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Abstract. The paper exposes a concept for cryptanalysis of RSA en-
cryption using a bio-computation paradigm. A very high degree of par-
allelism is required, and we hope to benefit from quantum-mechanic en-
tanglement, if the implementation technology is small enough. We imple-
ment the computation using HP/LP-neurons in membrane computing.
A System-C model of the system will be developed in the next step.

Introduction

Investigation of cryptography and cryptanalysis are in the center of not only
classic computer science research but also in the new computing paradigms such
as bio-computation [3,4,10], and quantum computation [1,7] well. RSA encryp-
tion is based on a public encryption key that is the product of two large prime
numbers [9].

[2] has investigated using membrane computing for RSA encryption. For
this method, he has applied the MUST Adder [8], as well as extended by new
modules. The MUST Adder is implemented using HP- and LP-neurons [11].

As the next step, we consider cryptanalysis of RSA.

RSA Cryptanalysis

For cryptanalysis of RSA, we consider the following conceptual model: (see Fig.
1).

As a first step, we employ a sequencer that is based on the MUST Adder in
HP- and LP-neurons in membrane computing. This sequencer generates a large
number of integer numbers which are represented individually as instances at
the membrane.

The next step is a decimation operation at the first membrane. This will be
realized using the sieve algorithm. By a large number of sieve steps, we eliminate
all number instances that do not posses the prime property.

The surviving instances will then be collected in a large soma. We will need
a significantly larger number of such instances, depending on the bit width of
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the RSA key. This is an excellent application of membrane computing, since
at the molecular level, 1g of soma my host up to 1023 prime instances, which
corresponds to roughly 76 bits. [?]

At the exit of the soma, we place a large number of MUST Multipliers, each
of which is capable of multiplying two prime instances.

The second membrane functions as selector to perform a selection operation
designed to match the desired encryption key of RSA. This selection operator
constitutes a barrier to the exit of any number instances from the soma mem-
brane.

Successfully overcoming the barrier releases a certain amount of target en-
ergy. The larger the energy, the more likely is the transition through the barrier,
according to quantum mechanics.

We hope that we will, one day, build our cryptanalytic system at such a small
scale that the soma is able to exist in the state of quantum mechanical superpo-
sition. Then, we hope to benefit from the properties of the quantum mechanic
tunnel effect. This effect will make it more likely for the desired instance to exit
from the membrane barrier, the more energy is being released by the transition.
Then, we can make the system faster, by increasing the energy reward for the
correct result to exit.
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Fig. 1. RSA cryptanalysis conceptual scheme using a bio-computation framework.
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Conclusion

In this approach, we hope to develop and leverage the unique quantum mechanic
effects [7] in the context of biochip [6]. This works efficiently in a highly parallel
fashion of SN P systems [5].
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