
On accepting conditions in P systems with
active membranes

(extended abstract)

Zsolt Gazdag, Károly Hajagos

Institute of Informatics, University of Szeged,
Árpád tér 2, H-6720 Szeged, Hungary
{gazdag,hajagos}inf.u-szeged.hu

Abstract. We consider a variant of P systems called elimination P systems.
These are polarizationless P systems with active membranes with no dissolution
and non-elementary membrane division rules, extended with rules of the form
[ab → ε], where a, b are objects and ε represents the empty word. We investigate
the computational power of two types of elimination P systems designed to solve
decision problems. In the first type, as usual, an accepting computation must
output a single yes object, and a rejecting computation must output one no
object, both occurring precisely in the final step of the computation. In the
second type, an accepting computation should produce one or more yes objects,
whereas a rejecting computation should not produce any yes objects. We show
that while the first model can solve in polynomial time only problems in NL,
the second model is able to solve NP-complete problems.

Introduction. In the field of complexity theory, a decider for a language L is
typically a Turing machine M that halts on each input and produces an output
that is either accepted or rejected. The output for a word w is accepted if and
only if w ∈ L. M may determine the output in several equivalent ways, such as
halting in a designated accept or reject state, halting in either a final or non-final
state, or by writing the output on the output tape. In membrane computing, the
approach to solving decision problems mirrors that of complexity theory: the
P system eventually halts, accepting or rejecting the input multiset. Typically,
P systems indicate their decision by sending out a specific symbol, yes or no,
to the environment. The initial formalization of these conditions appeared in
[11], where the concept of accepting P systems was introduced. A P system
Π is an accepting P system if it has only halting computations and its object
alphabet includes symbols yes and no. Furthermore, for any computation of Π,
it is required that the object yes or the object no is sent out to the environment,
but not both. This definition was further refined in the concept of recognizer P
systems, which stipulates that exactly one yes or no must be sent out to the
environment (or to a designated output membrane) exclusively in the last step
of the computation (see, e.g.,[10]).

P systems with active membranes were introduced in [8]. These P systems
allow the membranes to exhibit polarizations and enable the division of both

elementary and non-elementary membranes. It quickly became apparent that,
when combined with maximal parallelism, these properties enable this variant
to address problems that are NP-complete or even PSPACE-complete. In fact,
the class of problems that can be solved in polynomial time by P systems with ac-
tive membranes is PSPACE [13]. Moreover, without non-elementary membrane
division, these P systems can solve in polynomial-time exactly the problems in
P#P, which is the class of problems solvable by deterministic Turing machines in
polynomial time with polynomial-time counting oracles [4]. For a recent survey
on the complexity of various classes of P systems with active membranes, see
[12].

It is an interesting open question whether P systems with active membranes
can efficiently solve NP-complete problems without utilizing membrane polar-
ization. In [9], Păun conjectured that the answer is negative. While this con-
jecture remains unproven, there are some partial results (see, e.g., [5] and the
references therein). For instance, in [3], it was demonstrated, using the concept
of a dependency graph, that polarizationless P systems with no dissolution rules
can solve exactly the problems in P. For such a P system, a dependency graph
is a directed graph where edges represent dependencies between objects on the
left and right sides of the P system’s rules. Then one can verify whether yes
appears in the output membrane by simply checking if yes can be reached from
the relevant nodes in the dependency graph.

As mentioned in [6], the polynomial-time construction of the analyzed P sys-
tems is the reason for the P lower bound in the characterization of P discussed
in [3]. In fact, [7] discovered that FAC0-uniform families of recognizer polar-
izationless P systems with no dissolution rules cannot even solve the Parity
problem, which entails determining whether a binary string has an odd number
of 1s (FAC0 is the class of functions computed by uniform constant depth poly-
nomial size Boolean circuits). To better understand the effect of the definition
of accepting conditions in recognizer P systems, a more general variant, called
acknowledger P systems, was defined and examined in [7]. These are P systems
in which all computations terminate and one or more copies of the distinguished
object yes may or may not appear in the output membrane of the system. More-
over, these P systems have no rules applicable to yes. Recall that in recognizer
P systems exactly one no or yes must be produced in the output membrane,
but not both, and only in the last step of the computation. In [7] it was found
that acknowledger polarizationless P systems without dissolution rules decide
exactly those languages that are FAC0 disjunctive truth-table reducible to the
unary languages in NL. However, this result has not been established for recog-
nizer polarizationless P systems without dissolution rules in [7]. Using reasonably
tight uniformity conditions has become standard in membrane computing when
P systems solve problems in P (see, for example, [2] and the references therein).
However, the power of acknowledger P systems has received less attention when
considering P systems solving problems beyond P.

In this extended abstract, we demonstrate that a variant of polarizationless
P systems can efficiently solve NP-complete problems when considering uni-

form families of acknowledger P systems, whereas they are limited to solving
problems in NL when considering recognizer P systems. In this study, we per-
mit acknowledger P systems to include rules that can be applied to the output
object yes.

Our contribution. In [1], the study focused on P systems with antimatter.
These are polarizationless P systems with active membranes, where each object
a has an antiparticle counterpart represented as ā. Additionally, the system can
use annihilation rules like [aā → ε]. When a and ā appear together in the same
membrane, they are both disappear without producing anything. These rules
are applied alongside other rules based on the principle of maximal parallelism,
except that annihilation rules have priority over all other types of rules. Accord-
ing to [1], recognizer P systems with antimatter that do not use non-elementary
membrane division and dissolution rules can efficiently solve the Sat problem.
However, it was also found that these systems can only solve problems in P if
annihilation rules do not have priority over other types of rules.

In this study, we explore a minor extension of these P systems, termed elim-
ination P systems. An elimination P system is a variant of polarizationless P
system with active membranes that include only evolution rules, division rules
for elementary membranes, in- and out-communication rules, and elimination
rules of the form [ab → ε], where a and b can be any objects (unlike in P systems
with antimatter, where b must be the antiparticle of a). The effect of applying
elimination rules is identical to that of applying annihilation rules. Moreover,
elimination rules have no priority over the other types of rules.

To investigate the computation power of elimination P systems, we will use
logarithmic-space uniformity (see, e.g., [2]). Consider a recognizer P system Π.
A computation of Π that halts with yes (resp. no) in the output membrane
is called accepting (resp. rejecting). Likewise, consider an acknowledger P sys-
tem Π. A computation of Π that halts with at least one copy of yes in the
output membrane is called accepting, whereas a computation that halts with
no yes in the output membrane is called rejecting. Notice that both recognizer
and acknowledger P systems exclusively have halting computations, and each
computation is classified as either accepting or rejecting.

Let Π = {Π(n) | n ∈ N} be an L-uniform family of recognizer or acknowl-
edger P systems. We say that Π solves a decision problem R in polynomial time
if (i) there is a deterministic Turing machine using logarithmic space computing
the encoding function cod that transforms instances of R into multisets of ob-
jects, (ii) there exists an integer k ∈ N such that for every instance x of R with
size n, each computation C of Π(n) starting with cod(x) in its input membrane
halts in at most nk steps, and (iii) C is accepting if and only if x is a positive
instance of R.

Applying a reasoning similar to that used in the proof of Theorem 2 from
[1], we can derive the following result.

Proposition 1. The class of problems that can be solved in polynomial time
by L-uniform families of recognizer elimination P systems is contained within

NL, the set of problems solvable by nondeterministic Turing machines using
logarithmic space.

Next, we discuss that acknowledger elimination P systems can solve NP-
complete problems efficiently. It is well known that NP is the class of problems
verifiable in polynomial time. Specifically, a problem L is verifiable in polynomial
time if for each positive instance I of L, there exists a polynomial-size proof (or
certificate) that I is indeed a positive instance. Consider the Sat problem, which
involves determining whether a Boolean formula in conjunctive normal form is
satisfiable. A certificate which proves that a formula φ is satisfiable is a truth
assignment that satisfies φ. Clearly, it is decidable in polynomial time whether
a truth assignment satisfies φ or not. According to this, deciding if a formula
φ is satisfiable with a recognizer P system with active membranes Π usually
involves the following main steps. Given an input multiset cod(φ) that encodes
φ, Π (i) first generates all possible truth assignments for the variables of φ,
placing each assignment in a separate membrane, then (ii) checks within each
membrane if it contains a satisfying truth assignment, and finally (iii) produces
yes in the output membrane at the final step of the computation if there is
at least one satisfying truth assignment, and produces no otherwise. We will
describe that elimination P systems, whether recognizer or acknowledger, are
capable of efficiently executing Steps (i) and (ii) above. According to Proposition
1, recognizer elimination P systems are unable to perform Step (iii). Conversely,
acknowledger P systems, as we will demonstrate, are capable of doing so, which
brings us to the following conclusion.

Theorem 1. Sat can be solved in polynomial time by L-uniform families of
acknowledger elimination P systems.

We briefly outline a proof of Theorem 1. Let φ be a formula with n variables
and m clauses. We encode φ as a multiset using a method commonly employed
in membrane computing:

cod(φ) = {vi,j | xi ∈ Cj} ∪ {vi,j | ¬xi ∈ Cj}.

We present an elimination P system Π designed to decide the satisfiability of
φ. The initial membrane configuration of Π consists of an outer skin membrane
labeled by s and an inner membrane labeled by 1. The membrane with label
1 serves as the input membrane, while the skin membrane acts as the output
membrane. Beginning with cod(φ) in the input membrane, Π initially gener-
ates 2n membranes with label 1, each corresponding to a truth assignment of
the variables in φ. Meanwhile, Π eliminates objects from cod(φ) that represent
false literals under the corresponding truth assignment of φ by applying specific
elimination rules. In the subsequent step, objects representing the clauses of φ
are introduced into each membrane with label 1. Then, using elimination rules
acting on objects representing the corresponding literals and clauses, Π removes
objects that represent true clauses under the truth assignment represented by
the corresponding membrane with label 1. At this stage of the computation,

a membrane M with label 1 contains an object representing a clause of φ if
and only if φ is false under the truth assignment represented by M . Through
carefully designed elimination rules, it is ensured in the following steps that a
membrane M with label 1 contains one object d if φ is not satisfied and no object
d if φ is satisfied by the truth assignment corresponding to M . In the next step,
membranes with label 1 that contain an object d release this object to the skin
membrane. Simultaneously, in the skin membrane, 2n yes objects are generated,
and in the final step of Π, an elimination rule [d yes → ε]s is applied to each d
that occurs in the skin. Consequently, at the end of the computation, the skin
membrane contains at least one yes if and only if φ is satisfiable. Therefore, the
described computation is accepting if and only if φ is satisfiable. □

It is not hard to see that when Π halts, the number of yes objects in the
skin membrane is equal to the number of truth assignments satisfying φ. With
elimination rules, it would be easy to remove 2n−1 of these objects. Thus, it
would be easy to construct a P system whose skin membrane has at least one
yes after the final step if and only if more than half of the truth assignments of
φ are satisfying. Consequently, acknowledger elimination P systems are able to
solve the PP-complete Majority-Sat problem, too.

Conclusions. In this extended abstract, we introduced a variant of P systems
that can efficiently solve problems within NL when using recognizer P systems
to decide problems. Conversely, they can address PP-complete problems when
employing the more general acknowledger P systems. This highlights the impor-
tance of defining the accepting conditions in specific classes of P systems.

References

1. Dı́az-Pernil, D., Alhazov, A., Freund, R, Gutiérrez-Naranjo, M. A., Leporati, A.:
Recognizer P Systems with Antimatter. Romanian Journal of Information Science
and Technology 18(3), 201–217, 2015.

2. Gazdag, Z., Kolonits, G.: Remarks on the computational power of some restricted
variants of P systems with active membranes. In: Leporati, A., Rozenberg, G., Salo-
maa, A., Zandron, C. (eds.) Membrane Computing, 17th International Conference,
LNCS vol. 10105, 209-–232, 2017.

3. Gutierrez-Naranjo, M.A., Perez-Jimenez, M.J., Riscos-Núñez, A., Romero-
Campero, F.J.: On the power of dissolution in P systems with active membranes.
In: Freund, R., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Membrane Comput-
ing: 6th International Workshop, LNCS vol. 3850, 224–240, 2006.

4. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Simulating ele-
mentary active membranes, with an application to the P conjecture. In: M. Gheo-
rghe, G. Rozenberg, A. Salomaa, P. Sośık, C. Zandron (Eds.) Membrane Comput-
ing – 15th International Conference, CMC15, LNCS vol. 8961, 284–299, 2014.

5. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Solving a special
case of the P conjecture using dependency graphs with dissolution. In: Gheorghe,
M., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) Membrane Computing: 18th
International Conference, LNCS vol. 10725, 196-213, 2017.

6. Murphy, N., Woods, D.: The computational power of membrane systems under
tight uniformity conditions. Natural Computing 10(1) 613–632, 2011.

7. Murphy, N., Woods, D.: Uniformity is weaker than semi-uniformity for some mem-
brane systems. Fundam. Inf. 134(1-2) 129–152, 2014.

8. Păun, Gh.: P Systems with Active Membranes: Attacking NP-Complete Problems.
Journal of Automata, Languages and Combinatorics 6(1) 75–90, 2001.

9. Păun, Gh.: Further twenty six open problems in membrane computing. In: Third
Brainstorming Week on Membrane Computing. Fénix Editora, Sevilla 249–262,
2005.

10. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford, England, 2010.

11. Pérez-Jiménez, M.J., Romero-Jiménez, Á., Sancho-Caparrini, F.: Complexity
classes in models of cellular computing with membranes. Natural Computing 2(3)
265–285, 2003.

12. Sośık, P.: P systems attacking hard problems beyond NP: a survey. J. Membr.
Comput. 1, 198–208, 2019.

13. Sośık, P., Rodŕıguez-Patón, A.: Membrane computing and complexity theory: A
characterization of PSPACE. Journal of Computer and System Sciences 73(1),
137–152, 2007.

