈N. Then, given any N > maxi=1,...,k Ni, there exists i ∈
{1, . . . , k} such that VN ∈ UVNi

, ie VN ≥ VNi
. ⊓⊔

2.2 Chemical Reaction Automata

Definition 3 (Chemical reaction). Given an alphabet of reactants S, a chem-
ical reaction over S is a pair a = (Ra, Pa), where Ra ∈ S# is the multiset of
reactants and Pa ∈ S# is the multiset of products. The set of all chemical
reactions over S is denoted by chr(S).

Let a = (Ra, Pa), b = (Rb, Pb) ∈ chr(S). A partial order over all possible
chemical reactions over S can be naturally defined as a ≤r b if and only if
Ra ≤ Rb. We also define the sum of the two chemical reactions as a + b :=
(Ra+Rb, Pa+Pb). Given a finite set A ⊆ chr(S), we denote by ⟨A⟩ the Abelian
semigroup generated by the elements of A:

⟨A⟩ := {λ1a1 + · · ·+ λnan | ai ∈ A, λi ∈ N ∀i = 1, . . . , n}.

Definition 4. Given a = (Ra, Pa) ∈ chr(S) and T ∈ S#, a is enabled in T
if Ra ≤ T . Furthermore, given A a finite set of chemical reactions over S and
a ∈ ⟨A⟩ enabled in T , then a is enabled in a maximally parallel manner (mp)
if there exists no c ∈ ⟨A⟩ such that a+ c is enabled in T , ie a is maximal w.r.t.
addition. Enmp

A (T ) denotes the set of reactions from ⟨A⟩ enabled in a state T in
mp manner.

Definition 5 ([30]). The result of a set of chemical reactions A on a state T
in mp manner is the set of states

Resmp
A (T ) = {Pa + (T −Ra) | a = (Ra, Pa) ∈ Enmp

A (T )}.

In the case where Enmp
A (T ) = ∅, Resmp

A (T ) is undefined.

Definition 6 ([30]). A chemical reaction automaton (CRA) A is a tuple A =
(S,Σ,A, D0, Sf ), where S is a finite set of reactants, called the background set
of A; Σ ⊆ S is the input alphabet of A; A ⊆ chr(S) is a finite set of chemical
reactions over S; D0 ∈ S# is the initial multiset; and Sf ⊆ S# is a set of final
multisets.

Definition 7. Consider a chemical reaction automaton A = (S,Σ,A, D0, Sf )
and a word w = w1 · · ·wn ∈ Σ∗. An interactive process in A with input w in
mp manner is an infinite sequence π = D0, . . . , Di, . . . where{

Di+1 ∈ Resmp
A (wi+1 +Di) for 0 ≤ i ≤ n− 1

Di+1 ∈ Resmp
A (Di) for i ≥ n.
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IPmp(A, w) denotes the set of all such interactive processes in A with input
w. We say that a process π accepts w if there exists m ≥ n = |w| such that
Dm ∈ Sf . By AIPmp(A, w) we denote the set of all processes π ∈ IPmp(A, w)
such that π accepts w. The language accepted by A is defined as

Lmp(A) = {w ∈ Σ∗ | AIPmp(A, w) ̸= ∅}.

The set of languages accepted by chemical reaction automata working in mp
manner is denoted by CRAmp: a language L ∈ CRAmp if and only if there exists
a chemical reaction automaton working in mp manner that accepts L.

The following definition extends Definition 7 to the case where the symbols of
the input word may be interleaved with an arbitrary number of gaps, modelled
as an extra symbol λ /∈ Σ.

Definition 8. Let Σλ = Σ ∪ {λ} and w = w1 · · ·wn an input word over Σ.
An interactive process π is said to be in λ-input mode when it allows as input
a sequence of characters from Σλ b1, . . . , bm such that m ≥ n and the symbols
of w form a subsequence of b1, . . . , bm interleaved with occurrences of λ: more
formally, ∃ 1 ≤ i1 < i2 < . . . < in ≤ m such that bij = wj ∀j = 1, . . . , n

and bi = λ ∀i ∈ [1,m] \ {i1, i2, . . . , in}. The notation IPλ
X(A, w), AIPλ

X(A, w),
Lλ
X(A) and CRAλ

X naturally extends the corresponding notation of Definition 7
to λ-input mode.

An ordinary interactive process, where no λ-input is used, will be said to be
real-time to distinguish from λ-input mode processes.

Okubo et al. [30] proved that the computational power of chemical reaction
automata working in mp manner in λ-input mode is equivalent to that of Turing
machines: we report this result in Theorem 3 for completeness (RE denotes
recursively enumerable languages).

Theorem 3. [30, Theorem 1] CRAλ
mp = RE.

3 Deterministic Chemical Pure Reaction Automata

We begin by introducing a different kind of chemical reaction automata in which
the result of a set of reactions only consists of the union of their products, while
the reactants that are not consumed by the reactions are lost. This is in con-
trast with Definition 5 and the usual notion of reaction automaton. Definition 9
formalizes this concept.

Definition 9 (Pure result). The pure result of a finite set of chemical reac-
tions A on a state T in mp manner is

R̂es
mp

A (T ) = {Pa | a = (Ra, Pa) ∈ Enmp
A (T )},

and if Enmp
A (T ) = ∅, R̂es

mp

A (T ) is undefined.
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Example 1 (Pure result). Let A = {r1 = (a, b), r2 = (b + a, a)} ∈ chr({a, b})
and T = 2b+ a, then Enmp

A (T ) = {r1, r2}, thus R̂es
mp

A (T ) = {b, a}. In contrast,
Resmp

A (T ) = {3b, b+ a}.

We name this new kind of reaction automata Chemical Pure Reaction Au-
tomata (CPRA). We define interactive processes in chemical pure reaction au-
tomata in much the same way as standard chemical reaction automata, as spec-
ified by Definition 10.

Definition 10. Let M = (S,Σ,A, D0, Sf ) be a CPRA, w = w1 · · ·wn ∈ Σ∗.
An interactive process in M with input w in mp manner is an infinite sequence
π = D0, . . . , Di, . . . where{

Di+1 ∈ R̂es
mp

A (wi+1 +Di) for 0 ≤ i ≤ n− 1

Di+1 ∈ R̂es
mp

A (Di) for i ≥ n.

Exactly as for chemical reaction automata, we say that π accepts w if there exists
m ≥ n = |w| such that Dm ∈ Sf . We also define IPmp(M, w), AIPmp(M, w),
and Lmp(M) in the same way as for chemical reaction automata. The set of
languages accepted by CPRA working in mp manner is denoted by CPRAmp.

The definition of λ-input mode process (Definition 8) holds also in the pure
case. In particular, given a chemical pure reaction automata M and w input
word, we will use the following notations IPλ

mp(M, w), AIPλ
mp(M, w), Lλ

mp(M).
The set of languages accepted by CPRA working in mp manner with λ-input
mode is denoted by CPRAλ

mp. We will sometimes represent an interactive process
π with the following “arrow notation”, which extends the notation proposed
by [38]:

π : D0
a1−−→
w1

D1
a2−−→
w2

D2
a3−−→
w3

· · ·Dn−1
an−−→
wn

Dn
an+1−−−→ Dn+1

an+1−−−→ · · ·

where Di−1
ai−→
wi

Di means wi is the input letter at state Di−1, ai ∈ ⟨A⟩ is the

reaction enabled in Di−1 + wi which takes place, and Di ∈ R̂es
mp

A (wi +Di−1).
The restricted class of deterministic CPRA, formalized in Definition 11, re-

quires that the pure result of any reachable state consists of one state only.

Definition 11. Given M = (S,Σ,A, D0, Sf ) a CPRA working in mp manner,
we say that M is deterministic (DCPRA) if and only if for any reachable state

V , the pure result R̂es
mp

A (V ) consists of one element only.

The set of languages accepted by DCPRA working in mp manner is denoted
by DCPRAmp, while DCPRAλ

mp denotes the languages accepted with λ-input
mode. We remark that the notion of determinism given by Definition 11 differs
from the notion given by Okubo et al. [31] for CRA, as their definition is too
restrictive for the objects of our study. Note that any CPRA with the reactions
defined in Example 1 is not deterministic. In contrast, Example 2 showcases a
simple deterministic CPRA according to Definition 11.
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Example 2. Given a background set S = {a, b, s0, s1, f,♣}, an input alphabet
Σ = {a, b}, and a set of chemical reactions A = {r1 = (s0 + a, s1), r2 =
(s0 + b,♣), r3 = (s1 + b, s0), r4 = (s1 + a,♣), r5 = (♣,♣), r6 = (f, f)}, let
A = (S, {a, b},A, s0 + f, {f}) be a chemical reaction automaton working in mp
manner. It is possible to show that A is deterministic and that the language
accepted by A is Lmp(A) = {(ab)n | n ≥ 0}. Indeed, if we consider the input
word w = abab ∈ Σ∗, we get the accepting process:

s0 + f
r1+r6−−−−→

a
s1 + f

r3+r6−−−−→
b

s0 + f
r1+r6−−−−→

a
s1 + f

r3+r6−−−−→
b

s0 + f
a6−→ f.

Instead, if we choose w = abba ∈ Σ∗, we get the process:

s0+f
r1+r6−−−−→

a
s1+f

r3+r6−−−−→
b

s0+f
r2+r6−−−−→

b
♣+f

r5+r6−−−−→
a

♣+f
r5+r6−−−−→ ♣+f

r5+r6−−−−→ · · ·

which clearly does not accept abba since f +♣ is not a final state.

In this section, we investigate the computational power of deterministic chem-
ical pure reaction automata and prove that this class is not Turing complete.
Observe that reaction systems can be seen as a simpler kind of pure reaction au-
tomata in which the multiplicities of reactants are not considered. We can thus
think of inhibitorless reaction systems as a simpler version of the chemical pure
reaction automata. A consequence of [23, Prop. 20] is that the result function for
inhibitorless reaction systems is monotone. In Lemma 2, we extend this result
for chemical pure reaction automata working in mp manner.

Lemma 2. Let A be a set of chemical reactions over S#, D,D′ ∈ S# be two

multisets such that D ≤ D′, R̂es
mp

A (D) = {P}, R̂es
mp

A (D′) = {P ′}, then P ≤ P ′.

Proof. Let a = (Ra, P ) ∈ Enmp
A (D). Since D′ ≥ D, a is also enabled by D′.

Since the reactions happen according to the mp manner (see Definition 4) there
exists a′ = (Ra′ , P ′) ∈ Enmp

A (D′) and c ∈ ⟨A⟩ ∪ {(0, 0)} such that a′ = a + c.
We conclude that P ′ = P + Pc, thus P

′ ≥ P .

Remark 3. Lemma 2 does not hold if we apply the standard notion of result
(Def.5) instead of pure result (Def.9). Indeed, let A = {(a, a), (3b, b)} be two
chemical reactions over S = {a, b} and consider statesD′ = a+3b andD = a+2b.
Then Resmp(D) = {a+2b} = {D} and Resmp(D′) = {a+ b}, thus a+2b > a+ b
despite being D < D′.

Theorem 4. Given any deterministic pure chemical reaction automaton A, it
is always possible to determine in a finite number of steps, for any finite input,
whether A will halt.

Proof. Let A = (S,Σ,A, D0, Sf ) be a DCPRA working in mp manner and
π = D0, D1, . . . , Di, . . . ∈ IPmp(A, w) a process, where w = w1 · · ·wn ∈ Σ∗ is
the input word. Since there is a finite number of final states, we describe an
algorithm that works for a single, fixed final state F , and then notice that it can
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be applied separately for each of the final states of A to obtain the statement.
Consider the map

R : S# −→ S#

T 7−→ R(T ) ∈ R̂es
mp

A (T ).

R is well defined on the elements of π because A is deterministic; in particular, it
holds that R(Dk) = Dk+1 for all k ≥ n = |w|. By Lemma 2, if R is well defined
for two multisets D ≤ D′, then R(D) ≤ R(D′).

Let us now describe the halting algorithm. Given the sequence Dn, Dn+1, . . . ,
by Corollary 2 we can always find two integers N ≥ M such that DN ≥ DM .
Thus R(DN ) ≥ R(DM ), which translates to DN+1 ≥ DM+1. By induction,
DN+k ≥ DM+k until k reaches N ′ = N −M , where we get DN+N ′ ≥ DM+N ′ =
DN ≥ DM . This implies that any state Dk reached by the process later than
DN must belong to UDM+d

for some d ∈ [0, N ′]: more precisely,

Dk ≥ DM+((k−N) mod N ′) ∀k ≥ N, ie Dk ∈ UDM+((k−N) mod N′) . (1)

We call Dk ≤ Dk+N ′ ≤ . . . the chain obtained from Dk as per Equation 1. The
existence of such chains guarantees that the algorithm only needs to inspect a
finite number of states to decide whether the DCPRA halts. Indeed, there are
the following two cases. (1) If F /∈ UDk

(ie F ≱ Dk) for any k ∈ {M, . . . , N −1},
then π /∈ AIPmp(A, w) and we can immediately halt the algorithm. Otherwise,
(2) there exists k ∈ {M, . . . , N − 1} such that F ∈ UDk

(ie F ≥ Dk): let
I = {M1, . . . ,Mj} ⊆ {M, . . . , N − 1} be the subset of such indices, ie F ≥ Dk

for all k ∈ I. Consider now I1 = {M1 + N ′, . . . ,Mj + N ′} the set of indices of
the successors in the chains starting from Dk, for all k ∈ I. If F = Dh for some
h ∈ I1 ∪ I, then π ∈ AIPmp(A, w), thus we can halt the algorithm. Therefore,
assume F > Dh for all h ∈ I1. There are two subcases.

(i), for some index Mk + N ′ ∈ I1, we find DMk+N ′ = DMk
: this indicates

that the process entered in a loop, thus π /∈ AIPmp(A, w) and we can halt the
algorithm. (ii), DMk+N ′ > DMk

for every Mk ∈ I1. In this case, we iterate the
procedure described for case (2) on I2 (the successors of the chains corresponding
to the indices of I1), that is, we check if F is equal to any of those elements or
it is found in any of the relative U ’s, we verify we have not entered a closed
loop and then we proceed considering I3. Remark that at every iteration we get
closer to F , since we have strictly greater multisets at each step, and thus the
maximum number of possible iterations is less than ∥F −DMk

∥1 for all Mk ∈ I1.
Since the DCPRA has only a finite number of final states, by applying this

procedure separately for every possible final state we obtain the statement. ⊓⊔
Observe that Theorem 4 implies that the halting problem associated with the
class of DCPRA working in mp is decidable. We deduce that this class of au-
tomata cannot be Turing complete, or equivalently, the set of languages ac-
cepted by DCPRA cannot coincide with the class of all recursively enumerable
languages. We have arrived at the main result of this section.

Theorem 5. DCPRAmp ⊊ RE and DCPRAλ
mp ⊊ RE, ie the class of DCPRA

working in mp manner is not Turing complete.
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4 Non-Deterministic Chemical PRA

In this section, we study the computational power of non-deterministic chem-
ical pure reaction automata working in mp manner. Our main result, given in
Theorem 6, is that the computational power of pure chemical reaction automata
working inmpmanner is the same as standard CRA working in the same manner,
implying that CPRA are strictly more powerful than the deterministic CPRA
studied in Section 3. We begin with an example of non-deterministic computa-
tions in CPRA.

Example 3. Given a background set S = {a, b, s0, s1, a′}, an input alphabet Σ =
{a, b}, and a set of chemical reactions A = {r1 = (s0 + a, s0 + a′), r2 = (s0 +
a′ + b, s1), r3 = (s1 + a′ + b, s1), r4 = (a′, a′)}, let A = (S, {a, b},A, s0, {s1})
be a chemical reaction automaton working in mp. It is possible to show that
A accepts the context-free language {anbn | n > 0}, both in real-time and in
λ-input mode, ie Lλ

mp(A) = Lmp(A) = {anbn | n > 0}. Indeed, consider eg the
input word w = aabb ∈ Σ∗. We obtain the following accepting process:

s0
r1−→
a

s0 + a′
r1−→
a

s0 + 2a′
r2+r4−−−−→

b
s1 + a′

r2−→
b

s1.

Note that the non-determinism of the CPRA is relevant eg the third step, in
which T = s0 + 2a′ receives in input the symbol b: we have that Enmp

A (T + b) =

{r2 + r4, 2r4} thus R̂es
mp

A (T + b) = {2a′, s1 + a′}. Furthermore, it can be easily
verified that any λ symbol added to aabb would force a non-accepting process:
eg inserting a gap after the first a would make the process loop over the state
T ′ = a′, as Enmp

A (s0 + a′) = {r4} = Enmp
A (a′).

Consider now w = aab /∈ {anbn | n > 0}. It is easy to verify that no process
reaches the final state s1, eg w corresponds to the following two processes with
real-time input:

s0 s0 + a′ s0 + 2a′ s1 + a′ a′ a′ · · ·

2a′ 2a′ · · ·

r1
a

r1+r4
a

r2+r4

b

2r
4

b

r4 r4 r4

2r4 2r4

Figure 1 summarizes all possible processes in A for every possible input.

Theorem 6. Given any chemical reaction automaton A = (S,Σ,A, D0, Sf )
working in mp manner, there exists a chemical pure reaction automaton M
working in mp manner such that Lλ

mp(A) = Lλ
mp(M).

Proof. Let M = (S ∪ S′ ∪ {♠}, Σ,A′, D0, S
′
f ) be a chemical pure reaction au-

tomaton operating in a maximally parallel manner such that:

– S′ = {x′ | x ∈ S} is a set in a bijection with the elements of S (a “copy” of
S). From now on, given a multiset X over S, X ′ will be naturally defined as
the multiset consisting of the copies of the elements of X.
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∄ s0

a′ s0 + a′ s1 ∄

2a′ s0 + 2a′ s1 + a′ a′

3a′ s0 + 3a′ s1 + 2a′ 2a′

...
...

b,λ

a r1

∗r4
b,λ

r4

b

r2

a
r1+

r4

∗

∗2r4
b,λ

2r4

b

r2 + r4

a
r1+

2r4

br3

∗
r4 ∗ r4

∗3r4
b,λ

3r4

b

r2 + 2r4

a
r1+

3r4

∗
2r4

b
r4

+

r3

∗ 2r4

b
2r4

+

r3

Fig. 1. Schematic representation of all possible processes of the chemical pure reaction
automaton of Example 3, which accepts the language {anbn | n > 0}. The notation

T
r−→
∗

T ′ means that, regardless of whether the input symbol is a, b or λ, the reaction

enabled by T is r.

– Σ is the same input alphabet as A;
– A′ = Ap ∪ Ac ∪ Ar ∪ {(♠,♠)}, where Ap = {(x, x + x′) | x ∈ S}, Ac =

{(R+R′, P + P ′) | (R,P ) ∈ A} and Ar = {(R′,♠) | (R,P ) ∈ A}.
– D0 is the same initial state as A;
– S′

f = {D +D′ | D ∈ Sf} is the new set of final states.

Remark that by reaction (♠,♠), we know that ♠ is preserved whenever gener-
ated, therefore, in order to reach a final state in S′

f , ♠ should never be generated,
ie reactions from ⟨Ar⟩ should never be enabled. We formalize this idea in the
following claim.

Claim. For any state W of A, it holds W ∈ Resmp
A (V ) if and only if W +W ′ ∈

R̂es
mp

A′ (V + V ′).

Proof. Given a reaction a ∈ ⟨A⟩, we denote the corresponding reaction in ⟨Ac⟩
by a′ and the corresponding reaction in ⟨Ar⟩ by a♠. We prove the two implica-
tions.

⇒) If W ∈ Resmp
A (V ) then ∃a = (Ra, Pa) ∈ Enmp

A (V ) such that Pa + V −Ra =
W . Consider a′′ := a′+(V −Ra, V −Ra+V ′−R′

a) = (V +R′
a,W+W ′) ∈ ⟨A′⟩.

Clearly, V +V ′ enables a′′; we want to show that it is mp enabled. First, we
remark that a′′+c is not enabled by V +V ′ for any c ∈ ⟨Ap∪Ac∪{(♠,♠)}⟩.
If a′′+b♠ is enabled by V +V ′, then R′

a+R′
b ≤ V ′, thus a+b is enabled by V ,

a contraddiction since a ismp enabled. We conclude that a′′ ∈ Enmp
A′ (V +V ′),

hence W +W ′ ∈ R̂es
mp

A′ (V + V ′).
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⇐) If W +W ′ ∈ R̂es
mp

A′ (V + V ′) then ∃a′′ = a′ + (R,R+R′) ∈ Enmp
A′ (V + V ′),

for some a ∈ ⟨A⟩ and R ∈ S#, such that Pa′′ = W +W ′. Since ♠ /∈ W +W ′,
there can be no reaction from ⟨Ar⟩ in the decomposition of a′′ as a sum
of reactions from ⟨Ap⟩, ⟨Ac⟩, and ⟨Ar⟩. We notice that V − Ra = R, as
otherwise for any x ∈ V −Ra−R the reaction a′′+(x, x+x′) would be enabled
by V + V ′, in contradiction to the fact that a′′ is mp enabled. Remark that
a ∈ ⟨A⟩ is enabled by V . We now prove it is also mp enabled. Suppose for a
contradiction that there exists b ∈ ⟨A⟩ such that a+b is enabled by V , then
a′′+b♠ would be enabled by V +V ′, a contradiction since a′′ is mp enabled.
Finally, we conclude that a ∈ Enmp

A (V ), hence Pa+V −Ra = W ∈ Resmp
A (V ).

Claim. For any stateW of A and any input letter a ∈ Σ, it holdsW ∈ Resmp
A (V )

if and only if W +W ′ + a+ a′ ∈ R̂es
mp

A′ (V + V ′ + a).

Proof. The statement follows from the previous claim and the fact that whenever
r ∈ Enmp

A′ (V + V ′), we have r+ (a, a+ a′) ∈ Enmp
A′ (V + V ′ + a).

Consider now an input word w = w1 · · ·wn ∈ Σ∗
λ. Let π = D0, D1, . . . , Di, . . . ∈

IPλ
mp(A, w): the corresponding process in M D0, E1 . . . , En ∈ IPλ

mp(M, w) is

obtained as follows. If w1 = λ, then E1 := D0 + D′
0 ∈ R̂es

mp

A′ (D0) since the
only reactions that are enabled are those in ⟨Ap⟩. If w1 ̸= λ, then E1 :=

D0 + D′
0 + w1 + w′

1 ∈ R̂es
mp

A′ (D0 + w1), by the second claim. Therefore in the
next steps of the process we have:{
Ek+1 = Dk +D′

k + wk+1 + w′
k+1 ∈ R̂es

mp

A′ (Ek + wk+1) if wk+1 ̸= λ

Ek+1 = Dk +D′
k ∈ R̂es

mp

A′ (Ek) if wk+1 = λ or k ≥ n.

Hence the processes of M mimic those of A with one step of delay, ie E1 contains
D0, E2 contains D1, and so forth. If π ∈ AIPλ

mp(A, w) then there exists m ≥
|w| such that Dm ∈ Sf ; this holds true if and only if Em+1 ∈ S′

f . Therefore

π ∈ AIPλ
mp(A, w) if and only if π′ ∈ AIPλ

mp(M, w), and hence we obtain the
thesis. ⊓⊔

The following corollary, showing the computational universality of CPRAλ
mp,

follows directly from [30, Theorem 1] and Theorem 6.

Corollary 3. CPRAλ
mp = RE.

5 Conclusions

We have investigated the computational power of both deterministic and non-
deterministic chemical pure reaction automata working in mp manner as lan-
guage acceptors, and proved that, while non-deterministic CPRA are Turing
complete, DCPRA are not.
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Several research questions remain open and are worthy of being investigated
further. First of all, while we proved that DCPRA are not universal, their ex-
act computation power is unknown. Hence, it would be interesting to see the
relation between the class of languages recognised by DCPRA and the Chomsky
hierarchy: does that class correspond to (or is neatly contained between) some
level of the hierarchy or is it incomparable with it?

As a second question, there appears to be some relation between CPRA
working in mp manner and Petri nets, similar to what happens with CPRA
working in the sequential manner. Can this relation be formalised and, possibly,
show that chemical (pure) reaction automata and their variations represent the
“chemical version” of Petri net?

Recently, an additional working mode, the maximally reactive manner, was
introduced in [3, Definition 3]. Thus, it would be interesting to investigate
the computation power given by this new manner of execution for CPRA and
DCPRA. In particular, exploring the effect of different ways in which the reac-
tions are selected and the interplay with determinism can increase our under-
standing of where the computational power of chemical pure reaction automata
comes from.

Finally, the proposed working modes have some analogies with the existing
derivation modes for P systems. Thus, it would be an interesting research di-
rection to see which modes can be “ported” to CPRA and DCPRA, and their
influence on computational universality. In particular, a general framework to
talk about working modes across multiple natural computing models is still ab-
sent, but it would be a worthwhile addition to the field.
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