
Disciplined Structured Communications with
Disciplined Runtime Adaptation

Cinzia Di Giustoa, Jorge A. Pérezb

aUniversité d’Evry - Val d’Essonne, Laboratoire IBISC
bJohann Bernoulli Institute for Mathematics and Computer Science, University of Groningen

Abstract

Session types offer a powerful type-theoretic foundation for the analysis of structured communica-
tions, as commonly found in service-oriented systems. They are defined upon core programming
calculi which offer only limited support for expressing requirements related to runtime adapta-
tion. This is unfortunate, as service-oriented systems are increasingly being deployed upon highly
dynamic infrastructures in which such requirements are central concerns. In previous work, we
developed a process calculi framework of adaptable processes, in which concurrent processes can
be replaced, suspended, or discarded at runtime. In this paper, we propose a session type disci-
pline for a calculus with adaptable processes. Our typed framework offers a simple alternative for
integrating runtime adaptation mechanisms in the modeling and analysis of structured communica-
tions. We show that well-typed processes enjoy safety and consistency properties: while the former
property ensures the absence of communication errors at runtime, the latter guarantees that active
session behavior is never disrupted by adaptation actions.

1. Introduction

Session types offer a powerful type-theoretic foundation for the analysis of complex scenar-
ios of structured communications, as frequently found in service-oriented systems. They abstract
communication protocols as basic interaction patterns, which may then be checked against specifi-
cations in some core programming calculus —typically, a variant of the π-calculus [24]. Introduced
in [19, 20], session type theories have been extended in multiple directions —see [12] for a sur-
vey. Their practical relevance is witnessed by, e.g., their successful application to the analysis of
collaborative, distributed workflows in healthcare services [18].

In spite of these developments, we find that existing process frameworks based on session
types do not adequately support mechanisms for runtime adaptation. As distributed systems and
applications are being deployed in open, highly dynamic infrastructures (such as cloud comput-
ing platforms), runtime adaptation appears as a key feature to ensure continued system operation,
reduce costs, and achieve business agility. We understand runtime adaptation as the dynamic mod-
ification of (the behavior of) the system as a response to an exceptional external event. Even if

Preprint submitted to Elsevier April 22, 2015

such events may not be catastrophic, they are often hard to predict. The initial system specifica-
tion must explicitly describe the sub-systems amenable to adaptation and their exceptional events.
Then, on the basis of this initial specification and its projected evolution, an array of possible adap-
tation routines is defined at design time. Runtime adaptation then denotes potential behavior, in
the sense that a given adaptation routine is triggered only if its associated exceptional event takes
place. While channel mobility present in session languages (commonly referred to as delegation)
is useful to specify distribution of processing via types [20], we find that runtime adaptation, in the
sense just discussed, is hard to specify and reason about in those languages.

We thus observe a substantial gap between (i) the adaptation capabilities of communication-
based systems in practice, and (ii) the forms of interaction available in existing (typed) process
frameworks developed to reason about the correctness of such systems.

In this paper we propose an alternative for filling in this gap. We introduce a session type disci-
pline for a language equipped with mechanisms for runtime adaptation. Rather than developing yet
another session type discipline from scratch, we have deliberately preferred to build upon existing
lines of work. Our proposal builds upon the framework of adaptable processes, an attempt for
enhancing process calculi specifications with evolvability mechanisms which we have developed
together with Bravetti and Zavattaro in [3]. We combine the constructs for adaptable processes
with the main insights of the session type system put forward by Garralda et al. [16] for the Boxed
Ambient calculus [6]. Since the type system in [16] does not support delegation, we incorporate
this useful mechanism by relying on the “liberal” typing system developed by Yoshida and Vascon-
celos in [29]. As a result of this integration of concepts, we obtain a simple yet expressive model
of structured communications with explicit mechanisms for runtime adaptation.

We briefly describe our approach and results. Our process language includes the usual π-
calculus constructs for session communication, but extended with the located processes and the
update processes introduced in [3]. Given a location l, a process P , and a context Q (i.e. a process
with zero or more free occurrences of variable X), these two processes are noted l[P] and l{(X).Q},
respectively. They may synchronize on l so as to evolve into process Q[P/X] —the process Q in
which all free occurrences of X are replaced with P . This interaction represents the update of
process P at l with an adaptation routine embodied by Q, thus realizing the vision of runtime
adaptation hinted at above. Locations can be nested and are transparent: within l[P], process P
may evolve autonomously, with the potential of interacting with some update process for l.

In our language communicating behavior coexists with update actions. This raises the need
for disciplining both forms of interaction, in a way such that protocol abstractions given by ses-
sion types are respected and evolvability requirements are enforced. To this end, by observing that
our update actions are a simple form of (higher-order) process mobility [26], we draw inspiration
from the session types in [16], which ensure that sessions within Ambient hierarchies are never
disrupted by Ambient mobility steps. By generalizing this insight to the context of (session) pro-
cesses which execute in arbitrary, possibly nested locations, we obtain a property which we call
consistency: update actions over located processes which are engaged in active session behavior
cannot be enabled.

To show how located and update processes fit in a session-typed process language, and to

2

illustrate our notion of consistency, let us consider a simple distributed client/server scenario, con-
veniently represented as located processes:

Sys , l1[C1] | l2
[
r[S] | R

]
where:

C1 , request a(x).x〈u1,p1〉.x / n1.P1.close (x)

S , ! accept a(y).y(u, p).y . {n1:Q1.close (y) []n2:Q2.close (y)}

Intuitively, Sys consists of a replicated server S and a client C1, hosted in different locations r
and l1, respectively. Process R, in location l2, represents the platform in which S is deployed.
The client C1 and the (persistent) server S may synchronize on name a to establish a new session.
After that, the client first sends its credentials to the server; then, she chooses one of the two
labeled alternatives offered by the server. Above, client C1 selects the alternative on label n1; the
subsequent client and server behaviors are abstracted by processes P1 andQ1, respectively. Finally,
server and client synchronize to close the session.

Starting from Sys, let us suppose that a new session is indeed established by a synchronization
on a. The semantics of our process model decrees a reduction step Sys −→ Sys′:

Sys′ = (νκ)
(
l1[κ+〈u1, p1〉.κ+ / n1.P1.close (κ+)] |
l2
[
r[κ−(u, p).κ− . {n1:Q1.close (κ−) []n2:Q2.close (κ−)}] | R

])
where κ+ and κ− denote the two end-points of channel κ [17]. Suppose now that R simply repre-
sents an upgrade process, which is ready to synchronize with r, the location in which S resides:

R = r{(X).NewS}

From Sys′, an update on r would be highly inconvenient for at least two reasons:

(a) First, since r contains the local server behavior for an already established session, a careless
update action on r could potentially discard such behavior. This would leave the client in l1
without a partner—the protocol agreed upon session establishment would not be respected.

(b) Second, since r contains also the actual service definition S, an undisciplined update action
on r could affect the service on a in a variety of ways—for instance, it could destroy it. This
clearly goes against the expected nature of services, which should be always available.

Above, item (a) concerns our intended notion of consistency, which ensures that any update actions
on r (such as those involvingR above) are only enabled when r contains no active sessions. Closely
related, item (b) concerns a most desirable principle for services, namely that “services should
always be available in multiple copies”—this is the Service Channel Principle (SCP) identified
in [9].

3

Contributions. The main contribution of this paper is a session typed framework with runtime
adaptation. Our framework lies upon two main technical ingredients:

(1) An operational semantics for our session language with located and update processes [3]. The
semantics enables adaptation actions within arbitrary process hierarchies and, following [16],
endows each located process with a suitable runtime annotation, which describes its active
session behavior. Runtime annotations for locations are key in avoiding undesirable update
actions such as the described in (a) above.

(2) A typing system which extends existing session type systems [29, 16] with the notion of in-
terface, which allows for simple and intuitive static checking rules for evolvability constructs.
In particular, interfaces are essential to rule out careless updates such as the described in (b)
above. This typing system provides a static analysis technique for ensuring not only safety,
i.e., absence of communication errors at runtime, but also consistency, as described above.

To the best of our knowledge, our framework is the first in amalgamating structured communica-
tions and runtime adaptation from a session types perspective (either binary or multiparty).

Organization. The following section introduces our process language, a fairly standard session
π-calculus extended with adaptable processes. In § 3 our session type system is presented; its
main properties, namely safety and consistency, are defined and investigated in § 4. The typed
approach is illustrated via examples in § 5, where the client/server scenario discussed above is
revisited. Extensions and enhancements for our framework are discussed in § 6: they concern the
runtime adaptation of processes with active sessions, and the incorporation of recursive types and
subtyping. Finally, § 7 discusses related work and § 8 collects some concluding remarks.

This paper is a revised version of the conference paper [14], substantially extended with further
examples and discussions. See § 7 for further comparisons with respect to [14]. This presentation
also contains the proofs of the main technical results; most of them are collected in the Appendix.

2. A Process Language with Runtime Adaptation

We extend standard session-typed languages (see, e.g., [20, 29]) with located processes and
update actions. These two constructs, extracted from [3], allow us to explicitly represent runtime
adaptation within models of structured communications. This section introduces the syntax and
semantics of our process model, and illustrates some of the adaptation patterns expressible in it.

2.1. Syntax

Our syntax builds upon the following (disjoint) base sets: names, ranged over a, b, . . .; loca-
tions, ranged over l, l′, . . .; labels, ranged over n, n′, . . .; constants (integers, booleans, names),
ranged over c, c′, . . .; process variables, ranged over X,X′, Then, processes, ranged over
P,Q,R, . . . and expressions, ranged over e, e′, . . . are given by the grammar in Table 1. We write
ẽ to denote a finite sequence of expressions e1, . . . , en; a similar convention applies for variables.

4

a, b, c ::= x, y, z variables
| u, v, w names

k ::= x, y, z variables
| κ+, κ− channels

P ::= request a(x).P session request
| accept a(x).P session acceptance
| ! accept a(x).P persistent session acceptance
| k〈ẽ〉.P data output
| k(x̃).P data input
| k〈〈k′〉〉.P channel output
| k((x)).P channel input
| k / n;P selection
| k . {n1:P1 [] · · · []nm:Pm} branching
| l[P] located process
| l{(X).P} update process
| X process variable
| if e then P else Q conditional
| P | P parallel composition
| close (k).P close session
| (νk)P channel hiding
| 0 inaction

e ::= c constants
| e1 + e2 | e1 − e2 | not(e) | . . . expressions

Table 1: Process syntax.

Notice that we also use (polarized) channels, ranged over κp, κp1, . . ., where p ∈ {+,−}. In the
following, j, h,m, . . . range over N.

We now comment on constructs in Table 1; in most cases, intuitions and conventions are as
expected [20]. Prefixes accept a(x) and request a(y) use name a to establish a new session.
Once a session is established, structured behavior on channels is possible. We sometimes refer
to accept a(x).P as a service and to ! accept a(x).P as a persistent service. In the same vein,
we sometimes refer to request a(x).Q as a service request. Prefix close (k) is used to explicitly
terminate session k. Having this prefix is crucial to our approach, for it allows us to keep track
of the open sessions at any given time. The exchange of expressions is as usual; channel passing
(delegation) is also supported. Thus, our language supports transparent distribution of processing
via channel passing as well as the more expressive runtime adaptation via located and update pro-
cesses, as we discuss below. With the aim of highlighting the novel aspect of runtime adaptation,
in this section we consider infinite behavior in the form of replicated services; in § 6.2 we show
how to include recursion in the language. Also, we consider a restriction operator over channels

5

only—restriction over names is not supported.
As hinted at in the Introduction, a located process l[P] denotes a process P deployed at lo-

cation l. Inside l, process P can evolve on its own and interact with external processes. In l[P],
we use l as a reference for a potential update action, which occurs by interaction with an update
process l{(X).Q}—a built-in adaptation mechanism. In l{(X).Q}, we use Q to denote a process
with zero or more occurrences of process variable X. As formalized by the operational semantics
in § 2.2, an update action at l corresponds to the interaction of l[P] and l{(X).Q} which leads
to process Q[P/X]—the process Q in which free occurrences of X are substituted with P . In the
semantics, we shall consider annotated located processes lh[P], where h stands for the number of
active sessions in P . This runtime annotation is used by the type discipline in § 3 to ensure that
update actions do not disrupt the active session behavior deployed at a given location—this is the
consistency guarantee, formally addressed in § 4.2.

Binding is as follows: variable x is bound in processes request a(x).P , ! accept a(x).P , and
accept a(x).P ; similarly, x̃ is bound in k(x̃).P (variables x1, . . . , xn are all distinct). Also, process
variable X is bound in the update process l{(X).P}. Based on these intuitions, given a process
P , its sets of free/bound channels, variables, and process variables—noted fc(P), fv(P), fpv(P),
bc(P), bv(P), and bpv(P), respectively—are defined as expected. In all cases, we rely on expected
notions of α-conversion (noted ≡α) and (capture-avoiding, simultaneous) substitution, noted [c̃/x̃]
(for data), [κ

p
/x] (for channels), and [P/X] (for processes). We work only with closed processes,

and often omit the trailing 0.

2.2. Semantics

The semantics of our process language is given by a reduction semantics, denoted P −→ P ′,
the smallest relation on processes generated by the rules in Table 2. As customary, it relies on an
evaluation relation on expressions (noted e ↓ c) and on a structural congruence relation, denoted
≡, which we define next.

Definition 1 (Structural Congruence). Structural congruence is the smallest congruence relation
on processes that is generated by the following laws:

P |Q≡Q |P (P |Q) |R≡P |(Q |R)
P |0≡P P ≡Q if P ≡αQ
(νκ)0≡0 (νκ)(νκ′)P ≡(νκ′)(νκ)P

(νκ)P |Q≡(νκ)(P |Q) (if κ 6∈ fc(Q)) (νκ)lh[P]≡ lh[(νκ)P]

In Table 2, duality for polarities p is as expected: + = − and − = +. We write −→∗ for
the reflexive, transitive closure of −→. As processes can be arbitrarily nested inside locations,
reduction rules use contexts, i.e., processes with a hole •.

Definition 2 (Contexts). The set of contexts is defined by the following syntax:

C,D,E, . . . ::= • | lh[C | P]

6

(R:PAR) if P −→ P ′ then P | Q −→ P ′ | Q

(R:RES) if P −→ P ′ then (νκ)P −→ (νκ)P ′

(R:STR) if P ≡ P ′, P ′ −→ Q′, andQ′ ≡ Q then P −→ Q

(R:OPEN) E
{
C{accept a(x).P} | D{request a(y).Q}

}
−→

E++
{

(νκ)
(
C+{P [κ

+
/x]} | D+{Q[κ

−
/y]}

)}
(R:ROPEN) E

{
C{! accept a(x).P} | D{request a(y).Q}

}
−→

E++
{

(νκ)
(
C+{P [κ

+
/x] | ! accept a(x).P} | D+{Q[κ

−
/y]}

)}
(R:UPD) E

{
C{l0[P]} | D{l{(X).Q}}

}
−→ E

{
C{Q[P/X]} | D{0}

}
(R:I/O) E

{
C{κ p〈ẽ〉.P} | D{κ p(x̃).Q}

}
−→ E

{
C{P} | D{Q[c̃/x̃]}

}
(ẽ ↓ c̃)

(R:PASS) E
{
C{κ p〈〈κ′ q〉〉.P} | D{κ p((x)).Q}

}
−→ E

{
C−{P} | D+{Q[κ

′ q
/x]}

}
(R:SEL) E

{
C{κ p . {n1:P1 [] · · · []nm:Pm}} | D{κ p / nj ;Q}

}
−→

E
{
C{Pj} | D{Q}

}
(1 ≤ j ≤ m)

(R:CLOSE) E
{
C{close (κ p).P} | D{close (κ p).Q}

}
−→ E−−

{
C−{P} | D−{Q}

}
(R:IFTR) C{if e then P else Q} −→ C{P} (e ↓ true)

(R:IFFA) C{if e then P else Q} −→ C{Q} (e ↓ false)

Table 2: Reduction semantics.

Given a context C and a process P , we write C{P} to denote the process obtained by filling in
the occurrences of hole • in C with P . The intention is that P may reduce inside C, thus reflecting
the transparent containment realized by location nesting.

We assume the expected extension of ≡ to contexts; in particular, we tacitly use ≡ to enlarge
the scope of restricted channels in contexts as needed. As mentioned above, reduction relies on
located processes with annotations h, which denote the number of active sessions at every location.
To ensure the coherence of such annotations along reduction, we define operations over contexts
which allow us to increase/decrease the annotation h on every location contained in a context.

Definition 3 (Operations on Contexts). Given a context C as in Def. 2, a natural number j, and an
operator ∗ ∈ {+,−}, we define C∗j as follows:

(•)∗j = • (lh[C | P])∗j = lh∗j [C∗j | P]

This way, for instance, C+1 denotes the context C in which the runtime annotations for all
locations have been incremented by one. We write C−, C+, C−−, and C++ to stand for C−1,
C+1, C−2, and C+2, respectively.

7

We now comment on reduction rules (R:OPEN), (R:UPD), (R:PASS), and (R:CLOSE) in Ta-
ble 2; other rules are either standard or self-explanatory.

Rule (R:OPEN) formalizes session establishment. There are three distinguished contexts: while
C contains the service offer and D encloses the service request, context E encloses both C and D.
By matching on name a a session is established; following [17, 29], this is realized by endowing
each partner with a fresh polarized channel (or end-point) κp. As such, channels κ+ and κ− are
runtime entities. Because of session initiation, the number of active sessions should be increased
across all enclosing contexts: relying on the operators given in Def. 3, we increment by one in
contextsC andD and by two in contextE, for it encloses both endpoints. This increment realizes a
form of protection against careless update actions; observe that due to the transparency of locations,
any updates may take place independently from the actual nested structure.

The reasons for the increment just described should be clear from rule (R:UPD), which for-
malizes the update/reconfiguration of a location l, enclosed in contexts C and E. Notice how the
update action can only occur if the number of open (active) sessions in l is 0. By forcing updates
to occur only when any (located) session behavior has completed (cf. rule (R:CLOSE)), reduction
ensures that active sessions are not inadvertently disrupted. When enabled, an update action is re-
alized by substituting, within location l, all free occurrences of X inQ with P (the current behavior
at l). Hence, it is the adaptation routine which “moves” to realize reconfiguration. This is a form
of objective update, as the located process does not contain information on future update actions:
it reduces autonomously until it is adapted by an update process in its environment.

Rule (R:PASS) is the standard rule for delegation; in our setting, endpoint mobility is re-
flected by appropriate decrements/increments in the contexts enclosing the session sender/receiver.
Rule (R:CLOSE) formalizes the synchronized session closure. In analogy with rule (R:OPEN),
session closure should decrease the active session annotation in all enclosing contexts.

2.3. Examples of Runtime Adaptation

We now present some patterns of runtime adaptation that can be expressed in our process
framework. Recall that l1, l2, . . . denote identifiers for locations. We discuss different reductions,
resulting from the interaction between a located process and a corresponding adaptable process.
These reductions are enabled; for the sake of readability, however, we elide the runtime annotation
associated to the locations (h = 0 in all cases).

Relocation. One of the simplest reconfiguration actions that can be represented in our model is the
relocation of an arbitrary behavior to a completely different computation site. The following
reduction illustrates how a synchronization on location l1 leads to a relocation from l1 to l2:

l1
[
l4[Q]

]
| l1{(X).l2[X]} −→ l2

[
l4[Q]

]
| 0

It is worth observing how a relocation does not alter the behavior at l1. In particular, reloca-
tions are harmless to open sessions in Q, if any.

8

Deep Update. Because our locations are transparent, an update action may have influence on lo-
cated processes not necessarily at top-level in the nested process structure. The reduction
below illustrates how the influence of an update process on name l3 can cross locations l1
and l2 in order to realize an adaptation routine, represented by process S′:

l1
[
Q | l2

[
R | l3[S1]

]]
| l3{(X).l4[S′]} −→ l1

[
Q | l2[R | l4[S2]]

]
| 0

where S2 = S′[S1/X]. That is, by virtue of the update action on l3, its current behavior
(denoted S1) is suspended and possibly used in the new behavior S′, which is now located
at l4.

Upgrade. Interestingly, update actions do not need to preserve the current behavior at a given
location. In fact, if the adaptation routine embodied by the updated process does not contain
a process variable, then the current behavior at the location will be discarded. This feature is
illustrated by the following reduction, in which we assume that X /∈ fv(Q):

l1[P] | l1{(X).Q} −→ Q | 0

Observe that the location on which the update action takes place does not need to be pre-
served either: had we wanted to only replace the behavior at l1, then it would have sufficed to
enclose the runtime adaptation codeQwithin a located process named l1, i.e., l1{(X).l1[Q]}.

Conditional Backup. The current behavior of a location may be used more than once by an adap-
tation routine. Consider process Be below:

Be = l1[Q] | l5
[
if e then l1{(X).l2[X]} else l1{(X).l1[X] | l3[X]}

]
Depending on the boolean expression e reduces to, Be may either (i) simply relocate the
behavior at l1, or (ii) define a “backup copy” of Q at l3:

Be −→∗ l2[Q] | l5[0] if e ↓ true
Be −→∗ l1[Q] | l3[Q] | l5[0] if e ↓ false

The previous examples are useful to illustrate the expressiveness of adaptable processes for rep-
resenting rich adaptation mechanisms. As our process model includes both communication and
update actions, we require mechanisms for harmonizing them, avoiding undesirable disruptions of
communication behavior by updates. In the next section, we define a static analysis technique that
enables update actions when the given location does not enclose open sessions.

3. The Type System

Our type system builds upon the one in [29], extending it so as to account for disciplined
runtime adaptation. A main criteria in the design of our type discipline is conservativity: we would
like to enforce both structured communication and disciplined adaptation by preserving standard
models of session types as much as possible.

9

TYPES
τ, σ ::= int | bool | . . . basic types
α, β ::= !(τ̃).α | ?(τ̃).α send, receive

| !(β).α | ?(β).α throw, catch
| &{n1 : α1, . . . , nm : αm} branch
| ⊕{n1 : α1, . . . , nm : αm} select
| ε closed session

ENVIRONMENTS

q ::= lin | un type qualifiers
∆ ::= ∅ | ∆, k : α | ∆, [k : α] typing with active sessions
Γ ::= ∅ | Γ, e : τ | Γ, a : 〈αq, αq〉 first-order environment
Θ ::= ∅ | Θ,X : I | Θ, l : I higher-order environment

Table 3: Types and Typing Environments. Interfaces I are formally introduced in Definition 6.

3.1. Type Syntax

We now define our type syntax, which is rather standard.

Definition 4 (Types). The syntax of basic types (ranged over τ, σ, . . .) and session types (ranged
over α, β, . . .) is given in Table 3.

We recall the intuitive meaning of session types. We write τ̃ to denote a sequence of base
types τ1, . . . , τn. Type ?(τ̃).α (resp. ?(β).α) abstracts the behavior of a channel which receives
values of types τ̃ (resp. a channel of type β) and continues as α afterwards. Complementarily, type
!(τ̃).α (resp. !(β).α) represents the behavior of a channel which sends values (resp. a channel) and
that continues as α afterwards. Type &{n1 : α1, . . . , nm : αm} describes a branching behavior,
or external choice, along a channel: it offers m behaviors, and if the j-th alternative is selected
then it behaves as described by type αj (1 ≤ j ≤ m). In turn, type ⊕{n1 : α1, . . . , nm : αm}
describes the behavior of a channel which may select a single behavior among α1, . . . , αm. This is
an internal choice, which continues as αj afterwards. Finally, type ε represents a channel with no
communication behavior. We now introduce the central notion of duality for (session) types.

Definition 5 (Duality). Given a session type α, its dual (noted α) is inductively defined in Table 4.

Our typing judgments generalize usual notions with an interface I (see Def. 6). Based on the
syntactic occurrences of prefixes request a(x), accept a(x), and ! accept a(x), the interface of a
process describes the (possibly persistent) services appearing in it. Thus, intuitively, the interface
of a process gives an “upper bound” on the services that a process may execute. Formally, we have:

Definition 6 (Interfaces). We define an interface as the multiset whose underlying set of elements
Int contains assignments from names to session types which are qualified (cf. Table 3). More

10

ε = ε

!(τ̃).α = ?(τ̃).α

?(τ̃).α = !(τ̃).α

!(β).α = ?(β).α

?(β).α = !(β).α

&{n1 : α1, . . . , nm : αm} = ⊕{n1 : α1, . . . , nm : αm}
⊕{n1 : α1, . . . , nm : αm} = &{n1 : α1, . . . , nm : αm}

Table 4: Dual of session types

precisely:
Int = {q a:α | q ∈ {lin, un}, a is a name, and α is a session type}

We use I, I ′, . . . to range over interfaces. We sometimes write #I(a) = h to mean that element a
occurs h times in I.

Observe how several occurrences of the same service declaration are captured by the multiset
nature of interfaces. The union of two interfaces I1 and I2 is essentially the union of their under-
lying multisets. We sometimes write I] a : αlin and I] a : αun to stand for I] {lin a:α} and
I] {un a:α}, respectively.

Notation 7 (Interfaces). We write Ilin (resp. Iun) to denote the subset of I involving only assign-
ments qualified with lin (resp. un). Moreover, we write I ↑un to denote the “persistent promotion”
of I. Formally, I ↑un= I \ Ilin] {un a:α | lin a:α ∈ Ilin}.

It is useful to relate different interfaces. This is the intention of the relation v over interfaces,
defined next.

Definition 8 (Interface Ordering). Given interfaces I and I ′, we write I v I ′ iff

1. One of the following holds:

(a) Ilin ⊆ I ′lin, where ⊆ is the usual ordering on multisets, or

(b) ∀(lin a:α) ∈ Ilin \ I ′lin then (un a:α) ∈ I ′un

2. ∀(un a:α) ∈ Iun then (un a:α) ∈ I ′un.

Interface equality is defined as: I1 = I2 iff I1 v I2 and I2 v I1

In the light of the previous definitions, we may state:

Lemma 9. Relation v is a preorder.

11

3.2. Environments, Judgments and Typing Rules

The typing environments we rely on are defined in the lower part of Table 3. In addition to
interfaces I, we consider typings ∆ and environments Γ and Θ.

Typing ∆ is commonly used to collect assignments from channels to session types; as such, it
describes currently active sessions. In our discipline, in ∆ we also include bracketed assignments,
denoted [κp : α], which represent active but restricted sessions. As we discuss below, bracketed
assignments arise in the typing of restriction, and are key to keep a precise count of the active
sessions in a given located process. We write dom(∆) to denote the set {kp | kp : α ∈ ∆ ∨ [kp :
α] ∈ ∆}. We write ∆, k : α and ∆, [k : α] where k 6∈ dom(∆).

Γ is a first-order environment which maps expressions to basic types and names to pairs of
qualified session types. In the interface, a session type is qualified with ‘un’ if it is associated to a
persistent service; otherwise, it is qualified with ‘lin’.

The higher-order environment Θ collects assignments of process variables and locations to in-
terfaces. While the former kind of assignments is relevant to update processes, the latter concern
located processes. As we explain next, by relying on the combination of these two pieces of infor-
mation the type system ensures that runtime adaptation actions preserve the behavioral interfaces
of a process. We write vdom(Θ) = {X | X : I ∈ Θ} to denote the variables in the domain of Θ.
Given these environments, a type judgment is of form

Γ ; Θ ` P .∆; I

meaning that, under environments Γ and Θ, process P has active sessions declared in ∆ and inter-
face I. We then have:

Definition 10. A process is well-typed if it can be typed using the rules in Tables 5 and 6.

We comment on some rules in Table 5. Given a process which implements session type α on
channel x, rule (T:ACCEPT) types a service on name a. Observe how x is removed from ∆ whereas
I is appropriately extended with a : αlin. Rule (T:REPACCEPT) is the analogous of (T:ACCEPT)
for persistent services. In that rule, observe how the linear services in I are “promoted” to persistent
services via I ↑un (cf. Not. 7). Non persistent services that appear in the context of a persistent
service a are meant to be executed at most once for each instance of a. In fact, after promotion the
declaration in Γ for a non persistent service b : 〈αlin, αlin〉 remains unchanged, but its entry in I
should be un b:α, as we could now observe an unbounded number of executions of (non persistent)
service b. Given these typing rules, rule (T:REQUEST) should be self-explanatory.

Rule (T:CRES) types channel restriction. The main difference wrt usual typing rules for chan-
nel restriction (cf. [29]) is that restricted end-points are not removed from ∆ but kept in bracketed
form, as motivated earlier. Using typing ∆, we can have an exact count of open, possibly restricted,
sessions in a process. Rule (T:CLOSE) types the explicit session closure construct, extending ∆
with a fresh channel which is assigned to an empty session type. This may be useful to understand
why our typing rule for the inactive process (rule (T:NIL)) requires an empty typing ∆.

12

(T:EXP)
Γ ` e : τ

(T:NVAR)
Γ, x : τ ` x : τ

(T:NIL)
Γ ; Θ ` 0 . ∅; ∅

(T:LOCENV)
Θ, l : I ` l : I

(T:PVAR)
Γ; Θ,X : I ` X : ∅; I

(T:ACCEPT)
Γ ` a : 〈αlin, αlin〉 Γ ; Θ ` P .∆, x : α; I

Γ ; Θ ` accept a(x).P .∆; I] a : αlin

(T:REPACCEPT)
Γ ` a : 〈αun, αlin〉 Γ ; Θ ` P . x : α; I
Γ ; Θ ` ! accept a(x).P . ∅; I ↑un] a : αun

(T:REQUEST)
Γ ` a : 〈αq, αlin〉 Γ ; Θ ` P .∆, x : α; I

Γ ; Θ ` request a(x).P .∆; I] a : αlin

(T:CLO)
Γ ; Θ ` P .∆; I k /∈ dom(∆)

Γ ; Θ ` close (k).P .∆, k : ε; I

(T:LOC)
Θ ` l : I Γ ; Θ ` P .∆; I ′ h = |∆| I ′ v I

Γ ; Θ ` lh[P] .∆; I ′

(T:ADAPT)
Θ ` l : I Γ ; Θ,X : I ` P . ∅; I ′

Γ ; Θ ` l{(X).P} . ∅; ∅

(T:CRES)
Γ ; Θ ` P .∆, κ− : α, κ+ : α; I

Γ ; Θ ` (νκ)P .∆, [κ− : α], [κ+ : α]; I

(T:PAR)
Γ ; Θ ` P .∆1; I1 Γ ; Θ ` Q .∆2; I2

Γ ; Θ ` P | Q .∆1 ∪∆2; I1] I2

Table 5: Well-typed processes (I)

Rule (T:LOC) performs two checks to type located processes. First, the runtime annotation h is
computed by counting the assignments (standard and bracketed) declared in ∆ (see Appendix A.1).
Second, the rule checks that the interface of the located process is less or equal (in the sense of v,

cf. Not. 7) than the declared interface of the given location. Informally, this ensures that the process
behavior does not “exceed” the expected behavior within the location. It is worth observing how
a typed located processes has the exact same typing and interface of its contained process: this is
how transparency of locations arises in typing. Finally, rule (T:ADAPT) types update processes.

13

(T:THR)
Γ ; Θ ` P .∆, k : β; I

Γ ; Θ ` k〈〈k′〉〉.P .∆, k :!(α).β, k′ : α; I

(T:CAT)
Γ ; Θ ` P .∆, k : β, x : α; I

Γ ; Θ ` k((x)).P .∆, k :?(α).β; I

(T:IN)
Γ, x̃ : τ̃ ; Θ ` P .∆, k : α; I

Γ ; Θ ` k(x̃).P .∆, k :?(τ̃).α; I

(T:OUT)
Γ ; Θ ` P .∆, k : α; I Γ ` ẽ : τ̃

Γ ; Θ ` k〈ẽ〉.P .∆, k :!(τ̃).α; I

(T:WEAK)
Γ ; Θ ` P .∆; I κ+, κ− /∈ dom(∆)

Γ ; Θ ` (νκ)P .∆; I

(T:IF)
Γ ` e : bool Γ ; Θ ` P .∆; I Γ ; Θ ` Q .∆; I

Γ ; Θ ` if e then P else Q .∆; I

(T:BRA)
Γ ; Θ ` P1 .∆, k : α1; I1 · · · Γ ; Θ ` Pm .∆, k : αm; Im I = I1] ...] Im

Γ ; Θ ` k . {n1:P1 [] · · · []nm:Pm} .∆, k : &{n1:α1, . . . , nm:αm}; I

(T:SEL)
Γ ; Θ ` P .∆, k : αi; I 1 ≤ i ≤ m

Γ ; Θ ` k / ni;P .∆, k : ⊕{n1 : α1, . . . , nm : αm}; I

Table 6: Well-typed processes (II)

Observe how the interface associated to the process variable of the given adaptation routine should
match with the declared interfaces for the given location. However, for simplicity we establish no
condition on the relation between I (the expected interface) and I ′ (the interface of the adaptation
routine P (X)) —in § 6.2 we discuss an alternative, more stringent, formulation.

Having introduced our typing system, the following section defines and states its main proper-
ties.

4. Session Safety and Consistency by Typing

We now proceed to investigate safety and consistency, the main properties of our typing system.
While safety (discussed in § 4.1) corresponds to the expected guarantee of adherence to prescribed
session types and absence of runtime errors, consistency (discussed in § 4.2) formalizes a correct
interplay between communication actions and update actions. Defining both properties requires
the following notions of κ-processes, κ-redexes, and error process. These are classic ingredients in
session types presentations (see, e.g., [20, 29]); our notions generalize usual definitions to the case

14

in which processes which may interact even if contained in arbitrarily nested transparent locations
(formalized by the contexts of Def. 2).

Definition 11 (κ-processes, κ-redexes, errors). A process P is a κ-process if it is a prefixed process
with subject κ, i.e., P is one of the following:

κ p(x̃).P ′ κ p〈v〉.P ′
κ p((x)).P ′ κ p〈〈k q〉〉.P ′
κ p . {n1:P1 [] · · · []nm:Pm} κ p / n.P ′

close (κ p).P ′

Process P is a κ-redex if it contains the composition of exactly two κ-processes with opposing
polarities, i.e., for some contexts C, D and E, and processes P1, P2, Pm, and P ′, we have that P
is structurally congruent to one of the following:

(νκ̃)(E
{
C{κ p(x̃).P1} | D{κ p〈v〉.P2}

}
)

(νκ̃)(E
{
C{κ p((x)).P1} | D{κ p〈〈k q〉〉.P2}

}
)

(νκ̃)(E
{
C{κ p . {n1:P1 [] · · · []nm:Pm}} | D{κ p / ni;P ′}

}
)

(νκ̃)(E
{
C{close (κ p).P1} | D{close (κ p).P2}

}
)

We say a κ-redex is located if one or both of its κ-processes is inside at least one located process.
P is an error if P ≡ (νκ̃)(Q | R) where, for some κ, Q contains either exactly two κ-processes

that do not form a κ-redex or three or more κ-processes.

4.1. Session Safety

We now give subject congruence and subject reduction results for our typing discipline. To-
gether with some some auxiliary results, these provide the basis for the proof of type safety (The-
orem 22 in Page 18). We start by giving three standard results, namely weakening, strengthening,
and channel lemmas.

Lemma 12 (Weakening). Let Γ ; Θ ` P .∆; I. If X /∈ vdom(Θ) then Γ ; Θ,X : I ′ ` P .∆; I.

Proof. Easily shown by induction on the structure of P .

Lemma 13 (Strengthening). Let Γ ; Θ ` P .∆; I. If X /∈ fv(P) then Γ ; Θ \ X : I ′ ` P .∆; I.

Proof. Easily shown by induction on the structure of P .

Lemma 14 (Channel Lemma). Let Γ ; Θ ` P .∆; I, κ /∈ fc(P) ∪ bc(P) iff κ /∈ dom(∆).

Proof. Easily shown by induction on the structure of P .

We are ready to show the Subject Congruence Theorem:

Theorem 15 (Subject Congruence). If Γ ; Θ ` P .∆; I and P ≡ Q then Γ ; Θ ` Q .∆; I.

15

Proof. By induction on the derivation of P ≡ Q, with a case analysis on the last applied rule.
See Appendix B.1 for details.

The following auxiliary result concerns substitutions for channels, expressions, and process
variables. Observe how the case of process variables has been relaxed so as to allow substitution
with a process with “smaller” interface (in the sense of v, cf. Not. 7). This extra flexibility is in
line with the typing rule for located processes (rule (T:LOC)), and will be useful later on in proofs.

Lemma 16 (Substitution Lemma).

1. If Γ ; Θ ` P .∆, x : α; I then Γ ; Θ ` P [κ
p
/x] .∆, κp : α; I

2. If Γ, x̃ : τ̃ ; Θ ` P .∆; I and Γ ` ẽ : τ̃ then Γ ; Θ ` P [ẽ/x̃] .∆; I.

3. If Γ ; Θ,X : I ` P . ∅; I1 and Γ ; Θ ` Q . ∅; I ′ with I ′ v I then, for some I ′1, we have
Γ ; Θ ` P [Q/X] . ∅; I ′1 with I ′1 v I1.

Proof. Easily shown by induction on the structure of P .

As reduction may occur inside contexts, in proofs it is useful to have typed contexts, build-
ing upon Def. 2. We thus have contexts in which the hole has associated typing information—
concretely, the typing for processes which may fill in the hole. Defining context requires a simple
extension of judgments, in the following way:

H; Γ ; Θ ` C .∆; I

Intuitively, H contains the description of the type associated to the hole in C. Typing rules in
Tables 5 and 6 are extended in the expected way. Because contexts have a single hole, H is either
empty of has exactly one element. When H is empty, we write Γ ; Θ ` P . ∆; I instead of
· ; Γ ; Θ ` P .∆; I. Two additional typing rules are required:

(T:HOLE)
•Γ;Θ`∆;I ; Γ ; Θ ` • .∆; I

(T:FILL)
•Γ;Θ`∆;I ; Γ ; Θ ` C .∆1; I1 Γ ; Θ ` P .∆; I

Γ ; Θ ` C{P} .∆1; I1

Axiom (T:HOLE) allows us to introduce typed holes into contexts. In rule (T:FILL), P is a process
(it does not have any holes), and C is a context with a hole of type Γ; Θ ` ∆; I. The substitution of
occurrences of • in C with P , noted C{P} is sound as long as the typings of P coincide with those
declared in H for C. Based on these rules and Definitions 2 and 3, the following two auxiliary
lemmas on properties of typed contexts follow easily. We first introduce some convenient notation
for typed holes.

Notation 17. Let us use S,S ′, . . . to range over judgments attached to typed holes. This way, •S
denotes the valid typed hole associated to S = Γ; Θ ` ∆; I.

16

A typed context may contain a typed hole in parallel with arbitrary behaviors. This may have
consequences on the typing and the interface, as the following lemma formalizes:

Lemma 18. Let P and C be a process and a typed context such that

Γ ; Θ ` C{P} .∆; I

is a derivable judgment. There exist ∆1, I1 such that (i) Γ ; Θ ` P .∆1; I1 is a well-typed process,
and (ii) ∆1 ⊆ ∆ and I1 v I.

The following property formalizes the effect that a type hole has in the typing judgment of a
context: under certain conditions, if the typing and interface of the hole change, then the judgment
for the whole context should change as well.

Lemma 19. Let C be a context as in Def. 2.

1. Suppose •S ; Γ ; Θ ` C . ∆1, k2 : β,∆′; I1] I2] I ′ with S = Γ; Θ ` ∆1, k2 : β; I1] I2 is
well-typed. Let S ′ = Γ; Θ ` ∆1, k1 : α, k2 : β′; I1. Then

•S′ ; Γ ; Θ ` C+ .∆1, k1 : α, k2 : β′,∆′; I1] I ′

is a derivable judgment.

2. Suppose •S ; Γ ; Θ ` C.∆1, k1:α, k2:β,∆′; I1]I2]I ′ with S = Γ; Θ ` ∆1, k:α, k2:β; I1] I2

is well-typed. Let S ′ = Γ; Θ ` ∆1, k2:β′; I1. Then

•S′ ; Γ ; Θ ` C− .∆1, k2:β′,∆; I1] I ′

is a derivable judgment.

3. Suppose •S ; Γ ; Θ ` C . ∆C ∪ ∆S ; IC] IS with S = Γ; Θ ` ∆S ; IS is well-typed. Let
S ′ = Γ; Θ ` ∆S′ ; IS′ . Then

•S′ ; Γ ; Θ ` C .∆C ∪∆S′ ; IC] IS′

is a derivable judgment.

The analogous of (1) and (2), involving bracketed assignments, are as expected.

We now introduce the usual notion of balanced typing [29]:

Definition 20 (Balanced Typings). We say a typing ∆ is balanced iff for all κp : α ∈ ∆ (resp.
[κp : α] ∈ ∆) then also κp : α ∈ ∆ (resp. [κp : α] ∈ ∆).

The final requirement for proving safety via typing is the subject reduction theorem below.

17

Theorem 21 (Subject Reduction). If Γ ; Θ ` P . ∆; I with ∆ balanced and P −→ Q then
Γ ; Θ ` Q .∆′; I ′, for some I ′ and balanced ∆′.

Proof. By induction on the last rule applied in the reduction. See Appendix B.2 for details.

We are now ready to state our first main result: the absence of communication errors for well-
typed processes. Recall that our notion of error process has been given in Definition 11.

Theorem 22 (Typing Ensures Safety). If Γ ; Θ ` P .∆; I with ∆ balanced then P never reduces
into an error.

Proof. We assume, towards a contradiction, that there exists a P1 such that P −→∗ P1 and
P1 is an error process (as in Def. 11). By Theorem 21 (Subject Reduction), P1 is well-typed
under a balanced typing ∆1. Following Def. 11, there are two possibilities for P1, namely it
contains (i) exactly two κ-processes which do not form a κ-redex and (ii) three or more κ-processes.
Consider the second possibility. There are several combinations; by inversion on rule (T:CRES)
we have that, for some session types α1 and α2, {[κp : α1], [κp : α2]} ⊆ ∆1. In all cases, since the
two κ-processes do not form a κ-redex then, necessarily, α1 6= α2. This, however, contradicts the
definition of balanced typings (Def. 20). The second possibility again contradicts Def. 20, as in that
case ∆1 would capture the fact that at least one κ-process does not have a complementary partner
for forming a κ-redex. We thus conclude that well-typed processes never reduce to an error.

4.2. Session Consistency
We now investigate session consistency: this is to enforce a basic discipline on the interplay of

communicating behavior (i.e., session interactions) and evolvability behavior (i.e., update actions).
Informally, a process P is called consistent if whenever it has a κ-redex (cf. Def. 11) then possible
interleaved update actions do not destroy such a redex.

Below, we formalize this intuition. Let us write P −→upd P
′ for any reduction inferred using

rule (R:UPD), possibly followed by uses of rules (R:RES), (R:STR), and (R:PAR). We then define:

Definition 23 (Consistency). A process P is update-consistent if and only if, for all P ′ and κ such
that P −→∗ P ′ and P ′ contains a κ-redex, if P ′ −→upd P

′′ then P ′′ contains a κ-redex.

Recall that a located κ-redex is a κ-redex in which one or both of its constituting κ-processes
are contained by least one located process. This way, for instance,

l2[l1[κ p(x̃).P1] | κ p〈v〉.P2]
l1[κ p(x̃).P1] | l2[κ p〈v〉.P2]
l1
[
κ p(x̃).P1 | κ p〈v〉.P2

]
are located κ-redexes, whereas κ p(x̃).P1 | κ p〈v〉.P2 is not. From the point of view of consistency,
the distinction between located and unlocated κ-redexes is relevant: since update actions result
from synchronizations on located processes, unlocated κ-redexes are always preserved by update
actions, whereas located κ-redexes may be destroyed by a update action. We have the following
auxiliary proposition.

18

Proposition 24. Let Γ ; Θ ` P . ∆; I, with ∆ balanced, be a well-typed process containing a
κ-redex, for some κ. We have:

(a) ∆ = ∆′, κp : α, κp : α or ∆ = ∆′, [κp : α], [κp : α] , for some session type α, and a
balanced ∆′.

(b) If the κ-redex is located, then the runtime annotation for the location(s) hosting its constituting
κ-processes is different from zero.

Proof. Part (a) is immediate from our definition of typing judgment, in particular from the fact
that typing ∆ records the types of currently active sessions, as implemented by channels such as
κ. Part (b) follows directly by definition of typing rule (T:LOC) and part (a), observing that typing
relies on the cardinality of ∆ to compute (non zero) runtime annotations for locations.

Theorem 25 (Typing Ensures Update Consistency). If Γ ; Θ ` P .∆; I, with ∆ balanced, then P
is update consistent.

Proof. We assume, towards a contradiction, that there exist P1, P2, and κ1 such that (i) P −→∗ P1,
(ii) P1 has a κ1-redex, (iii) P1 −→upd P2, and (iv) P2 does not have a κ1-redex. Without loss of
generality, we suppose that the reduction P1 −→upd P2 is due to a synchronization on location
l1 ∈ Θ. Since the κ1-redex is destroyed by the update action from P1 to P2, the κ1-redex in
P1 must necessarily be a located κ1-redex, i.e., in P1, one or both κ1-processes are contained
inside l1. Now, our reduction semantics (rule (R:UPD)) decrees that for such an update action to
be enabled, the runtime annotation for l1 in P1 should be zero. However, by Theorem 21 (Subject
Reduction), we know that P1 is well-typed under a balanced typing ∆1. Then, using well-typedness
and Prop. 24(b) we infer that the annotation for l1 in P1 must be different from zero: contradiction.
Hence, update steps which destroy a κ-redex (located and unlocated) can never be enabled from a
well-typed process with a balanced typing (such as P) nor from any of its derivatives (such as P1).
We thus conclude that well-typedness implies update consistency.

5. Example: An Adaptable Client/Service Scenario

To illustrate how located and update processes in our framework extend the expressiveness of
session-typed languages, we revisit the client/server scenario discussed in the Introduction:

Sys , l1[C1] | l2
[
r[S] | R

]
where:

C1 , request a(x).x〈u1,p1〉.x / n1.P1.close (x)

S , ! accept a(y).y(u, p).y . {n1:Q1.close (y) []n2:Q2.close (y)}

Recall that process R above represents the platform in which service S is deployed. We now
discuss two different definitions for R: this is useful to illustrate the different facets that runtime
adaptation may adopt in our typed framework.

In what follows, we assume that Qi realizes a behavior denoted by type βi (i ∈ {1, 2}), and
write α to stand for the session type ?(τ1, τ2).&{n1 : β1, n2 : β2} for the server S. Dually, the type
for C1 is α =!(τ1, τ2).⊕ {n1 : β1, n2 : β2}; we assume that P1 realizes the session type β1.

19

5.1. A Basic Service Reconfiguration: Relocation and Upgrade

We first suppose that R stands for a simple adaptation routine for S which (i) relocates the
service from r to l4, and (ii) sets up a new adaptation routine at l4 which upgrades S with adaptation
mechanisms for Q1 and Q2 (denoted R11 and R12, respectively, and left unspecified):

R , r{(X).l4[X] | l4{(X1).l4[Snew]} } where:

Snew , ! accept a(y).y(u, p).y . {n1:Q∗1.close (y) []n2:Q∗2.close (y) }
Q∗1 , l5[Q1] | l5{(X2).R11}
Q∗2 , l6[Q2] | l6{(X3).R12}

It is easy to see that the only difference between S and Snew is in the behavior given at label n2—for
simplicity, we assume that Q2 and Q∗2 are implementations of the same typed behavior. For this R,
using our type system, we can infer that

Γ ; Θ ` Sys . ∅; I1 where:

• {a : 〈αun, αlin〉} ⊆ Γ

• {l1 7→ a : αlin, l4 7→ a : αun, r 7→ a : αun, X 7→ a : αun} ⊆ Θ

• I1 = {lin a : α, un a : α}

and where we have slightly simplified notation for Θ, for readability reasons.
By virtue of Theorem 22 typing ensures communications between C1 and S which follow

the prescribed session types. Moreover, by relying on Theorem 25, we know that well-typedness
implies consistency, i.e., an update action on r will not be enabled ifC1 and S have already initiated
a session. For the scenario above, our typed framework ensures that updates may only take place
before a session related to the service on a is established. Suppose such an action occurs as the first
action of Sys (i.e. service S is immediately relocated, from r to l4):

Sys −→ l01[C1] | l02
[
l04[S] | l4{(X1).l4[Snew]}

]
= Sys1

The above reduction represents one of the simplest forms of reconfiguration, one in which the
behavior of the located process is not explicitly changed. Still, we observe that runtime relocation
may indirectly influence the future behavior of a process. For instance, after relocation the process
may synchronize with reconfiguration routines (i.e., update processes) not defined for the previous
location. This is exactly what occurs with the above definition for R when relocating S to l4—see
below.1 Also, the new location may be associated to a larger interface (wrt v) and this could be
useful to eventually enable reconfiguration steps not possible for the process in the old location.

1 Conversely, update actions that remove the enclosing location(s) for a process, or relocate it to a location on which
there are no update processes available are two ways of preventing future updates.

20

Starting from Sys1, the service S can be then upgraded to Snew by synchronizing on l4. We
may have:

Sys1 −→ l01[C1] | l02
[
l04[Snew]

]
= Sys2

and by Theorem 21 we infer that
Γ ; Θ ` Sys2 . ∅; I1

5.2. Upgrading Behavior and Distributed Structure
Suppose now that R stands for the following adaptation routine for S:

R , r{(X).r1[Swra] | r2[Srem]} where:
Swra , ! accept a(x).request b(y).y〈〈x〉〉.close (y)

Srem , ! accept b(z).z((x)).x(u, p).x . {n1:Q1.close (x).close (z) []n2:Q2.close (x).close (z)}

Above, Swra represents a service wrapper which, deployed at r1, acts as a mediator: it redirects
all client requests on name a to the remote service Srem, defined on name b and deployed at r2.
Although simple, this service structure is quite appealing: by exploiting session delegation, it hides
from clients certain implementation details (e.g., name b and location r2), therefore simplifying
future reconfiguration tasks—in fact, clients do not need to know about b to execute, and so Swra
can be transparently upgraded. This new definition for R illustrates an update process that may
reconfigure both the behavior and distributed structure of S: in a single step, the monolithic service
S is replaced by a more flexible distributed implementation based on Swra and Srem and deployed
at r1 and r2 (rather than at r). As we discuss below, R above does not involve process variables,
and so the current behavior at r is discarded. Using our type system, we may infer that

Γ ; Θ ` Sys . ∅; I1 where:

• {a : 〈αun, αlin〉, b : 〈!(α)lin, ?(α)un〉} ⊆ Γ

• {l1 7→ a : αlin, l2 7→ a : αun ∪ b :!(α)un ∪ b :?(α)un, r 7→ a : αun, r1 7→ αun ∪ b :!(α)un,
r2 7→ b :?(α)un} ⊆ Θ

• I1 = {lin a : α, un a : α}

and where we have slightly simplified notation for Θ, for readability reasons.
As before, our typed framework ensures that consistent updates may only take place before a

session related to the service on a is established. Suppose such an action occurs as the first action
of Sys (i.e. the definition of service S is immediately updated):

Sys −→ l01[C1] | l02
[
r0

1[Swra] | r0
2[Srem]

]
= Sys′

Because R declares no process variables, this step formalizes an update operation which discards
the behavior located at r (i.e., a : αun). To understand why this reconfiguration step is safe, it is
crucial to observe that:

21

(i) the new service implementation, based on Swra and Srem, respects the prescribed interfaces of
the involved locations (i.e., r1 and r2, not used in Sys);

(ii) the interface of location l2 (which hosts the server implementation) can indeed contain the
two services on name b implemented by Swra and Srem.

These two important conditions are statically checked by our typing system. After the reduction it
is easy to see that

Γ ; Θ ` Sys′ . ∅; I2

where Γ,Θ are as above and I2 = {lin a : α, un a : α, un b :?(α), un b :!(α)}. We have I1 v I2:
indeed the interface grows as the updated service now relies on two service definitions (on names
a, b) rather than on a single definition.

6. Extensions and Enhancements

This section discusses two possible extensions for our framework. The first one concerns the
runtime adaptation of processes with active (running) sessions, while the second one concerns the
inclusion of recursion and subtyping constructs. In both cases, concrete details on the technical
machinery required are given, and the challenges involved are highlighted.

6.1. Runtime Adaptation of Processes with Active Sessions
Up to here, our notion of runtime adaptation concerns located processes with no active sessions.

As already motivated, our intention is to rule careless update actions which may affect the session
protocols implemented on such locations. Here we discuss generalizations of our framework so as
to admit the runtime adaptation of located processes containing active sessions. As before, the goal
will be to ensure that session communications are both safe and consistent.

To illustrate this point, consider process Sys′, discussed in the Introduction:

Sys′ = (νκ)
(
l1[κ+〈u1,p1〉.κ+ / n1.P1.close (κ+)] |
l2
[
r[κ−(u, p).κ− . {n1:Q1.close (κ−) []n2:Q2.close (κ−)}] | R

])
Focusing on location r, suppose that R = r{(X).QX}. There are at least two ways in which QX

can implement a consistent update on r:

(a) QX preserves the behavior at r: Intuitively, this means that X occurs linearly (exactly once)
in QX. This way, QX may implement a relocation (as in, e.g., QX = l′[X], for some different
location l′) or it may place the behavior at r in a richer context (as in, e.g., QX = r[X | R′] in
which the behavior at location r is extended with process R′).

(b) QX upgrades the behavior at P : This is the case when, e.g., X 6∈ fpv(QX). In order to ensure
consistency, besides ensuring a compatible interface, the new behavior QX should implement
all open sessions at r (namely κ−, κ+ above). Therefore, this possibility implies having precise
information on the protocols implemented at r, for QX must continue with such protocols.

Next we separately consider each of these two alternatives.

22

6.1.1. Typing Preserving Updates
As mentioned above, the key issue in this class of updates is to ensure linearity of the processes

variable. Given l{(X).QX}, we need to guarantee that X ∈ fpv(QX) (to avoid discarding the
behavior at l) but also that X occurs exactly once, for duplicating behaviors would be unsound. A
first, but somewhat drastic, way of ensuring linearity would be by adding syntactic restrictions on
the shape of update contexts (such as QX). We have formalized this alternative is in [3, § 2.1.2],
where behavioral characterizations of update processes are thoroughly analyzed.

Alternatively, we could exploit the type system, using the information in Θ to ensure linearity.
This would require changing rule (T:NIL) so that 0 can only be typed in a higher-order environment
that contains no process variables. Also, one would need to refine rule (T:PAR) so to ensure that
process variables are properly split. More precisely, we would need the following modified rules:

(T:LNIL)
vdom(Θ) = ∅
Γ ; Θ ` 0 . ∅; ∅

(T:LLOC)
Θ ` l : I Γ ; Θ ` P .∆; I ′ I ′ v I

Γ ; Θ ` l[P] .∆; I ′

(T:LPAR)
Γ ; Θ1 ` P .∆1; I1 Γ ; Θ2 ` Q .∆2; I2 Θ = Θ1 ◦Θ2

Γ ; Θ ` P | Q .∆1 ∪∆2; I1] I2

where, in (T:LPAR), the splitting Θ1 ◦Θ2 is defined if and only if Θ1 ∩Θ2 = ∅ and vdom(Θ1) ∩
vdom(Θ2) = ∅. Observe that the interplay of these two rules suffices to guarantee linearity of
process variables. Indeed, rule (T:LPAR) ensures that variable X can be used in at most one sub-
process in parallel, whereas rule (T:LNIL) assures that it is used at least one. Notice also that we
keep rule (T:ADAPT) as in Table 5: its right-hand side typing ensures that the context does not
introduce new open sessions.

With these changes in the typing system, the runtime annotation on the number of active ses-
sions (occurring in located process) can be removed from the reduction semantics. The modified
semantics can be found in Appendix C (Table C.9).

6.1.2. Typing Runtime Upgrades
We now generalize the mechanism in the previous section to include the runtime upgrade of

a process l[P] with a process Q that in particular provides an alternative implementation for the
active protocols in P . As explained earlier, handling an upgrade entails having precise knowledge
on the protocols running in the location. More precisely, a main challenge is to find a way of
describing compatibility between the (non bracketed) endpoints in P with those in Q. We now
detail a possible solution to these issues, based on instrumenting the reduction semantics in § 2.2
with typing environments. Let us consider typed reductions of the form:

Γ ; Θ ` P .∆; I −→ Γ ; Θ ` P ′ .∆′; I ′

23

(R:PARU)
Γ ; Θ ` P .∆1; I1 −→ Γ ; Θ ` P ′ .∆′1; I ′1

Γ ; Θ ` P | Q .∆1 ∪∆2; I1 ∪ I2 −→ Γ ; Θ ` P ′ | Q .∆′1 ∪∆2; I ′1] I ′2

(R:LOCU)
Γ ; Θ ` P .∆; I −→ Γ ; Θ ` P ′ .∆′; I ′

Γ ; Θ ` l[P] .∆; I −→ Γ ; Θ ` l[P ′] .∆′; I ′

(R:UPDU)

Γ ; Θ ` P .∆1; I1 Γ ; Θ,X : ∆1, I1 ` Q .∆2; I2 ∆1 = ρ(∆2)

Γ ; Θ ` C{l[P]} | D{l{(X).Q}} .∆; I
−→

Γ ; Θ ` C{ρ(Q)[P/X]} | D{0} .∆; (I \ I1)] I2

Γ ; Θ ` C{accept a(x).P} | D{request a(y).Q} .∆; I, a : αlin, a : αlin

(R:OPENU) −→
Γ ; Θ ` (νκ)C{P [κ

+
/x]} | D{Q[κ

−
/y]} .∆, [κ+ : α], [κ− : α]; I

Table 7: Typed reduction semantics (selected rules).

thus defining how a well-typed process P (and their associated typing and interface) evolve as a
result of an internal computation. We now discuss some selected rules for this typed semantics,
given in Table 7; the complete set of rules can be found in Appendix C (Tables C.10 and C.11).

Main differences with respect to the semantics of Table 2 are: (i) runtime annotations on lo-
cations are no longer needed, and (ii) rule (R:UPDU) checks session consistency by appealing to
appropriate typings (denoted ∆1 and ∆2 in the rule). More precisely, as runtime annotations are
not considered, typed reduction rules are simpler than untyped ones. Notice how rule (R:LOCU)
allows us to infer reductions with a single location; in general, given a context C (as in Def. 2) and
a process P which may reduce, a corresponding typed reduction for process C{P} can be inferred
by combining rules (R:LOCU) and (R:PARU). Rule (R:UPDU) concerns the update of a located
process P with a context Q. A typed update reduction will depend on their associated typings,
denoted ∆1 and ∆2, respectively. Intuitively, ∆1 and ∆2 should be identical, up to a substitution
ρ from channel variables x1, . . . , xm in ∆2 to non bracketed channels κp1, . . . , κ

p
m in ∆1. Substitu-

tion ρ works then as an adaptor; to highlight its role, in rule (R:UPDU) we write ρ(∆) and ρ(P) to
denote the application of ρ to typing ∆ and process P ; the formal definition of these notations is
as expected. This is how endpoint compatibility between P and Q is enforced. Provided a suitable
ρ exists, the upgrade can take place and l[P] is substituted with ρ(Q)[P/X].

For the system with the typed reduction semantics, we require the typing rules in Tables 5
and 6, replacing rules (T:PVAR), (T:ADAPT) and (T:LOC) with rules (T:PVARU), (T:ADAPTU)

24

and (T:LOCU) below:

(T:PVARU)
Γ; Θ,X : ∆; I ` X : ∆; I

(T:ADAPTU)
Θ ` l : I Γ ; Θ,X : ∅; I ` P .∆; I

Γ ; Θ ` l{(X).P} . ∅; ∅

(T:LOCU)
Θ ` l : I Γ ; Θ ` P .∆; I ′ I ′ v I

Γ ; Θ ` l[P] .∆; I ′

Intuitively, as made explicit by rule (T:PVARU), process variables must now record both a
typing ∆ and an interface I. This refines the intrinsic meaning of an update operation, as there
is an explicit reference to required open sessions. Based on this enhancement, rule (T:ADAPTU)
is a variant of rule (T:ADAPT) in which the process variable occurs annotated with its typing and
interface and where we admit a non empty typing ∆, thus allowing process P to introduce active
sessions. Finally, rule (T:LOCU) simplifies rule (T:LOC) by eliminating runtime annotations. We
are confident that session processes in this modified framework also enjoy our safety and consis-
tency results (Theorems 21, 22, and 25) with little modifications.

6.2. Adding Recursive Types and Subtyping
This section discusses the extension of our approach with recursive types and subtyping. These

are two well-known ingredients of session type theories: while recursion is present in early papers
in binary session types [20], subtyping was first studied by Gay and Hole in [17]. Notice that by
extending the types in Table 3 with recursive types we obtain a type syntax that coincides with
that in [20, 29], and is quite similar to that in [17]. As such, the incorporation of both recursive
types and subtyping closely follows prior works, and entails unsurprising technical details. Still,
the extension is interesting: on the one hand, recursive types increase the expressiveness of our
language; on the other, subtyping allows us to refine the notion of interface (and interface ordering),
thus enhancing our typed constructs for runtime adaptation.

6.2.1. Extended Process and Type Syntax
We begin by re-defining the process language. Consider an additional base set of recursion

variables, ranged over Y,Y ′, In essence, we consider the language in Table 1 without repli-
cated session acceptance and with the addition of recursive calls, denoted recY.P :

P,Q,R ::= request a(x).P | accept a(x).P

| k〈ẽ〉.P | k(x̃).P | k〈〈k′〉〉.P | k((x)).P

| k / n;P | k . {n1:P1 [] · · · []nm:Pm} | close (k).P | (νk)P

| l[P] | l{(X).P} | X | recY.P | Y
| P | P | if e then P else Q | 0

25

Observe how a different font style distinguishes process variables (used in update processes) from
recursion variables. Notions of binding, α-conversion, and substitution for recursion variables are
completely standard; given a process P , we write frv(P) and brv(P) to denote its sets of free/bound
recursion variables.

The operational semantics for the modified language requires minor modifications. Notions of
structural congruence (Def. 1), contexts (Def. 2), and operations over contexts (Def. 3) are kept
unchanged. The reduction semantics is the smallest relation on processes generated by the rules in
Table 2, excepting rule (R:ROPEN) and adding the following additional rule:

(R:REC) C{recY.P} −→ C{P [recY.P/Y]}

As for the type syntax, the only addition are recursive types. Let us write t, t′, . . . to denote
recursive type variables. The extended syntax for types is then as follows:

α, β ::= t type variable
| µt.α recursive type
| · · · {the other type constructs, as in Table 3 }

As customary, we adopt an equi-recursive approach to recursive types, not distinguishing be-
tween µt.α and its unfolding α[µt.α/t]. We restrict to contractive types: a type is contractive if
for each of its sub-expressions µt.µt1.µtn.α, the body α is not t. Concerning typing environ-
ments, we assume that recursion variables are included in the higher-order environment Θ, thus
extending the definition given in Table 3 (lower part). Finally, we shall require two typing rules for
recursion variables and recursive calls; these are the first two rules in Table 8.

An Example. As a simple illustration, consider a typical client/server scenario (Client | Server)
realized by the processes below:

Server := recZ.accept a(x).(Z | recY.x . {n1:x(v).SY []n2:close (x)})
SY := request b(z).z〈v〉.z(r).close (z).x〈r〉.Y
Client := request a(x).x / n1.x〈d1〉.x(r).x / n1.x〈d2〉.x(r).x / n2.close (x)

We use recursion to implement (i) persistent services and (ii) services with recursive behaviors.
Process Server shows how to encode a behavior similar to ! accept a(x): indeed once a session
on a is established a new copy of Server is spawned. The body of the session has a recursive
behavior: the client can choose between doing some computation on the server or closing the
communication. If she chooses the first branch, then she sends some data to the server, the server
processes them and sends back an answer r. At this point the client can choose again what to do:
another computation or ending the session.

Processes Server and Client are well-typed under environments Γ := v : τ1, r : τ2 and
Θ = ∅. Indeed we can obtain the following type judgments:

Γ ; Θ ` Server . ∅; un a : µt.&{n1:?(τ1).!(τ2).t, n2:ε}, un b : &{n1:!(τ1).?(τ2).ε
Γ ; Θ ` Client . ∅; I

where I = un a : ⊕{n1:!(τ1).?(τ2).⊕ {n1:!(τ1).?(τ2).⊕ {n1:!(τ1).?(τ2).ε, n2:ε}, n2:ε}, n2:ε}.

26

6.2.2. Coinductive Subtyping and Duality
We now introduce subtyping and duality, by adapting notions and definitions from [17]. Intu-

itively, given session types α, β, we shall say that α is a subtype of β if any process of type α can
safely be used in a context where a process of type β is expected. More formally, let us write T
to refer to the set of types, including both session types α, β, . . . and base types τ, σ, We shall
write T, S, . . . to range over T . For all types, define unfold(T) by recursion on the structure of
T : unfold(µt.T) = unfold(T [µt.T/t]) and unfold(T) = T otherwise. Our definition of coin-
ductive subtyping is given next; it relies on a subtyping relation ≤B over base types, which arises
from subset relations (as in, e.g., int ≤B real).

Definition 26. A relation R ⊆ T × T is a type simulation if (T, S) ∈ R implies the following
conditions:

1. If unfold(T) = τ then unfold(S) = σ and τ ≤B σ.

2. If unfold(T) = ε then unfold(S) = ε.

3. If unfold(T) =?(T2).T1 then unfold(S) =?(S2).S1 and (T1, S1) ∈ R
and (T2, S2) ∈ R.

4. If unfold(T) = !(T2).T1 then unfold(S) = !(S2).S1 and (T1, S1) ∈ R
and (S2, T2) ∈ R.

5. If unfold(T) =?(τ1, . . . , τn).T1 then unfold(S) =?(σ1, . . . , σn).S1 then for all i ∈ [1..n],
we have that (τi, σi) ∈ R and (T1, S1) ∈ R.

6. If unfold(T) =!(τ1, . . . , τn).T1 then unfold(S) =!(σ1, . . . , σn).S1 then for all i ∈ [1..n], we
have that (σi, τi) ∈ R and (T1, S1) ∈ R.

7. If unfold(T) = &{n1 : T1, . . . , nm : Tm} then unfold(S) = &{n1 : S1, . . . , nh : Sh} and
m ≤ h for all i ∈ [1..m], we have that (Ti, Si) ∈ R.

8. If unfold(T) = ⊕{n1 : T1, . . . , nm : Tm} then unfold(S) = ⊕{n1 : S1, . . . , nh : Sh} and
h ≤ m for all i ∈ [1..m], we have that (Ti, Si) ∈ R.

Observe how � is co-variant for input prefixes and contra-variant for outputs, whereas it is
co-variant for branching and contra-variant for choices. We have the following definition:

Definition 27. The coinductive subtyping relation, denoted ≤C, is defined by T ≤C S if and only if
there exists a type simulationR such that (T, S) ∈ R.

Following standard arguments (as in, e.g., [17]), one may show:

Lemma 28. ≤C is a preorder.

27

We now move on to define duality. It is known that an inductive definition of duality (cf. Def. 5)
is no longer appropriate in the presence of recursive types (see, e.g., [28]). This justifies the need
for a coinductive notion of duality over session types; it is defined similarly as subtyping above.

Definition 29. A relation R ⊆ T × T is a duality relation if (T, S) ∈ R implies the following
conditions:

1. If unfold(T) = τ then unfold(S) = σ and τ ≤C σ and σ ≤C τ .

2. If unfold(T) = ε then unfold(S) = ε.

3. If unfold(T) =?(T2).T1 then unfold(S) =!(S2).S1 and (T1, S1) ∈ R
and T2 ≤C S2 and S2 ≤C T2.

4. If unfold(T) = !(T2).T1 then unfold(S) = ?(S2).S1 and (T1, S1) ∈ R
and T2 ≤C S2 and S2 ≤C T2.

5. If unfold(T) =?(τ1, . . . , τn).T1 then unfold(S) =?(σ1, . . . , σn).S1 then for all i ∈ [1..n],
we have that (T1, S1) ∈ R and τi ≤C σi and σi ≤C τi.

6. If unfold(T) =!(τ1, . . . , τn).T1 then unfold(S) =?(σ1, . . . , σn).S1 then for all i ∈ [1..n], we
have that (T1, S1) ∈ R and τi ≤C σi and σi ≤C τi.

7. If unfold(T) = &{n1 : T1, . . . , nm : Tm} then unfold(S) = ⊕{n1 : S1, . . . , nm : Sm} and
for all i ∈ [1..m], we have that (Ti, Si) ∈ R.

8. If unfold(T) = ⊕{n1 : T1, . . . , nm : Tm} then unfold(S) = &{n1 : S1, . . . , nm : Sm} and
for all i ∈ [1..m], we have that (Ti, Si) ∈ R.

We may now define:

Definition 30. The coinductive duality relation, denoted ⊥C , is defined by T ⊥C S if and only
if there exists a duality relation R such that (T, S) ∈ R. The extension of ≤C to typings and
interfaces, written ∆ ≤C ∆′ and I ≤C I ′, respectively, arise as expected.

6.2.3. Refining Interfaces via Subtyping
In most session type disciplines, the main use of duality typically arises in the rule for channel

restriction; similarly, the main use of (coinductive) subtyping is in the subsumption rule, which
enables us to incorporate the flexibility of subtyping in derivations, increasing typability. Table 8
presents these rules for our framework, denoted (T:CRESD) and (T:SUBS), respectively. While the
former represents the key duality check performed by the typing system, the latter covers both typ-
ing ∆ and interface I. In the following we elaborate on another consequence of adding subtyping,
namely its interplay with interface ordering (cf. Def 8).

28

Γ; Θ,Y : ∆, I ` Y : ∆; I (T:RVAR)

Γ ; Θ,Y : ∆; I ` P .∆; I
Γ ; Θ ` recY.P .∆; I (T:REC)

Γ ; Θ ` P .∆; I ∆ ≤C ∆′ I ≤C I ′

Γ ; Θ ` P .∆′; I ′
(T:SUBS)

Γ ; Θ ` P .∆, κ− : α1, κ
+ : α2; I α1⊥C α2

Γ ; Θ ` (νκ)P .∆, [κ− : α1], [κ+ : α2]; I
(T:CRESD)

Θ ` l : I1 Γ ; Θ,X : I1 ` P . ∅; I2 I1 v I2

Γ ; Θ ` l{(X).P} . ∅; ∅ (T:MONADAPT)

Table 8: Well-typed processes with recursion and subtyping: New and/or modified rules

As argued along the paper, a main contribution of this work is the extension of session type dis-
ciplines with a simple notion of interface. Using interfaces, we are able to give simple and intuitive
typing rules for located and update processes—see rules (T:LOC) and (T:ADAPT) in Table 5. It is
thus legitimate to investigate how to enhance the notion of interface and its associated definitions.
In particular, we discuss an alternative based on subtyping. Consider rule (T:MONADAPT) in Ta-
ble 8: it is intended as as alternative formulation for typing rule (T:ADAPT) in Table 5. Although
rule (T:MONADAPT) is more restrictive than (T:ADAPT) (i.e., it accepts less update processes as
typable), it captures a requirement that may be desirable in several practical settings, namely that
the behavior after adaptation is “at least” the behavior offered before, possibly adding new be-
haviors. Indeed, by disallowing adaptation routines that discard behavior, rule (T:MONADAPT) is
suitable to reason about settings in which adaptation/upgrade actions need to be tightly controlled.

In the context of more stringent typing rules such as (T:MONADAPT), it is convenient to find
ways for adding flexibility to the interface preorder v in Def. 8. As this preorder is central to our
approach for disciplined runtime adaptation, a relaxed definition for it may lead to more flexible
typing disciplines. One alternative is to rely on ≤C for such a relaxed definition:

Definition 31 (Refined Interface Preorder). Given interfaces I and I ′, we write I vsub I ′ iff

1. ∀(lin a:α) such that #Ilin(lin a:α) = h with h > 0, then one of the following holds:

(a) there exists h distinct elements (lin a:βi) ∈ I ′lin such that α ≤C βi for i ∈ [1..h];

(b) there exists (un a:β) ∈ I ′un such that α ≤C β.

2. ∀(un a:α) ∈ Iun then (un a:β) ∈ I ′un and α ≤C β, for some β.

29

It is immediate to see how vsub improves over v by offering a more flexible and fine-grained
relation over interfaces, in which subtyping replaces strict type equality.

We are now finally ready to state the notion of well-typedness that concerns the processes
introduced in this section:

Definition 32. A (possibly recursive) process is well-typed if it can be typed using the rules in
Table 5 (excepting (T:CRES) and (T:ADAPT)), Table 6, and Table 8.

We are confident that our main results (Theorems 21, 22, and 25) also hold, with little modi-
fications, for the enhanced framework that results from: (a) replacing replication with recursion,
using coinductive duality, and (b) incorporating subtyping, also replacing (T:ADAPT) with rule
(T:MONADAPT) above, using vsub in place of v in the appropriate places in Table 5.

7. Related Work

Adaptation in Structured Communications. Binary session types were first introduced in [19, 20].
They have been the subject of intense research in the last two decades, and many developments have
followed. Two notable such developments concern asynchronous communications (see, e.g., [22])
and multiparty communications (see, e.g., [21], respectively). To the best of our knowledge, our
paper [14] was the first work to incorporate constructs for runtime adaptation (or evolvability) into
a session process language (either binary or multiparty). As stated in the Introduction, the present
paper is an extended, revised version of [14]. In particular, in this presentation the operational
semantics and typing system of [14] have been much simplified. Following [16], the operational
semantics in [14] was instrumented with several elements to support static analysis. For instance,
one such elements is a local association between names and session types; such an association is
explicitly tracked by a type annotation in prefixes for session acceptance and request. In contrast,
for the sake of clarity, the semantics given here relies only on a simple runtime annotation for
located processes; the other elements are now subsumed by the (revised) typing discipline. Also, to
highlight on the simplicity and novelty of our approach, in this presentation we focus on replicated
processes, rather than on recursion (the form of infinite behavior given in [14]). This is an issue
orthogonal to our approach, as discussed in § 6.

After our paper [14] appeared, some works have addressed the challenging issue of analyzing
runtime adaptation in scenarios of multiparty communications, in which protocols involve more
than two partners. In such settings, there is a global specification (or choreography) to which all
interacting partners, from their local perspectives, should adhere. In the setting of multiparty ses-
sion types (see, e.g., [21]), these two visions are described by a global type and by local types,
respectively; there is a projection function which formally relates the two. The work [2] defines
both global and local languages for choreographies in which adaptation is represented by general-
ized forms of the adaptable processes in [3]. It is then fair to say that [2] defines the foundations for
extending the present approach to a multiparty setting. The recent work [11] proposes a model of
self-adaptation for multiparty sessions. Key technical novelties in this approach are monitors (ob-
tained via projection of global types) and adaptation functions. Monitors are coupled to processes

30

and govern their behavior; together with global types, adaptation functions embody the runtime
adaptation strategy. An associated typed system ensures communication safety and progress.

Adaptation and Higher-Order Process Communication. Our constructs for runtime adaptation (in-
herited from [3]) can be seen as a particular form of higher-order communication (or process-
passing [26]). In fact, as explained in § 2.2, our notion of runtime adaptation formally relies
on the objective movement of an adaptation routine to a designated location. Session type dis-
ciplines for a higher-order π-calculus have been studied in [25]. Besides data and session names,
session communications in [25] may also involve code (i.e., process terms), leading to succinct
and flexible protocol descriptions. The proposed typing system ensures the disciplined use of
mobile code exchanged in communications; in particular, to avoid communication errors due to
unmatched or uncompleted sessions, typing ensures that mobile code containing session endpoints
is run exactly once. In contrast to the process framework in [25], our model has a rather implicit
higher-order character, for we do not allow process communication within sessions. Relating our
process language with the model in [25] is a promising topic for future work. Our constructs for
runtime adaptation are also related to passivation operators found in higher-order process calculi
(see, e.g., [23]). There are significant differences between adaptable processes and passivation; in
particular, adaptable processes distinguish from calculi with passivation in that process update is
defined without assuming constructs for higher-order process communication. See [3, §9.1] for a
detailed comparison between adaptable processes and passivation.

As already discussed, our approach has been influenced by [16] and our previous work [3].
Nevertheless, there are several major differences between our framework and those works. (i) Un-
like the system in [16], our framework supports channel passing (delegation). As delegation is
already useful to represent forms of dynamic reconfiguration, its interplay with update actions is
very appealing (cf. the example in § 5.2). (ii) We have extended typing judgments in [16] with
interfaces I, which are central to characterize located processes which can be safely updated.
(iii) While in [3] adaptable processes are defined for a fragment of CCS, here we consider them
within a typed π-calculus. (iv) Adaptation steps in [3] are completely unrestricted. Here we have
considered annotated versions of the constructs in [3]: they offer a more realistic account of update
actions, as they are supported by runtime conditions based on session types.

Runtime Adaptation. Recently, there has been an increasing interest in the specification and ver-
ification of autonomic and (self-)adaptive computer systems. As a result, several definitions and
characterizations of (self-)adaptation have been put forward: they reflect the different perspectives
and approaches of the several research communities interested in this class of systems. In the Intro-
duction, we have stated our vision of runtime adaptation for communication-based systems. Here
we then limit to remark that this vision is well-aligned with the conceptual definition of adaptation
recently given in [5]: “Given a component with a distinguished collection of control data, adap-
tation is the runtime modification of such control data.” In the case of the calculus of adaptable
processes, control data refers to the located processes in which behavior can be structured. The
same observation applies for the session calculus considered here, noticing that our framework
precisely defines the runtime conditions in which adaptation may consistently occur.

31

Adaptation vs Exceptions and Compensations. From a high-level perspective, our typed frame-
work can be related to formal models for service-oriented systems with constructs such as excep-
tions and compensations (e.g., [10, 15]). In particular, [10] develops a typeful approach for inter-
actional exceptions in asynchronous, binary session types. There, services define a default process
and an exception handler, and may be influenced by a throw construct used to throw exceptions;
the associated type system ensures consistent dynamic escaping from possibly nested exception
scopes in a concerted way. We find conceptual differences between our intended notion of runtime
adaptation (described in the Introduction) and mechanisms for exceptions and compensations. In
our view, such mechanisms are concerned only with a particular instance of adaptation/evolvabilty
scenarios. This way, forms of exceptions (e.g., the one in [10]) should typically handle internal
events which arise during the program’s execution and may affect its flow of control.

Similar in several respects to exceptions, constructs for compensations are usually conceived
for handling events which are often exceptional and catastrophic, such as runtime errors. This
is in contrast with runtime adaptation in modern distributed systems, which relies on external
mechanisms tailored to handle general exceptional events, not necessarily catastrophic. As an
example, consider elasticity in cloud-based applications, i.e., the ability such applications have to
acquire/release computing resources based on user demand. Although elasticity triggers system
adaptation, it does not represent a catastrophic event; rather, it represents an acceptable (yet hard to
predict) state of the system. Due to this conceptual difference, we do not have a clear perspective
as to how formally relate our approach with known models of exceptions/compensations.

Somewhat related to our approach is the work [1], where dynamic runtime update for message
passing programs with queues is studied, and a form of consistency for updates over threads is
ensured using multiparty session types. As in our setting, the notion of update in [1] does not re-
quire a complete system shutdown, while ensuring that the state of the program remains consistent.
However, there are significant conceptual and technical differences. First, unlike our approach,
in [1] update actions (or adaptation routines) are defined independently and externally from the
program’s syntax. Second, here we have considered synchronous communication, whereas in [1]
an asynchronous thread model with queues is used. Third, while we have analyzed updates for a
language endowed with binary session types, in [1] the need for reaching agreements on multiple
threads leads to the use of multiparty session types to ensure consistent updates.

Adaptation in Other Settings. It is instructive to note that approaches similar to ours can also
be found in the sequential formalisms for reasoning at lower levels of abstraction. For instance,
in [27] the authors introduce dynamic updates to C-like languages, with a focus on runtime update
of functions and type declarations. They show that dynamic updates are type-safe (consistent)
as it cannot happen that different parts of the program expect different representations of a type.
Although the aim is similar, it is difficult to establish more precise comparisons, for our interest is
in high-level reasoning for communicating programs with precise protocol descriptions. In [4] the
authors also investigate behavioral types for adaptation, but in the different setting of component-
based systems. Their notion of runtime adaptation relies on a notion of interface which describes
the behavior of each component. These interfaces are to be used to implement inter-component

32

communication. As it could that composition might not work because of interface mismatching,
the authors introduce the notion of adaptors, i.e., a software piece that acts as mediator between
two communicating components. It is interesting to notice that a similar mediator behavior could
be implemented in our setting, as described in § 5.2.

8. Concluding Remarks

A main motivation for our work is the observation that while paradigms such as service-
oriented computing are increasingly popular among practitioners, formal models based on them—
such as analysis techniques based on session types—fail to capture distinctive aspects of such
paradigms. Here we have addressed, for the first time, one of such aspects, namely runtime adap-
tation. In our view, it represents an increasingly important concern when analyzing the behavior of
communicating systems in open, context-aware computing infrastructures.

We have proposed a framework for reasoning about runtime adaptation in the context of struc-
tured communications described by session types. Amalgamating a static analysis technique for
correct communications (session types) with a novel, inherently dynamic form of interaction (run-
time adaptation actions on located processes) is challenging, for it requires balancing two different
(but equally important) concerns in modern interacting systems. In our approach, we are concerned
with a session type discipline for an extended π-calculus, in which channel mobility (delegation) is
enhanced with the possibility of performing sophisticated update actions on located processes. We
purposefully aimed at integrating existing, well-studied lines of work: we expect this to be ben-
eficial for the enhancement of other known session type disciplines with adaptation concerns. In
particular, we built upon our previous work on process abstractions for evolvability [3] and on ses-
sion types for mobile calculi [16], relying also on a modern account of binary session types [29]. In
addition to runtime correctness (safety), our typing discipline ensures consistency: this guarantees
that communication behavior (as declared by types) is not disrupted by potential update actions.

There are several avenues for future developments. In ongoing work, we are exploring the
use of a typecase operator (similar to the one proposed in [22]) to support the runtime adaptation
of processes with running sessions. As detailed in § 6, this is a challenging issue, for it requires
having a uniform treatment of process behavior and the current state of sessions. Also, we intend
to continue the study of runtime adaptation in a multiparty setting, developing further the approach
recently introduced in [2]. Furthermore, we plan to investigate the interplay of runtime adaptation
with issues such as deadlock-freedom/progress [13, 8] and properties related to security, such as
access control and information flow [7].

Acknowledgments. We thank the anonymous reviewers for their detailed remarks. This work was
partially supported by the French project ANR BLAN 0307 01 - SYNBIOTIC, as well as by the
Portuguese Foundation for Science and Technology (FCT) grants SFRH / BPD / 84067 / 2012 and
CITI.

33

References

[1] G. Anderson and J. Rathke. Dynamic software update for message passing programs. In R. Jhala
and A. Igarashi, editors, APLAS, volume 7705 of Lecture Notes in Computer Science, pages 207–222.
Springer, 2012.

[2] M. Bravetti, M. Carbone, T. Hildebrandt, I. Lanese, J. Mauro, J. A. Pérez, and G. Zavattaro. Towards
global and local types for adaptation. In SEFM 2013 Collocated Workshops, volume 8368 of Lecture
Notes in Computer Science. Springer, 2014.

[3] M. Bravetti, C. Di Giusto, J. A. Pérez, and G. Zavattaro. Adaptable Processes. Logical Methods in
Computer Science, 8(4), 2012. Extended abstract in Proc. of FMOODS-FORTE’11, Springer, LNCS
6722.

[4] A. Brogi, C. Canal, and E. Pimentel. Behavioural types and component adaptation. In C. Rattray,
S. Maharaj, and C. Shankland, editors, AMAST, volume 3116 of LNCS, pages 42–56. Springer, 2004.

[5] R. Bruni, A. Corradini, F. Gadducci, A. Lluch-Lafuente, and A. Vandin. A conceptual framework for
adaptation. In J. de Lara and A. Zisman, editors, FASE, volume 7212 of Lecture Notes in Computer
Science, pages 240–254. Springer, 2012.

[6] M. Bugliesi, G. Castagna, and S. Crafa. Access control for mobile agents: The calculus of boxed
ambients. ACM Trans. Program. Lang. Syst., 26(1):57–124, 2004.

[7] S. Capecchi, I. Castellani, M. Dezani-Ciancaglini, and T. Rezk. Session types for access and informa-
tion flow control. In P. Gastin and F. Laroussinie, editors, CONCUR, volume 6269 of Lecture Notes in
Computer Science, pages 237–252. Springer, 2010.

[8] M. Carbone and S. Debois. A graphical approach to progress for structured communication in web
services. In S. Bliudze, R. Bruni, D. Grohmann, and A. Silva, editors, ICE, volume 38 of EPTCS,
pages 13–27, 2010.

[9] M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred programming for web
services. In R. De Nicola, editor, ESOP, volume 4421 of Lecture Notes in Computer Science, pages
2–17. Springer, 2007.

[10] M. Carbone, K. Honda, and N. Yoshida. Structured interactional exceptions in session types. In
CONCUR, volume 5201 of LNCS, pages 402–417. Springer, 2008.

[11] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Self-adaptive monitors for multiparty sessions. In
PDP, pages 688–696. IEEE, 2014.

[12] M. Dezani-Ciancaglini and U. de’Liguoro. Sessions and session types: An overview. In WS-FM,
volume 6194 of LNCS, pages 1–28. Springer, 2009.

[13] M. Dezani-Ciancaglini, U. de’Liguoro, and N. Yoshida. On progress for structured communications.
In G. Barthe and C. Fournet, editors, TGC, volume 4912 of Lecture Notes in Computer Science, pages
257–275. Springer, 2007.

34

[14] C. Di Giusto and J. A. Pérez. Disciplined structured communications with consistent runtime adapta-
tion. In SAC, pages 1913–1918. ACM, 2013.

[15] C. Ferreira, I. Lanese, A. Ravara, H. T. Vieira, and G. Zavattaro. Advanced mechanisms for service
combination and transactions. In Results of the SENSORIA Project, volume 6582 of LNCS, pages
302–325. Springer, 2011.

[16] P. Garralda, A. B. Compagnoni, and M. Dezani-Ciancaglini. Bass: boxed ambients with safe sessions.
In PPDP, pages 61–72. ACM, 2006.

[17] S. J. Gay and M. Hole. Subtyping for session types in the pi calculus. Acta Inf., 42(2-3):191–225,
2005.

[18] A. S. Henriksen, L. Nielsen, T. T. Hildebrandt, N. Yoshida, and F. Henglein. Trustworthy pervasive
healthcare services via multiparty session types. In J. Weber and I. Perseil, editors, FHIES, volume
7789 of Lecture Notes in Computer Science, pages 124–141. Springer, 2012.

[19] K. Honda. Types for dyadic interaction. In CONCUR, volume 715 of LNCS, pages 509–523. Springer,
1993.

[20] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for structured
communication-based programming. In ESOP, volume 1381 of LNCS, pages 122–138. Springer, 1998.

[21] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In G. C. Necula and
P. Wadler, editors, POPL, pages 273–284. ACM, 2008.

[22] D. Kouzapas, N. Yoshida, and K. Honda. On asynchronous session semantics. In FMOODS/FORTE,
volume 6722 of LNCS, pages 228–243. Springer, 2011.

[23] S. Lenglet, A. Schmitt, and J.-B. Stefani. Characterizing contextual equivalence in calculi with passi-
vation. Inf. Comput., 209(11):1390–1433, 2011.

[24] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, i. Inf. Comput., 100(1):1–40,
1992.

[25] D. Mostrous and N. Yoshida. Two session typing systems for higher-order mobile processes. In TLCA,
volume 4583 of LNCS, pages 321–335. Springer, 2007.

[26] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms.
PhD thesis CST–99–93, Department of Computer Science, University of Edinburgh, 1992.

[27] G. Stoyle, M. W. Hicks, G. M. Bierman, P. Sewell, and I. Neamtiu. Mutatis Mutandis: Safe and
predictable dynamic software updating. ACM Trans. Program. Lang. Syst., 29(4), 2007.

[28] A. Vallecillo, V. T. Vasconcelos, and A. Ravara. Typing the behavior of objects and component using
session types. Electr. Notes Theor. Comput. Sci., 68(3):439–456, 2003.

[29] N. Yoshida and V. T. Vasconcelos. Language primitives and type discipline for structured
communication-based programming revisited: Two systems for higher-order session communication.
Electr. Notes Theor. Comput. Sci., 171(4):73–93, 2007.

35

Appendix A. Auxiliary Definitions

Appendix A.1. Cardinality of Typings

Definition 33. Let ∆ be a typing, as in Table 3. The cardinality of ∆, denoted |∆|, is inductively
defined as follows:

|∅| = 0

|∆′, k : α| = 1 + |∆′|
|∆′, [k : α]| = 1 + |∆′|

Appendix B. Proofs from § 4

Appendix B.1. Proof of Theorem 15

We repeat the statement given in Page 15 and give its proof.

Theorem 34 (Subject Congruence). If Γ ; Θ ` P .∆; I and P ≡ Q then Γ ; Θ ` Q .∆; I.

Proof. By induction on the derivation of P ≡ Q, with a case analysis on the last applied rule.

Case (νκ)(lh[P]) ≡ lh[(νκ)P].
We examine the left to right direction: we show that if Γ ; Θ ` (νκ)(lh[P]) . ∆; I then Γ ; Θ `
lh[(νκ)P] . ∆; I. Since (νκ)(lh[P]) is well-typed, by inversion on rules (T:LOC) and (T:CRES),
for some α,∆′ we have:

Θ ` l : I ′
I v I ′ Γ ; Θ ` P .∆′, κ− : α, κ+ : α; I h = |∆′, κ− : α, κ+ : α|

Γ ; Θ ` lh[P] .∆′, κ− : α, κ+ : α; I
Γ ; Θ ` (νκ)(lh[P]) .∆′, [κ− : α], [κ+ : α]; I

Hence Γ ; Θ ` P . ∆′, κ− : α, κ+ : α; I, where ∆ = ∆′, [κ− : α], [κ+ : α]. Now, starting from
P , and by applying first rule (T:CRES) and then rule (LOC) we obtain:

Γ ; Θ ` P .∆′, κ− : α, κ+ : α; I
Γ ; Θ ` (νκ)P .∆′, [κ− : α], [κ+ : α]; I

Θ ` l : I ′ I v I ′
h = |∆′, [κ− : α], [κ+ : α]|

Γ ; Θ ` lh[(νκ)P] .∆′, [κ− : α], [κ+ : α]; I

Observe that h = |∆′, [κ− : α], [κ+ : α]| = |∆′, κ− : α, κ+ : α|—bracketing does not influence
h, i.e., The reasoning for the right to left direction is analogous and omitted.

36

Case P | 0 ≡ P .
We examine only the left to right direction; the converse direction is similar. We then show that if
Γ ; Θ ` P | 0 .∆; I then Γ ; Θ ` P .∆; I. By inversion on rule (T:PAR) there exist ∆1, I1 such
that

Γ ; Θ ` P .∆1; I1 and Γ ; Θ ` 0 . ∅; ∅

with ∆ = ∆1 ∪ ∅ = ∆1 and I = I1] ∅ = I1 and so the thesis follows.

Case (νκ)P | Q ≡ (νκ)(P | Q) with κ /∈ fc(Q).
We examine only the right to left direction; the other direction is analogous. We show that if
Γ ; Θ ` (νκ)(P | Q) . ∆; I (with κ /∈ fc(Q)) then also Γ ; Θ ` (νκ)P | Q . ∆; I. By inversion
on rules (T:CRES) and (T:PAR) we have:

Γ ; Θ ` P .∆1, κ
− : α, κ+ : α; I1 Γ ; Θ ` Q .∆2; I2 I = I1] I2

Γ ; Θ ` P | Q .∆1 ∪∆2, κ
− : α, κ+ : α; I ′

Γ ; Θ ` (νκ)(P | Q) .∆1 ∪∆2, [κ− : α], [κ+ : α]; I

where ∆ = ∆1 ∪ ∆2, [κ
− : α], [κ+ : α]. Observe how in the inversion of rule (T:PAR) we may

combine assumption κ /∈ fc(Q) with α-conversion to infer κ /∈ fc(Q) ∪ bc(Q). We may then use
Lemma 14 to infer Γ ; Θ ` P . ∆1, κ

− : α, κ+ : α; I1 and Γ ; Θ ` Q . ∆2; I2. Now, using first
rule (T:CRES) and then rule (T:PAR) we have:

Γ ; Θ ` P .∆1, κ
− : α, κ+ : α; I1

Γ ; Θ ` (νκ)P .∆1, [κ− : α], [κ+ : α]; I1

Γ ; Θ ` Q .∆2; I2

I = I1] I2

Γ ; Θ ` (νκ)P | Q .∆1 ∪∆2, [κ− : α], [κ+ : α]; I

Case (νκ)0 ≡ 0 .
This case is easily proven by appealing to rule (T:WEAK).

Cases P | Q ≡ Q | P and (P | Q) | R ≡ P | (Q | R).
In both cases, the proof follows by commutativity and associativity of ∪ and] (cf. Def. 6).

Case (νκ)(νκ′)P ≡ (νκ′)(νκ)P .
This case is similar to previous ones.

Appendix B.2. Proof of Theorem 21
The proof of Theorem 21 relies on the following lemma that allows to reverse typing rules.

Lemma 35 (Inversion Lemma).

(T:ACCEPT): if Γ ; Θ ` accept a(x).P .∆; I] a : αlin then Γ ; Θ ` P .∆, x : α; I;

(T:REPACCEPT): if Γ ; Θ ` ! accept a(x).P . ∆; I] a : αun then there exists I ′ such that
Γ ; Θ ` P .∆, x : α; I ′;

37

(T:REQUEST): if Γ ; Θ ` request a(x).P .∆; I] a : αlin then Γ ; Θ ` P .∆, x : α; I;

(T:CLOSE): if Γ ; Θ ` close (k).P .∆, k : ε; I then Γ ; Θ ` P .∆; I;

(T:LOC): if Γ ; Θ ` lh[P] .∆; I then Θ ` l : I ′, Γ ; Θ ` P .∆; I, h = |∆| and I v I ′;

(T:ADAPT): if Γ ; Θ ` l{(X).P} . ∅; ∅ then Θ ` l : I and there exists I ′ such that Γ ; Θ,X : I `
P . ∅; I ′;

(T:CRES): if Γ ; Θ ` (νκ)P .∆, [κ− : α], [κ+ : α]; I then Γ ; Θ ` P .∆, κ− : α, κ+ : α; I;

(T:PAR): if Γ ; Θ ` P | Q . ∆; I then there exists ∆1,∆2, I1, I2 such that Γ ; Θ ` P . ∆1; I1,
Γ ; Θ ` Q .∆2; I2, ∆ = ∆1 ∪∆2 and I = I1] I2;

(T:THR): if Γ ; Θ ` k〈〈k′〉〉.P .∆, k :!(α).β, k′ : α; I then Γ ; Θ ` P .∆, k : β; I;

(T:CAT): if Γ ; Θ ` k((x)).P .∆, k?(α).β; I then Γ ; Θ ` P .∆, k : β, x : α; I;

(T:IN): if Γ ; Θ ` k(x̃).P .∆, k :?(τ̃).α; I then Γ, x̃ : τ̃ ; Θ ` P .∆, k : α; I and Γ ` ẽ : τ̃ ;

(T:OUT): if Γ ; Θ ` k〈ẽ〉.P .∆, k :!(τ̃).α; I then Γ ; Θ ` P .∆, k :!(τ̃).α; I;

(T:IF): if Γ ; Θ ` if e then P else Q . ∆; I then Γ ; Θ ` P . ∆; I, Γ ; Θ ` Q . ∆; I and
Γ ` e : bool;

(T:BRA): if Γ ; Θ ` k . {n1 : P1 [] . . . []nm : Pm} . ∆, k : &{n1 : α1, . . . , nm : αm}; I then
there exists I1, . . . , Im such that for all i ∈ [1..m], Γ ; Θ ` Pi .∆, k : αi; Ii;

(T:SEL): if Γ ; Θ ` k / ni.P . ∆, k : ⊕{n1 : α1, . . . , nm : αm}; I then i ∈ [1..m] and Γ ; Θ `
P .∆, k : αi; I.

Proof. Follows directly from the definition of typing system.

We repeat the statement in Page 18 and present its proof.

Theorem 36 (Subject Reduction). If Γ ; Θ ` P . ∆; I with ∆ balanced and P −→ Q then
Γ ; Θ ` Q .∆′; I ′, for some I ′ and balanced ∆′.

Proof. By induction on the last rule applied in the reduction. We assume that ẽ ↓ c̃ is a type
preserving operation, for every ẽ.

38

Case (R:OPEN). From Table 2 we have:

E
{
C{accept a(x).P1} | D{request a(y).P2}

}
−→

E++
{

(νκ)
(
C+{P1[κ

+
/x]} | D+{P2[κ

−
/y]}

)}
By assumption Γ ; Θ ` E

{
C{accept a(x).P1} | D{request a(y).P2}

}
. ∆; I with balanced ∆.

Then, by inversion on typing, using rules (T:FILL), (T:ACCEPT), (T:REQUEST), and (T:PAR) we
infer there exist ∆′, I ′ such that

•S0 ; Γ ; Θ ` E .∆; I
(B.3) (B.5)

Γ ; Θ ` C{accept a(x).P1} | D{request a(y).P2} .∆′; I ′

Γ ; Θ ` E
{
C{accept a(x).P1} | D{request a(y).P2}

}
.∆; I (B.1)

where I ′ = (I ′1] a : αlin)] (I ′2] a : αlin) and

S0 = Γ; Θ ` ∆′; I ′ (B.2)

By Lemma 18, ∆′ ⊆ ∆ and I ′ v I. Then, letting ∆′ = ∆′1 ∪∆′2, subtree (B.3) is as follows:

•S1 ; Γ ; Θ ` C .∆′1; I ′1] a : αlin

Γ ` a : 〈αlin, αlin〉 Γ ; Θ ` P1 .∆1, x : α; I1

Γ ; Θ ` accept a(x).P1 .∆1; I1] a : αlin

Γ ; Θ ` C{accept a(x).P1} .∆′1; I ′1] a : αlin (B.3)

with
S1 = Γ; Θ ` ∆1; I1] a : αlin (B.4)

Then, subtree (B.5) is as follows:

•S2 ; Γ ; Θ ` D .∆′2; I ′2] a : αlin

Γ ` a : 〈αlin, αlin〉 Γ ; Θ ` P2 .∆2, y : α; I2

Γ ; Θ ` request a(y).P2 .∆2; I2] a : αlin

Γ ; Θ ` D{request a(y).P2} .∆′2; I ′2] a : αlin (B.5)

with
S2 = Γ; Θ ` ∆2; I2] a : αlin (B.6)

By Lemma 18 we have that ∆1 ⊆ ∆′1 and ∆2 ⊆ ∆′2. We also infer I1 v I ′1, I2 v I ′2, and I ′ v I.
Now, using Lemma 16(1) on judgments for P1 and P2, we obtain:

(a) Γ ; Θ ` P1[κ
+
/x] .∆1, κ

+ : α; I1.

(b) Γ ; Θ ` P2[κ
−
/y] .∆2, κ

− : α; I2.

39

We now describe how to obtain appropriately typed contexts C+, D+, and E++ based on the
information inferred up to here on contexts C,D, and E. We first describe the case of C+. From
(B.3) above we obtained •S1 ; Γ ; Θ ` C . ∆′1; I ′1] a : αlin with S1 as in (B.4). Then, using
Lemma 19(1), we infer •S3 ; Γ ; Θ ` C+ .∆′1, κ

+ : α; I ′1 with

S3 = Γ; Θ ` ∆1, κ
+ : α; I1 (B.7)

We may now reconstruct the derivation given in (B.3):

•S3 ; Γ ; Θ ` C+ .∆′1, κ
+ : α ; I ′1 Γ ; Θ ` P1[κ

+
/x] .∆1, κ

+ : α; I1

Γ ; Θ ` C+{P1[κ
+
/x]} .∆′1, κ

+ : α; I ′1 (B.8)

For D+, we proceed analogously from (B.5) and infer:

•S4 ; Γ ; Θ ` D+ .∆′2, κ
− : α; I ′2 Γ ; Θ ` P2[κ

−
/y] .∆2, κ

− : α; I2

Γ ; Θ ` D+{P2[κ
−
/y]} .∆′2, κ

− : α; I ′2 (B.9)

with
S4 = Γ; Θ ` ∆2, κ

− : α; I2 (B.10)

To infer the type of E++ we proceed as before using twice Lemma 19(1), combined with (B.2).
We may finally derive the type for the result of the reduction: using rules (T:PAR), (T:CRES), and
(T:FILL) we obtain:

(B.11)

(B.8) (B.9)

Γ ; Θ ` C+{P1[κ
+
/x]} | D+{P2[κ

−
/y]} .∆′, κ+ : α, κ− : α; I ′1] I ′2

Γ ; Θ ` (νκ)C+{P1[κ
+
/x]} | D+{P2[κ

−
/y]} .∆′, [κ+ : α], [κ− : α]; I ′1] I ′2

Γ ; Θ ` E++
{

(νκ)C+{P1[κ
+
/x]} | D+{P2[κ

−
/y]}

}
.∆, [κ+ : α], [κ− : α]; I ′′

with
•S5 ; Γ ; Θ ` E .∆, [κ+ : α], [κ− : α]; I ′′ (B.11)

and
S5 = Γ; Θ ` ∆′, κ+ : α, κ− : α; I ′1] I ′2

Notice that by Lemma 18, we have I ′′ v I ′1 ∪ I ′2. Also, observe that by assumption ∆ is
balanced; therefore, by Def. 20 the resulting typing ∆, [κ+ : α], [κ− : α] is balanced too. This
concludes this case.

Case (R:ROPEN). From Table 2 we have:

E
{
C{! accept a(x).P1} | D{request a(y).P2}

}
−→

E++
{

(νκ)
(
C+{P1[κ

+
/x] | ! accept a(x).P1} | D+{P2[κ

−
/y]}

)}
40

By assumption Γ ; Θ ` E
{
C{! accept a(x).P1} | D{request a(y).P2}

}
.∆; I, with balanced ∆.

Then, by inversion on typing, using rules (T:FILL), (T:REPACCEPT), (T:REQUEST), and (T:PAR),
we infer there exist ∆′, I ′ such that:

•S0 ; Γ ; Θ ` E .∆; I
(B.13) (B.15)

Γ ; Θ ` C{! accept a(x).P1} | D{request a(y).P2} .∆′; I ′

Γ ; Θ ` E
{
C{! accept a(x).P1} | D{request a(y).P2}

}
.∆; I

where I ′ = (I ′1] a : αun)] (I ′2] a : αlin) and

S0 = Γ; Θ ` ∆′; I ′ (B.12)

By Lemma 18, ∆′ ⊆ ∆ and I ′ v I. Then, letting ∆′ = ∆′1 ∪∆′2, subtree (B.13) is as follows:

•S1 ; Γ ; Θ ` C .∆′1; I ′1] a : αun

Γ ` a : 〈αun, αlin〉 Γ ; Θ ` P1 . x : α; I1

Γ ; Θ ` ! accept a(x).P1 . ∅; ↑un (I1)] a : αun

Γ ; Θ ` C{! accept a(x).P1} .∆′1; I ′1] a : αun (B.13)

with
S1 = Γ; Θ ` ∅; ↑un (I1)] a : αun (B.14)

Then, subtree (B.15) is as follows:

•S2 ; Γ ; Θ ` D .∆′2; I ′2] a : αlin

Γ ` a : 〈αun, αlin〉 Γ ; Θ ` P2 .∆2, y : α; I2

Γ ; Θ ` request a(y).P2 .∆2; I2] a : αlin

Γ ; Θ ` D{request a(y).P2} .∆′2; I ′2] a : αlin (B.15)

with
S2 = Γ; Θ ` ∆2; I2] a : αlin (B.16)

By Lemma 18 we have ∆1 ⊆ ∆′1 and ∆2 ⊆ ∆′2. Moreover, I1 v I ′1, I2 v I ′2 and I ′ v I. Now,
using Lemma 16(1) on P1 and P2, we have:

(a) Γ ; Θ ` P1[κ
+
/x] . κ+ : α; I1.

(b) Γ ; Θ ` P2[κ
−
/y] .∆2, κ

− : α; I2.

We now describe how to obtain appropriately typed contextsC+, D+, andE++ based on the infor-
mation inferred up to here on contexts C,D, and E. We first describe the case of C+. From (B.13)
above we obtained •S1 ; Γ ; Θ ` C.∆′1; I ′1]a : αun with S1 as in (B.14). Then, using Lemma 19(1),
we infer •S3 ; Γ ; Θ ` C+ .∆′1, κ

+ : α; I ′1 with

S3 = Γ; Θ ` κ+ : α;↑un (I1)] a : αun (B.17)

41

We may now reconstruct the derivation given in (B.13):

•S3 ; Γ ; Θ ` C+ .∆′1, κ
+ : α ; I ′1] a : αun Γ ; Θ ` P1[κ

+
/x] . κ+ : α;↑un (I1)] a : αun

Γ ; Θ ` C+{P1[κ
+
/x]} .∆′1, κ

+ : α; I ′1] a : αun

(B.18)
For D+, we proceed analogously from (B.15) and infer:

•S4 ; Γ ; Θ ` D+ .∆′2, κ
− : α; I ′2 Γ ; Θ ` P2[κ

−
/y] .∆2, κ

− : α; I2

Γ ; Θ ` D+{P2[κ
−
/y]} .∆′2, κ

− : α; I ′2 (B.19)

with
S4 = Γ; Θ ` ∆2, κ

− : α; I2 (B.20)

To infer the type of E++ we proceed as before using twice Lemma 19(1), combined with (B.12).
We may finally derive the type for the result of the reduction: using rules (T:PAR), (T:CRES), and
(T:FILL) we obtain:

(B.21)

(B.18) (B.19)

Γ ; Θ ` C+{P1[κ
+
/x]} | D+{P2[κ

−
/y]} .∆′, κ+ : α, κ− : α; I ′1] I ′2] a : αun

Γ ; Θ ` (νκ)C+{P1[κ
+
/x]} | D+{P2[κ

−
/y]} .∆′, [κ+ : α], [κ− : α]; I ′1] I ′2] a : αun

Γ ; Θ ` E++
{

(νκ)C+{P1[κ
+
/x]} | D+{P2[κ

−
/y]}

}
.∆, [κ+ : α], [κ− : α]; I ′′

with
•S5 ; Γ ; Θ ` E .∆, [κ+ : α], [κ− : α]; I ′′ (B.21)

and
S5 = Γ; Θ ` ∆′, κ+ : α, κ− : α; I ′1] I ′2] a : αun

Notice that by Lemma 18, we have I ′′ v I ′1 ∪ I ′2] a : αun. Also, observe that by assumption ∆
is balanced; therefore, by Def. 20 the resulting typing ∆, [κ+ : α], [κ− : α] is balanced too. This
concludes this case.

Case (R:UPD). From Table 2 we have:

E
{
C{l0[P1]} | D{l{(X).P2}}

}
−→ E

{
C{P2[P1/X]} | D{0}

}
By assumption we have Γ ; Θ ` E

{
C{l0[P1]} | D{l{(X).P2}}

}
. ∆; I, with ∆ balanced. Then,

by inversion on typing, using rules (T:FILL), (T:PAR), (T:ADAPT), and (T:LOC) we infer:

•S0 ; Γ ; Θ ` E .∆; I
(B.23) (B.24)

Γ ; Θ ` C{l0[P1]} | D{l{(X).P2}} .∆′; I ′

Γ ; Θ ` E
{
C{l0[P1]} | D{l{(X).P2}}

}
.∆; I (B.22)

42

with S0 = Γ; Θ ` ∆′; I ′. By Lemma 18, we have ∆′ ⊆ ∆′ and I ′ v I. Moreover, letting
∆′ = ∆′1 ∪∆′2 and I ′ = I ′1] I ′2, subtree (B.23) is as follows:

•S1 ; Γ ; Θ ` C .∆′1; I ′1

I ′′1 v I∗1 Θ ` l : I∗1 Γ ; Θ ` P1 . ∅; I ′′1
Γ ; Θ ` l0[P1] . ∅; I ′′1

Γ ; Θ ` C{l0[P1]} .∆′1; I ′1 (B.23)

with S1 = Γ; Θ ` ∅; I ′′1 , and I ′′1 v I ′1 (by Lemma 18). Subtree (B.24) is as follows:

•S2 ; Γ ; Θ ` D .∆′2; I ′2
Θ ` l : I∗1 Γ ; Θ,X : I∗1 ` P2 . ∅; I3

Γ ; Θ ` l{(X).P2} . ∅; ∅
Γ ; Θ ` D{l{(X).P2}} .∆′2; I ′2 (B.24)

with S2 = Γ; Θ ` ∅; ∅. By Lemma 16(3) we have Γ ; Θ ` P2[P1/X] . ∅; I ′3, for some I ′3 such
that I ′3 v I3. We now reconstruct the derivation in (B.22), using rules (T:PAR), (T:FILL) and
Lemma 19(3). Let

•S3 ; Γ ; Θ ` D .∆′1; I ′′3 Γ ; Θ ` P2[P1/X] . ∅; I ′3
Γ ; Θ ` C{P2[P1/X]} .∆′1; I ′′3

•S4 ; Γ ; Θ ` D .∆′2; I ′2 Γ ; Θ ` 0 . ∅; ∅
Γ ; Θ ` D{0} .∆′2; I ′2

Γ ; Θ ` C{P2[P1/X]} | D{0} .∆′1 ∪∆′2; I ′′3] I ′2
(B.25)

and
•S5 ; Γ ; Θ ` E .∆; I ′ (B.25)

Γ ; Θ ` E
{
C{P2[P1/X]} | D{0}

}
.∆; I ′

with
S5 = Γ; Θ ` ∆′1 ∪∆′2; I ′′3] I ′2

where by Lemma 18 we know I ′′3 v I ′3 and I ′′3] I ′2 v I ′. This concludes the analysis for this
case.

Case (R:I/O). From Table 2 we have:

E
{
C{κ p〈ẽ〉.P1} | D{κ p(x̃).P2}

}
−→ E

{
C{P1} | D{P2[c̃/x̃]}

}
(ẽ ↓ c̃)

By assumption, we have Γ ; Θ ` E
{
C{κ p〈ẽ〉.P1} | D{κ p(x̃).P2}

}
.∆; I, with ∆ balanced. By

inversion on typing, using rules (T:FILL), (T:PAR), (T:IN), and (T:OUT), we infer:

•S0 ; Γ ; Θ ` E .∆; I
(B.29) (B.30)

Γ ; Θ ` C{κ p〈ẽ〉.P1} | D{κ p(x̃).P2} .∆′; I ′1] I ′2
Γ ; Θ ` E

{
C{κ p〈ẽ〉.P1} | D{κ p(x̃).P2}

}
.∆; I

43

where:

∆′ = ∆′1 ∪∆′2, κ
p :!(τ̃).α, κp :?(τ̃).α (B.26)

I = I ′1] I ′2 (B.27)

S0 = Γ; Θ ` ∆′; I ′1] I ′2 (B.28)

Moreover, by Lemma 18, we infer ∆′ ⊆ ∆ and I ′1] I ′2 v I. Also, we have that subtree (B.29) is
as follows:

•S1 ; Γ ; Θ ` C .∆1; I ′2
Γ ; Θ ` P1 .∆1, κ

p : α; I1 Γ ` ẽ : τ̃

Γ ; Θ ` κp〈ẽ〉.P1 .∆1, κ
p :!(τ̃).α; I1

Γ ; Θ ` C{κp〈ẽ〉.P1} .∆′1, κ
p :!(τ̃).α; I ′1 (B.29)

with
S1 = Γ; Θ ` ∆1, κ

p :!(τ̃).α; I1

Also, subtree (B.30) is as follows:

•S2 ; Γ ; Θ ` D .∆1; I ′2
Γ, x̃ : τ̃ ; Θ ` P2 .∆2, κ

p : α; I2

Γ ; Θ ` κp(x̃).P1 .∆2, κ
p :?(τ̃).α; I2

Γ ; Θ ` D{κp(x̃).P2} .∆′2, κ
p :?(τ̃).α; I ′2 (B.30)

with
S2 = Γ; Θ ` ∆2, κ

p :?(τ̃).α; I2

where Lemma 18 ensures ∆1 ⊆ ∆′1, ∆2 ⊆ ∆′2, ∆ ⊆ ∆′1 ∪∆′2, κ
p :!(τ̃).α, κp :?(τ̃).α, I1 v I ′1,

I2 v I ′2, and I v I1] I2.
Now, by Lemma 16(2) we know Γ ; Θ ` P2[c̃/x̃] . ∆2, κ

p : α; I2 with ẽ ↓ c̃. Moreover by
Lemma 19(3) and rules (T:PAR) and (T:FILL) we obtain the following type derivations:

•S3 ; Γ ; Θ ` D .∆′1, κ
p : α; I ′1 Γ ; Θ ` P1 .∆1, κ

p : α; I1

Γ ; Θ ` C{P1} .∆′1, κ
p : α; I ′1 (B.31)

•S4 ; Γ ; Θ ` D .∆′2, κ
p : α; I ′2 Γ ; Θ ` P2[c̃/x̃] .∆2, κ

p : α; I2

Γ ; Θ ` D{P2[c̃/x̃]} .∆′2, κ
p : α; I ′2 (B.32)

•S5 ; Γ ; Θ ` E .∆′; I
(B.31) (B.32)

Γ ; Θ ` C{P1} | D{P2[c̃/x̃]} .∆′1 ∪∆′2, κ
p : α, κpα; I ′1] I ′2

Γ ; Θ ` E
{
C{P1} | D{P2[c̃/x̃]}

}
.∆′; I

with
S3 = Γ; Θ ` ∆1, κ

p : α; I1

S4 = Γ; Θ ` ∆2, κ
p : α; I2

S5 = Γ; Θ ` ∆′1 ∪∆′2, κ
p : α, κpα; I ′1] I ′2

Since by inductive hypothesis ∆′1 and ∆′2 are balanced, we infer that ∆′1 ∪∆′2, κ
p : α, κp : α

is balanced as well; this concludes the proof for this case.

44

Case (R:PASS). From Table 2 we have:

E
{
C{κ p〈〈κ q1 〉〉.P1} | D{κ p((x)).P2}

}
−→ E

{
C−{P1} | D+{P2[κ

q
1/x]}

}
By assumption we have Γ ; Θ ` E

{
C{κ p〈〈κ q1 〉〉.P1} | D{κ p((x)).P2}

}
. ∆; I, with ∆ bal-

anced. By typing inversion on rules (T:FILL), (T:PAR), (T:CAT), and (T:THR) we infer:

•S0 ; Γ ; Θ ` E .∆; I
(B.36) (B.38)

Γ ; Θ ` C{κp〈〈κq1〉〉.P1} | D{κp((x)).P2} .∆′; I ′

Γ ; Θ ` E
{
C{κ p〈〈κ q1 〉〉.P1} | D{κ p((x)).P2}

}
.∆; I

with:

∆ = ∆1, κ
p :!(α).β, κq1 : α,∆2, κ

p :?(α).β (B.33)

∆′ = ∆′1, κ
p :!(α).β, κq1 : α,∆′2, , κ

p :?(α).β (B.34)

S0 = Γ; Θ ` ∆′; I ′ (B.35)

and, by Lemma 18, we infer ∆′1 ⊆ ∆1, ∆′2 ⊆ ∆2, and I ′ v I. Moreover, (B.36) corresponds to
the subtree:

•S1 ; Γ ; Θ ` C .∆′1, κ
p :!(α).β, κq1 : α; I ′1

Γ ; Θ ` P1 .∆′′1, κ
p : β; I ′′1

Γ ; Θ ` κp〈〈κq1〉〉.P1 .∆′′1, κ
p :!(α).β, κq1 : α; I ′′1

Γ ; Θ ` C{κp〈〈κq1〉〉.P1} .∆′1, κ
p :!(α).β, κq1 : α; I ′1

(B.36)
with ∆′′1 ⊆ ∆′1 and I ′′1 v I ′1 (by Lemma 18) and

S1 = Γ; Θ ` ∆′′1, κ
p :!(α).β, κq1 : α; I ′′1 (B.37)

while (B.38) corresponds to the subtree:

•S2 ; Γ ; Θ ` D .∆′2, κ
p :?(α).β; I ′2

Γ ; Θ ` P2 .∆′′2, κ
p : β, x : α; I ′′2

Γ ; Θ ` κp((x)).P2 .∆′′2, κ
p :?(α).β; I ′′2

Γ ; Θ ` D{κp((x)).P2} .∆′2, κ
p :?(α).β; I ′2 (B.38)

with ∆′′2 ⊆ ∆′2 and I ′′2 v I ′2 (by Lemma 18) and

S2 = Γ; Θ ` ∆′′2, κ
p :?(α).β; I ′′2 (B.39)

We now describe how to obtain appropriately typed contexts C− and D+, based on the infor-
mation already inferred on contexts C and D. We first consider the case of C−. From (B.36), we
obtained

•S1 ; Γ ; Θ ` C .∆′1, κ
p :!(α).β, κq1 : α; I ′1

45

with S1 as in (B.37). Then, using Lemma 19(2), we infer

•S3 ; Γ ; Θ ` C− .∆′1, κ
p : β; I ′1

where

S3 = Γ; Θ ` ∆′′1, κ
p : β; I ′′1 (B.40)

We may now reconstruct the derivation in (B.36), as follows:

•S3 ; Γ ; Θ ` C− .∆′1, κ
p : β; I ′1 Γ ; Θ ` P1 .∆′′1, κ

p : β; I ′′1
Γ ; Θ ` C−{P1} .∆′1, κ

p : β; I ′1 (B.41)

We now consider the case of D+. By applying Lemma 16 (1) on the premise concerning P2 in
(B.38), we obtain

Γ ; Θ ` P2[κ
q
1/x] .∆′′2, κ

p : β, κq1 : α; I ′′2
From (B.38) we obtained

•S2 ; Γ ; Θ ` D .∆′2, κ
p :?(α).β; I ′2

with S2 as in (B.39). Then, using Lemma 19(1), we infer

•S4 ; Γ ; Θ ` D+ .∆′2, κ
p : β, κq1 : α; I ′2

where

S4 = Γ; Θ ` ∆′′2, κ
p : β, κq1 : α; I ′′2 (B.42)

We can reconstruct the derivation depicted by (B.38):

•S4 ; Γ ; Θ ` D+ .∆′2, κ
p : β, κq1 : α; I ′2 Γ ; Θ ` P2[κ

q
1/x] .∆′′2, κ

+ : β, κq1 : α; I ′′2
Γ ; Θ ` D+{P2[κ

q
1/x]} .∆′2, κ

p : β, κq1 : α; I ′2 (B.43)

Combining (B.41) and (B.43), we may finally derive the type for the result of the reduction. Using
rules (T:PAR) and (T:FILL) we obtain:

•S5 ; Γ ; Θ ` E .∆∗; I
(B.41) (B.43)

Γ ; Θ ` C−{P1} | D+{P2[κ
q
1/x]} .∆′1 ∪∆′2, κ

p : β, κp : β, κq1 : α; I ′

Γ ; Θ ` E
{
C−{P1} | D+{P2[κ

q
1/x]}

}
.∆∗; I

with
S5 = Γ; Θ ` ∆′1 ∪∆′2, κ

p : β, κp : β, κq1 : α; I ′

Since by assumption ∆ is balanced, we have that by construction ∆∗ is balanced as well. It is
worth observing how contexts C− and D+ correctly implement the fact that the number of active
sessions is changed after delegating session κq1 to process P2. This concludes the proof for this
case.

46

(R:LPAR) if P −→ P ′ then P | Q −→ P ′ | Q

(R:LRES) if P −→ P ′ then (νκ)P −→ (νκ)P ′

(R:LSTR) if P ≡ P ′, P ′ −→ Q′, andQ′ ≡ Q then P −→ Q

(R:LLOC) if P −→ P ′ then l[P] −→ l[P ′]

(R:LOPEN) C{accept a(x).P} | D{request a(y).Q} −→
(νκ)

(
C{P [κ

+
/x]} | D{Q[κ

−
/y]}

)
(R:LROPEN) C{! accept a(x).P} | D{request a(y).Q} −→

(νκ)
(
C{P [κ

+
/x] | ! accept a(x).P} | D{Q[κ

−
/y]}

)
(R:LUPD) C{l[P]} | D{l{(X).Q}} −→ C{Q[P/X]} | D{0}

(R:LI/O) C{κ p〈ẽ〉.P} | D{κ p(x̃).Q} −→ C{P} | D{Q[c̃/x̃]} (ẽ ↓ c̃)

(R:LPASS) C{κ p〈〈κ′ q〉〉.P} | D{κ p((x)).Q} −→ C{P} | D{Q[κ
′ q
/x]}

(R:LSEL) C{κ p . {n1:P1 [] · · · []nm:Pm}} | D{κ p / nj ;Q} −→
C{Pj} | D{Q} (1 ≤ j ≤ m)

(R:LCLOSE) C{close (κ p).P} | D{close (κ p).Q} −→ C{P} | D{Q}

(R:LIFTR) if e then P else Q −→ P (e ↓ true)

(R:LIFFA) if e then P else Q −→ Q (e ↓ false)

Table C.9: Reduction semantics without annotations.

Cases (R:IFTR) and (R:IFFA). Follows by an ease induction on the derivation tree.

Case (R:CLOSE). These follow by the same reasoning as in (R:OPEN) case.

Case (R:BRANCH). This case is similar to previous (R:I/O) case.

Case (R:STR). Follows from Theorem 15 (Subject Congruence).

Case (R:PAR). Follows by induction and by applying rule (T:PAR).

Case (R:RES). Follows by induction and by the fact that ∆ is balanced. Indeed, by hypothesis
and by inversion on rule (T:CRES) all the occurences of bracketed assignements ([κp : α]) are
necessarily balanced thus making it possible to apply the inductive hypothesis to the premise of the
rule and concluding the analysis of this case and the proof of the theorem.

Appendix C. Additional Material for § 6

47

(R:PARU)
Γ ; Θ ` P .∆1; I1 −→ Γ ; Θ ` P ′ .∆′1; I ′1

Γ ; Θ ` P | Q .∆1 ∪∆2; I1 ∪ I2 −→ Γ ; Θ ` P ′ | Q .∆′1 ∪∆2; I ′1] I ′2

(R:RESU)

Γ ; Θ ` P . κ+ : α, κ− : α,∆; I −→ Γ ; Θ ` P ′ . κ+ : α′, κ− : α′,∆′; I ′

Γ ; Θ ` (νκ)P . [κ+ : α], [κ− : α],∆; I −→
Γ ; Θ ` (νκ)P ′ . [κ+ : α′], [κ− : α′],∆′; I ′

(R:STRU)
P ≡ Q Γ ; Θ ` Q .∆; I −→ Γ ; Θ ` Q′ .∆′; I ′ P ′ ≡ Q′

Γ ; Θ ` P .∆; I −→ Γ ; Θ ` P ′ .∆′; I ′

(R:LOCU)
Γ ; Θ ` P .∆; I −→ Γ ; Θ ` P ′ .∆′; I ′

Γ ; Θ ` l[P] .∆; I −→ Γ ; Θ ` l[P ′] .∆′; I ′

(R:UPDU)

Γ ; Θ ` P .∆1; I1 Γ ; Θ,X : ∆1, I1 ` Q .∆2; I2 ∆1 = ρ(∆2)

Γ ; Θ ` C{l[P]} | D{l{(X).Q}} .∆; I
−→

Γ ; Θ ` C{ρ(Q)[P/X]} | D{0} .∆; (I \ I1)] I2

(R:IFTRU) Γ ; Θ ` if e then P else Q .∆; I −→ Γ ; Θ ` P .∆; I (e ↓ true)

(R:IFFAU) Γ ; Θ ` if e then P else Q .∆; I −→ Γ ; Θ ` Q .∆; I (e ↓ false)

Table C.10: Typed reduction semantics. (I)

48

(R:OPENU)
Γ ; Θ ` C{accept a(x).P} | D{request a(y).Q} .∆; I, a : αlin, a : αlin −→

Γ ; Θ ` (νκ)C{P [κ
+
/x]} | D{Q[κ

−
/y]} .∆, [κ+ : α], [κ− : α]; I

(R:ROPENU)
Γ ; Θ ` C{! accept a(x).P} | D{request a(y).Q} .∆; I, a : αun, a : αlin −→
Γ ; Θ ` (νκ)C{P [κ

+
/x] | ! accept a(x).P} | D{Q[κ

−
/y]} .∆, [κ+ : α], [κ− : α]; I, a : αun

(R:I/OU)
Γ ; Θ ` C{κ p〈ẽ〉.P} | D{κ p(x̃).Q} .∆, κp :!(τ̃).α, κp :?(τ̃).α; I −→

Γ ; Θ ` C{P} | D{Q[c̃/x̃]} .∆, κp : α, κp : α; I

(R:PASSU)
Γ ; Θ ` C{κ p〈〈κ′ q〉〉.P} | D{κ p((x)).Q} .∆, κp :!(α).β, κ′q : α, κp :?(α).β; I −→

Γ ; Θ ` C{P} | D{Q[κ
′ q
/x]} .∆, κp : β, κp : β, κ′q : α; I

(R:SELU)
Γ ; Θ ` C{κ p . {n1:P1 [] · · · []nm:Pm}} | D{κ p / nj ;Q}.
∆, κp : &{n1:α1, . . . , nk:αm}, κp : ⊕{n1 : α1, . . . , nm : αm}; I −→

Γ ; Θ ` C{Pj} | D{Q} .∆, κp : αj , κ
p : αj ; I

(R:CLOSEU)
Γ ; Θ ` C{close (κ p).P} | D{close (κ p).Q} .∆, κp : ε, κp : ε; I −→

Γ ; Θ ` C{P} | D{Q} .∆; I

Table C.11: Typed reduction semantics. (II)

49

	Introduction
	A Process Language with Runtime Adaptation
	Syntax
	Semantics
	Examples of Runtime Adaptation

	The Type System
	Type Syntax
	Environments, Judgments and Typing Rules

	Session Safety and Consistency by Typing
	Session Safety
	Session Consistency

	Example: An Adaptable Client/Service Scenario
	A Basic Service Reconfiguration: Relocation and Upgrade
	Upgrading Behavior and Distributed Structure

	Extensions and Enhancements
	Runtime Adaptation of Processes with Active Sessions
	Typing Preserving Updates
	Typing Runtime Upgrades

	Adding Recursive Types and Subtyping
	Extended Process and Type Syntax
	Coinductive Subtyping and Duality
	Refining Interfaces via Subtyping

	Related Work
	Concluding Remarks
	Auxiliary Definitions
	Cardinality of Typings

	Proofs from §4
	Proof of Theorem 15
	Proof of Theorem 21

	Additional Material for §6

