
A Note on Spiking Neural P systems with
Dynamic Structure versus Kernel P Systems

(Extended Abstract)

Răzvan Vasile1,
Marian Gheorghe2,
Florentin Ipate1,

Lakshmanan Kuppusamy3, and
Ionuţ Mihai Niculescu1

1University of Bucharest, Faculty of Mathematics and Computer Science,
14 Academiei St, 010014 Bucharest, Romania.

2Department of Computer Science, University of Bradford,
West Yorkshire, Bradford BD7 1DP, UK.

3School of Computer Science & Engineering, VIT, Vellore - 632 014, India.

Abstract. In this note we consider spiking neural P systems with neu-
ron division, budding and dissolution and spiking neural P systems with
structural plasticity, and analyse various ways of mapping them into
kernel P systems. Examples of different complexities illustrate the ap-
proach, making suggestions for an efficient mapping. Initial steps in ap-
plying formal methods in verifying these systems by using SPIN, from
kPWorkbench, and Pro-B with Event-B, are also presented.

Keywords: Membrane Systems · Spiking Neural P Systems · Kernel P
Systems · Formal Verification · Model Checking

1 Introduction

Membrane computing is a bio-inspired computing paradigm using models called
membrane systems or P systems. These models are inspired by the structure and
functionality of the living cell. The first model of this type has been introduced
by Gh. Păun [14].

The original definition of a membrane (or P) system [14] consists of a mem-
brane structure composed of several compartments, also called membranes, hi-
erarchically embedded in the main membrane, called the skin membrane. Each
compartment contains objects representing abstractions of the bio-chemical en-
tities, from simple molecules to more complex DNA strands that appear in the
living cell. Inside of each compartment there are also evolution and communica-
tion rules. The hierarchical structure, in the form of a tree, of such membrane
systems, has then been replaced by an undirected graph, in the so called tissue
P systems.

A first research monograph [15], a comprehensive handbook [16] and a sur-
vey paper [19] represent relevant contributions illustrating some of the most



2

significant achievements in membrane computing. Membrane computing is now
a well-established nature inspired or unconventional computing research area.
Some of the most recent research textbooks show the great interest in develop-
ing applications [4, 21].

Membrane computing area contains a plethora of models, called very often
variants of membrane (or P) systems. One of such variants, called Spiking Neu-
ral P system (SN P system, for short), introduced in [7], is amongst the most
popular, with a lot of variations.

So far, have been published a bibliography [13], survey papers on generic SN
P systems and their applications [18, 10], a survey on learning aspects of SN P
systems [3], as well as open problems and research topics in SN P systems [17].

Another type of P system, called kernel P system (kP system, for short),
introduced in [6], aims to provide a modelling approach that combines in a
coherent way features of existing P systems with new ones. Kernel P systems
have been used for describing computer science problems, such as communication
and synchronisation [5], or for modelling synthetic biology systems [8]. These
models are specified in a domain specific language, called kP-Lingua, allowing
models to be simulated with a software framework, called kPWorkbench [1].
The capabilities of the tool are presented in [9].

In this note we investigate the mapping of various SN P systems with dynamic
structure (i.e., with plasticity [2, 11], neuron division and budding [12], neuron
division and dissolution [22]) into kP systems and provide some initial steps in
analysing these systems with formal methods, such as model checkers.

2 Main Contributions

This work aims to: (i) elaborate a sound methodology for mapping SN P systems
with dynamic structure into equivalent kP systems and (ii) on the account of
the kP system formalism, demonstrate some properties of the kP system (and
SN P system) model, using model checkers, such as Pro-B and SPIN.

We present here a first SN P system with dynamic structure that was explored
in [2], as an SN P system with plasticity – see Figure 1.

This SN P system consists of five neurons. Neurons σ1 and σ3 contain initially
two spikes and one spike, respectively and the rest have no spikes. The rules of
σ1 are depicted in Figure 1 and the other neurons, i.e., σ2, σ3, σA1

, σA2
, contain

only one rule: a → a, which was omitted in writing.
The application of the rules in σ1 is deterministic. The nondeterminism in

the example occurs in the process of selecting which synapses to create or delete.
As such, two synapses (1,2) or (1,3) can be created in neuron σ1. If the synapse
(1,3) is created, then σ1 sends one spike to σ3; in the next step, the synapse (1,3)
is deleted and σ3 sends out to the environment the spike received from σ1. If,
however, the synapse (1,2) is created, then the behaviour of the system is similar,
but in this case, neuron σ2 sends one spike to each of the auxiliary neurons σA1

and σA2
. As long as σ1 creates synapse (1,2), the system keeps receiving two

spikes in a loop.



3

This example has been mapped into three kernel P system models, and all
of them have been simulated into kP Lingua, using kPWorkbench. One such
kP model, translated into kP Lingua, can be found on GitHub [20], where the
results of some simulations are also provided.

Fig. 1: SN P system with dynamic structure from [2].

The first kP system model is a one-to-one mapping of the example from [2],
albeit, with minor adjustments to fit the formalism of kernel P systems. In this
model, links between compartments are dynamically created and destroyed.

Other two kP system models are optimised versions of the first one. One of
them includes links that are dynamically created and destroyed, and the other
one doesn’t.

An equivalent Event-B model has been created for each of these three kP sys-
tem models. Although Event-B has been prior used to model some kP systems,
it is the first time when kP systems are translated into Event-B.

For each Event-B model, given two general sets SYMBOLS and TY PES,
two invariants have been created:

– inv1: MULTISETS ⊆ TY PES × N× SYMBOLS × N;
– inv2: LINKS ⊆ TY PES × N.

Using the two invariants, one can model into Event-B any kP system in a
very natural way: each rule from the kP system is an event in the Event-B model,
and any guard from the kP system is an Event-B guard.

We have considered the first kP system mentioned above for proving several
properties, using the Pro-B model checker, based on the Event-B model:

1. Eventually, in the future, both neurons σ1 and σ3 will have a spike.

2. If neuron σ1 has two spikes, then eventually (F) in the future the neuron σ3

might have a spike.

The kPWorkbench framework has the integrated component of formal
model checking, using SPIN. All this is automated, as part of the overall func-
tionality of kPWorkbench. We have proved these properties:



4

When neuron σ1 eventually spikes to neuron σ3, in the next step, neuron σ3 will contain one spike.

eventually N1.n3 = 1 implies (next N3.a = 1)

When neuron σA1 eventually spikes to neuron σ1, then neuron σ1 will eventually spikes to neuron σ3.

eventually NA1.a = 1 implies (eventually N1.n3 = 1 and (next N3.a = 1))

After receiving the initial spike, the environment will eventually receive the second spike.

eventually environment.a = 1 implies (eventually environment.a = 2)

Table 1: Model properties

3 Conclusions and Future Developments

The ongoing research on the topics of this note is looking at defining the method-
ology of mapping SN P systems with dynamic structure, namely SN P systems
with plasticity and neuron division, budding and dissolution, by considering dif-
ferent algorithms and specific cases and to adequately associate Event-B models,
comparing them with SPIN ones, in order to prove a broad palette of properties.

References

1. Bakir, M.E., Ipate, F., Konur, S., Mierlă, L., Niculescu, I.-M.: Extended simulation
and verification platform for kernel P systems. In: Gheorghe M. et al (ed.) 15th

Int. Conference on Membrane Computing, LNCS 8961, pp. 158–178 (2014)
2. Cabarle, F.G.C., Adorna, H.N., Pérez-Jiménez, M.J., Song, T.: Spiking neural P

systems with structural plasticity. Neural Computing and Applications 26(8),
1905–1917 (2015)

3. Chen, Y., Chen, Y., Zhang, G., Paul, P., Wu, T., Zhang, X., Rong, H., Ma, X.:
A survey of learning spiking neural P systems and a novel instance. International
Journal of Unconventional Computing 16(2–3), 173–200 (2021)

4. Frisco, P., Gheorghe, M., Pérez-Jiménez, M.J. (eds.): Applications of Membrane
Computing in Systems and Synthetic Biology. Springer, Verlag (2014)

5. Gheorghe, M., Ceterchi, R., Ipate, F., Konur, S., Lefticaru, R.: Kernel P systems:
from modelling to verification and testing. Theoretical Computer Science 724,
45–60 (2018). URL http://hdl.handle.net/10454/11720

6. Gheorghe, M., Ipate, F., Dragomir, C., Mierlă, L., Valencia-Cabrera, L., Garćıa-
Quismondo, M., Pérez-Jiménez, M.J.: Kernel P Systems - Version I. 11th Brain-
storming Week on Membrane Computing pp. 97–124 (2013). URL http://www.

gcn.us.es/files/11bwmc/097_gheorghe_ipate.pdf

7. Ionescu, M., Păun, Gh., Yokomori, T.: Spiking neural P systems. Fundamenta
Informaticae 71(2–3), 279–308 (2006)

8. Konur, S., Gheorghe, M., Dragomir, C., Ipate, F., Krasnogor, N.: Conventional ver-
ification for unconventional computing: a genetic XOR gate example. Fundamenta
Informaticae 134(1–2), 97–110 (2014)

9. Konur, S., Mierlă, L., Ipate, F., Gheorghe, M.: kPWorkbench: A software suit
for membrane systems. SoftwareX 11, 100407 (2020)

10. Leporati, A., Mauri, G., Zandron, C.: Spiking neural P systems:
main ideas and results. Natural Computing 21(4), 629–649 (2022).
https://doi.org/https://doi.org/10.1007/s11047-022-09917-y



5

11. Macababayao, I.C.H., Cabarle, F.G.C., de la Cruz, R.T., Zeng, X.: Normal forms
for spiking neural P systems and some of its variants. Information Sciences 595,
344–363 (2022)

12. Pan, L., Păun, Gh., Pérez-Jiménez: Spiking neural P systems with neuron division
and budding. Science China Information Sciences 54, 1596–1607 (2011)

13. Pan, L., Wu, T., Zhang, Z.: A bibliography of spiking neural P systems. Bulletin
of the International Membrane Computing Society (I M C S) 1(1), 63–78 (2016)

14. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences
61(1), 108–143 (2000). https://doi.org/10.1006/jcss.1999.1693. URL https://

doi.org/10.1006/jcss.1999.1693

15. Păun, Gh.: Membrane Computing - An Introduction. Springer, Verlag (2002)
16. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press (2010)
17. Păun, Gh., Wu, T., Zhang, Z.: Open problems, research topics, recent results on

numerical and spiking neural P systems (The ‘Curtea de Argeş 2015 series’). In:
Proceedings of Fourteenth Brainstorming Week on Membrane Computing, pp. 285–
300. Sevilla, Spain: Fenix Editora (2016)

18. Rong, H., Wu, T., Pan, L., Zhang, G.: Spiking neural P systems: Theoretical results
and applications. In: Graciani, C. et al. (ed.) Enjoying Natural Computing, LNCS
11270, pp. 256–268 (2018)

19. Song, B., Li, K., Orellana-Mart́ın, D., Pérez-Jiménez, M.J., Hurtado, I.P.: A survey
of nature-inspired computing: Membrane computing. ACM Computing Surveys
54(1), 629–649 (2021). https://doi.org/https://doi.org/10.1145/3431234

20. Vasile, R.: (2024). URL https://github.com/Razvan-V/SNP-kP/tree/main/

Example_2

21. Zhang, G., Pérez-Jiménez, M.J., Gheorghe, M.: Real-life Applications with Mem-
brane Computing. Springer, Verlag (2017)

22. Zhao, Y., Liu, X., Wang, W.: Spiking neural P systems with neuron division and
dissolution. PLOS ONE 11(9), e0162882 (2016)


