

seit 1558 **Réseaux métaboliques et modes élémentaires**

Stefan Schuster **Friedrich Schiller University Jena Dept. of Bioinformatics**

Introduction

- **Analysis of metabolic systems requires theoretical methods due to high complexity**
- **Major challenge: clarifying relationship between structure and function in complex intracellular networks**
- **Study of robustness to enzyme deficiencies and knock-out mutations is of high medical and biotechnological relevance**

Theoretical Methods

- **Dynamic Simulation**
- **Stability and bifurcation analyses**
- **Metabolic Control Analysis (MCA)**
- **Metabolic Pathway Analysis**
- **Metabolic Flux Analysis (MFA)**
- **Optimization**
- **and others**

Theoretical Methods

- **Dynamic Simulation**
- **Stability and bifurcation analyses**
- **Metabolic Control Analysis (MCA)**
- **Metabolic Pathway Analysis**
- **Metabolic Flux Analysis (MFA)**
- **Optimization**
- **and others**

Metabolic Pathway Analysis (or Metabolic Network Analysis)

- **Decomposition of the network into the smallest functional entities (metabolic pathways)**
- **Does not require knowledge of kinetic parameters!!**
- **Uses stoichiometric coefficients and reversibility/irreversibility of reactions**

History of pathway analysis

- **-** "Direct mechanisms" in chemistry (Milner 1964, **Happel & Sellers 1982)**
- **EXPLOMENTE:** Clarke 1980 ,, extreme currents"
- **Seressiotis & Bailey 1986, biochemical pathways"**
- **Leiser & Blum 1987 "fundamental modes"**
- **Mavrovouniotis et al. 1990 "biochemical pathways"**
- **Fell 1990 ,, linearly independent basis vectors**"
- **Schuster & Hilgetag 1994 , elementary flux modes**"
- **Liao et al. 1996 "basic reaction modes"**
- **F** Schilling, Letscher and Palsson 2000 "extreme **pathways"**

Mathematical background

Stoichiometry matrix

Example:

Steady-state condition

Balance equations for metabolites:

$$
\frac{\mathrm{d}S_i}{\mathrm{d}t} = \sum_j n_{ij} v_j
$$

$$
\mathrm{dS/dt} = \mathbf{NV(S)}
$$

At any stationary state, this simplifies to:

$$
\boldsymbol{NV}(S)=\boldsymbol{0}
$$

Kernel of N

Steady-state condition NV(S) = 0

If the kinetic parameters were known, this could be solved for **S**.

If not, one can try to solve it for **V**. The equation system is

linear in **V**. However, usually there is a manifold of solutions.

Mathematically: kernel (null-space) of **N**. Spanned by basis

vectors. These are not unique.

Use of null-space

The basis vectors can be gathered in a matrix, **K**. They can be interpreted as biochemical routes across the system.

If some row in \bf{K} is a null row, the corresponding reaction is at thermodynamic equilibrium in any steady state of the system.

Use of null-space (2)

It allows one to determine, enzyme subsets $"$ = sets of enzymes that always operate together at steady, in fixed flux proportions.

The rows in **K** corresponding to the reactions of an enzyme subset are proportional to each other. 1 1

Pfeiffer et al., *Bioinformatics* 15 (1999) 251-257.

Extensions of the concept of "enzyme subsets"

Representation of rows of null-space matrix as vectors in space:

If $cos(\phi) = 1$, then the enzymes belong to the same subset If $cos(\phi) = 0$, then reactions uncoupled Otherwise, enzymes partially coupled.

M. Poolman et al., *J. theor. Biol*. 249 (2007) 691–705

Extensions of the concept of "enzyme subsets" (2)

Inclusion of information about irreversibility

If all reactions are irreversible, operation of enzyme 2 implies operation of enzyme 1.

(1) **Directional coupling** $(v_1 \rightarrow v_2)$, if a non-zero flux for v_1 implies a non-zero flux for v_2 but not necessarily the reverse. (2) **Partial coupling** ($v_1 \leftrightarrow v_2$), if a non-zero flux for v_1 implies a non-zero, though variable, flux for v_2 and vice versa. (3) **Full coupling** $(v_1 \Leftrightarrow v_2)$, if a non-zero flux for v_1 implies not only a non-zero but also a fixed flux for v_2 and vice versa. – Enzyme subset.

Flux coupling analysis

A.P. Burgard et al. *Genome Research* 14 (2004) 301-312.

Drawbacks of null-space

- The basis vectors are not given uniquely.
- **They are not necessarily the simplest possible.**
- They do not necessarily comply with the directionality of irreversible reactions.
- They do not always properly describe knock-outs.

Drawbacks of null-space

They do not always properly describe knock-outs.

After knock-out of enzyme 1, the route {-2, 3} remains!

elementary flux modes

S. Schuster und C. Hilgetag: *J. Biol. Syst.* 2 (1994) 165-182 " et al., *Nature Biotechnol*. 18 (2000) 326-332.

An elementary mode is a minimal set of enzymes that can operate at steady state with all irreversible reactions used in the appropriate direction

The enzymes are weighted by the relative flux they carry.

The elementary modes are unique up to scaling.

All flux distributions in the living cell are non-negative linear combinations of elementary modes

Non-Decomposability property:

For any elementary mode, there is no other flux vector that uses only a proper subset of the enzymes used by the elementary mode.

For example, {HK, PGI, PFK, FBPase} is not elementary if {HK, PGI, PFK} is an admissible flux distribution.

*Simple example***:**

Elementary modes:
$$
\begin{pmatrix} 1 & 1 & 0 \ 1 & 0 & 1 \ 0 & 1 & -1 \end{pmatrix}
$$

They describe knock-outs properly.

Mathematical background (cont.)

Steady-state condition NV = 0 Sign restriction for irreversible fluxes: $V^{\text{irr}} \geq 0$

This represents a linear equation/inequality system.

Solution is a convex region.

All edges correspond to elementary modes.

In addition, there may be elementary modes in the interior.

Geometrical interpretation

Elementary modes correspond to generating vectors (edges) of a convex polyhedral cone (= pyramid) in flux space (if all reactions are irreversible)

If the system involves reversible reactions, there may be elementary modes in the interior of the cone.

Example:

Flux cone:

There are elementary modes in the interior of the cone.

Mathematical properties of elementary modes

Any vector representing an elementary mode involves at least $dim(null-space of **N**)$ – 1 zero components.

Mathematical properties of elementary modes (2)

A flux mode **V** is elementary if and only if the null-space of the submatrix of **N** that only involves the reactions of **V** is of dimension one.

Klamt, Gagneur und von Kamp, *IEE Proc. Syst. Biol*. 2005, after results in convex analysis by Fukuda et al.

Biochemical examples

Part of monosaccharide metabolism

Red: external metabolites

1 st elementary mode: glycolysis

2nd elementary mode: fructose-bisphosphate cycle

4 out of 7 elementary modes in glycolysispentose-phosphate system

Maximization of tryptophan:glucose yield

Model of 65 reactions in the central metabolism of *E. coli*. 26 elementary modes. 2 modes with highest tryptophan: glucose yield: 0.451.

S. Schuster, T. Dandekar, D.A. Fell, *Trends Biotechnol*. 17 (1999) 53

Can fatty acids be transformed into sugar?

- Excess sugar in human diet is converted into storage lipids, mainly triglycerides
- Is reverse transformation feasible? Triglyceride \rightarrow sugar?

Triglycerides

COOH COOH COOH

- \blacksquare 1 glycerol + 3 even-chain fatty acids (oddchain fatty acids only in some plants and marine organisms)
- Glycerol \rightarrow glucose OK (gluconeogenesis)
- **(Even-chain) fatty acids** \rightarrow **acetyl CoA (** β oxidation)
- Acetyl CoA \rightarrow glucose?

Graph theory vs. experiment

- By graph theory, it may be assumed that the conversion in question would be feasible.
- Experimental observation: If fatty acids are radioactively labelled, part of tracer indeed arrives at glucose.
- However, sustained formation of glucose at steady state is observed in humans only at very low rates.

Animals versus plants

- Green plants can what we can"t.
- Sugar is storage substance.
- In animals: brain cells, red blood cells and many other cells feed on glucose. Thus, starvation is a problem…
- Animals who died from starvation may still have fat reservoirs.

The glyoxylate shunt is present in green plants, yeast, many bacteria (e.g. *E. coli*) and others and – as the only clade of animals – in nematodes.

This example shows that a description by usual graphs in the sense of graph theory is insufficient…

S. Schuster, D.A. Fell: Modelling and simulating metabolic networks. In: *Bioinformatics: From Genomes to Therapies* (T. Lengauer, ed.) Wiley-VCH, Weinheim 2007, pp. 755-805.

L. Figuereido, S. Schuster, C. Kaleta, D.A. Fell: Can sugars be produced from fatty acids? *Bioinformatics*, under revision

A successful theoretical prediction

A successful theoretical prediction

Crassulacean Acid Metabolism (CAM) (Work with David Fell, Oxford)

- Variant of photosynthesis employed by a range of plants (e.g. cacti) as an adaptation to arid conditions
- To reduce water loss, stomata are closed during daytime
- At nighttime, $PEP + CO₂ \rightarrow$ α xaloacetate \rightarrow malate
- At daytime, malate \rightarrow pyruvate (or PEP) + $CO₂$ \rightarrow carbohydrates

CAM metabolism during daytime

Elementary modes

Hexose synthesis via malic enzyme as occurring in Agavaceae and Dracaenaceae

Starch synthesis via malic enzyme as occurring in Cactaceae and **Crassulacea**

Dracaena **Ferocactus**

Hexose synthesis via PEPCK as occurring in *Clusia rosea* and in:

cytosol chloroplast

TP

hexose

P i

> P i

PEP

P i

 C_2 ₂

mal oxac

D)

 $^{c\mathrm{o}}$ 2

Clusia minor

Ananus comosus = pineapple

RBP

starch

 \circ \circ

P i

TP

i

P i

PEP

P i

 $pyr = \frac{1}{1}$ pyr

RBP TP CO P i TP P i PEP P i PEP P_i starch i $pyr = \frac{1}{1}$ pyr cytosol chloroplast mal oxac hexose P i \overline{c} \overline{c} \overline{c} \overline{c} \overline{c} \overline{c} CO P i **E)**

F)

Starch synthesis via PEPCK as occurring in Asclepidiaceae

Simultaneous starch and hexose synthesis via PEPCK as occurring in:

Caralluma hexagona Aloe vera

"Pure" pathways

- In a review by Christopher and Holtum (1996), only cases A), B), D), and E) were given as "pure" functionalities. F) was considered as a superposition, and C) was not mentioned.
- However, F) is an elementary mode as well, although it produces two products. It does not use the triose phosphate transporter
- **The systematic overview provided by elementary modes** enables one to look for missing examples. Case C) is indeed realized in *Clusia minor* (Borland et al, 1994).
- Interestingly, (almost) pure elementary modes are realized here. No redundancy?

S. Schuster, D.A. Fell: Modelling and simulating metabolic networks. In: *Bioinformatics: From Genomes to Therapies* (T. Lengauer, ed.) Wiley-VCH, Weinheim, Vol. 2, 755-805.

Algorithms for computing elementary modes

1. Modified Gauss-Jordan method starting with tableau (**N**^T **I**). Pairwise combination of rows so that one column of **N**^T after the other becomes null vector. S. Schuster et al., *Nature Biotechnol*. 18 (2000) 326-332. *J. Math. Biol*. 45 (2002) 153-181.

2. Column operations on the null-space matrix. Empirically faster than 1. on biochemical networks. C. Wagner, *J. Phys.Chem*. B 108 (2004) 2425–2431. R. Urbanczik, C. Wagner, Bioinformatics. 21 (2005) 1203-1210.

$$
\mathbf{T}^{\mathbb{Q}} = \begin{pmatrix} 1 & 0 & \vdots & 1 & 0 & 0 & 0 \\ -1 & 0 & \vdots & 0 & 1 & 0 & 0 \\ -1 & 1 & \vdots & 0 & 0 & 1 & 0 \\ 1 & -1 & \vdots & 0 & 0 & 0 & 1 \end{pmatrix}
$$

$$
\mathbf{TC} = \begin{pmatrix} 0 & 0 & \vdots & 1 & 1 & 0 & 0 \\ 0 & 1 & \vdots & 1 & 0 & 1 & 0 \\ 0 & -1 & \vdots & 0 & 1 & 0 & 1 \\ 0 & 0 & \vdots & 0 & 0 & 1 & 1 \end{pmatrix} \bigoplus \text{These two rows should not be combined}
$$

Final tableau:

$$
\mathbf{T}^{\mathbf{c}} = \begin{pmatrix} 0 & 0 & \vdots & 1 & 1 & 0 & 0 \\ 0 & 0 & \vdots & 0 & 0 & 1 & 1 \end{pmatrix}
$$

Algorithm is faster, if this column is processed first.

Runtime complexity

- Not yet completely clear
- **V. Acuña, ..., M.-F. Sagot, L. Stougie: Modes and Cuts in Metabolic Networks: Complexity and Algorithms,** *BioSystems***, 2009**
- **Theorem 9.** Given a matrix **N**, *counting* the number of elementary modes is $#P$ -complete.
- **Theorem 10.** In case all reactions in a metabolic network are reversible, the elementary modes can be *enumerated* in polynomial time.
- **Open question**: Can elementary modes be *enumerated* in polynomial time if some reactions are irreversible?

Software involving routines for computing elementary modes

METATOOL - Th. Pfeiffer, F. Moldenhauer,

A. von Kamp (In versions 5.x, Wagner algorithm)

GEPASI - P. Mendes

JARNAC - H. Sauro

- In-Silico-DiscoveryTM K. Mauch
- CellNetAnalyzer (in MATLAB) S. Klamt
- ScrumPy M. Poolman
- Alternative algorithm in MATLAB C. Wagner, R. Urbanczik
- PySCeS B. Olivier et al.
- YANAsquare (in JAVA) T. Dandekar
- EFMTool M. Terzer, J. Stelling

On-line computation:

pHpMetatool - H. Höpfner, M. Lange

#P (sharp P) Complexity class

- An **NP** problem is often of the form, "Are there any solutions that satisfy certain constraints?" For example:
- Are there any subsets of a list of integers that add up to zero? (subset sum problem)
- Are there any Hamiltonian cycles in a given graph with cost less than 100?
- The corresponding #**P** problems ask "how many" rather than "are there any". For example:
- How many subsets of a list of integers add up to zero?
- How many Hamiltonian cycles in a given graph have cost less than 100?

Summary

- **Elementary modes are an appropriate concept to describe biochemical pathways in wild-type and mutants.**
- **Information about network structure can be used to derive far-reaching conclusions about performance of metabolism, e.g. about viability of mutants.**
- **Elementary modes reflect specific characteristics of metabolic networks such as steady-state mass flow, thermodynamic constraints and molar yields.**

Summary (2)

- **Pathway analysis is well-suited for computing maximal and submaximal molar yields**
- **Many metabolic systems in various organisms have been analysed in this way. In some cases new pathways discovered**
- **Relevant applications: knockout studies (biotechnology) and enzyme deficiencies (medicine)**
- **Work still to be done on decomposition methods (combinatorial explosion)**

Acknowledgements

- **David Fell (Brookes U Oxford)**
- **Thomas Dandekar (U Würzburg)**
- **Steffen Klamt (MPI Magdeburg)**
- **Jörg Stelling (ETH Zürich)**
- **Thomas Pfeiffer (Harvard)**
- **late Reinhart Heinrich (HU Berlin)**
- **Ina Koch (TFH and MPI Berlin)**
- **and many others**

•**Acknowledgement to DFG, BMBF and FCT (Portugal) for financial support**