
Enzymatic Numerical P System based Workflow
Scheduling in Cloud

S Raghavan1 and K. Chandrasekaran2

1 Indian Institute of Information Technology, Design and Manufacturing,
Kancheepuram

raghavans@iiitdm.ac.in
2 National Institute of Technology Karnataka Surathkal

kchnitk@ieee.org

Abstract. Workflow is an integral part of cloud infrastructure. Several
algorithms have been proposed for scheduling them but primarily the
proposed solutions are sequential. As Workflows get bigger with multi-
ple tasks, they consume more time, and it becomes difficult to schedule
them. Thus, an inherently parallel workflow scheduling algorithm using
Membrane computing paradigm is developed. Membrane Computing is
a computing paradigm inspired by living cells. Membrane computing is
realized using devices called as P Systems and these follow a maximally
parallel execution method. Our proposed approach for Workflow Schedul-
ing is realized using Enzymatic Numerical P System (ENPS). ENPS is a
numerical variant of P System. The ENPS model is the base with aspects
of the Heterogeneous Early Finish Time (HEFT) model added, giving it
a complete membrane-based parallel solution for workflow scheduling.
The proposed algorithm has been implemented using GPUPeP (Simu-
lator for ENPS) and a membrane generator is developed for automatic
creation of complex membrane structure proposed here. The proposed
method is compared with other standard methods with multiple number
of tasks and workflow structures.

Keywords: Enzymatic Numerical P System (ENPS) · Cloud Workflow
Scheduling · Membrane Computing · P System

1 Introduction

Cloud Computing has become as an inevitable part of today’s technological
industry. Cloud computing is a business model where everything is given as
service to the user, primarily in pay as you go model [2, 13]. Workflows are
collections of interconnected actions that typically have a single entrance point
and a single exit point. A workflow aims to complete one major activity separated
into several smaller, interconnected tasks. Workflow scheduling in the cloud is
the process of allocating these workflow tasks to various processing units. As
part of the virtualization process, virtual machines (VMs) are generated, and
many of these VMs can be a component of a physical machine [16].
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A simple workflow structure is given in Figure 1. Workflow Scheduling in general
is a method of mapping tasks to computational resources satisfying the objective
functions imposed by users. A workflow contains many tasks which are dependent
on each other. It is a NP-Complete problem, and there is no polynomial time
algorithm to accurately perform workflow scheduling.

Cloud Workflow Scheduling is a process of assigning the limited stock of VMs
to the tasks of the workflows satisfying certain criteria. A scheduling criteria
can be anything. The algorithm can be designed either to minimize or maximize
the scheduling criteria. In this case the criteria is minimizing the makespan [12].
Makespan is the time taken between the starting of the first task and completion
of the last task of the workflow. It is one of the prime objectives of workflow
scheduling.

Fig. 1: Cloud Workflow Basic Structure

Figure 1 represents a simple workflow in cloud as a directed acyclic graph. In
cloud computing, Infrastructure as a Service (IaaS) offers a suitable option for
workflow administration with computational components. In particular, they
give access to VMs of various kinds. These VMs can be used on-request, they
can be rented whenever they are required and terminated when they are not.
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As a rule, clients are charged just for what they utilize, as a rule in addition to
charging period characterized by the supplier. This flexibility makes environment
of IaaS perfect for the execution of logical workflows.

The aim of this paper is to find an inherently parallel method for solving this
problem of workflow scheduling. The reason of selecting a parallel model is based
on the fact that the complexity of workflow scheduling increases as the number of
nodes of a workflow increases. A normal workflow algorithm usually takes about
n3 time for execution, where n is number of tasks. Hence, by using a parallel
mechanism, this time complexity could be reduced.

There are several approaches that have been used for workflow scheduling in
cloud which are discussed in the literature review, where it is inferred that there
are very few parallel methods for workflow scheduling. Thus, an inherently par-
allel membrane computing model based on a heuristic approach is proposed for
workflow scheduling in cloud. Membrane computing is a Natural Computing
Model proposed by Gheorghe Paun [17]. It is a maximally parallel computing
paradigm and is realized using devices called P Systems.

There are a total of six sections in this paper; the next section elaborates litera-
ture on workflow scheduling in Cloud and Membrane Computing Applications.
The third section deals with the enzyme numerical P system (ENPS). The fourth
section discusses the ENPS-based methodology for Workflow Scheduling. The
prefinal section analyses the results. The final section concludes the work.

2 Literature Review

Workflows are an integral part of the cloud ecosystem. Of several important
processes associated with workflows, scheduling tends to be an important one. A
proper scheduling approach is an important component of a good workflow man-
agement system, as it ensures optimal utilization of resources. Many researchers
have proposed several heuristic and meta-heuristic algorithms for scheduling
cloud workflows [12]. Often the objectives considered are makespan, cost or en-
ergy.

Heuristics is a class of techniques in which, according to the nature of the prob-
lem, several specific approaches are applied to solve the problem more efficiently
and quickly [38]. Usually, these techniques are used for problems where exhaus-
tive solutions are a time consuming process (Many real-world problems). The
other class of solutions, called meta-heuristic approaches, which are similar to5

heuristic since they search for the solution to optimization problems in an nonex-
haustive and often in a probabilistic manner. There is a primary difference be-
tween heuristics and meta-heuristics, the former being problem specific and the
latter not being so.Meta-heuristic approaches are primarily used when exhaustive
methods are not available or are too expensive, and we can accept an approxi-10

mation to an optimal solution. The problem of workflow scheduling considered
in this study is a similar problem where obtaining exhaustive solutions is not
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possible. There are several heuristic and metaheuristic approaches for solving
this, out of which many are bioinspired approaches.

The objective of the work is to propose a workflow scheduler based on an in-15

herently parallel computing paradigm. Workflow scheduling is a NP−Complete
problem. There are many heuristic and meta-heuristic algorithms that have been
proposed for this problem in literature [8, 16, 38, 47]. Usually, heuristics find out
solution faster than meta-heuristic where as the latter consumes more time due
to exploration of solution space. The advantage of meta-heuristic, over heuristic20

is its generality, thereby, allowing us to apply the algorithm anywhere, wherever
it is suitable. There are many works in this area and few important works are
discussed here.

Calheiros and Buyya [3] have proposed Enhanced IC-PCP with Replication
(EIPR) algorithm which completes user tasks within given deadline in public25

cloud. Zhang et al. [40] have proposed a method, Iterative Ordinal Optimiza-
tion (IOO) method. This method uses iterative approach. Similarly, Wu et al.
[38] have proposed a heuristic algorithm named Critical Greedy Algorithm. This
algorithm’s main goal is to reduce the workflow’s end to end delay under finan-
cial constraint. Zhu et al. [47] have proposed an Evolutionary Multi-objective30

workflow scheduling algorithm which optimizes both cost and makespan on IaaS.

Other than these algorithms discussed there are several other meta-heuristic
algorithms available. Wu et al. [39] have proposed a meta-heuristic algorithm
L-Ant Colony Optimization (L-ACO). The main objective of the algorithm is
to minimize execution cost of workflow by meeting deadline constraint. Chen35

et al. [4] worked on a method for workflow scheduling called as Multi-Objective
Ant Colony System (MOACS) approach for cloud workflow scheduling. Pandey
et al. [16] have proposed a Particle Swarm Optimization (PSO) based algorithm.
This algorithm shows that it is three times better than Best Resource Selection
(BRS). Another work related to workflow scheduling is presented by Rodriguez40

and Buyya [30] using a meta-heuristic algorithm, PSO is used for resource provi-
sioning and task scheduling on scientific workflows on IaaS, thereby minimizing
execution time and meeting deadline constraint.

Nasonov et al. [14] have proposed a hybrid algorithm which combines both HEFT
and genetic algorithm. The main objective is to improve the makespan of work-45

flow, which the algorithm achieves. Mansouri et al. [11] have proposed hybrid
task scheduling strategy Fuzzy System and Modified PSO (FMPSO) for im-
proving makespan. Su et al. [33] have proposed cost efficient task scheduling
algorithm using two heuristic strategies. The main objective is to reduce the
makespan and this algorithms successfully does that.50

There is an important method for the heterogeneous machines, that is one of the
first heuristic methods for workflow scheduling [34]. The parameter considered
for optimization is makespan of the workflow. The heuristic method proposed is
one of the best heuristics for workflow scheduling over heterogeneous components
and it has given better results than other standard methods of that time and is55
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considered as one of the best methods till date. This method’s logic is considered
in the present work to develop an approach that uses strict membrane computing
structure for workflow scheduling in cloud.

Apart from these works there is an important work which has come in late 2014,
where, for the first time Membrane computing model was used for Workflow60

Scheduling [1]. The developed model though based on membrane computing is
quite different from the model that is proposed in this paper. Ahmed et al. [1]
proposed a membrane inspired model that imbibes the structure of P System but
it doesn’t follow all the membrane-based execution rules. It is a workflow schedul-
ing approach that uses only the hierarchical structure of membrane instead of65

using P System as a computing paradigm. Thus, the mentioned approach by [1]
can be called as a membrane inspired method which solves the workflow in an
hierarchical fashion and it does not use strict rule based model of P System.

Considering the literature for scheduling workflows, heuristic solutions would be
a good choice for scheduling workflows and at the same time the time complexity70

should be reduced. Hence, a parallel model can be used to solve this problem
of complexity on an exhaustive method. Thus, a suitable parallel model is to be
analysed and selected. There are several parallel models available, many of them
are directly based on hardware or software that is being used at the base. So,
to have a generic model which can be inherently parallel at its core, the focus75

moved to natural parallel computing models. There are several Natural and
Unconventional computing models available like DNA Computing, Amorphous
computing [7]. Among all these models, Membrane computing is selected owing
to its lucid and rich structure that assures maximal parallelism. P System, which
are the devices used to realize membrane computing are found suitable for this80

problem, owing to its maximal parallelism property.

Membrane computing paradigm can be effectively applied to multiple problems,
as membrane-based algorithms. Membrane-based algorithms are either loosely
or strictly based on the membrane computing paradigm. Several problems have
been solved using membrane-based algorithms and some of them have been85

mentioned here. P System based optimization algorithm have been developed by
Huang and Wang [6] which was one of the first applications and later membranes
were also applied for combinatorial optimization problem [42, 46]. Further in the
area of image processing a method for image segmentation [35] and methods for
image thresholding [22, 23] have been proposed. Membrane-based algorithms90

have been heavily applied for clustering, primarily to enhance their efficiency
[24, 25]. The algorithms have also found its application to the area Evolutionary
Computing, forming a completely new area called as Evolutionary membrane
algorithm, which are discussed in detail by Zhang et al. [41]. Apart from this P
System has also been used for enhancing Particle Swarm Optimization [32, 36].95

P System is a vast area with several models being a part of its helm. An appro-
priate model to suit the needs had to be selected.



6 S. Raghavan et al.

There are several variants of P System currently available for use. Primarily,
they can divided into two types; Symbolic P System and Numerical P System.
Symbolic P System uses symbols and rewriting rules which form as the base unit100

of this model [17, 19]. These were the first to be proposed and studied as part of
P System models. Because of its symbolic nature, there were several problems
that could not be modelled using these type of models; mainly it was difficult
to model numeric based problems. Hence, there was a requirement of some vari-
ant which will allow numerical values to be used as part of the model. Later in105

2006, Gheorghe Paun proposed Numerical P System (NPS) [18], designed for
Economics related problems. This model holds a significant distinction of using
numerical values, constants and variables as part of the core model. As with
other P System variants, this also has properties of maximal parallelism but
with numerical values. The problem that is considered in this paper is numerical110

problem so NPS is suitable. Though this model is good, there are two primary
shortcomings of this model which restrict its efficient use to the numerical prob-
lems. The issues are; only one rule per membrane is allowed and there is no
method specified to control the execution of rules in runtime. These restrictions
limit its use for several standard numerical problems. Albeit both these problems115

were considered by Pavel et al. [21] and a solution was proposed in the form of
a new variant called as Enzymatic Numerical P System (ENPS). ENPS allows
simultaneous execution of multiple rules in a single membrane and additionally
uses enzyme with each rule, that allows controlling rules based on the enzyme
values.120

There are several works which apply ENPS as the solution and some of them
are mentioned here. One of the earliest application include a solution for robot
localization problem by Pavel and Buiu [20]. Later it was used by Llorente Rivera
and Gutiérrez Naranjo [10] for solving pole balancing problem. There are also a
few important applications of ENPS for robot controllers [37, 43]. Further, there125

are a few latest works by Pérez-Hurtado et al. [26] where they use Rapidly-
exploring Random Tree (RRT) with ENPS for robot path planning. Further,
they propose an enhanced model for RRT and RRT* algorithm [27]. They also
propose a simulator that has been used as part of the work. For realizing ENPS,
there are a few dedicated Python based simulators available [5, 29]. ENPS has130

also been used for cloud service selection by Raghavan and Chandrasekaran [28].
The latest ENPS applications include implementation using FPGA [31].

Further, there are several new variants of NPS available [15, 44, 45] but ENPS
model is found to be perfectly suitable for the problem of Workflow Scheduling
and hence has been used here.135

3 Enzymatic Numerical P System

There are a few classification of P System based on the structure of the model,
like Cell-based P System, Tissue-based P System and Neural P Systems [19].
Each of them is based on different type of cells. The cell based P system struc-
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ture is one of the firsts to be proposed and this structure is considered as the140

base for NPS. The cell based P system’s general structure consists of a skin
membrane, inside which there can be any number of membranes (child mem-
branes). Each membrane further can have any number of membranes, inside
it. The child membranes inside each membrane can communicate among each
other, i.e., each of them can pass information to one another. Each membrane145

has rules and these are the basic building blocks of the model [17, 19]. This is
the basic structure in general and based on this cell structure there are several
variants that have been proposed. One such variant is Enzymatic Numerical P
System (ENPS), which is a part of Numerical P System family [18, 21].

There are two important components of NPS: programs (rules) and enzymes150

(variables). The NPS model has a little different structure from normal rule
based structure. A formal definition of NPS is given as in the equation 1 [18].

∏
= (m,H , µ, (Var1 ,Pr1 ,Var1 (0 )), . . . , (Varm ,Prm ,Varm(0 ))) (1)

H is an alphabet with m symbols (used as labels of membranes), where m is the
number of membranes used in the system, m ≥ 1,

µ is the membrane structure with m membranes.155

V ar1 to V arm are the set of variables that are available.

V ar1(0) to V arm(0) are the initial values of first to last variable, that have been
defined.

Pr1 to Prm denote the available programs in the whole membrane system.

A rule in NPS is called as a program [18]. There are two components of a160

program; the production function and re-partition protocol. Production function
is like any other function with some expression that can be represented with
basic arithmetic operations. The result of the function is passed into the next
component called as re-partition protocol. The re-partition protocol consists of
a set of dual values (one variable and it corresponding constant). The values165

passed from the production function is proportionally divided into the variables
available according to the constant value of each variable.

In an NPS model, there is a skin membrane and the program/ membranes inside
the skin membrane can be executed any number of times (cycles). Inside skin
membrane, there can be any number of membranes but here each membrane can170

have only one executable program at a point of time (though many programs
can be defined in membrane, only one can be selected and executed). To solve
this problem, there is another variant of NPS called Enzymatic NPS that was
proposed by Pavel et al. [21]. This model adds enzyme, a numerical variable over
NPS and further relaxes the single program per membrane rule.175

There are two types of programs available for ENPS, one is normal program (as
for NPS as in equation 2) which is defined as follows, according to [9, 20, 21],
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for a given region i, xl,i, .., xki,i be some variables from V ari and

let Fl,i(xl,i, ..., xki,i) of a given program Pl,i ∈ Pri and cl,1, .., cl,n are considered
to be positive integers. [9]180

Fl,i(xl,i, ..., xki,i) → cl,1 | v1 + cl,2 | v2 + . . .+ cl,ni | vni (2)

and the next program, mentioned in 3 is for ENPS,

Fl,i(xl,i, ..., xki,i) |ej,i → cl,1 | v1 + cl,2 | v2 + . . .+ cl,ni
| vni

(3)

With addition of enzyme, the execution method of a program slightly differs
in ENPS. The enzyme here is the primary component which will control the
execution of each program. A program is executed only if the value of the enzyme
is greater than the smallest value of the variables used in the production function185

[21]. Thus, if the condition is not satisfied the program is not executed for that
particular cycle. Further, there can be any number of programs in each membrane
with each program having same or different enzyme values. This paper uses
ENPS as the base model for scheduling workflows in cloud.

4 Scheduling in Cloud using Enzymatic Numerical P190

System

Workflow Scheduling in Cloud is a complex process and a parallel, P System
based model is proposed as a solution. As per the literature, there are several P
System variants to choose. As the workflows involve numerical value compari-
son, ENPS is deemed suitable for the problem. For sequential scheduling logic,195

Heterogeneous Earliest Finish Time (HEFT) is considered as the base [34].

The P System based method developed in this work primarily involves generating
an order with which the tasks are scheduled on heterogeneous components. This
process is being done for a cloud based workflow and thus the heterogeneous
components are VMs that are of different sizes. To generate rank, two important200

data about the workflow is required:

– The execution time of each task on the available VM

– The communication cost between each and every VM ti,j , which transfers
control to other VM in the current workflow

It is represented by using an adjacency matrix. The whole process is logically205

similar to HEFT algorithm proposed by [34], but it is structurally and method-
ically different. The sequential logic of base algorithm (HEFT [34]) is given in 1
for a better understanding.

There are a set of tasks available, which have to be assigned processors such that
the aggregated time taken by all the tasks for execution is minimum (Earliest210
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Finish Time). To elaborate on this part, each and every task is assigned a VM
(Processor) such that the execution time of that particular VM is least (Earliest
Finish Time). The process of scheduling is achieved through parameter called
as rankup value which is calculated for each and every node based on the task
execution time and data transfer time between the current node and succeeding215

node. The rank up value calculation is done from the bottom of the workflow
and proceeds towards up, as mentioned in equation 4 [34].

Rankup(ni) = wi +max(ci,j +Rankup(nj)) wherenj ∈ succ(ni) (4)

Based on the decreasing rankup value, a sequence of tasks is generated. This
sequence of task is the crux and processors are assigned to each task in this
sequence such that each task executes in minimum time (EFT). Thus, the overall220

time taken for completion of this sequence of task is called as makespan, which
is the final value that is calculated 1.

Algorithm 1 Sequential Heterogeneous Earliest Finish Time [34]
1: Computation cost of tasks (considered as nodes)
2: Communication cost between the tasks (considered as edges) is obtained
3: Calculate the rankup value for all tasks starting from the last value
4: Sort the tasks based on rankup value
5: while All the unscheduled tasks (Ti) are not scheduled do
6: for each processor available in the set Pj do
7: Calculate EFT for Ti and Pj

8: end for
9: Assign task such that it is EFT of Ti is minimum

10: end while

Based on the logical layout as given in algorithm 1 [34], a ENPS based algo-
rithm is designed, which is elaborated as follows. As mentioned the ENPS based
algorithm is structurally and operationally different.225

There are primarily two sequential steps that are involved in scheduling a work-
flow.

– Creating a sequence of tasks before scheduling

– Scheduling and calculating the makespan of the actual schedule generated.

The components of the method is as given in Figure 2.230

The first part of the process involves sequence calculation and the second part is
mapping the sequences generated. The first component of the sequence calcula-
tion, which is strictly based on ENPS and consists of two independent membrane
systems. These independent membrane systems are executed in sequence as in
Figure 2. A membrane generator is developed, which is used to automatically235
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Fig. 2: P System based Workflow Model

generate membrane system as part of the solution. The membrane systems for
sequence calculation is considered and elaborated.

Sub− problem 1 − M1

a1,1[value], . . . , an,1[value] , an+1,1[value]
. . .
. . .

z1,1[value], . . . , zn,1[value], zn+1,1[value]enz1,1[value]

Pr1,1 : (a1,1 + . . .+ an,1)/n ⟨enz1,1 →⟩ 1 | an+1,1

. . .

P rn,1 : (z1,1 + . . .+ zn,1)/n ⟨enz1,1 →⟩ 1 | zn+1,1

Fig. 3: Membrane System for Process Average Calculator

Membrane system 1 (Process Average Calculator):
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The first membrane system consists of a single membrane which is designed to240

calculate the average of the processes available. This average calculated is sent
to the next membrane system 2 where it is used for finding the values based on
which the sequence is scheduled. Here, the basic property of ENPS of passing
values to multiple variables is used. The second membrane system is the most
important and complex, it involves several programs and is elaborated as follows.245

Membrane System 2 (Schedule Sequence Generator):

There are several steps for calculating the scheduling sequence. This membrane
system is a single membrane system and for any number of tasks the structure
remains the same. Figure 4 and Figure 5 represent the upper portion and lower
portion of a single membrane respectively. The first step is to calculate the250

rank-up function recursively but there is no provision to perform recursion using
ENPS. Thus, the whole process is done without using recursion. The whole
process of execution involves calculating the values in the reverse order of the
nodes present i.e. the adjacency matrix is accessed in reverse order from the
last row. The enzyme n controls the maximum value operation which involves255

important programs. Maximum value calculation is a three step process.

There are a total of 4n2 + 6n programs where, n refers to number of tasks
considered. There are a total of 3n cycles (steps) used for this process. The total
number of enzymes are n2 +2n. The sequential equivalent requires implementa-
tion as recursion, which cannot be directly used in this case. Rather, in this study260

the positive use of adjacency matrix is considered and the recursion is realised.
The execution starts by activating the last enzyme and subsequently they exe-
cute in reverse order. Initially, enzyme number 2n is activated. This activates n
programs which do pre-processing, related to finding maximum value among the
children of current node. After pre-processing, the next step involves calculating265

the actual maximum value. This process involves n programs with the resultant
being passed on to the next programs. The next most important steps, involves
2n programs, but it is also a one-step cycle. Two objectives are simultaneously
achieved, one is updating the adjacency matrix values and the next is getting
the final values of each task. These set of tasks values are calculated at the end270

of execution of all programs (k1,1 to kn−1 and wn,1) as the final set of values
required.
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Sub− problem 2 − M1(Part 1)

a1,1[value], . . . , an,1[value]
. . .
. . .

z1,1[value], . . . , zn,1[value]
k1,1[value], . . . , kn,1[value], w1,1[value], . . . , wn,1[value]

min1,1[value],max1,1[value], fin1,1[value], enz1,1[value], . . . , enz2n,1[value]
e11,1[value], . . . , e1n,1[value]

. . .

. . .
en1,1[0], . . . , enn,1[0]

Pr1,1 : 2× (max1,1 − a1,1) ⟨enz2,1 →⟩ 1 | e12,1 + 1 | k1,1
· · ·

Prn,1 : 2× (max1,1 − an,1) ⟨enz2,1 →⟩ 1 | enzn,1 + 1 | k1,1
Prn+1,1 : a1,1 × enz2,1 ⟨enz2,1 →⟩ 1 | enz2,1
Prn+2,1 : max1,1 ⟨enz2,1 →⟩ 1 | max1,1

Prn+3,1 : e12,1 ∗ 0 + e13,1 ∗ 0 + e14,1 ∗ 0− e11,1 ⟨enz2,1 →⟩ 1 | k1,1
Prn+4,1 : e11,1 ∗ 0− e12,1 + . . .+ e14,1 ∗ 0 ⟨enz2,1 →⟩ 1 | k1,1

· · ·
Pr2n+2,1 : e11,1 ∗ 0 + e12,1 ∗ 0 + . . .− e1n,1 ⟨enz2,1 →⟩ 1 | k1,1

Pr2n+3,1 : a1,1 ∗ (e11,1 + . . .+ e1n,1) ⟨enz2,1 →⟩ 1 | e11,1 + . . .+ 1 | e1n,1
Pr2n+4,1 : a1,1 + 20000 ⟨e11,1 →⟩ 1 | enz1,1

Pr2n+5,1 : (max1,1 − k1,1 + w1,1) ∗ fin1,1/fin1,1 ⟨e11,1 →⟩ 1 | 1 | k1,1
Pr2n+6,1 : (max1,1 − k1,1 + w1,1 + a1,1) ∗ fin1,1/fin1,1 ⟨e11,1 →⟩ 1 | a1,1

Pr2n+7,1 : (max1,1 − k2,1 + w1,1) ∗ b1,1/b1,1 ⟨e11,1 →⟩ 1 | 1 | k1,1
Pr2n+8,1 : (max1,1 − k1,1 + w1,1 + b1,1) ∗ b1,1/b1,1 ⟨e11,1 →⟩ 1 | b1,1

· · ·
Pr4n+3,1 : (max1,1 − k1,1 + w1,1) ∗ z1,1/z1,1 ⟨e11,1 →⟩ 1 | k1,1

Pr4n+4,1 : (max1,1 − k1,1 + w1,1 + z1,1) ∗ z1,1/z1,1 ⟨e11,1 →⟩ 1 | z1,1
Pr4n+5,1 : (max1,1 ⟨e11,1 →⟩ 1 | max1,1

· · ·
· · ·

Pr4n2+2n−4,1 : 2× (max1,1 − z1,1) ⟨enzn,1 →⟩ 1 | en1,1 + 1 | kn,1
· · ·

Pr4n2+3n−5,1 : 2× (max1,1 − zn,1) ⟨enzn,1 →⟩ 1 | enn,1 + 1 | kn,1

Fig. 4: Membrane System for Sub-problem 2 (Schedule Sequence Generator) -
Part 1
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Sub− problem 2 − M1(Part 2)

Pr4n2+3n−4,1 : a1,1 × enzn,1 ⟨enzn,1 →⟩ 1 | enzn,1 + 1 | kn,1
Pr4n+3n−3,1 : max1,1 ⟨enzn,1 →⟩ 1 | max1,1

Pr4n+3n−2,1 : en2,1 ∗ 0 + en3,1 ∗ 0 + . . .+ enn,1 ∗ 0−
en1,1 ⟨en1,1 →⟩ 1 | kn,1

Pr4n+3n−1,1 : e11,1 ∗ 0− e12,1 + . . .+ e1n,1 ∗ 0 ⟨en2,1 →⟩ 1 | k1,1
· · ·

Pr4n2+4n−3,1 : en1,1 ∗ 0 + en2,1 ∗ 0 + . . .− enn,1 ⟨enn,1 →⟩ 1 | k1,1

Pr4n2+4n−2,1 : a1,1 ∗ (en1,1 + . . .+
enn,1) ⟨en1,1 →⟩ 1 | en1,1 + . . .+ 1 | enn,1

Pr4n2+4n−1,1 : a1,1 + 20000 ⟨en1,1 →⟩ 1 | enzn,1
Pr4n2+4n,1 : (max1,1 − kn,1 + wn,1)
∗an,1/an,1 ⟨enzn−1,1 →⟩ 1 | 1 | kn,1

Pr4n2+4n+1,1 : (max1,1 − kn,1 + wn,1+
an,1) ∗ an,1/an,1 ⟨enzn−1,1 →⟩ 1 | an,1

Pr4n2+4n+2,1 : (max1,1 − kn,1+
wn,1) ∗ bn,1/bn,1 ⟨enzn−1,1 →⟩ 1 | 1 | kn,1
Pr4n2+4n+3,1 : (max1,1 − kn,1 + wn,1+
bn,1) ∗ bn,1/bn,1 ⟨enzn−1,1 →⟩ 1 | bn,1

· · ·
Pr4n2+6n−2,1 : (max1,1 − kn,1+

wn,1) ∗ zn,1/zn,1 ⟨enzn−1,1 →⟩ 1 | k1,1
Pr4n2+6n−1,1 : (max1,1 − kn,1 + wn,1+
bn,1) ∗ zn,1/zn,1 ⟨enzn−1,1 →⟩ 1 | bn,1

Pr4n2+6n,1 : (max1,1 ⟨enzn−1,1 →⟩ 1 | max1,1

Fig. 5: Membrane System for Sub-problem 2 (Schedule Sequence Generator) -
Part 2
After generating the schedule sequence, as the final step, the schedule sequence is275

mapped and the final makespan is obtained. The final makespan is the parameter
that is considered in the work, based on which further comparison with other
algorithms are done.

5 Results and Analysis

For implementing membrane-based model ENPS-based simulator (GPUPeP)280

[29] is used as the base. A membrane generator is developed for generating the
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the main membrane-system for workflow sequence calculation. This membrane
generator is developed using Python 3.0 and can generate the membrane sys-
tem for any number of tasks. These membrane systems are then executed over
ENPS-based simulator, GPUPeP and the results are passed to the trailing steps285

(Membranes).
After the sequence of execution is calculated, the makespan is obtained. The
proposed method has been compared with two other standard methods, namely,
Min-min and Max-min, for scheduling workflow based task. These methods have
been chosen to compare, because they are accepted as standard methods.290

Five type of workflows are considered and compared; Five cases each for, five
tasks, ten tasks, 15 tasks, 20 tasks and 25 tasks. For each workflow type, five
sample workflows of different structures are considered. Figure 6 shows results of
five different workflows with different workflow structures and different virtual
machine configurations; considered with five tasks. The results show that the295

proposed model is better than other methods on three occasions and it gives same
makespan value for the considered cases. This is because the input considered is
not so complex and it doesn’t involve much parallelism (task parallelism). Thus,
all the algorithms give similar sequence for few cases.
For next comparison, five different workflows of size 10 are considered. As from300

the Figure 7 it is visible that, in all the cases the proposed algorithm tends to
be better. Similarly when 15 tasks are considered the proposed algorithm fares
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Fig. 6: Workflow Scheduling for 5 Tasks
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Fig. 7: Workflow Scheduling for 10 Tasks
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Fig. 9: Workflow Scheduling for 20 Tasks
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better than the others, as in Figure 8. Thus, few of the cases are significantly
better than the others and similar is the case for 20 tasks (Figure 9).
When 25 tasks are considered to be scheduled for a workflow there are many305

cases for which the proposed method is better than other algorithms as in Figure
10. Based on the results it can be inferred that the algorithm performs better
when the number of tasks increase. Though the improvement is not only based
on the number of tasks, it is one of the factor which judges the effectiveness of the
algorithm. The backbone of the work is the membrane model, which theoretically310

has very less time complexity.
To summarize, a ENPS-based Workflow scheduling algorithm for cloud has been
developed whichi is inturn inspired by HEFT. The ENPS-based algorithm has
been designed and implemented. The implemented algorithm is compared with
other algorithms for makespan and it is found that the proposed algorithm per-315

forms better for makespan. It is one of the first membrane based solutions for
workflow scheduling in cloud, which strictly follows the rules of the membrane
computing paradigm.

6 Conclusion

The proposed algorithm is for scheduling workflows in cloud. The membrane-320

based algorithm is particularly designed based on ENPS and an efficient
heuristic-based solution. Thus, the developed algorithm is ENPS structure-
based heuristic algorithm for workflow scheduling in cloud. The proposed multi-
membrane system module is designed to be parallel, based on the natural prop-
erty of ENPS. As part of the work, a workflow membrane generator is also325

created to automatically create the membranes that represent the method. The
membranes generated are tested and the results obtained are compared with
other standard workflow scheduling methods. Based on the results, the proposed
algorithm is found to be better than two standard methods.
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