
Wireless Spiking Neural P Systems

David Orellana-Mart́ın1,2[0000−0002−2892−6775],
Francis George C. Cabarle1,2,3[0000−0002−5006−6310],

Prithwineel Paul4[0000−0001−8351−3407],
XiangXiang Zeng5[0000−0001−6201−0114], and

Rudolf Freund6[0000−0003−1255−1953]

1 Research Group on Natural Computing,
Department of Computer Science and Artificial Intelligence

Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012, Seville, Spain
2 SCORE lab, I3US

Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012, Seville, Spain
3 Department of Computer Science, University of the Philippines Diliman,

Quezon City, 1101, Philippines
4 Department of Computer Science and Engineering,

Institute of Engineering and Management,
University of Engineering and Management,

New Town Rd., Kolkata, 700091, India
5 Department of Computer Science, Hunan University, Changsha, China

6 Faculty of Informatics, TU Wien,
Favoritenstraße 9–11, 1040 Wien, Austria

{dorellana, fcabarle}@us.es, fccabarle@up.edu.ph,

prithwineel.paul@iem.edu.in, xzeng@hnu.edu.cn, rudi@emcc.at

Abstract. Spiking neural P systems, SN P systems in short, are com-
puting models based on the third generation of neuron models known as
spiking neurons. Recent results in neuroscience highlight the importance
of extrasynaptic activities of neurons, that is, features and functioning
of neurons apart from their synapses. Previously it was thought that
signals such as neuropeptides only assist neurons, but such signals have
been given further importance more recently. Inspired by recent results,
we introduce and define wireless SN P systems, or WSN P systems in
short. In WSN P systems no synapses exist, and we associate regular ex-
pressions for each neuron to decide which spikes it receives. We provide
two semantics of how to “interpret” the spikes released by neurons. A
specific register machine is simulated to show the different programming
style of WSN P systems compared to standard SN P systems and other
variants. This style emphasizes a trade-off: WSN P systems can be more
“flexible” since they are not limited by their synapses for sending spikes;
however, loosing the useful and directed graph structure requires careful
design of the rules and the expressions associated with each neuron. We
use prime numbers in constructing the expressions and rules of the neu-
rons to prove that WSN P systems are Turing complete in both spike
semantics.

2 D. Orellana-Mart́ın et al.

Keywords: natural computing · membrane computing · spiking neural
P systems · extrasynaptic signaling · neuropeptides

1 Introduction

The present work in a formal way introduces a variant of spiking neural P sys-
tems, in short SN P systems. SN P systems introduced in [20] are inspired by
spiking neurons and their network: the processors are neurons which are the
nodes in a directed graph; the edges are synapses which allow for the communi-
cation between neurons using a single object a referred to as a spike; the neurons
are spike processors which consume and produce spikes.

Some recent survey papers of SN P systems and variants include [24,12] and
more recently [6]. Since their introduction, it is known that SN P systems are
Turing-complete. SN P systems can also solve NP-complete problems, trading
time for space [25].

In the past two decades many variants of SN P systems have been intro-
duced depending on specific ingredients or features, mostly from biology, for
instance, the introduction of autapses [41], synaptic plasticity [7], polarisations
[46], synaptic schedules [5], neurogenesis [45]. Besides theoretical works, simu-
lators of SN P systems and variants are used to support research or pedagogy,
such as interactive and visual software in [14] with the main page in [48], and
the recent tutorial in [23]. Solutions to hard problems are also implemented in
parallel hardware such as in [17] which implements ideas from [28], with recent
and some state-of-the-art results in [16].

Wireless SN P systems, or WSN P systems in short, are a SN P system
variant defined in a formal way in the present work, previously introduced in an
informal way in a recent report [32]. One general reference for the bio-inspiration
of WSN P systems is from [26] with recent and detailed results from [38] and [39].
Briefly, such recent results emphasise the crucial and important role of neuronal
activities outside of their synapses, hence, their wireless features and functions.
Such recent works focus their attention on a specific animal known as C. elegans.

The worm elegans is a model organism, i.e., much is known about its biology
including its nervous system due to its “simplicity” of several hundred neurons
only. Despite the small size of this worm, its nervous system has interesting
biochemical complexity with structural features shared by larger animals [39].
Due to better techniques and technology, more recently there are improved works
to show how a wireless network (that is, without synaptic wiring) among nerve
cells or neurons is able to operate [38,39]. These recent works challenge the
idea that neurons communicate only or mainly through anatomical connections,
that is, through their synapses [26]. Such recent works reveal new details of a
connectome or wiring diagram among neurons, the neuropeptidergic connectome:
a connectome which is equally important and perhaps more diverse than the
synaptic connectome.

Furthermore, these recent works identify neuropeptides, the chemical mes-
sages released by neurons, as the basis for such wireless network among neurons.

Wireless SN P Systems 3

Neurons in the C. elegans worms can release neuropeptides, or have receptors for
such neuropeptides. The wireless network formed from these pairs of releasing
and receiving neurons is dense and decentralised, compared to the less dense and
more centralised network of synapses [39]. Such pairs are responsible for the ex-
istence of the wireless network, which means that neuropeptides are not random
chemicals floating between neurons. Neuropeptides affect the neural system over
larger scales of time and space, unlike synaptic signals restricted only to both
sides of the synapse [39]

Previously it was thought that neuropeptides only assisted in synaptic com-
munication. However, these recent works indicate the ubiquitous, important, and
direct role to neuron activation of neuropeptides and the corresponding wireless
network [26]. Neuropeptides are conserved and ancient chemicals in brains of
many organisms, including human brains, suggesting the pioneering work with
C. elegans can at least reveal useful structures or principles for brain func-
tion [38,39]. For instance, a recent technique allows for detecting neuropeptides,
which can assist in better understanding of both wired and wireless networks of
neurons including those of humans [44].

We use such recent results as inspirations for extrasynaptic functions of neu-
rons, that is, functioning without or outside the usual synapses. Contributions
of the present work include the formal introduction of wireless SN P systems
and proofs for their Turing-completeness. No synapses are present in the neu-
rons, while still using rules to consume and produce spikes. For each neuron we
associate a regular expression to decide what “forms” of spikes the neuron can
receive. We introduce two semantics for WSN P systems, based on the interpre-
tation of the spikes released in each step by the neurons: (i) the spike package
semantic considers the spikes as individual packages as released by each neuron;
(ii) the spike total semantic considers the sum of spikes released by all neurons.

We show how to program a specific WSN P system through the simulation of
specific register machine instructions. Such a simulation emphasises the rather
different way how to program WSN P systems compared with SN P systems
and their variants, due to the associated expression for each neuron and the lack
of synapses. Thus, we note that the directed graph structure of SN P systems
and variants is a very useful feature: some “flexibility” is gained in the sense
that the neurons are not limited to sending spikes only to neurons where their
synapses connect; however, losing the directed graph makes the programming
of the system more “involved” in the sense that more effort can be required to
design the rules and neurons.

The present work is organised as follows: In Section 2 we recall some prelimi-
naries needed to understand WSN P systems and their computations; the model
definition of WSN P systems is given in Section 3. An example of a WSN P
system, considered under two semantics, is used to illustrate two kinds of com-
putations in Section 4. In Section 5 we highlight the interesting way to program
WSN P systems through the simulation of a small and specific register machine.
This simulation also gives us an idea of the computing power and programming
of WSN P systems in a general purpose way. The proofs for computational com-

4 D. Orellana-Mart́ın et al.

pleteness are given in Section 6. Finally, conclusions and directions for future
work are in Section 7.

2 Preliminaries

In this section we only briefly mention some notions required for our definitions
and results. For more details on automata and language theory we refer to [29],
for their applications to membrane computing in [36,37].

Given a finite and nonempty alphabet V , by V ∗ we denote the set of all finite
strings over V ; V + = V ∗ \{λ}. The set of all multisets over V is denoted by V ◦.
The family of regular string languages is denoted by REG, the corresponding
family of regular multiset languages by PsREG (as it contains the Parikh images
of the regular string languages). NREG(a) denotes the family of regular multiset
languages over the one-letter alphabet {a}, as these directly correspond to linear
sets of natural numbers.

Definition 1. A register machine is a construct

M = (m,B, l0, lh, P)

where

– m is the number of registers,
– P is the set of instructions bijectively labeled by elements of B,
– l0 ∈ B is the initial label, and
– lh ∈ B is the final label.

The instructions of M can be of the following forms:

– p : (ADD(r), q(p), s(p)); p ∈ B \ {lh}, q(p), s(p) ∈ B, 1 ≤ r ≤ m.
Increase the value of register r by one, and non-deterministically jump to
instruction q or s.

– p : (SUB(r), q(p), s(p)); p ∈ B \ {lh}, q(p), s(p) ∈ B, 1 ≤ r ≤ m.
If the value of register r is not zero then decrease the value of register r
by one (decrement case) and jump to instruction q(p), otherwise jump to
instruction s(p) (zero-test case).

– lh : HALT .
Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each
register and by the value of the current label, which indicates the next instruction
to be executed. M is called deterministic if the ADD-instructions all are of the
form p : (ADD(r), q).

Throughout the paper, BADD(r) denotes the set of labels of ADD-instructions
p : (ADD(r), q(p), s(p)) of an arbitrary registers r, and BSUB(r) denotes the
set of labels of all SUB-instructions p : (SUB(r), q(p), s(p)) of a decrementable
register r. Moreover, for any p ∈ B \ {lh}, Reg(p) denotes the register affected
by the ADD- or SUB-instruction labeled by p; for the sake of completeness, in
addition Reg(lh) = 1 is taken.

Wireless SN P Systems 5

In the generating case, a computation starts with all registers being empty
and by executing the first instruction of P (labeled by l0); it terminates with
reaching the HALT -instruction and the output of a k-vector of natural numbers
in its last k registers. Without loss of generality, we may assume all registers
except the last k output registers to be empty at the end of the computation, and,
moreover, on the output registers, i.e., the last k registers, no SUB-instruction is
ever used, i.e., they are never decremented. The set of vectors of natural numbers
generated by M is denoted by Ps(M); if only sets of numbers are computed, we
write N(M).

It is known that register machines are Turing-complete, e.g., see [30], i.e.,
register machines characterise NRE (PsRE), the family recursively enumerable
sets of (vectors of) natural numbers. Hence, register machines are a convenient
model to be compared with models dealing with (sets of) numbers directly in-
stead of strings.

3 Definition of WSN P Systems

In this section, we define both the syntax and semantics of WSN P systems.
In fact, two different semantics can arise from the way the spikes are treated
when they are fired from a neuron. Syntax and semantics of WSN P systems
share similarities with SN P systems and their variants, for instance, we refer
to [20,34,37] and more recently to [24] for further details.

3.1 Syntax

Definition 2. A WSN P system of degree m ≥ 1 is a construct

Π = (O, σ1, . . . , σm)

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σi = (ni, Ei, Ri), 1 ≤ i ≤ m, is a neuron such that:

(a) ni ∈ N is the initial number of spikes in neuron σi;
(b) Ei ⊆ NFIN(a), the input filter of neuron σi;
(c) Ri is a finite set of rules of two possible forms:

i. E/ac → as where E ⊆ NREG(a) is a regular set of numbers over
O and c, s, d ∈ N, c, s ≥ 1 (spiking rules);

ii. as → λ where s ∈ N, s ≥ 1 (forgetting rules);

A WSN P system Π = (O, σ1, . . . , σm) of degree m ≥ 1 can be seen as a a
set of m neurons labeled by 1, . . . ,m such that:

1. n1, . . . , nm represent the initial multisets of objects a (spikes) situated at
the beginning in the m neurons of the system;

2. E1, . . . , Em are finite sets over O assigned to the m neurons of the system,
working as input filters for the spike packages allowed to enter the neuron;

6 D. Orellana-Mart́ın et al.

3. R1, . . . , Rm are finite sets of rules governing the dynamics of the system.

Remark 1. We mention that in this paper we refrain from considering delays,
as they are not needed in the following and only make definitions much more
complicated.

3.2 Applicability of Rules in a WSN P System

A configuration of a WSN P system Π at some moment of time t is described
as

Ct = ⟨(n1,t), . . . , (nm,t)⟩

with the number of spikes ni,t in each neuron i. The initial configuration of Π
is C0 = ⟨(n1), . . . , (nm)⟩.

A spiking rule E/ac → as ∈ Ri is applicable to a configuration Ct at a step t
if in such a configuration, there exists a neuron labelled by i such that ani,t ∈ E.
The application of such a rule to that neuron i produces the following effects: c
spikes are removed from such a neuron i and it produces (we also say fires) the
s spikes in the environment.

A forgetting rule as → λ ∈ Ri is applicable to a configuration Ct at a moment
t if in such a configuration, there exists a neuron labelled by i such that it has
exactly s spikes. The application of such a rule to that neuron i removes the s
spikes from such a neuron without generating any spike.

3.3 Semantics

Two possibilities arise regarding how the produced spikes of some neurons are
received by the same or other neurons:

1. spike packages semantics: Each package of spikes is treated separately in the
following way:

Let {ac1 , . . . , ack} be the multiset of packages of spikes produced by neurons
that have applied a spiking rule in the current step. Thus, for each acj , only
all the neurons σi such that acj ∈ Ei receive cj spikes.

2. total spikes semantics: we take the sum of all the spikes produced by the
neurons of the system following way:

Let {ac1 , . . . , ack} be the multiset of packages of spikes produced by neurons

that have applied a spiking rule in the current step, and let c =
k∑

j=1

cj . Then

only the neurons σi such that ac ∈ Ei receive c spikes.

These two semantics in the following will be abbreviated by pac and tot,
respectively.

Wireless SN P Systems 7

3.4 Computations in a WSN P System

At some instance t we say the configuration Ct of the WSN P system Π produces
a configuration Ct+1 in one step – we denote that by Ct ⇒Π Ct+1 – by executing
the following two substeps:

– all neurons apply one rule (if possible);
– each neuron σi according to the underlying semantics α ∈ {pac, tot} takes

the (packages of) spikes produced in the first substep from the environment
if they can pass the input filter Ei of σi.

We assume a global clock to synchronise the computations in Π, that is, if a
neuron can apply a rule then it must do so. In every step Π is locally sequential
since at most one rule in each neuron can be applied, but globally parallel as
more than one neuron can apply a rule. If more than one rule in a neuron can
be applied, the rule to apply is chosen in a nondeterministic way.

A computation of a WSN P system Π is defined as a (finite or infinite)
sequence of configurations C = (C0, C1, . . . , Cn, . . .), where C0 is the initial con-
figuration of Π and Ct ⇒Π Ct+1 for all t.

If after n steps no more rules as described above can be applied, we say that
Π halts after n steps, and C = (C0, C1, . . . , Cn) is called a halting computation.

3.5 Output

Let
Π = (O, σ1, . . . , σm)

be a WSN P system working in the semantics α ∈ {pac, tot}.
There are several ways how at the end of a halting computation the output

of the system can be obtained:

– The output consists of a k-vector of natural numbers given by the number
of spikes in some designated output neurons σj1, . . . , σjk; in that case the
whole WSN P system is given as

Π = (O, σ1, . . . , σm; j1, . . . , jk),

and we may also distinguish the following subcases:
• we write Psα,k−out(Π), if the numbers in the k-vector are directly given
by the number of spikes contained in the output neurons;

• if the numbers for the output vector are encoded in the number of spikes
contained in the output neurons by a specific function f like an expo-
nential function, we write Psα,outf (Π); as a special case, we consider f
to be a linear function, in which case we also write Psα,k−outl(Π);

– The output is obtained from a designated output neuron σi0 , 1 ≤ i0 ≤ m;
in that case the whole WSN P system is given as

Π = (O, σ1, . . . , σm; i0),

and we may also distinguish the following subcases:

8 D. Orellana-Mart́ın et al.

• the output vector with k components is given by k + 1 spikes sent to
the environment by the output neuron σi0 , and we write Psα,kWSNP ;
given the sequence of time instances ⟨t1, . . . , tk+1⟩ when the k+1 spikes
have been sent out by the output neuron σi0 , the k components of the
output vector are obtained as the time intervals ⟨t2 − t1, . . . , tk+1 − tk⟩;
in this case we write Psα,k−int(Π);

• the output vector with k components is given by k sequences of consec-
utive spikes sent to the environment by the output neuron σi0 , and we
write Psα,k−sequ(Π).

In all the variants described above, we replace Ps by N , if only one natural
number is to be obtained as output.

The families of sets of k-vector of natural numbers obtained by WSN P sys-
tems as described above are denoted by Psα,k−outWSNP , Psα,k−outfWSNP ,
Psα,k−intWSNP , and Psα,k−sequWSNP . If only sets of natural numbers are
considered, we denote the corresponding families of sets of natural numbers by
Nα,outWSNP , Nα,outfWSNP , Nα,intWSNP , and Nα,sequWSNP .

Remark 2. In the second case described above with the designated output neu-
ron σi0 we can think of σi0 as the interface of Π to the environment. As a
technical detail we mention that in contrast to SN P systems and other variants,
the firing of σi0 should only send spikes to the environment, but none of the
neurons in Π including σi0 itself should receive the spikes produced by σi0 . This
may be accomplished by avoiding a to be contained in any of the input filters
Ei, 1 ≤ i ≤ m.

4 An Example with the Two Semantics

In this section, as an example we consider the WSN P systemΠ1 shown in Figure
1. We use Π1 to explain the definitions and the two semantics from Section 3.
For short, Π1 has three neurons, each labeled by a pair (i, Ei) for 1 ≤ i ≤ 3.
Each neuron has associated the finite input filter Ei to check which number(s)
of spikes it can receive. For instance, neurons σ1 and σ2 have E1 = E2 = {a},
which means they can only receive spikes of the form a1 = a fired from other
neurons or for σ1 even including spikes sent from itself. We note that the rule set
of σ2 is empty, so the number of spikes inside can only either remain the same
or increase.

4.1 Semantics 1: Spike Packages

We first consider semantics 1, which we refer to as spike packages semantics. It
only considers spikes arriving in “packages” sent by neurons to the environment,
not the total number of spikes in the environment. To help with clarifying the
computation of Π1 using the spike packages semantics we refer to the configu-
ration tree in Figure 2.

Wireless SN P Systems 9

a
r1 : a2/a → a2

r2 : a → a

(1, E1 = {a})

a

(2, E2 = {a})

a2

r3 : a2 → a
r4 : a2 → a2

(3, E3 = {a2})

Fig. 1. Π1 is an example of a wireless SN P system.

⟨1, 1, 2⟩

⟨2, 3, 0⟩ ⟨1, 2, 2⟩

⟨1,3,2⟩ ⟨2, 4, 0⟩ ⟨1,3,2⟩

⟨2,5,0⟩ ⟨1,4,2⟩ ⟨1,4,2⟩

⟨1,5,2⟩ ⟨2, 6, 0⟩ ⟨1,5,2⟩

...
...

...

r2 r3

r2 r4

r1
r2r3

r2r4

r2r3
r2r4 r1

r1 r2r3
r2r4

r2r3 r2r4 r1

Fig. 2. The tree of configurations of Π1 in Figure 1 using semantics 1 (spike packages
semantics). The initial configuration is ⟨1, 1, 2⟩. Except for ⟨1, 1, 2⟩, each node in the
tree is a successor configuration obtained by having applied the rules labeling the
connecting edge. Nodes (configurations) in bold are nodes repeated elsewhere in the
portion of the tree depicted here.

The initial configuration of Π1, assuming the (contents of the) neurons to be
listed according to the total ordering 1, 2, 3, is C0 = ⟨1, 1, 2⟩, i.e., neurons 1, 2,
and 3 contain 1, 1, and 2 spikes, respectively. Due to C0 and the nondeterminism
in Π1 found only in neuron σ3, there is a choice between applying rule r2 as well
as either rule r3 or rule r4.

If rule r2 is applied, one spike is consumed in neuron σ1 and sent to both
neuron σ1 and neuron σ2 due to their input filters E1 = E2 = {a}.

Also applying rule r3 means that σ3 consumes two spikes but fires only one
spike. Again this single spike from σ3 arrives in σ1 and σ2 due to their input

10 D. Orellana-Mart́ın et al.

filters. Hence, in total we have got the transition C0
r2r3=⇒ C1,0 = ⟨2, 3, 0⟩, i.e., by

applying r2 and r3 we obtain configuration C1,0 from configuration C0.
Now we onsider the case when we apply rule r4 together with rule r2 instead.

The effect of applying rule r2 is still to return a spike to σ1 and to increment
the number of spikes in σ2. The effect of r4 is reflexive, i.e., in neuron σ3 two
spikes are consumed and then returned to itself, since E3 = {a2}. Hence, we

have the transition C0
r2r4=⇒ C1,1 = ⟨1, 2, 2⟩, i.e., by applying r2 and r4 we obtain

configuration C1,1 from configuration C0.
Hence, in total, from the initial configuration C0 we get the two successor

configurations C0,1 = ⟨2, 3, 0⟩ and C0,2 = ⟨1, 2, 2⟩ as depicted in the tree of
Figure 2.

As can be seen in the configuration tree in Figure 2, each branch of com-
putations in Π1 is non-halting, i.e., Π1 always arrives at a configuration where
some rule can still be applied. The number of spikes in neuron σ2 continues to
increase. More precisely, for all b ≥ 1 we have the following transitions:

– ⟨2, b, 0⟩ r1=⇒ ⟨1, b, 2⟩,
– ⟨1, b, 2⟩ r2r3=⇒ ⟨2, b+ 2, 0⟩,
– ⟨1, b, 2⟩ r2r4=⇒ ⟨1, b+ 1, 2⟩.

4.2 Semantics 2: Total Spikes

We now consider the WSN P system Π1 from Figure 1 together with the total
spikes semantics. The corresponding configuration tree of Π1 is now given by
Figure 3.

From the same initial configuration C0 = ⟨1, 1, 2⟩ the computation proceeds
in a different way:

The transition C0
r2r4=⇒ C1,1 = ⟨0, 1, 0⟩ is a halting configuration, i.e., no more

rules can be applied in Π1. We note that the effect of applying rules r2 and r4
from C0 is to release a total number of 3 spikes followed by the halting of Π1,
because the three spikes cannot enter any of the neurons, since none of them has
a3 in its input filter.

Only the subtree with transition C0
r2r3=⇒ C1,0 = ⟨0, 1, 2⟩ continues to infinitely

grow the number of spikes in neuron σ2. In fact, for all b ≥ 1, applying rule
r4 to the configuration ⟨1, b, 0⟩ yields the configuration ⟨1, b, 0⟩ again, whereas
applying rule r2 to the configuration ⟨1, b, 0⟩ yields the configuration ⟨1, b+1, 0⟩.
In both cases we see that every branch leads to a non-halting computation.

5 Programming WSN P systems

In order to give an idea how to program WSN P systems, including their simi-
larities and differences with SN P systems and their other variants, we consider
a very small register machine M :

M = (m,B = {1, 2, 3}, l0 = 2, lh = 3, P)

Wireless SN P Systems 11

⟨1, 1, 2⟩

⟨0,1,2⟩ ⟨0, 1, 0⟩ (HALT)

⟨1, 2, 0⟩ ⟨0,1,2⟩

⟨1, 3, 0⟩

⟨1, 4, 0⟩

...

r2 r3

r2 r4

r3

r4

r2

r2

r2

Fig. 3. Configuration tree for Π1 in Figure 1 using semantics 2 (total spikes semantics).
As in Figure 2, edges between nodes (configurations) are labeled by the rules applied
from the source to destination nodes. Moreover, configurations in bold means they are
repeated elsewhere in the tree.

with the following instructions in P :

1 : (ADD(r1), 2, 3), 2 : (SUB(r1), 1, 3), and 3 : HALT.

We just mention that this very simple register machine model toggles be-
tween incrementing and decrementing register r1 using 1 : (ADD(r1), 2, 3) and
2 : (SUB(r1), 1, 3 alternatingly, always choosing the first option in the ADD-
instruction, before finally ending up with choosing the second option to halt,
with the final contents of the register being 1. Observe that we never reach the
zero-test branch of the SUB-instruction.

We simulate the instructions of M using a WSN P system ΠM defined as
follows: We map prime numbers to elements of M and use the mapping as
addresses in ΠM . The idea of addresses and their use in the simulation will
become clear in a moment. In general, for elements of an arbitrary register
machine we use the total order ⟨l1, l2, . . . , r1, r2, . . .⟩ and the correponding odd
prime numbers ⟨P (l1), P (l2), . . . , P (r1), P (r2), . . .⟩, where all the prime numbers
in this list have to be different.

Specific forM we use the following mapping of its elements to prime numbers:

P (1) = 11, P (2) = 13, P (2) = 17, P (r1) = 19.

12 D. Orellana-Mart́ın et al.

Starting from the first instruction labeled by 1 of M , we map it to the prime
number 11, followed by mapping 2 and 3 to 13 and 17, respectively. After having
mapped prime numbers to all the instructions of M , we map the next prime
numbers to registers: there is only one register in M , i.e., r1, which is mapped
to 19. The reason why we start the mapping with the first prime number to be
11 will become clear in a moment: we use 3, 5, and 7 for different purposes. In
general, if we need some of the first prime numbers for specific programming
purposes, we may start the mapping with any odd prime number and continue
with the next prime numbers in a consecutive way.

In general, the mapping we use for the contents n of register n is having
a2P (ri)n spikes in the neuron σri . Following the mapping of prime numbers above
to elements of M : if n is the number stored in register r1, the associated neuron
σr1 carries aP (r1)n = a2∗19n spikes.

The WSN P system Π for M now is defined as follows:

Π = ({a}, σ1, σ2, σ3, σaux1
, σreg1)

For every production labeled by 1, 2, 3, Π contains the corresponding neuron
σ1 = (a11, R1 = {a11 → a11∗19}, E1 = {a11),
σ2 = (λ,R2 = {a13 → a13∗19}, E2 = {a13}),
σ3 = (λ, ∅, E3 = {a17}).
Since 1 is the initial instruction we assume that at the beginning σ1 contains

11 spikes, i.e., a11, to allow for the application of its rule and thus to start the
simulation.

In general, if instruction p is to be applied in M , then the corresponding
simulation in Π starts by applying the rule in neuron σp.

If we chose the output strategy outl we can stop the simulation of M as soon
as the HALT -instruction 3 is reached, which simply is implemented by having
no rules in the corresponding neuron σ3, i.e., also the computation in Π halts.

At the beginning we assume register 1 to be empty, hence, the initial number
of spikes in neuron 1 is empty (indicated by a0 = λ).

σaux1
= (λ,Raux1,ADD ∪Raux1,SUB, Eaux1

= {a11∗19, a13∗19, a17∗19};
σreg1 = (λ,R1,ADD ∪R1,SUB, Ereg1 = {a2∗19, a3∗19}).

Raux1,ADD = {a11∗19/a11∗18 → a2∗19, a11 → a13, a11 → a17};

Raux1,SUB = {a13∗19/a13∗18 → a3∗19, a13+5∗19 → a11, a13+7∗19 → a17};
Rregr,SUB = {{a(5+j)∗19 | 0 ≤ j}/a5∗19 → a5∗19, a3∗19 → a7∗19}.

Simulating the ADD-Instruction

The simulation of the ADD-instruction 1 : (ADD(r1), 2, 3) is started whenever
neuron σ1 contains a11, for example, already in the initial configuration. So let
us assume that at time t the whole configuration described by contents of the
five neurons (described by natural numbers) is

Wireless SN P Systems 13

C(t) = ⟨11, 0, 0, 0, 2 ∗ 19n⟩
for some n ≥ 0.
Having 11 spikes in neuron σ1 allows for the application of the rule
a11 → a11∗19,
and the 11 ∗ 19 spikes according to the input filters can enter neuron σaux1

,
i.e., we obtain

C(t+ 1) = ⟨0, 0, 0, 11 ∗ 19, 2 ∗ 19n⟩.

Now in neuron σaux1
the rule

a11∗19/a11∗18 → a2∗19

is to be applied, leaving 11 spikes in neuron σaux1
, whereas 2 ∗ 19 spikes can

enter the register neuron σreg1 , i.e., we obtain
C(t+ 2) = ⟨0, 0, 0, 11, 2 ∗ 19(n+ 1)⟩.

Finally, one of the two rules a11 → a13 and a11 → a17 is applied in neuron
σaux1 , thus yielding one of the configurations

C(t+ 3) = ⟨0, 13, 0, 0, 2 ∗ 19(n+ 1)⟩ (activating neuron σ2)
and
C(t+ 3) = ⟨0, 0, 17, 0, 2 ∗ 19(n+ 1)⟩ (activating neuron σ3).

Simulating the SUB instruction

Let us assume that neuron σ2 has been activated by having 13 spikes in this
neuron, i.e., at time t the whole configuration described by contents of the five
neurons (described by natural numbers) is

C(t) = ⟨0, 13, 0, 0, 2 ∗ 19n⟩
for some n ≥ 0. Having 11 spikes in neuron σ2 allows for the application of the
rule a13 → a13∗19, and the 13 ∗ 19 spikes according to the input filters can enter
neuron σaux1

, i.e., we obtain
C(t+ 1) = ⟨0, 0, 0, 13 ∗ 19, 2 ∗ 19n⟩.

The simulation of the SUB-instruction now proceeds with applying the rule
a13∗19/a13∗18 → a3∗19 in neuron σaux1 . The 3 ∗ 19 spikes can only enter neuron
σreg1 , i.e., we obtain the configuration

C(t+ 2) = ⟨0, 0, 0, 13, 2 ∗ 19n+ 3 ∗ 19⟩.

In the third step of the simulation, the continuation depends on the value
of n, i.e., on the contents of neuron σreg1 :

n > 0 With at least 5 ∗ 19 spikes in σreg1 , the rule
{a(5+j)∗19 | 0 ≤ j}/a5∗19 → a5∗19

is applied and the 5 ∗ 19 spikes are entering neuron σaux1
, which results in

the configuration
C(t+ 3) = ⟨0, 0, 0, 13 + 5 ∗ 19, 2 ∗ 19(n− 1)⟩.

Finally, in the fourth step of the simulation, in σaux1
the rule a13+5∗19 → a11

is applied, yielding 11 spikes in σ1 and the configuration

14 D. Orellana-Mart́ın et al.

C(t+ 4) = ⟨11, 0, 0, 0, 2 ∗ 19(n− 1)⟩.

n = 0 With only 3 ∗ 19 spikes in σreg1 , the rule a3∗19 → a7∗19 has to be
applied, and the 7 ∗ 19 spikes are entering neuron σaux1

, which results in the
configuration
C(t+ 3) = ⟨0, 0, 0, 13 + 7 ∗ 19, 0⟩.

Finally, in the fourth step of the simulation, in σaux1
the rule a13+7∗19 → a17

is applied, yielding 17 spikes in σ3 and the configuration
C(t+ 4) = ⟨0, 0, 17, 0, 0⟩.

According to the explanations given above, we see that the subtraction in-
struction 2 : (SUB(r1), 1, 3) of M is correctly simulated: if register r1 contains a
non-zero value, then it is decremented, i.e., the number of spikes in neuron σreg1

is reduced by 2 ∗ 19, and the next instruction to be simulated is 1, otherwise the
number in register r1 and also the number of spikes in σreg1 finally remains zero
and 3 is the next instruction.

Using prime numbers as “addresses” for each neuron and for choosing the
correct rules allows for correct simulations. Such addressing we use not only in
the input filters associated with each neuron, but also with the number of spikes
released by the neurons.

6 Turing-completeness of WSN P Systems

In this section we generalise the ideas provided in Section 5 to prove that WSN
P systems are Turing-complete by simulating an arbitrary register machine. In
Theorem 1 we show that WSN P systems can generate any language in PsRE
using the spike packages semantics, and from the proof of this theorem immedi-
ately in Corollary 1 that the same can be achieved with WSN P systems using
the the total spikes semantics.

Theorem 1. Pspac,outlWSNP = PsRE.

Proof. We only prove one direction, i.e., the inclusion PsRE ⊆ Pspac,outlWSNP .
Consider an arbitrary register machine

M = (m,B, l0, lh, P)

with |B| = l = |P | and the last k of the m registers being the output registers,
which according to Section 2 are never never associated with a SUB-instruction,
i.e., the value in these registers only increases or remains unchanged.

We now construct a WSN P system Π to simulate M and its instructions.
Without loss of generality we assume a total order starting with the instructions,
followed by the registers, of M , i.e., we list instructions and registers as

⟨l0, l1, . . . , lh, r1, . . . , rm⟩ = ⟨1, 2, . . . , lh = l, l + 1, . . . , l +m⟩.

Wireless SN P Systems 15

Next we assign a prime number P (i) to each element i of this list, starting
from an arbitrary odd prime number in such a way that the preceding ones
can be used for other purposes as already explained for the example in the
previous section. In the current proof, we may start with P (l0) = P (1) = 11,
i.e, the 4-th odd prime number, P (2) = 13, . . ., P (lh) = P (l) = (4 + l)th odd
prime number, followed by P (r1) = P (l + 1) = (l + 5)th odd prime number,
. . . , P (rm) = P (l +m) = (4 + l +m)th odd prime number.

If a register ri contains the number n then the corresponding neuron σri con-
tains a2P (ri)n spikes, i.e., the number n is encoded by the linear function 2P (ri)n.
Specific neurons in Π are used to simulate the ADD- and SUB-instructions of
M , respectively.

The WSN P system Π now is defined as follows:

Π = ({a}, σ1, . . . , σl, σaux1 , . . . , σauxm , σreg1 , . . . , σregm)

For every production (labeled by p), Π contains the neuron

σp = (λ,Rp, Ep = {aP (p)})

with Rp = {aP (p) → aP (p)P (rReg(p))} for any 2 ≤ p ≤ l − 1.
Since l0 = 1 is the initial instruction we assume that at the beginning σl0

contains aP (l0), i.e., aP (1), spikes to allow for the application of its rule and thus
to start the simulation, i.e.,

σ1 = (aP (1), R1, E1 = {aP (1)})

In general, if instruction p is to be applied in M , then the corresponding
simulation in Π starts by applying the rule in neuron σp.

For the chosen output strategy outl we can stop the simulation of M as
soon as the HALT -instruction is reached, which simply can be implemented by
having no rules in the corresponding neuron σlh , i.e.:

σlh = σl = (λ, ∅, Elh = El = {aP (lh)})

We already here mention that for other output strategies, neuron σlh may
have to start a rather complex output module to obtain the desired output.

All registers at the beginning are empty, hence, the initial number of spikes
in the following neurons is empty (indicated by a0 = λ).

As will become obvious later, for every register r, maxr can be defined as
maxr := max{P (p) | p ∈ BADD(r) ∪BSUB(r)}.

For every decrementable register r, 1 ≤ r ≤ m− k, we take:
σauxr

= (λ,Rauxr,ADD ∪Rauxr,SUB, Eauxr
= {ajP (regr) | 1 ≤ j ≤ maxr};

σregr = (λ,Rr,ADD ∪Rr,SUB, Eregr = {a2P (regr), a3P (regr)}).

Rauxr,ADD = {aP (p)P (regr)/aP (p)(P (regr)−1) → a2P (regr), aP (p) → aP (q(p)), aP (p) →
aP (s(p)) | p ∈ BADD(r)};

16 D. Orellana-Mart́ın et al.

Rauxr,SUB = {aP (p)P (regr)/aP (p)(P (regr)−1) → a3P (regr), aP (p)+5P (regr) →
aP (q(p)), aP (p)+7P (regr) → aP (s(p)) | p ∈ BSUB(r)};

Rregr,ADD = ∅;

Rregr,SUB = {{a(5+j)P (regr) | 0 ≤ j}/a5P (regr) → a5P (regr), a3P (regr) →
a7P (regr)}.

For every non-decrementable output register r, m − k ≤ r ≤ m, we simply
take Rauxr,SUB = Rregr,SUB = ∅.

In the following two subsections we are going to explain how an ADD-
instruction and a SUB-instruction are simulated by the neurons of Π as defined
above.

Simulating an ADD-instruction

Consider an ADD-instruction p : (ADD(r), q(p), s(p)) with p ∈ BADD(r). The
simulation of this ADD-instruction in Π involves the neuron for the instruction
p

σp = (λ,Rp, Ep = {aP (p)})
as well as the neurons for the affected register Reg(p) = r, i.e., σauxr

and σregr

with the only relevant rule set

Rauxr,ADD = {aP (p)P (regr)/aP (p)(P (regr)−1) → a2P (regr), aP (p) → aP (q(p)), aP (p) →
aP (s(p)) | p ∈ BADD(r)}.

Suppose that the simulation of instruction p starts at time t, i.e., at time t
neuron σp has P (p) spikes, and neuron σregr carries 2P (regr)n spikes encoding
the number n; moreover, neuron σauxr

is empty. This situation can be captured
by describing the subconfiguration C ′(t) = ⟨P (p), 0, 2P (regr)n⟩ only showing
the contents of the three neurons σp, σauxr ,and σregr . The simulation now takes
three steps:

Step 1 In the first step, neuron σp applies its only spiking rule, consumes
all P (p) spikes and firing P (p)P (regr) spikes, which only neuron σauxr can
receive due to its input filter Eauxr = {a(3+j)P (regr) | 0 ≤ j ≤ max}; hence,
we obtain
C ′(t+ 1) = ⟨0, P (p)P (regr), 2P (regr)n⟩.

Step 2 In the next step, the P (p)P (regr) spikes in neuron σauxr
allow it to

apply the rule (and only this one)
aP (p)P (regr)/aP (p)(P (regr)−1) → a2P (regr),
which consumes P (p)(P (regr)− 1) spikes and fires 2P (regr), which number
of spikes can only enter neuron σr, as its input filter is the only one con-
taining a2P (regr) spikes. Neuron σr receiving 2P (regr) spikes corresponds to
incrementing register r. Hence, we obtain
C ′(t+ 2) = ⟨0, P (p), 2P (regr)(n+ 1)⟩.

Wireless SN P Systems 17

Step 3 Neuron σauxr
now has P (p) spikes. Then two rules can be applied, to

be chosen in a nondeterministic way: applying either rule aP (p) → aP (q(p)) or
rule aP (p) → aP (s(p)), which corresponds to sending spikes either to neuron
σq(p) or neuron σs(p). We finally have
C ′(t + 3) = ⟨0, 0, 2P (regr)(n + 1)⟩ (if neither q(p) nor s(p) are p again,
otherwise, if p is activated again, we have
C ′(t+ 3) = ⟨aP (p), 0, 2P (regr)(n+ 1)⟩.

In this way, the ADD instruction is correctly simulated: starting from the
activation of neuron σp, the contents of σr is increased by 2(pr) spikes, corre-
sponding to an increment of register r. Afterwards, the computation continues
either with instruction q(p) or instruction s(p), chosen in a nondeterministic way,
which corresponds to activating either neuron σq(p) or neuron σs(p).

Simulating a SUB-instruction

Consider an instruction p : (SUB(r) : q, s in SUB(r). The simulation of this
SUB-instruction in Π involves the neuron for the instruction p

σp = (aP (p), Rp, Ep = {aP (p)})
as well as the neurons for the affected register Reg(p) = r, i.e., σauxr

and σregr

with the main relevant rule sets

Rauxr,SUB = {aP (p)P (regr)/aP (p)(P (regr)−1) → a3P (regr), aP (p)+5P (regr) →
aP (q(p)), aP (p)+7P (regr) → aP (s(p)) | p ∈ BSUB(r)};

Rregr,SUB = {{a(5+j)P (regr) | 0 ≤ j}/a5P (regr) → a5P (regr), a3P (regr) →
a7P (regr)}.

Suppose that the simulation of instruction p starts at time t, i.e., at time t
neuron σp has P (p) spikes, and neuron σregr carries 2P (regr)n spikes encoding
the number n; moreover, neuron σauxr

is empty. This situation can be captured
by describing the subconfiguration C ′(t) = ⟨P (p), 0, 2P (regr)n⟩ only showing
the contents of the three neurons σp, σauxr

,and σregr . The simulation now takes
four steps:

Step 1 In the first step, neuron σp applies its only spiking rule, consumes
all P (p) spikes and fires P (p)P (regr) spikes, which only neuron σauxr can
receive due to its input filter Eauxr

= {a(5+j)P (regr) | 0 ≤ j ≤ max}; hence,
we obtain
C ′(t+ 1) = ⟨0, P (p)P (regr), 2P (regr)n⟩.

Step 2 In the next step, the P (p)P (regr) spikes in neuron σauxr
allow it to

apply the rule (and only this one)
aP (p)P (regr)/aP (p)(P (regr)−1) → a3P (regr),
which consumes P (p)(P (regr) − 1) spikes and fires 3P (regr) spikes, which
number of spikes can only enter neuron σr, as its input filter is the only one
containing a3P (regr) spikes. Hence, we obtain

18 D. Orellana-Mart́ın et al.

C ′(t+ 2) = ⟨0, 3P (regr), 2P (regr)n+ 3)⟩.
We observe that the number of spikes in neuron σregr now is either at least
5P (regr) if n > 0 or else only 3P (regr).

n > 0: The number of spikes in neuron σregr now is at least 5P (regr):
Step 3 Hence, the rule {a(5+j)P (regr) | 0 ≤ j}/a5P (regr) → a5P (regr) can

be applied, i.e., 5P (regr) spikes can enter neuron σauxr
, but no other

neuron, i.e.,
C ′(t+ 3) = ⟨0, 5P (regr), 2P (regr)(n− 1)⟩.

Step 4 σauxr
now has 5P (regr) spikes and therefore applies rule

aP (p)+5P (regr) → aP (q(p)),
thus activating neuron σq(p) for the next step, and we finish with
C ′(t+ 4) = ⟨0, 0, 2P (regr)(n− 1)⟩ if q(p) ̸= p, otherwise, σp is activated
again, and we have
C ′(t+ 4) = ⟨aP (q(p)),0,2P (regr)(n−1)⟩.

n = 0: The number of spikes in neuron σregr now is exactly 3P (regr).
Step 3 Hence, the rule a3P (regr) → a7P (regr) has to be applied, i.e., 7P (regr)

spikes can enter neuron σauxr , but no other neuron, i.e.,
C ′(t+ 3) = ⟨0, 7P (regr), 0⟩.

Step 4 σauxr now has 7P (regr) spikes and therefore applies rule
aP (p)+7P (regr) → aP (s(p)),
thus activating neuron σs(p) for the next step, and we finish with
C ′(t+ 4) = ⟨0, 0, 0⟩ if s(p) ̸= p, otherwise, σp is activated again, and we
have
C ′(t+ 4) = ⟨aP (q(p)), 0, 0⟩.

Output

As the output vector of dimension k ⟨n1, . . . , nk⟩ is encoded in the k output
neurons ⟨σregm−k+1

, . . . , σregm⟩ in linear functions ⟨2P (m−k+1)n1, . . . , 2P (m−
k + 1)nk⟩, finally we write the WSN P system as:

Π = ({a}, σ1, . . . , σl, σaux1
, . . . , σauxm

, σreg1 , . . . , σregm , l+m− k+1, . . . , l+m)

Summing up, we have shown that Ps(M) = Pspac,k−outl(Π). ⊓⊔

Corollary 1. Pstot,outlWSNP = PsRE.

Proof. All modules in the proof for Theorem 1 are sequential, i.e., in any step,
at most one neuron fires. Hence, the modules also work together with the total
spikes semantics. ⊓⊔

Obviously, the two preceding results immediately infer the following result
for sets of natural numbers:

Corollary 2. Npac,outlWSNP = Ntot,outlWSNP = NRE.

Wireless SN P Systems 19

7 Discussions and Future Directions

In the present paper we have defined the syntax and semantics of wireless SN
P systems (for short, WSN P systems and proved their Turing-completeness,
based on the ideas started in the report [32]. Although the Turing-completeness
of WSN P systems has been expected, it is very interesting to see the effects of
losing the directed graph structure of SN P systems: in order to cope with this
problem, we associated finite filters with each neuron, and thus could use prime
numbers as “neuron addresses” when proving Turing-completeness.

The main novelty which can be found in WSN P systems is the idea of aban-
doning a static graph structure for the connection between the neurons being an
inherent part SN P systems or in general common in neural systems or networks.
This idea was motivated especially by recent discoveries in neuroscience, such
as those mentioned in Section 1, i.e., our increasing knowledge of extrasynaptic
signaling, of neuropeptides and their important influence in neuronal activities.
We also introduced two bio-inspired semantics how the “floating” spikes are
received by the neurons: the spike packages semantics and the total spikes se-
mantics. As a main feature for the communication between neurons we associate
a finite filter to each neuron thus allowing neurons to decide which (number of)
spikes to be taken from the spikes present in the environment after the firing of
the neurons. The the spike packages semantics also bears some resemblance to
using packets of data among networks of computers that, for instance, connect
wireless networks and the Internet.

The use of forgetting rules of the form as → λ, used to remove spikes without
producing spikes is common to SN P systems and many variants, but such rules
are not used in our completeness proofs (Section 6).

Another way to avoid such rules is to use rules like as → ax where x is not
found in the input filter of any neuron. In this way we still remove the s number
of spikes, which works perfectly for the but more care needs to be given using
the total spikes semantics.

In many variants of SN P systems the delay feature is common: there can be
a non-zero delay from releasing a spike and the spike arriving to another neuron.
It is well known, e.g., see [27], that the delay feature is not required for obtaining
universality; hence, we have not considered delays in this paper. On the other
hand, using delays can be useful, for instance, in modelling [8]. Therefore it may
be interesting to investigate the role of delays in WSN P systems.

Other common features of SN P systems and variants include the lack of
reflexive synapses, or restricting the number of spikes produced by a neuron to
be at most the number of consumed spikes. A variant known as SN P systems
with autapses allows reflexive synapses, but this variant has a static directed
graph as connection structure between the neurons, see [41]. For restricting the
number of produced spikes to be less or equal to the number of consumed spikes,
perhaps this can be achieved by using more time for the computation, using
additional neurons to generate the required spikes.

Regarding the two semantics as defined in Section 4, it is interesting to
see which types of problems or advantages computations in one semantics have

20 D. Orellana-Mart́ın et al.

over computations in the other one. As can be seen in the configuration trees in
Figure 2 and Figure 3, for the same Π1 the computations can be rather different.

Another interesting extension or semantics for WSN P systems is the idea
of decay or attenuation of spikes: it is assumed that spikes (especially if delays
are involved) can “float” without change for an arbitrary duration in time or
distance in space between the neurons. It may be interesting to introduce such
decay or attenuation in WSN P systems, similar to the decay of electromagnetic
signals used in wireless networks of computers. Decaying spikes were already
considered in SN P systems, e.g., see [13].

In programming ΠM , we could make it operating in a sequential way, i.e., in
each step at most one neuron applies a rule. The sequential restriction has been
applied to SN P systems as early as in [18], and more recently with variants hav-
ing dynamic topologies in [7,5]. It may be interesting to investigate the influence
of using more parallelism and to see what kinds of restrictions and computations
can/cannot be obtained in terms of neurons, rules, etc.

Another interesting direction is to consider matrix representations of WSN
P systems, as done for SN P systems in [47] and more recently in [2]. Such
representations allow for faster simulations, such as parallel processors [16,1],
web browsers [14,31], and their automatic design [15,42]. A related variant with
matrix representation seems to be the model of SNPSP systems in [22]. SNPSP
systems introduce plasticity to allow adding or removing of synapses, as intro-
duced in [7].

Another variant known as SNP systems with scheduled synapses (in short,
SSNP systems) has synapse dynamics, by assigning schedules or (range of) time
steps when synapses exist or not. Besides SNPSP systems and SSNP systems,
another related variant are extended SN P systems in [4] which also have no
fixed and directed graph structure. We also may consider WSN P systems in the
context of the formal framework [43] for spiking neural P systems.

A few other lines of investigation on the computing power to be considered
in the future are the following ones:

– generating string languages with WSN P systems, for instance, see [9];
– providing “small” WSN P systems as in [33];
– realising or characterising sub-Turing computations of certain WSN P sys-

tems, especially to obtain decidable properties;
– studying normal forms, such as restricting the size of input filters, the com-

plexity of the regular sets in the rules and the number of rules in each
neuron, and so on; compare with some optimal results as described in [27]
We mention that in the present work we already have provided a first nor-
mal form, as forgetting rules and delays were not required for obtaining
Turing-completeness.

– In [35] they mention that such the regular applicability sets allow for an
oracle, though a “simple” and regular one. Thus it is of interest to simplify
such regular sets in WSN P systems, e.g., what is the power of such systems
with very restricted forms of regular sets as {a}+ and finite sets, in the sense
of [18,27].

Wireless SN P Systems 21

– Creating homogeneous systems, as for example, in [10,11] is also worth to be
investigated: with respect to the form of the input filters associated with the
neurons, or the number of produced spikes; these may need to be heteroge-
neous for some rules, unlike previous works on homogeneous SN P systems
where each neuron has the same rule set.

– In PSN P systems in [3] it is shown that two polarisations are enough,
recalling that PSN P systems have no regular applicability sets.

Besides computing power, computing efficiency is also interesting to be con-
sidered with WSN P systems,for instance, how to solve NP-complete problems
in a (non)uniform way, e.g., see [25].

Another interesting extension is the feature allowing for the creation of new
neurons as in [45] or using the idea of pre-computed resources, e.g., see [21].

Real world applications can perhaps benefit from WSN P systems with neu-
rons having the ability to “distinguish signals” using their associated input filters.
Applications may include improvements on intrusion detection [19] and skele-
tonising images [40], with more directions and open problems discussed in [24,6].

We end the present work by highlighting, based on the ideas presented here,
that the directed graph structure of an SN P system seems to be powerful,
at least useful in programming the system. But with using finite input filters
instead the loss of the static connection structure given by a directed graph,
WSN P systems could be shown to be a powerful computing model, too. For
proving Turing-completeness, we used a linear prime number representation for
representing the contents of a register when simulating register machines, which
seems to be a rather unconventional way to simulate register machines in the
area of membrane systems. These ideas have also shown that the programming
of WSN P systems is quite different and interesting in comparison with standard
SN P systems and their many variants.

Acknowledgements F.G.C. Cabarle is supported by the QUAL21 008 USE
project, “Plan Andaluz de Investigación, Desarrollo e Innovación” (PAIDI) 2020
and “Fondo Europeo de Desarrollo Regional” (FEDER) of the European Union,
2014-2020 funds. X. Zeng was supported by National Natural Science Foundation
of China (Grant Nos. 62122025, U22A2037, 62250028)

References

1. Aboy, B.C.D., Bariring, E.J.A., Carandang, J.P., Cabarle, F.G.C., De La Cruz,
R.T., Adorna, H.N., Mart́ınez-del Amor, M.Á.: Optimizations in CuSNP simulator
for spiking neural P systems on CUDA gpus. In: 2019 International Conference on
High Performance Computing & Simulation (HPCS). pp. 535–542. IEEE (2019)

2. Adorna, H.N.: Matrix representations of spiking neural P systems: Revisited. arXiv
preprint arXiv:2211.15156 (2022)

3. Alhazov, A., Freund, R., Ivanov, S.: Spiking neural P systems with polarizations–
two polarizations are sufficient for universality. In: Bulletin of the International
Membrane Computing Society. pp. 97–103. No. 1 (6 2016)

22 D. Orellana-Mart́ın et al.

4. Alhazov, A., Freund, R., Oswald, M., Slavkovik, M.: Extended spiking neural P
systems. In: Hoogeboom, H.J., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Mem-
brane Computing. pp. 123–134. Springer Berlin Heidelberg, Berlin, Heidelberg
(2006)

5. Bibi, A., Xu, F., Adorna, H.N., Cabarle, F.G.C., et al.: Sequential spiking neural
P systems with local scheduled synapses without delay. Complexity 2019 (2019)

6. Cabarle, F.G.C.: Thinking About Spiking Neural P Systems: Some Theo-
ries, Tools, and Research Topics. Journal of Membrane Computing 0 (2024).
https://doi.org/10.1007/s41965-024-00147-y

7. Cabarle, F.G.C., Adorna, H.N., Pérez-Jiménez, M.J., Song, T.: Spiking neural P
systems with structural plasticity. Neural Computing and Applications 26, 1905–
1917 (2015)

8. Cabarle, F.G.C., Buño, K.C., Adorna, H.N.: Time after time: notes on delays in
spiking neural P systems. In: Theory and Practice of Computation: 2nd Workshop
on Computation: Theory and Practice. Manila, The Philippines, September 2012,
Proceedings. pp. 82–92. Springer (2013)

9. Chen, H., Freund, R., Ionescu, M., Păun, Gh., Pérez-Jiménez, M.J.: On string
languages generated by spiking neural P systems. Fundamenta Informaticae 75(1-
4), 141–162 (2007)

10. De la Cruz, R.T.A., Cabarle, F.G.C., Adorna, H.N.: Steps toward a homogenization
procedure for spiking neural P systems. Theoretical Computer Science 981, 114250
(2024). https://doi.org/https://doi.org/10.1016/j.tcs.2023.114250

11. De la Cruz, R.T.A., Cabarle, F.G.C., Macababayao, I.C.H., Adorna, H.N., Zeng,
X.: Homogeneous spiking neural P systems with structural plasticity. Journal of
Membrane Computing 3, 10–21 (2021)

12. Fan, S., Paul, P., Wu, T., Rong, H., Zhang, G.: On applications of spiking neural
P systems. Applied Sciences 10(20), 7011 (2020)

13. Freund, R., Ionescu, M., Oswald, M.: Extended spiking neural P systems with de-
caying spikes and/or total spiking. International Journal of Foundations of Com-
puter Science 19(05), 1223–1234 (2008)

14. Gulapa, M., Luzada, J.S., Cabarle, F.G.C., Adorna, H.N., Buño, K., Ko, D.: Web-
Snapse reloaded: The next-generation spiking neural P system visual simulator
using client-server architecture. In: Proceedings of the Workshop on Computa-
tion: Theory and Practice (WCTP 2023). pp. 434–461. Atlantis Press (2024).
https://doi.org/10.2991/978-94-6463-388-7 26

15. Gungon, R.V., Hernandez, K.K.M., Cabarle, F.G.C., De la Cruz, R.T.A., Adorna,
H.N., Mart́ınez-del Amor, M.Á., Orellana-Mart́ın, D., Pérez-Hurtado, I.: GPU im-
plementation of evolving spiking neural P systems. Neurocomputing 503, 140–161
(2022)

16. Hernández-Tello, J., Mart́ınez-del Amor, M.A., Orellana-Mart́ın, D., Cabarle,
F.G.C.: Sparse spiking neural-like membrane systems on graphics process-
ing units. International Journal of Neural Systems 34(07), 2450038 (2024).
https://doi.org/10.1142/S0129065724500382, pMID: 38755115

17. Hernández-Tello, J., Mart́ınez-Del-Amor, M.A., Orellana-Mart́ın, D., Cabarle,
F.G.: Sparse matrix representation of spiking neuralsystems on GPUs. In: Inter-
national Conference on Membrane Computing. pp. 316–322. Chengdu, China and
Debrecen, Hungary (August 2021)

18. Ibarra, O.H., Woodworth, S., Yu, F., Păun, A.: On spiking neural p systems
and partially blind counter machines. In: Calude, C.S., Dinneen, M.J., Păun,
Gh., Rozenberg, G., Stepney, S. (eds.) Unconventional Computation. pp. 113–129.
Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

https://doi.org/10.1007/s41965-024-00147-y
https://doi.org/https://doi.org/10.1016/j.tcs.2023.114250
https://doi.org/10.2991/978-94-6463-388-7_26
https://doi.org/10.1142/S0129065724500382

Wireless SN P Systems 23

19. Idowu, R.K., Chandren, R., Othman, Z.A.: Advocating the use of fuzzy
reasoning spiking neural P system in intrusion detection. In: Asian
Conference on Membrane Computing ACMC 2014. pp. 1–5 (2014).
https://doi.org/10.1109/ACMC.2014.7065804

20. Ionescu, M., Păun, Gh., Yokomori, T.: Spiking neural P systems. Fundamenta
informaticae 71(2, 3), 279–308 (2006)

21. Ishdorj, T.O., Leporati, A.: Uniform solutions to SAT and 3-SAT by spiking neural
P systems with pre-computed resources. Natural Computing 7, 519–534 (2008)

22. Jimenez, Z.B., Cabarle, F.G.C., De la Cruz, R.T.A., Buño, K.C., Adorna, H.N.,
Hernandez, N.H.S., Zeng, X.: Matrix representation and simulation algorithm of
spiking neural P systems with structural plasticity. Journal of Membrane Comput-
ing 1, 145–160 (2019)

23. Ko, D., Cabarle, F.G.C., De La Cruz, R.T.: WebSnapse Tutorial: A Hands-On
Approach for Web and Visual Simulations of Spiking Neural P Systems. In: Bulletin
of the International Membrane Computing Society. vol. 16, pp. 137–153 (December
2023)

24. Leporati, A., Mauri, G., Zandron, C.: Spiking neural P systems: main ideas and
results. Natural Computing 21(4), 629–649 (2022)

25. Leporati, A., Mauri, G., Zandron, C., Păun, Gh., Pérez-Jiménez, M.J.: Uniform
solutions to SAT and Subset Sum by spiking neural P systems. Natural computing
8(4), 681–702 (2009)

26. Lloreda, C.L.: Wi-Fi for neurons: first map of wireless nerve signals unveiled in
worms. Nature 623(7989), 894–895 (2023)

27. Macababayao, I.C.H., Cabarle, F.G.C., De la Cruz, R.T.A., Zeng, X.: Normal forms
for spiking neural P systems and some of its variants. Information Sciences 595,
344–363 (2022)

28. Mart́ınez-Del-Amor, M.Á., Orellana-Mart́ın, D., Pérez-Hurtado, I., Cabarle,
F.G.C., Adorna, H.N.: Simulation of spiking neural P systems with sparse matrix-
vector operations. Processes 9(4) (2021). https://doi.org/10.3390/pr9040690

29. Mateescu, A., Salomaa, A.: Handbook of formal languages, volume 1: Word, lan-
guage, grammar, chapter formal languages: an introduction and a synopsis (1997)

30. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Inc., USA
(1967)

31. Odasco, A.N.L., Rey, M.L.M., Cabarle, F.G.C.: Improving GPU web simula-
tions of spiking neuralsystems. Journal of Membrane Computing pp. 1–16 (2023).
https://doi.org/https://doi.org/10.1007/s41965-023-00128-7

32. Orellana-Mart́ın, D., Cabarle, F.G.C., Paul, P., Zeng, X., Freund, R.: Neurons on
Wi-Fi. 20th Brainstorming Week on Membrane Computing and First Workshop
on Virus Machines, January 24–26, 2024, Sevilla, Spain ((to appear))

33. Păun, A., Păun, Gh.: Small universal spiking neural P systems. BioSystems 90(1),
48–60 (2007)

34. Păun, Gh.: Spiking neural P systems: A tutorial. Bull. Eur. Assoc. Theor. Comput.
Sci. 91, 145–159 (Feb 2007)

35. Păun, Gh., Pérez-Jiménez, M.J.: Spiking neural P systems. recent results, research
topics. In: Algorithmic bioprocesses, pp. 273–291. Springer (2009)

36. Păun, Gh.: Membrane computing: an introduction. Springer Science & Business
Media (2002)

37. Păun, Gh., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-
puting. Oxford Univeristy Press (2010)

38. Randi, F., Sharma, A.K., Dvali, S., Leifer, A.M.: Neural signal propagation atlas
of caenorhabditis elegans. Nature pp. 1–9 (2023)

https://doi.org/10.1109/ACMC.2014.7065804
https://doi.org/10.3390/pr9040690
https://doi.org/https://doi.org/10.1007/s41965-023-00128-7

24 D. Orellana-Mart́ın et al.

39. Ripoll-Sánchez, L., Watteyne, J., Sun, H., Fernandez, R., Taylor,
S.R., Weinreb, A., Bentley, B.L., Hammarlund, M., Miller, D.M.,
Hobert, O., Beets, I., Vértes, P.E., Schafer, W.R.: The neuropeptider-
gic connectome of C. elegans. Neuron 111(22), 3570–3589.e5 (2023).
https://doi.org/https://doi.org/10.1016/j.neuron.2023.09.043

40. Song, T., Pang, S., Hao, S., Rodŕıguez-Patón, A., Zheng, P.: A parallel image skele-
tonizing method using spiking neural P systems with weights. Neural Processing
Letters 50, 1485–1502 (2019)

41. Song, X., Valencia-Cabrera, L., Peng, H., Wang, J.: Spiking neural P systems with
autapses. Information Sciences 570, 383–402 (2021)

42. Uy, A.V.D., Wu, J.J.Q.C., Cabarle, F.G.C., De la Cruz, R.T.A., Adorna, H.N.:
Evolving spiking neural P systems with rules on synapses on CUDA. Philippine
Computing Journal 17, 10–31 (2022)

43. Verlan, S., Freund, R., Alhazov, A., Ivanov, S., Pan, L.: A formal framework for
spiking neural P systems. Journal of Membrane Computing 2(4), 355–368 (2020)

44. Wang, H., Qian, T., Zhao, Y., Zhuo, Y., Wu, C., Osakada, T., Chen, P., Chen,
Z., Ren, H., Yan, Y., Geng, L., Fu, S., Mei, L., Li, G., Wu, L., Jiang, Y.,
Qian, W., Zhang, L., Peng, W., Xu, M., Hu, J., Jiang, M., Chen, L., Tang, C.,
Zhu, Y., Lin, D., Zhou, J.N., Li, Y.: A tool kit of highly selective and sensitive
genetically encoded neuropeptide sensors. Science 382(6672), eabq8173 (2023).
https://doi.org/10.1126/science.abq8173

45. Wang, J., Hoogeboom, H.J., Pan, L.: Spiking neural P systems with neuron divi-
sion. In: Membrane Computing: 11th International Conference, CMC 2010, Jena,
Germany, August 24–27, 2010. Revised Selected Papers. pp. 361–376. Springer
(2011)

46. Wu, T., Păun, A., Zhang, Z., Pan, L.: Spiking neural P systems with polariza-
tions. IEEE transactions on neural networks and learning systems 29(8), 3349–
3360 (2017)

47. Zeng, X., Adorna, H., Mart́ınez-del Amor, M.Á., Pan, L., Pérez-Jiménez, M.J.:
Matrix representation of spiking neural P systems. In: Membrane Computing: 11th
International Conference, CMC 2010, Jena, Germany, August 24-27, 2010. Revised
Selected Papers. pp. 377–391. Springer (2011)

48. WebSnapse page (2023), https://aclab.dcs.upd.edu.ph/productions/

software/websnapse.

https://doi.org/https://doi.org/10.1016/j.neuron.2023.09.043
https://doi.org/10.1126/science.abq8173
https://aclab.dcs.upd.edu.ph/productions/software/websnapse
https://aclab.dcs.upd.edu.ph/productions/software/websnapse

	Wireless Spiking Neural P Systems

