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Mathematical Models and Simulation

1. Rigorously encode sensible knowledge into ODEs for instance

2. • A few parameters are approximatively known

• Some parameters are limited to some intervals

• Many parameters are a priori unknown

3. Perform lot of simulations, compare results with known

behaviours, and propose some credible values of the unknown

parameters which produce acceptable behaviours

4. Perform additional simulations reflecting novel situations

5. If they predict interesting behaviours, propose new biological

experiments

6. Simplify the model and try to go further
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Static Graph v.s. Dynamic Behaviour

Difficulty to predict the result of combined regulations

Difficulty to measure the strength of a given regulation

Example of “competitor” circuits

Positive v.s. Negative circuits

—

+

+

AlgU antiAlgU

mucus

+

Even v.s. Odd number of “—” signs

Multistationarity v.s. Homeostasy

René Thomas, Snoussi, . . . , Soulé, Richard

Functional circuits “pilot” the behaviour
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Mathematical Models and Validation

“Brute force” simulations are not the only way to use a computer.

We can offer computer aided environments which help:

• to avoid models that can be “tuned” ad libitum

• to validate models with a reasonable number of experiments

• to define only models that could be experimentally refuted

• to prove refutability w.r.t. experimental capabilities

Observability issues:

Observability Group, Epigenomics Project.
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Formal Logic: syntax/semantics/deduction

cyan=Computer

green=Mathematics

correctness

Rulesproof

Semantics
Models

Syntax

Deduction
proved=satisfied

completeness

Formulae

red=Computer Science

M |= ϕ

Φ ⊢ ϕ

satisfaction
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Multivalued Regulatory Graphs
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Regulatory Networks (R. Thomas)
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No help : Kx

x helps : Kx,x Ky,x

Absent y helps : Kx,y

Both : Kx,xy

+

(x,y) Focal Point

(0,0) (Kx,y,Ky)

(0,1) (Kx, Ky)
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State Graphs

(x,y) Focal Point

(0,0) (Kx,y , Ky)=(2,1)

(0,1) (Kx, Ky)=(0,1)

(1,0) (Kx,xy , Ky)=(2,1)
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(2,1) (Kx,x, Ky,x)=(2,1)
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Time has a tree structure
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As many possible state graphs

as possible parameter sets. . .

(huge number)

From an initial state:

(2,1)
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(0,1)

(0,0)
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CTL = Computation Tree Logic

Atoms = comparaisons : (x=2) (y>0) . . .

Logical connectives: (ϕ1 ∧ ϕ2) (ϕ1 =⇒ ϕ2) · · ·

Temporal modalities: made of 2 characters

first character second character

A = for All path choices X = neXt state

F = for some Future state

E = there Exist a choice G = for all future states (Globally)

U = Until

AX(y = 1) : the concentration level of y belongs to the interval 1 in all

states directly following the considered initial state.

EG(x = 0) : there exists at least one path from the considered initial

state where x always belongs to its lower interval.
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Temporal Connectives of CTL

neXt state:

EXϕ : ϕ can be satisfied in a next state

AXϕ : ϕ is always satisfied in the next states

eventually in the Future:

EFϕ : ϕ can be satisfied in the future

AFϕ : ϕ will be satisfied at some state in the future

Globally:

EGϕ : ϕ can be an invariant in the future

AGϕ : ϕ is necessarilly an invariant in the future

Until:

E[ψUϕ] : there exist a path where ψ is satisfied until a state

where ϕ is satisfied

A[ψUϕ] : ψ is always satisfied until some state where ϕ is

satisfied
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Semantics of Temporal Connectives
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CTL to encode Biological Properties

Common properties:

“functionality” of a sub-graph

Special role of “feedback loops”
—

y
+

+ x
1 2

1

– positive: multistationnarity (even number of — )

– negative: homeostasy (odd number of — )
y

x

y

x

(0,1) (2,1)(1,1)

(2,0)(0,0) (1,0) (0,0) (1,0) (2,0)

(2,1)(1,1)(0,1)

Characteristic properties:







(x = 2) =⇒ AG(¬(x = 0))

(x = 0) =⇒ AG(¬(x = 2))

They express “the positive feedback loop is functional”

(satisfaction of these formulae relies on the parameters K...)
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Model Checking

Efficiently computes all the states of a state graph which satisfy a

given formula: { η | M |=η ϕ }.

Efficiently select the models which globally satisfy a given formula.
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Model Checking for CTL

Computes all the states of a theoretical model which satisfy a given

formula: { η | M |=η ϕ }.

Idea 1: work on the state graph instead of the path trees.

Idea 2: check first the atoms of ϕ and then check the connectives of

ϕ with a bottom-up computation strategy.

Idea 3: (computational optimization) group some cases together

using BDDs (Binary Decision Diagrams).

Example : (x = 0) =⇒ AG(¬(x = 2))

Obsession: travel the state graph as less as possible
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(x = 0) =⇒ AG(¬(x = 2))

x=0 x=2
z
¬(x = 2)

z

x

y

x

y

and AG(¬(x = 2)) ?

. . . one should travel all the paths from any green box and check

if successive boxes are green: too many boxes to visit.

Trick: AG(¬(x = 2)) is equivalent to ¬EF (x = 2)

start from the red boxes and follow the transitions backward.
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Theoretical Models ↔ Experiments

CTL formulae are satisfied (or refuted) w.r.t. a set of paths from a

given initial state

• They can be tested against the possible paths of the theoretical

models (M |=Model Checking ϕ)

• They can be tested against the biological experiments

(Biological_Object |=Experiment ϕ)

CTL formulae link theoretical models and biological objects together
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Computer Aided Elaboration of Models

From biological knowledge and/or biological hypotheses, it comes:

• properties:

“Without stimulus, if gene x has its basal expression level,

then it remains at this level.”

• model schemas:

—

y
+

+ x
1 2

1
—

x y
+

+

2
1

1 . . .

Formal logic and formal models allow us to:

• verify hypotheses and check consistency

• elaborate more precise models incrementally

• suggest new biological experiments to efficiently reduce the

number of potential models
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The Two Questions

Φ = {ϕ1, ϕ2, · · · , ϕn} and M =
—

y
+

+ x
1 2

1 . . .

1. Is it possible that Φ and M ?

Consistency of knowledge and hypotheses. Means to select

models belonging to the schemas that satisfy Φ.

(∃? M ∈ M | M |= ϕ)

2. If so, is it true in vivo that Φ and M ?

Compatibility of one of the selected models with the biological

object. Require to propose experiments to validate or refute

the selected model(s).

→ Computer aided proofs and validations

23



Question 1 = Consistency

1. Draw all the sensible regulatory graphs with all the sensible

threshold allocations. It defines M.

2. Express in CTL the known behavioural properties as well as

the considered biological hypotheses. It defines Φ.

3. Automatically generate all the possible regulatory networks

derived from M according to all possible parameters K....

Our software plateform SMBioNet handles this automatically.

4. Check each of these models against Φ.

SMBioNet uses model checking to perform this step.

5. If no model survive to the previous step, then reconsider the

hypotheses and perhaps extend model schemas. . .

6. If at least one model survives, then the biological hypotheses

are consistent. Possible parameters K... have been indirectly

established. Now Question 2 has to be addressed.
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Generation of biological experiments (1)

Set of all the formulae:

ϕ = hypothesis

ϕ
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Generation of biological experiments (2)

Set of all the formulae:

ϕ = hypothesis

Obs = possible experiments

Obs

ϕ

26



Generation of biological experiments (3)

Set of all the formulae:

ϕ = hypothesis

Obs = possible experiments

Th(ϕ) = ϕ inferences

Obs

ϕ
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Generation of biological experiments (4)

Set of all the formulae:

ϕ = hypothesis

Obs = possible experiments

Th(ϕ) = ϕ inferences

S = sensible experiments

Obs

ϕ

S
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Generation of biological experiments (5)

Set of all the formulae:

ϕ = hypothesis

Obs = possible experiments

Th(ϕ) = ϕ inferences

S = sensible experiments

Refutability:

S =⇒ ϕ ?

Obs

ϕ

S
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Generation of biological experiments

Set of all the formulae:

ϕ = hypothesis

Obs = possible experiments

Th(ϕ) = ϕ inferences

S = sensible experiments

Refutability:

S =⇒ ϕ ?

Best refutations:

Choice of experiments in S ?

. . . optimisations

Obs

ϕ

S
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Question 2 = Validation

1. Among all possible formulae, some are “observable” i.e., they

express a possible result of a possible biological experiment.

Let Obs be the set of all observable formulae.

2. Let Λ be the set of theorems of Φ and M.

Λ ∩Obs is the set of experiments able to validate the survivors

of Question 1. Unfortunately it is infinite in general.

3. Testing frameworks from computer science aim at selecting a

finite subsets of these observable formulae, which maximize the

chance to refute the survivors.

4. These subsets are often too big, nevertheless these testing

frameworks can be suitably applied to regulatory networks.

It has been the case of the mucus production of P.aeruginosa.
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Mutation, Epigenesis, Adaptation

Terminology about phenotype modification:

genetic modification: inheritable and not reversible (mutation)

epigenetic modification: inheritable and reversible

adaptation: not inheritable and reversible

The biological question (Janine Guespin):

is mucus production in Pseudomonas aeruginosa due to an

epigenetic switch ? =⇒ New possible therapy

[→ cystic fibrosis]
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Mucus Production in P. aeruginosa

Capture:

operon

self−inducer

abstract
behaviour

—

+

AlgU antiAlgU

mucus

+

+

membrane

AlgU

AntiAlgU

AntiAlgUAlgU

AlgU
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Parameters & thresholds: unknown

Thresholds for AlgU in P.aeruginosa are unknown:

—

+

+
—

+

+
—

+

+ antiAlgUAlgUAlgUAlgU antiAlgU antiAlgU

1 1 1

1 1 112 2

and parameters are unknown:

34 × 22 34 × 22 24 × 22

712 possible models

One CTL formula for each stable state:

(AlgU = 2) =⇒ AXAF (AlgU = 2)

(AlgU = 0) =⇒ AG(¬(AlgU = 2))

Question 1, consistency: proved by Model Checking

→ 10 models among the 712 models are extracted by SMBioNet
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Validation of the epigenetic hypothesis

Question 2 = to validate bistationnarity in vivo

Non mucoid state: (AlgU = 0) =⇒ AG(¬(AlgU = 2))

P. aeruginosa, with a basal level for AlgU does not produce mucus

spontaneously : actually validated

Mucoid state: (AlgU = 2) =⇒ AXAF (AlgU = 2)

Experimental limitation:

AlgU can be saturated but it cannot be measured.

Experiment:

to pulse AlgU and then to test if mucus production remains

(⇐⇒ to verify a hysteresis)

This experiment can be generated automatically
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To test (AlgU=2)=⇒AXAF (AlgU=2)

AlgU = 2 cannot be directly verified but mucus = 1 can be verified.

—

+

+

AlgU antiAlgU

mucus

+

Lemma: AXAF (AlgU = 2) ⇐⇒ AXAF (mucus = 1)

(. . . formal proof by computer . . . )

→ To test: (AlgU = 2) =⇒ AXAF (mucus = 1)
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(AlgU = 2) =⇒ AXAF (mucus = 1)

A =⇒ B true false

true true false

false true true

Karl Popper:

to validate = to try to refute

thus A=false is useless

experiments must begin with a pulse

The pulse forces the bacteria to reach the initial state AlgU = 2.

If the state were not directly controlable we had to prove lemmas:

(something reachable) =⇒ (AlgU = 2)

General form of a test:

(something reachable) =⇒ (something observable)
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Ambiguous discrete models
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1 or 2 attraction basins ?

It depends on the relative delays for x and y to cross each of the

four domains.
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Research topics (1)

Explicit singular states:

y

0

1

0 1 x

( 1 , 0 )( 0 , 0 )

( 0 , 1 ) ( 1 , 1 )

y

x

|1,1|

|1,1|

|0,0|

|0,0|

( |0,0| , |0,0| )

( |0,0| , |0,1| )|0,1|

|0,1|

( |0,0| , |1,1| )

( |1,1| , |0,0| )

( |1,1| , |1,1| )

( |0,1| , |0,1| ) ( |1,1| , |0,1| )

( |0,1| , |0,0| )

( |0,1| , |1,1| )

e.g. to distinguish stable states from limit cycles
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Research topics (2)

Hybrid approaches:

simplified trajectories which locally approximate differential

equations
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( 1 , 0 )( 0 , 0 )

( 0 , 1 ) ( 1 , 1 )

y

0
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(e.g. linear)
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Research topics (3)

Time delays:

y

0

1

0 1 x
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0 x
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0

(size of rectangular areas = delays)

Requires constraint solving
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Research topics (4)

Stochastic approaches:
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0 1 x

p1

p2

More or less dual to delays
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Research topics (5)

Networks with multiplexes:
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z

y (y ∧ z) ∧ ¬x

–

+
+

Explicit encoding of knowledge on cooperations
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Research topics (6)

From static shapes to properties on dynamics:

• positive/negative cycles and epigenesis/homeostasis

• maximum number of attraction basins

• . . .

Mathematical proofs similar to the ones for cellular automaton
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Research topics (7)

Embeddings of Regulatory Networks:

x

y

z

t

u

v
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y

z

t

u

v

Preserved behaviour ?Studied behaviour

Necessary and sufficient condition on the local dynamics of the

“input frontier”

Offers a methodology to identify interesting sub-networks

47



Concluding Comments

Models to encode already elucidated biological models v.s.

modelling methods to help discovery in biology. . .

Behavioural properties (Φ) are as much important as models (M)

Symbolic parameter identification is essential

Modelling is significant only with respect to the considered

experimental reachability and observability (Obs)

Formal proofs can suggest wet experiments
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