Réseaux génétiques de Thomas multivalués

et logique temporelle Gilles Bernot

University of Nice SOPHIA ANTIPOLIS, I3S laboratory, France

Acknowledgments:

Observability Group of the Epigenomics Project

Menu

- 1. Modelling biological regulatory networks
- 2. Discrete framework for biological regulatory networks
- 3. Temporal logic and Model Checking for biology
- 4. Computer aided elaboration of formal models
- 5. Pedagogical example: Pseudomonas aeruginosa
- 6. Some current research topics

Mathematical Models and Simulation

- 1. Rigorously encode sensible knowledge into ODEs for instance
- 2. A few parameters are approximatively known
 - Some parameters are limited to some intervals
 - Many parameters are *a priori* unknown
- 3. Perform lot of simulations, compare results with known behaviours, and propose some credible values of the unknown parameters which produce acceptable behaviours
- 4. Perform additional simulations reflecting novel situations
- 5. If they predict interesting behaviours, propose new biological experiments
- 6. Simplify the model and try to go further

Static Graph v.s. Dynamic Behaviour

Difficulty to predict the result of combined regulations

Difficulty to measure the strength of a given regulation

Example of "competitor" circuits

Multistationarity v.s. Homeostasy René Thomas, Snoussi, ..., Soulé, Richard

Functional circuits "pilot" the behaviour

Mathematical Models and Validation

"Brute force" simulations are not the only way to use a computer. We can offer computer aided environments which help:

- to avoid models that can be "tuned" *ad libitum*
- to validate models with a reasonable number of experiments
- to define only models that could be experimentally refuted
- to prove refutability w.r.t. experimental capabilities

Observability issues:

Observability Group, Epigenomics Project.

Formal Logic: syntax/semantics/deduction

Menu

- 1. Modelling biological regulatory networks
- 2. Discrete framework for biological regulatory networks
- 3. Temporal logic and Model Checking for biology
- 4. Computer aided elaboration of formal models
- 5. Pedagogical example: Pseudomonas aeruginosa
- 6. Some current research topics

Multivalued Regulatory Graphs

Regulatory Networks (R. Thomas)

Focal Point
$(K_{x,\overline{y}},K_y)$
(K_x, K_y)
$(K_{x,x\overline{y}},K_y)$
$(K_{x,x},K_y)$
$(K_{x,x\overline{y}}, K_{y,x})$
$(K_{x,x}, K_{y,x})$

State Graphs

(x,y)	Focal Point
(0,0)	$(K_{x,\overline{y}},K_{y}){=}(2{,}1)$
(0,1)	$(K_x,K_y){=}(0{,}1)$
(1,0)	$(K_{x,x\overline{y}}, K_y) = (2,1)$
(1,1)	$(K_{x,x}, K_y) = (2,1)$
(2,0)	$(K_{x,x\overline{y}}, K_{y,x}) = (2,1)$
(2,1)	$(K_{x,x}, K_{y,x}) = (2,1)$

"desynchronization" \longrightarrow by units of Manhattan distance

Menu

- 1. Modelling biological regulatory networks
- 2. Discrete framework for biological regulatory networks
- 3. Temporal logic and Model Checking for biology
- 4. Computer Aided elaboration Of Formal models
- 5. Pedagogical example: Pseudomonas aeruginosa
- 6. Some current research topics

Time has a tree structure

As many possible state graphs as possible parameter sets... (huge number)

From an initial state:

CTL = **Computation Tree Logic**

 $Atoms = comparaisons : (x=2) (y>0) \dots$

Logical connectives: $(\varphi_1 \land \varphi_2) \quad (\varphi_1 \implies \varphi_2) \quad \cdots$

Temporal modalities: made of 2 characters

first character	second character	
A = for A ll path choices	$X = ne\mathbf{X}t$ state	
	F = for some F uture state	
E = there E xist a choice	G = for all future states (G lobally)	
	$U = \mathbf{U}$ ntil	

AX(y = 1): the concentration level of y belongs to the interval 1 in all states directly following the considered initial state.

EG(x = 0): there exists at least one path from the considered initial state where x always belongs to its lower interval.

Temporal Connectives of CTL

neXt state:

 $EX\varphi$: φ can be satisfied in a next state

 $AX\varphi$: φ is always satisfied in the next states

eventually in the Future:

 $EF\varphi$: φ can be satisfied in the future

 $AF\varphi$: φ will be satisfied at some state in the future Globally:

 $EG\varphi$: φ can be an invariant in the future

 $AG\varphi$: φ is necessarily an invariant in the future

Until:

 $E[\psi U\varphi]$: there exist a path where ψ is satisfied until a state where φ is satisfied

 $A[\psi U \varphi]$: ψ is always satisfied until some state where φ is satisfied

Semantics of Temporal Connectives

CTL to encode Biological Properties

Model Checking

Efficiently computes all the states of a state graph which satisfy a given formula: $\{ \eta \mid M \models_{\eta} \varphi \}.$

Efficiently select the models which globally satisfy a given formula.

Model Checking for CTL

Computes all the states of a theoretical model which satisfy a given formula: $\{ \eta \mid M \models_{\eta} \varphi \}.$

Idea 1: work on the state graph instead of the path trees.

Idea 2: check first the atoms of φ and then check the connectives of φ with a bottom-up computation strategy.

Idea 3: (computational optimization) group some cases together using BDDs (Binary Decision Diagrams).

Example: $(x=0) \implies AG(\neg(x=2))$

Obsession: travel the state graph as less as possible

$(x=0) \implies AG(\neg(x=2))$

... one should **travel** <u>all</u> the paths from any green box and check if successive boxes are green: *too many boxes to visit*.

Trick: $AG(\neg(x=2))$ is equivalent to $\neg EF(x=2)$ start from the red boxes and follow the transitions backward.

Theoretical Models \leftrightarrow **Experiments**

CTL formulae are satisfied (or refuted) w.r.t. a set of paths from a given initial state

- They can be tested against the possible paths of the theoretical models $(M \models_{Model \ Checking} \varphi)$
- They can be tested against the biological experiments $(Biological_Object \models_{Experiment} \varphi)$

CTL formulae link theoretical models and biological objects together

Menu

- 1. Modelling biological regulatory networks
- 2. Discrete framework for biological regulatory networks
- 3. Temporal logic and Model Checking for biology
- 4. Computer aided elaboration of formal models
- 5. Pedagogical example: Pseudomonas aeruginosa
- 6. Some current research topics

Computer Aided Elaboration of Models

From biological knowledge and/or biological hypotheses, it comes:

• properties:

"Without stimulus, if gene x has its basal expression level, then it remains at this level."

• model schemas:

Formal logic and formal models allow us to:

- verify hypotheses and check consistency
- elaborate more precise models incrementally
- suggest new biological experiments to efficiently reduce the number of potential models

The Two Questions

 $\Phi = \{ \varphi_1, \varphi_2, \cdots, \varphi_n \}$ and $\mathcal{M} =$

1. Is it possible that Φ and \mathcal{M} ?

Consistency of knowledge and hypotheses. Means to select models belonging to the schemas that satisfy Φ . $(\exists ? M \in \mathcal{M} \mid M \models \varphi)$

- 2. If so, is it true *in vivo* that Φ and \mathcal{M} ? Compatibility of one of the selected models with the biological object. Require to propose experiments to **validate** or **refute** the selected model(s).
- \rightarrow Computer aided *proofs* and *validations*

Question 1 =Consistency

- 1. Draw all the sensible regulatory graphs with all the sensible threshold allocations. It defines \mathcal{M} .
- 2. Express in CTL the known behavioural properties as well as the considered biological hypotheses. It defines Φ .
- 3. Automatically generate all the possible regulatory networks derived from \mathcal{M} according to all possible parameters K_{\dots} . Our software plateform SMBioNet handles this automatically.
- 4. Check each of these models against Φ . SMBioNet uses model checking to perform this step.
- 5. If no model survive to the previous step, then reconsider the hypotheses and perhaps extend model schemas...
- 6. If at least one model survives, then the biological hypotheses are consistent. Possible parameters K_{\dots} have been indirectly established. Now Question 2 has to be addressed.

Generation of biological experiments (1)

Set of all the formulae:

 $\varphi = \text{hypothesis}$

Generation of biological experiments (2)

Set of all the formulae: $\varphi = \text{hypothesis}$ Obs = possible experiments

Generation of biological experiments (3)

Set of all the formulae:

 $arphi = ext{hypothesis}$ $Obs = ext{possible experiments}$ $Th(arphi) = arphi ext{ inferences}$

Generation of biological experiments (4)

Set of all the formulae:

 $arphi = ext{hypothesis}$ $Obs = ext{possible experiments}$ $Th(arphi) = arphi ext{ inferences}$ $\mathbf{S} = ext{sensible experiments}$

Generation of biological experiments (5)

Set of all the formulae:

 $arphi = {f hypothesis}$ $Obs = {f possible experiments}$ $Th(arphi) = arphi {f inferences}$ ${f S} = {f sensible experiments}$

Refutability:

 $S \Longrightarrow \varphi$?

Generation of biological experiments

Set of all the formulae:

 $arphi = ext{hypothesis}$ $Obs = ext{possible experiments}$ $Th(arphi) = arphi ext{ inferences}$ $\mathbf{S} = ext{sensible experiments}$

Refutability:

 $\mathbf{S} \Longrightarrow \varphi$?

Best refutations: Choice of experiments in S ? ... optimisations

Question 2 = Validation

- Among all possible formulae, some are "observable" i.e., they express a possible result of a possible biological experiment. Let Obs be the set of all observable formulae.
- 2. Let Λ be the set of theorems of Φ and \mathcal{M} . $\Lambda \cap Obs$ is the set of experiments able to validate the survivors of Question 1. Unfortunately it is infinite in general.
- 3. Testing frameworks from computer science aim at selecting a finite subsets of these observable formulae, which maximize the chance to refute the survivors.
- 4. These subsets are often too big, nevertheless these testing frameworks can be suitably applied to regulatory networks.It has been the case of the mucus production of *P.aeruginosa*.

Menu

- 1. Modelling biological regulatory networks
- 2. Discrete framework for biological regulatory networks
- 3. Temporal logic and Model Checking for biology
- 4. Computer aided elaboration of formal models
- 5. Pedagogical example: Pseudomonas aeruginosa
- 6. Some current research topics

Mutation, Epigenesis, Adaptation

Terminology about phenotype modification:

genetic modification: inheritable and not reversible (mutation)
epigenetic modification: inheritable and reversible
adaptation: not inheritable and reversible

The biological question (Janine Guespin): is mucus production in *Pseudomonas aeruginosa* due to an epigenetic switch ? \implies New possible therapy [\rightarrow cystic fibrosis]

Mucus Production in *P. aeruginosa*

Parameters & thresholds: unknown

Thresholds for AlgU in *P.aeruginosa* are unknown:

and parameters are unknown:

 $3^4 \times 2^2 \qquad \qquad 3^4 \times 2^2 \qquad \qquad 2^4 \times 2^2$

712 possible models

One CTL formula for each stable state:

$$(AlgU = 2) \Longrightarrow AXAF(AlgU = 2)$$

 $(AlgU = 0) \Longrightarrow AG(\neg(AlgU = 2))$

Question 1, consistency: proved by *Model Checking* \rightarrow 10 models among the 712 models are extracted by SMBioNet

Validation of the epigenetic hypothesis

Question 2 = to validate bistationnarity in vivo

Non mucoid state: $(AlgU = 0) \Longrightarrow AG(\neg(AlgU = 2))$ P. aeruginosa, with a basal level for AlgU does not produce mucus spontaneously: actually validated

Mucoid state:
$$(AlgU = 2) \Longrightarrow AXAF(AlgU = 2)$$

Experimental limitation:

AlgU can be saturated but it cannot be measured. Experiment:

to pulse AlgU and then to test if mucus production remains $(\iff \text{to verify a hysteresis})$

This experiment can be generated automatically

To test $(AlgU=2) \Longrightarrow AXAF(AlgU=2)$

AlgU = 2 cannot be directly verified but mucus = 1 can be verified.

Lemma: $AXAF(AlgU = 2) \iff AXAF(mucus = 1)$ (... formal proof by computer ...)

 \rightarrow To test: (AlgU = 2) $\implies AXAF(mucus = 1)$

$(AlgU = 2) \Longrightarrow AXAF(mucus = 1)$

Karl Popper:

$A \Longrightarrow B$	true	false
true	true	false
false	true	true

to validate = to try to refute $thus \ A=false \ is \ useless$ experiments must begin with a pulse

The pulse forces the bacteria to reach the initial state AlgU = 2. If the state were not directly controlable we had to prove lemmas:

(something reachable)
$$\implies$$
 (AlgU = 2)

General form of a test:

 $(something \underline{reachable}) \Longrightarrow (something \underline{observable})$

Menu

- 1. Modelling biological regulatory networks
- 2. Discrete framework for biological regulatory networks
- 3. Temporal logic and Model Checking for biology
- 4. Computer aided elaboration of formal models
- 5. Pedagogical example: Pseudomonas aeruginosa
- 6. Some current research topics

Ambiguous discrete models

1 or 2 attraction basins ?

It depends on the relative delays for x and y to cross each of the four domains.

Research topics (1)

Explicit singular states:

e.g. to distinguish stable states from limit cycles

Hybrid approaches:

simplified trajectories which locally approximate differential equations

(e.g. linear)

Research topics (3)

Time delays:

(size of rectangular areas = delays) Requires constraint solving

Stochastic approaches:

More or less dual to delays

Research topics (5)

Networks with multiplexes:

Explicit encoding of knowledge on cooperations

Research topics (6)

From static shapes to properties on dynamics:

- positive/negative cycles and epigenesis/homeostasis
- maximum number of attraction basins
- . . .

Mathematical proofs similar to the ones for cellular automaton

Research topics (7)

Embeddings of Regulatory Networks:

Necessary and sufficient condition on the *local* dynamics of the "input frontier"

Offers a methodology to identify interesting sub-networks

Concluding Comments

Models to encode already elucidated biological models v.s.modelling methods to help discovery in biology...

Behavioural properties (Φ) are as much important as models (\mathcal{M})

Symbolic parameter identification is essential

Modelling is significant only with respect to the considered experimental *reachability* and *observability* (Obs)

Formal proofs can suggest wet experiments