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i. Summary/Abstract

The  usefulness  of  mathematical  models  for  the  biological  regulatory  networks  relies  on  the 
predictive capability  of  the  models,  in  order  to  suggest  interesting  hypotheses  and  suitable 
biological  experiments.  All  mathematical  frameworks  dedicated  to  biological  regulatory 
networks must manage a large number of abstract parameters, which are not directly measurable 
in the cell. The cornerstone to establish predictive models is the  identification of the possible 
parameter  values.  Formal  frameworks  involve  qualitative  models with  discrete  values  and 
computer aided logic reasoning. They can provide the biologists with an automatic identification 
of the parameters via a formalization of some biological knowledge into temporal logic formulas. 
For pedagogical reasons, we focus on gene regulatory networks and develop a qualitative model 
of the detoxification of benzo[a]pyrene in human cells to illustrate the approach.
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1. Introduction

Almost  all  the  difficult  questions  that  involve  biological  systems, with  several  interacting 
entities, need mathematical models and computer aided reasoning in order to predict the global 
behavior  of  the  system,  or  to  establish  some characteristics  of  the  dynamics of  the  system. 
Domain  oriented  formal  frameworks are  then  required  in  order  to  efficiently  design  the 
mathematical models, to perform low cost simulations and to extract relevant predictions from 
the  models.  The  choice  of  the  best  suited  formal  framework  is  guided  by  the  biological 
question(s) under consideration. For instance if the position of the entities in a two or three-
dimensional space is important, as well as their trajectories, or the form of some compartments, 
or  the  diffusion  speeds,  etc,  then  frameworks  such  as  cellular  automata  (1),  multi-agent 
systems (2),  discrete  geometry  (3),  and so  on,  may be  suited.  If,  on the  contrary,  it  can  be 



relevant to ignore the 3D arrangement of the biological objects under consideration in favor of 
their quantities and the evolution of these quantities along time, then frameworks dedicated to 
biological regulatory networks are relevant.

Since about ten years,  the formal frameworks for regulatory networks play a  central  role  in 
integrative biology and in systems biology, and they are one of the main scientific roots that  
initiate the new era of synthetic biology. Based on the simple idea that toxicology often needs to 
predict  the  behavior  of  complex  biological  systems,  and  that  it  has  consequently  a  large 
intersection with systems biology in general, the formal frameworks for regulatory networks and 
their  associated  computer  tools  (which  are  now  commonly  used  in  the  systems  biology 
laboratories) constitute an interesting part of computational toxicology. We will show in this  
chapter how they can be used at the cellular and intracellular levels of description but regulatory 
network models can also be relevant at higher levels of description. A good model can predict 
for instance the detoxification capabilities of certain pathways, and it can be used to point out 
potentially  dangerous configurations such as DNA damage.  Nevertheless,  one should always 
have in mind that a mathematical model never proves the safety of a configuration or a molecule: 
in vivo experiments constitute the only biological proof of a biological property. A formal model 
can  only  suggest the  best  promising  solutions,  it  never  establishes  certified  solutions.  The 
predictive capabilities of models can also be used to suggest interesting biological experiments. 
They can also point out less interesting experiments that can be redundant for reasons far from 
being obvious for a human reasoning.

The predictive capability of a mathematical model is essentially based on a good choice of the 
parameters that  drive  the  dynamics (the  semantics)  of the  model.  Contrarily  to  most  of  the 
classical models in sciences such as physics, chemistry or computer science, even a very simple  
biological system involves a very intricate network of interactions, and a small change in the 
relative  strengths  of  these  interactions  can  deeply  modify the  behavior  of  the  system under 
consideration. Consequently, a formal model for biology contains a large number of parameters 
controlling these interactions and  the problem of the modeling activity is to  find and firmly 
establish all the possible values of those parameters. This question is known as the  parameter  
identification problem and is particularly difficult in biology because the experiments that could 
establish the parameter values ask for indirect reasonings: a direct measure of a parameter value 
in vivo is rarely possible.

Formal logic and formal methods from computer science have proved to be very efficient to 
assist the identification of parameters: there are well established computer algorithms that can 
perform in silico formal reasonings, and this often leads to clever conclusions, far from being 
obvious  at  first  glance.  Formal  methods  constitute  also  a  powerful  approach to  abstract  (to 
simplify) the mathematical models in such a way that only the relevant features to answer the 
considered biological question(s) are retained into the models. We will see how the so called 
discrete frameworks can realize “qualitative” models dedicated to the sensible questions.

There  are  different  kinds  of  biological  regulatory  networks  and  they  give  rise  to  different 
mathematical frameworks (signaling networks (4), metabolic networks (5), gene networks (6)...). 
In  this  chapter,  we  will  focus  on  gene  regulatory  networks;  the  overall  modeling  method 
(drawing of the interaction network as a graph, identification of the parameters, predictions and 



feedback to experiments) does not differ notably for the other kinds of regulatory network, only 
the underlying mathematical frameworks differ. Moreover, for pedagogical reasons, we will use 
a  simple  biological  running example  in  order  to  give  an  good  intuitive  idea  of  the  formal 
modeling approach. Section 2 explains the biological aspects of our example; Section 3 explains 
in details  how gene regulatory networks can be formally modeled;  Section 4 discusses some 
results  obtained  for  our  running  example;  Section 5  shows  how  formal  logic  and  in  silico 
reasonings  provide  a  systematic  way  to  identify  parameters,  and  consequently  predict  the 
possible behaviors of the considered gene network.

2. Example: Detoxification induced by benzo[a]pyrene exposure

Benzo[a]pyrene (BaP) is an environmental carcinogenic polycyclic aromatic hydrocarbon (PAH) 
that is formed through incomplete combustion of organic materials,  and common sources are 
tobacco smoke, automobile exhaust, and food  (7, 8).  BaP  toxicity is largely mediated through 
binding to the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, found in 
vertebrate species from fish to humans (9).

The  unliganded AhR is  maintained  in  cytoplasm  in  association  with  a  chaperone  complex 
(Hsp90/XAP/p23). 

Depending upon BaP binding and concentration, the activated AhR sheds the chaperon proteins 
and translocates into the nucleus, where it forms a heterodimer with AhR nuclear translocator 
(ARNT)  already  present  in  the  nucleus  (10).  This  complex  recognizes  an  enhancer  DNA 
element,  known as  the  aryl  hydrocarbon response  element  (AHRE) -  also  called  xenobiotic 
response element (XRE), and dioxin response element (DRE) – in the promoter region of target 
genes  collectively  known  as  the  AhR gene  battery,  which  results  in  their  transcriptional 
activation (11, 12, 13).
The AhR gene battery includes cytochrome P450 (e.g. Cyp 1 family), as well as non-P450 genes 
(e.g. a glutathione S-transferase (Gsta1), a UDP glucuronosyltransferase (Ugt a6) …) that are 
coordinately  induced  by  AhR-ligands  such  as  BaP  and  encode  respectively  phase  I  and  II 
xenobiotic metabolizing enzymes involved in the detoxification of BaP (14, 15, 16).
The  coordinate  regulation  of  phase  I  and  phase  II  metabolizing  enzymes  facilitates  AhR-
mediated detoxification (dp1 = detoxification pathway 1) 
[Fig. 1 near here] 
and is necessary for cellular protection against BaP. The oxidative metabolism of BaP catalyzed 
by cytochrome P450 enzymes (e.g. CYP1A1, phase I enzymes) leads to the formation of reactive 
and electrophilic BaP metabolites  (BM) that can be inactivated by phase II enzymes-catalyzed 
conjugation reactions (17). Phase II reactions can aid in formation of water soluble metabolites 
that are easily excreted from the organism, thereby reducing exposure to BaP (18, 19).

Although metabolism of BaP by CYP1A1 is important for detoxification, the process can lead to 
the formation of reactive intermediates - both reactive BaP metabolites and reactive oxygenated 
species (ROS) - that cause an oxidative stress signal (12).
The non-P450 AhR battery genes, which are transcriptionally activated by AhR-ligand via the 
AHRE, are upregulated by oxidative stress via antioxidant response element (ARE) (12, 16). The 



ARE is a  cis-acting sequence located in the promoter region of target genes,  which encodes 
enzymes essential in protection against oxidative stress. 
Linkage between AHRE- and ARE-controlled genes strengthens coupling between phase I and II 
enzymes,  and  attenuates  oxidative  stress  due  to  AhR-controlled  CYP1A1  induction  (dp2  = 
detoxification pathway 2) (20). 

[Fig. 2 near here]

3. Method: Thomas' framework

3.1. Mathematical models of regulatory networks

In order to design a predictive mathematical model for regulatory networks, one has to collect 
two kinds of biological knowledge:

(1) the sensible set of biological objects that are supposed to drive the biological system (or 
the  biological  phenomenon)  under  consideration,  and  the  mutual  influences  between 
these objects; this knowledge will constitute the structure of the model;

(2) a sufficiently precise evaluation of the strength of each influence between objects, under 
any  relevant  situation;  this  knowledge,  once  mathematically  translated  into  suitable 
parameters, will establish the dynamics of the model.

The ideal situation from the mathematical point of view would be when all details about the 
system  under  consideration  have  been  biologically  elucidated,  providing  a  unique  possible 
structure with known parameter values and leading to a unique model exhibiting a completely 
defined  behavior.  In  practice  the  situation  is  far  from  ideal,  a  majority  of  parameters  are  
unknown  and  even  the  structural  part  may  be  subject  to  different  possible  versions. 
Consequently, one has to consider a set of potential models (possibly infinite), which can exhibit 
different possible behaviors. This uncertainty does not imply that the modeling activity cannot be 
predictive because, even under partial knowledge, all the potential models can exhibit certain 
common behaviors under certain conditions. The price to pay is that we have to manage a huge 
number  of  unknown parameters  and  possible  configurations:  here,  computers  and  computer 
science become a corner stone for regulatory networks.

There  are  several  mathematical  frameworks  to  model  regulatory  networks  and  they  can  be 
classified according to the way they handle dynamics (21):

• Probabilistic or stochastic frameworks consider that the state of the regulatory network is 
defined by the number of molecules of each sort in the biological system (the considered 
biomolecules can be for example RNA or proteins in order to define the “state” of the 
gene that codes for them). The possible evolutions of the system are then driven by the 
probability for each considered object to produce new molecules, taking also into account 
the  probabilities  of  degradation,  see  the  seminal  work  of  Gillespie  (22).  All  these 
probabilities  constitute  the  parameters  of  the  model.  Unfortunately  the  probabilistic 
models are often too detailed to facilitate predictions, even with the help of computers, 
because they require a huge number of non deterministic simulations in silico, so that the 
precise evaluation of the parameters is incredibly time consuming.

• Continuous frameworks approximate the number of molecules by a concentration level 
for each considered object (23). Concentrations are positive real numbers, so, it becomes 
possible to consider the derivative of the concentrations with respect to time, and the 



dynamics are then modeled by a system of differential equations with parameters. This 
kind of approximation, that smooths the concentration levels, is of course only valid for 
large  numbers of molecules of  all  sorts.  A drawback of  this  approach is  that  all  the 
trajectories become deterministic but the advantage is that simulations are less costly and 
consequently it is easier to identify the possible values of the parameters.

• Discrete or qualitative frameworks can be seen as an opposite approximation where the 
concentration of molecules is discontinuous and is roughly counted for each considered 
object (e.g. “low”, “medium”, “high”), with of course suitable thresholds. There are as 
many  parameters  as  for  the  two  previous  kinds  of  framework  and  consequently  the 
richness of possible  qualitatively different behaviors is the  same,  but  there are  fewer 
possible values for the parameters. So, computer science with the help of formal logic 
becomes very efficient to  identify the parameters and to  extract  predictions.  We will 
explain  in  details  the  discrete  approach,  focusing  on  the  approach  defined  for  gene 
regulatory networks by René Thomas in the 70's (6) and formalized in (24).

• Lastly  hybrid  frameworks try  to  take  benefit  of  the  qualitative  approach,  whilst 
preserving  some  continuous  or  stochastic  aspects  inside  each  discrete  state  of  the 
network. Hybrid frameworks constitute currently a very active research area in theoretical 
biology.

3.2. Structure: regulatory graphs

All kinds of framework represent the structure of a regulatory network as a directed graph:
• The considered objects (such as genes, relevant external conditions that can vary, or some 

technical  observation points)  are  represented as  nodes of  the  graph.  These  nodes are 
called  variables because  a  “level,”  which can  vary,  will  be  attached  to  them (e.g. a 
concentration level or an expression level).

• The possible actions from one object to another object (such as activations or inhibitions)  
are represented as directed edges of the graph, from a source node to a target node.

• Some actions can require  several  source nodes (e.g. when a complex of molecules is 
needed to act on the target) and they can also have several targets; in such cases we often 
add “virtual” nodes in the graph that make explicit the cooperation between source nodes. 
We call multiplexes these nodes.

Let us consider for example the graph of Figure 3. It provides a simplified view of the benzo[a]
pyrene regulatory network described in Section 2.

[Fig 3 near here]

This regulatory graph contains three variables, which are conventionally surrounded by cycles.
• BaP represents the quantity of benzo[a]pyrene present in the cell.
• CYP represents the product of the CYP1A genes, i.e. the cytochrome P450 concentration 

level.
• BM represents the quantity of benzo[a]pyrene metabolites in the cell, i.e. the capability to 

start an oxidative stress.
The regulatory graph contains two multiplexes, which are conventionally rectangles, with a first 
line giving the name of the multiplex (dp1 and dp2) and a second line containing a formula.



• dp1 contains the formula “CYP & not(BM)” that says that CYP must be present with a  
level sufficiently high (see below), and, on the contrary, BM  must not reach  a certain  
level (see below) in order to reduce the quantity of  BaP  in the cell. The multiplex dp1 
characterizes  the  detoxification  pathway 1  because  the  low  level  of  BM  reflects  the 
absence of a significant oxidative stress.

• dp2  contains  the  formula  “CYP & BaP”  that  says  that CYP and BaP  must  be  both 
present,  with a level  sufficiently  high (see below), in order to  produce BM  (and start 
detoxification pathway 2).

The edges whose target node is a variable can be:
• activations, conventionally represented with arrows of the form “source → target” such 

as the two edges from BaP to CYP or the edge from dp2 to BM;
• or inhibitions, conventionally represented with arrows of the form “source ˧ target” such 

as:
◦ the edge from dp1 to BaP, which represents the reduction of BaP level in the cell 

performed via the coordinate induction of CYP1A and non-P450 enzymes mediated 
through AhR-ligand(BaP)/AHRE pathway,  in the absence of oxidative stress  (this 
inhibition reflects the detoxification pathway 1 of Figure 1),

◦ the edge from BM to BaP, which represents the reduction of BaP level in the cell 
performed  via the  induction  of  CYP1A  mediated  through  AhR-ligand/AHRE 
pathway  and  also  the  induction  of  non-P450  enzymes  controlled  by  both  AhR-
ligand/AHRE  and  oxidative  stress/ARE  pathways  (this  inhibition  reflects  the 
detoxification pathway 2 of Figure 2).

Lastly, the edges whose source node is a variable are labeled by a positive integer:
• There are two edges that start from CYP, with targets dp1 and dp2 respectively. The first  

one is labeled by 1 and the second one is labeled by 2. This means that the level of CYP 
required to participate to dp1 is lower than the level required to participate to dp2: the 
integers  represent  the  order  of  “triggering”  when we assume that  CYP is  increasing, 
starting from its lowest possible level. The integer label is called the  threshold of the 
edge; it makes more precise (and above all, edge-dependent) the notions of “sufficiently 
high level” or “certain level” used before.

• The same applies to the edges starting from BaP. The quantity of BaP can be sufficient to 
activate  the detoxification pathway 1 where CYP is activated but  the oxidative  stress 
remains low. So, there is an edge from BaP to CYP with threshold 1. Also, there is a 
higher  level  of  BaP  that  increases  again  the  production  of  CYP  and  also  starts  an 
oxidative stress by producing more BM. This phenomenon is represented by the two 
edges from BaP to CYP and from BaP to dp2, both with threshold 2.

• Let us remark that the only relevant threshold for BM is 1 because the edge from BM to 
dp1 is purely virtual as it serves to mutually exclude dp1 and dp2 via the “not(BM)” sub-
formula of dp1.

For gene regulatory graphs, René Thomas has proposed a systematic way to properly define the 
expression  levels  of  a  gene  with  simple  integers (6).  He  started  from the  known fact  that, 
considering solely the action of a source gene on a target gene, the curve that represents the 
quantity of the target gene product (at equilibrium), in function of the quantity of the source gene 



product, is a sigmoid. When the source gene activates the target gene, the sigmoid is increasing 
whereas the sigmoid is decreasing if the source inhibits the target, see for example Figure 4. 
[Fig 4 near here]

A gene  g of the regulatory graph being given, it is sufficient to consider all  its target genes 
g1,...,gn and their corresponding sigmoid curves; Figure 4 shows three target genes. Once ordered 
increasingly, the inflection points cut the set of possible expression levels of g into n+1 intervals, 
from 0 to  n. So, the positive integer  i labeling each outgoing edge is the number of the first 
interval where g acts on gi . Sometimes, gi and gi+1 may share the same threshold, in which case 
the inflection points cut the set of possible expression levels of g into n intervals only, from 0 to 
n-1 (or less if there are several shared thresholds).

To summarize, a  regulatory graph contains variables, multiplexes, activation edges on a target 
variable, inhibition edges on a target variable, and edges from a source variable labeled with an 
integer threshold. It  constitutes the structural part of the model. A fully formal mathematical 
definition of regulatory graphs with multiplexes can be found in (25).

3.3. Dynamics: state graphs

The dynamics of a regulatory network define how the biological system evolves autonomously 
by describing the successive “states” that the system shall exhibit, starting from any initial state. 
Following René Thomas, within a discrete model, a state is defined by the number of the interval 
(as  described before) associated to  each variable.  Intuitively,  the state  of a given variable  g 
represents the number of edges in the graph on which g is acting (as already pointed out, it can 
be lower if there are some shared thresholds).

A “current” state being given, it describes for each variable the targets on which the variable is  
“currently” acting. For example (BaP=1, CYP=1, BM=0) is a state where, according to Figure 3:

• BaP activates CYP via the left hand side black edge but not via the right hand side blue 
edge, and BaP is not acting on dp2;

• CYP is acting on dp1 but it is not acting on dp2;
• BM is not acting on dp1 (thus “not(BM)” is true) and BM does not repress BaP.

Consequently, a current state being given, one can make an inventory of the edges that are acting 
on a variable. For example within the current state (BaP=1, CYP=1, BM=0):

• BaP is repressed by dp1 because “CYP & not(BM)” is satisfied (because CYP passes its 
threshold 1 and BM does not); BaP is not repressed by BM because BM does not pass the 
threshold 1;

• CYP is activated by BaP at level 1 (left hand side black edge), but not at level 2 (right 
hand side blue edge);

• BM is not activated by dp2 because “CYP & BaP” is false (because CYP does not pass  
its threshold 2, and neither does BaP).

All mathematical frameworks for gene regulatory networks consider that this inventory decides 
what are all the possible futures from the current state in the dynamics. More precisely, in the 
discrete framework, we consider that the state of each variable g of the regulatory graph tries to 
move towards a value Kg,{e1,e2,...} where {e1, e2, …} is the inventory of all the edges that currently 
act on g, according to the current state. The value of the parameter Kg,{e1,e2,...} is called the focal  
point of g for the current state.



Consequently, to define the dynamics of a regulatory graph, one has to identify the values of a 
family of parameters of the form Kg,{e1,e2,...} where g is any variable of the regulatory graph and 
{e1, e2, …} is any subset of the edges whose target is g. For example, according to the regulatory 
graph of Figure 3, the following parameters should a priori  be considered:

• KBaP,{} , KBaP,{dp1} , KBaP,{BM} and KBaP,{dp1,BM} whose possible values range from 0 to 2;
• KCYP,{} , KCYP,{BaP1} , KCYP,{BaP2} and KCYP,{BaP1,Bap2} , whose possible values range from 0 to 2;
• KBM,{} and KBM,{dp2} , whose possible values are 0 or 1. 

In fact,  the focal point KCYP,{BaP2} is useless because it is impossible for BaP to act on CYP via the 
right hand side blue edge without acting also via the left hand side black edge (if BaP=2 then it is 
greater than 1, consequently  KCYP,{BaP1,Bap2} applies). Similarly,  KBaP,{dp1,BM} is useless because if 
BM passes the threshold 1 to repress BaP, then not(BM) is false, and consequently dp1 cannot 
repress BaP. In other words BaP can be either repressed via the detoxification pathway 1 in black 
or repressed via the detoxification pathway 2 in blue, never both.

As usual, the corner stone of the modeling activity is the parameter identification process: it will 
be discussed in the next section. Let us assume for the moment that the parameter values are 
known and let us show how to deduce the state graph, which defines the dynamics. A state being 
defined by an integer value for each variable of the regulatory graph, the state space can be seen 
as a hyperrectangle whose dimension is the number of considered variables. So, the state space 
for our example is a three-dimensional box, with three values (from 0 to 2) in the BaP and CYP 
dimensions, and two values (0 and 1) in the BM dimension (according to the numbering of  
intervals mentioned previously). Consequently, it contains 18 states. Let us first consider the 6 
states where BaP=0, so that we will be able to draw this subspace on a flat paper easily, and 
study the cell behavior without BaP. It seems reasonable in this case to assume that CYP and BM 
admit their intervals numbered 0 as focal points: KCYP,{}=0 and KBM,{}=0. As BaP is required for 
any action on CYP or BM, these two parameters are the only ones that are useful when BaP=0.

• Let us consider for instance the state (CYP,BM)=(0,1). Its focal state is the target state 
(KCYP,{},KBM,{})=(0,0) and the dynamics will simply contain a transition from the state (0,1
) to the state (0,0).

[Fig 5 near here]
• Let us consider now the state (2,0). Its focal state is still (0,0) as shown on the left part of 

Figure 5 with the red arrow. Obviously a direct transition from (2,0) to (0,0) would be 
biologically impossible because the CYP degradation must cross the interval numbered 1 
instead of jumping from 2 to 0. Consequently, the dynamics convert the red arrow into a 
transition of length 1, as shown with the blue arrow on the same figure.

• Lastly, let us consider the state (1,1). Its focal state is still (0,0) as shown on the middle 
part of Figure 5 with the red arrow. A transition from (1,1) to (0,0) would mean that both 
CYP and BM cross their respective sigmoidal thresholds exactly at the same time. In fact, 
one of them is likely to cross the threshold first, depending on which one is “closer” to its 
threshold in the real current state in vivo. Consequently, the dynamics replace the oblique 
red arrow by two transitions, as shown with the two blue arrows, one of them modifying 
the CYP state alone and the other one modifying the BM state alone.

These two principles (the length of a transition is 1 and a transition modifies only one variable at 
a time) define how to build the state graph. The right part of Figure 5 shows all the transitions 



that stay in the BaP=0 plane with KCYP,{}=0 and KBM,{}=0. This part of the state graph shows that, 
in absence of BaP, the state (CYP=0, BM=0) is a stable state toward which all states converge 
and that CYP and BM can decrease in any order.

4. An example of possible parameter values, among others

When the environment brings BaP into the cell, one has to consider all possible values of BaP 
and consequently the state graph is three-dimensional, with three planes (one for each value of 
BaP)  whose  transitions  are  similarly  deduced  from  the  parameters  and  there  are  several 
transitions that jump between planes when BaP varies. Let us consider a first case where the 
quantity  of  intracellular BaP  can  be  handled  by  the  detoxification  pathway 1.  This  case  is 
modeled  by  KBaP,{}=1,  and  except  KCYP,{}=0  and  KBM,{}=0,  the  other  parameters  are  a  priori 
unknown. The next section explains how the computer can help finding the parameter values. 
For  the  moment,  let  us  arbitrarily  consider  the  following  “reasonable”  values  to  complete 
Figure 3:

(1) KBaP,{dp1}=0 (meaning that the detoxification pathway 1 can be sufficient to reduce BaP 
from  1  to  0)  and  KBaP,{BM}=1  (following  the  intuition  that  BM  characterizes  the 
detoxification pathway 2 by the  presence of oxidative  stress,  and that  the role  of the 
detoxification pathway 2 is to reduce BaP from 2 to 1);

(2) KCYP,{BaP1}=1  (the  expression of  CYP  when  BaP  is  maintained  at  level 1)  and  KCYP,

{BaP1,Bap2}=2 (the expression of CYP when BaP is maintained at level 2);
(3) KBM,{dp2}=1  (BM  trigger  a  significant  oxidative  stress  when  both BaP  and  CYP  are 

maintained at level 2). 
For each of the 18 possible states, we inventory the edges that act on each variable, and this 
determines the parameter that plays the role of focal point. The table on the left of Figure  6 gives 
the 18 corresponding lines.

[Fig 6 near here]

Then, by applying the two principles explained before, we get the state graph drawn on the right  
of Figure 6. Of course, the lower level plane, where BaP=0, is the one obtained in Figure  5, but 
we can see that the state (BaP=0, CYP=0, BM=0) is not a stable state anymore, because the new 
value KBaP,{}=1 creates the red transition (0,0,0)→(1,0,0). This transition represents the fact that 
the cell environment pulls BaP to level 1. In the BaP=1 plane, CYP increases to level 1 via the 
blue transition (1,0,0)→(1,1,0). Then BaP is reduced to level 0  via the green transition (1,1,0)
→(0,1,0). In the BaP=0 plane, CYP is reduced to level 0 via the blue transition (0,1,0)→(0,0,0) 
and finally  we observe that  the cycle  (0,0,0)→(1,0,0)→(1,1,0)→(1,1,0)→(0,0,0)  replaces the 
stable state observed in Figure 5 where  KbaP,{} was equal to 0. This cycle reflects the behavior of 
the detoxification pathway 1.

Some remarks:
• Notice that the non-P450 genes are not explicitly taken into account in this regulatory 

model for pedagogical reasons only (in order to avoid a four-dimensional state graphs in 
this chapter). A non-P450 variable should have been included into the model for a better 
biological credibility and,  of course,  the example is easy to  study with the help of a 
computer, which has no difficulty to handle a large number of dimensions. Indeed, all the 



results explained here remain valid when we hide, as we did, the non-P450 genes in the 
two inhibition arrows of Figure 3.

• Besides, notice that it is impossible to escape from the cycle (0,0,0)→(1,0,0)→(1,1,0)
→(1,1,0)→(0,0,0) which is consequently a basin of attraction of the state graph.

• All  other  states  of  the  state  graph  converge  toward  this  basin  of  attraction  which 
consequently represents the only functional behavior according to this parameter setting.

• Notice also that the BaP=2 plane is unreachable in normal conditions because all vertical 
transitions between the two planes BaP=1 and BaP=2 are going down.

This  family  of  parameter  values  seems  also  suitable  to  model  the  case  where  the  cell  
environment brings BaP into the cell at a sufficient level to trigger a significant oxidative stress 
and the detoxification pathway 2: we consider the same parameter values except that  KbaP,{}=2 
instead of 1; we get the state graph of Figure 7.

[Fig 7 near here]

We see that the cycle reflecting the detoxification pathway 1 is no more a basin of attraction. 
Indeed, there is a red transition (1,0,0)→(2,0,0) that escapes from the cycle of pathway 1, due to 
the capability of the environment to pull up BaP to level 2. New cycles appear; among them, the 
preferentially chosen ones go through the states (2,1,0), (2,2,0), (2,2,1) and (1,2,1). These cycles 
denote that a larger amount of CYP is expressed, that BM are significantly produced and that a 
significant oxidative stress is triggered.  These cycles belong to the possible behaviors of the 
detoxification pathway 2. The bold arrows of Figure 7 show one of those cycles. Remember that 
we do not take into account the DNA damage in this model, which would impose an escape of 
detoxification pathway 2. 

5. Materials: Model checking and SMBioNet

Since the parameters are generally not measurable in vivo, finding a suitable class of parameters 
constitutes  a  major  issue  of  the  modeling  activity.  In  fact,  while  available  data  on  the 
connectivity between elements of the network are more and more numerous, the kinetic data of 
the associated interactions remain difficult to interpret in order to identify the strength of the 
gene activations or inhibitions. While it  is rather easy to construct the interaction graph,  the 
determination  of  the  dynamics  of  the  model  is  quite  difficult.  This  parameter  identification 
problem constitutes the cornerstone of the modeling activities. Then, it would be interesting to 
automatically exhibit from some biologically known behaviors or some hypothetical behaviors, 
parameters of the model which lead to dynamics coherent with the set of available knowledge on 
the behavior of the system. In the context of purely discrete modeling presented before,  this 
problem is simpler because of the finite number of parameterizations to consider. Nevertheless 
this number is so enormous that a computer aided method is needed to help biologists to go  
further in the comprehension of the biological system under study. We show in this section how 
formal  methods from computer science are  able  to  perform computer-aided identification of 
parameters.



5.1 Temporal logic

Temporal  logics  are  languages  that  allow  us  to  formalize  known  biological  behaviors  or 
hypothetical behaviors in such a way that computers can automatically check if a model exhibits  
those behaviors or not.  The building blocks of a  temporal  logic  are  atoms,  connectives and 
temporal  modalities.  Let  us here  consider  the  Computation Tree Logic  (26),  CTL for short, 
which is one of the most common temporal logics:

(4) Atoms in CTL are simple statements about the current state of a variable of the network: 
equalities (e.g., (BaP=2)) or inequalities (e.g., (CYP<1) or (CYP>1)).

(5) Connectives  are  the  standard  connectives:  “¬”,  as  negation  (e.g.,  ¬(BaP =  0)  is  the 
negation of the atom (BaP=0)); “∧”, as “and” stands for  the conjunction (e.g., (BaP=0)
∧(CYP>1)); “∨”, as “or”, stands for the disjunction (e.g., (BaP=0)∨(CYP>1)); “”, as 
“implies”, stands for  implication (e.g., (BaP=0)  (CYP>1)), and so on.

(6) Temporal modalities are combinations of two types of information:
1. Quantifiers: a formula can be checked with respect to all possible choices of path in 

the asynchronous state graph (universal quantifier, denoted by the character “A”), or 
one can check if it exists at least one path such that the formula is satisfied (existential 
quantifier, denoted by the character “E”).

2. Discrete time elapsing: a formula can be checked at the next state (character “X”), in 
some future state which is not necessarily the next one (character “F”), and in all 
future  states  (character  “G”).  Moreover  a  formula  can  be  checked  until  another 
formula becomes satisfied in the future (character “U”).

In short, a CTL modality is the concatenation of two characters:
first character second character

A = for All path choices X = neXt state

F = for some Future state

E = there Exists a choice G = for all future states (Globally)

U = Until

To illustrate how to use CTL to express a biological property, let us consider the formula: 

( (BaP=0) ∧ (CYP=0) ∧ (BM=0) )  EF( (BaP=2) ∧ (CYP=2) ∧ (BM=1) ∧ AG(BaP=2) ) 
This formula means that, starting from an initial state where (BaP=0), (CYP=0) and (BM=0), it 
is possible (character “E”) to reach, in the future (character “F”), a state where (BaP=2) and 
(CYP=2) and (BM=1). Moreover, from this latest state, all trajectories (character “A”) will stay 
for ever (character “G”) in the set of states where (BaP=2). 

5.2 CTL to Encode Biological Properties

CTL  formulas  are  useful  to  express  temporal  properties  of  biological  systems.  Once  such 
properties have been elaborated, a model of the biological system will be acceptable only if its  
state graph satisfies the CTL formulas, otherwise, it is not considered anymore. Considering our 
running example, three temporal properties seem relevant.

The first temporal property focuses on the behavior of the system when the toxic exposure level 
is null (KBaP=0). In such a case, the system is able to reset the expression level of CYP towards 
its basal level, that is towards 0.  Let us first denote by (x,y,z) the formula ((BaP=x) ∧ (CYP=y) 



∧ (BM=z)). Since (KBaP=0) is equivalent to the fact that from the state (0,0,0), the increasing of 
BaP is not possible, this behavior is translated into CTL as: 

0     [ (0,0,0)  ¬ EX (1,0,0) ]   ∧   [ (BaP=0)  AF(AG(CYP=0)) ]

The second property focuses on the behavior of the system when the toxic exposure level is set 
to  1  (KbaP=1). The detoxification pathway 1 is supposed to  be sufficient to  detoxify the cell 
completely. Besides BaP cannot increase up to level 2. In addition the detoxification pathway 1 
(when the BaP level is decreasing from level 1 to 0) does not involve the oxidative stress/ARE 
pathway (in other words BM=0). Since (KBaP=1) is equivalent to the fact that, on the one hand, 
from the state (0,0,0), the increasing of BaP is possible, and on the other hand, from the state  
(2,0,0),  the  decreasing  of  BaP  is  possible.  Thus,  these  properties  are  translated  in  CTL as 
follows: 

1   ( [(0,0,0)  EX(1,0,0)] ∧ [(2,0,0) EX(1,0,0)] )       ∧
( (BaP>0) {EF(BaP=0) ∧ AF(AG(BaP<2)) ∧  AG[((BaP=1) ∧ EX(BaP=0))  (BM=0)]}) 

The third temporal property focuses on the behavior when the toxic exposure level is set to 2 
(KbaP=2). In such a case, a path which detoxifies completely exists: 

2   (BaP=2)  EF(BaP=0)

In practice, CTL formulas are sufficient to express the majority of useful biological properties 
even if in some cases the translation of a property is tricky. 

5.3 Computer Aided Elaboration of Formal Models

To apprehend a biological system, the researchers accumulate knowledge on this system. As 
seen in section 2,  this knowledge includes  structural or dynamic  knowledge. CTL is used to 
encode dynamic properties of the biological system, including the response to a given stress,  
some possible stationary states, known oscillations, etc. In general this second kind of knowledge 
can also be an hypothesis about the behavior of the system. 

The first question focuses on consistency: is the dynamic knowledge coherent with the structural  
knowledge? 

After the formalization step,  formal logic and formal models allow us to test  hypotheses,  to 
check consistency,  to  elaborate  more precise  models  incrementally,  and to  suggest  new and 
relevant biological experiments. The classical way of testing consistency, introduced in  (24), 
consists in the following four steps: 

• Draw all the sensible regulatory graphs according to the structural biological knowledge, 
with all the sensible, possible threshold allocations. 

• Express in a formal language, CTL for example, the known behavioral properties as well 
as the considered biological hypotheses.

• Then, automatically generate, for each possible regulatory graph, all the possible values 
for all  parameters.  For all  of them, generate  the huge number of corresponding state 
graphs. 



• Check  each  of  these  models  against  the  CTL  formulas  expressing  the  dynamic 
knowledge. This step is called model checking.

If no model survives to the fourth step, then reconsider the hypotheses and perhaps extend model 
schemes.

In the context of R. Thomas’ modeling, the software plateform SMBioNet (25) implements this 
way  of  testing  consistency: it  allows  one  to  select  the  models  that  are  consistent  with  the 
regulatory  graph  and  the  dynamic  properties  expressed  in  CTL.  For  each  parameterization, 
SMBioNet constructs the corresponding asynchronous state graph and check if the CTL temporal 
formula is satisfied by this state graph. This verification step is performed by the model checker 
NuSMV (27).

The total number of parameterizations to consider can be easily computed. Let us first remark 
that parameters associated with BaP (KbaP,{}, KbaP,{dp1}, KbaP,{dp1,BM}) can take their values in [0,1,2], 
that parameters associated with CYP (KCYP,{},  KCYP,{bap1}, KCYP,{bap1,bap2}) can take their values in 
[0,1,2], and that parameters associated with BM (KBM,{}, KBM,{dp2})  can take their values in [0,1], 
as  described in Section 3.3.  Thus there  exist  33  33  22=2916 different parameter  values to 
consider.  It  does  not mean that  there  exist  2916 different  state  graphs to  consider,  for two 
reasons:

• It is not restrictive to consider only “monotonous” parameterizations where an activator 
cannot decrease a parameter (if  a is an activator of a variable  v and if  w is a set  of 
resources of v, then Kv,w   Kv,w{a}) and an inhibitor cannot increase a parameter (if i is an 
inhibitor of v, then Kv,w{i}  Kv,w) because the multiplexes explicit the exceptions at the 
structural level.

• Several parameter values can lead to a same state graph. 
Consequently, the software plateform SMBioNet enumerates only the different state graphs that 
are  associated  with  a  monotonous parameterization.  For  our  BaP  example,  SMBioNet 
enumerates only 420 state graphs, submits each graph to the model checker, selects only the state 
graphs  that  satisfy  the  CTL  formulas  0, 1 or  2,  and  outputs  the  corresponding 
parameterizations.

There  are  18 models (parameter  valuations) which lead to  a  state  graph which is consistent 
with 0,  14  models  consistent  with  1 and  90  models  consistent  with  2.  According  to 
Section 5.2, we are interested in the models that satisfy  0 when KBaP=0, and 1 when KBaP=1, 
and  2 when  KbaP=0.  Interesting models are then those that share all the values of parameters 
except the values of parameters KbaP,... because BaP is an environmental variable of the regulatory 
network (external to the cell).

Finally  three  different  parameterizations  of  KCYP,... and  KBM,... survive.  To  deepen  our 
understanding  of  the  system,  we  have  to  construct  the  corresponding  state  graph  for  each 
possible value of the  parameters KbaP,... and check their biological meaning, as partly done in 
Section 4 for one of these three  parameterizations.
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7. Captions

Figure 1: Detoxification pathway 1 (dp1)

Figure 2: Detoxification pathway 2 (dp2)

Figure 3: The simplified benzo[a]pyrene regulatory graph. Detoxification pathway 1 is black on 
the left and detoxification pathway 2 is blue on the right. DNA damages are not considered here.

Figure 4: Example of sigmoid shapes where a source gene g activates its target genes g1 and g3  
and inhibits g2. Four qualitatively different intervals appear, numbered by the number of genes 
on which g is acting.

Figure 5: Construction of the state graph where BaP is fixed to 0.

Figure  6:  A  discrete  model  of  the  interleaving  pathways  dp1 and  dp2 when  environment 
imposes an in-between level of BaP.  (Left) The table shows for each possible state the set of 
resources of each variable and the possible evolution directions.  (Right) The associated state 
graph. 

Figure  7: A  discrete  model  of  the  interleaving  pathways  dp1 and  dp2 when  environment 
imposes a high level of BaP. (Left) The table shows for each possible state the set of resources 
of each variable and the possible evolution directions. (Right) The associated state graph. 
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