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Introduction

 Analysis of metabolic systems requires 
theoretical methods due to high complexity

 Major challenge: clarifying relationship 
between structure and function in complex 
intracellular networks

 Study of robustness to enzyme deficiencies and 
knock-out mutations is of high medical and 
biotechnological relevance



Theoretical Methods

 Dynamic Simulation

 Stability and bifurcation analyses

 Metabolic Control Analysis (MCA)

 Metabolic Pathway Analysis

 Metabolic Flux Analysis (MFA)

 Optimization

 and others
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Metabolic Pathway Analysis (or 

Metabolic Network Analysis)

 Decomposition of the network into the 

smallest functional entities (metabolic 

pathways)

 Does not require knowledge of kinetic 

parameters!!

 Uses stoichiometric coefficients and 

reversibility/irreversibility of reactions



History of pathway analysis

 „Direct mechanisms“ in chemistry (Milner 1964, 
Happel & Sellers 1982)

 Clarke 1980 „extreme currents“

 Seressiotis & Bailey 1986 „biochemical pathways“

 Leiser & Blum 1987 „fundamental modes“

 Mavrovouniotis et al. 1990 „biochemical pathways“

 Fell 1990 „linearly independent basis vectors“

 Schuster & Hilgetag 1994 „elementary flux modes“

 Liao et al. 1996 „basic reaction modes“

 Schilling, Letscher and Palsson 2000 „extreme 
pathways“



Stoichiometry matrix

Example: 

1110

0111
N

Mathematical background



Steady-state condition

Balance equations for metabolites:

dS/dt = NV(S)

At any stationary state, this simplifies to:

NV(S) = 0

j
jij
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S

d

d



Steady-state condition NV(S) = 0

If the kinetic parameters were known, this could be solved for S.

If not, one can try to solve it for V. The equation system is

linear in V. However, usually there is a manifold of solutions.

Mathematically: kernel (null-space) of N. Spanned by basis

vectors. These are not unique. 

Kernel of N



Use of null-space

The basis vectors can be gathered in a matrix, K. They can be

interpreted as biochemical routes across the system.

If some row in K is a null row, the corresponding reaction is

at thermodynamic equilibrium in any steady state of the system.

Example: 

P1 P2

S2

1S
1 2

3

0

1

1

K



Use of null-space (2)

It allows one to determine „enzyme subsets“ = sets of enzymes

that always operate together at steady, in fixed flux proportions.

The rows in K corresponding to the reactions of an enzyme subset

are proportional to each other.

Example: 

Enzyme subsets: {1,6}, {2,3}, {4,5}

P1 P21S
1

2 3

2S

4S

3S

4 5

6
11

10

10

01

01

11

K

Pfeiffer et al., Bioinformatics 15 (1999) 251-257.



Extensions of the concept 

of „enzyme subsets“

M. Poolman et al., J. theor. Biol. 249 (2007) 691–705

Representation of rows of null-space matrix as vectors in space:

If cos( ) = 1, then the enzymes belong to

the same subset

If cos( ) = 0, then reactions uncoupled

Otherwise, enzymes partially coupled.



Extensions of the concept 

of „enzyme subsets“ (2)

(1) Directional coupling (v1 v2), if a non-zero flux for v1

implies a non-zero flux for v2 but not necessarily the reverse.

(2) Partial coupling (v1 ↔ v2), if a non-zero flux for v1 implies

a non-zero, though variable, flux for v2 and vice versa.

(3) Full coupling (v1 v2), if a non-zero flux for v1 implies not

only a non-zero but also a fixed flux for v2 and vice versa. – Enzyme subset.

Flux coupling analysis

A.P. Burgard et al. Genome Research 14 (2004) 301-312.

P1 1S
1

2

S3

S2

3

Inclusion of information about irreversibility

If all reactions are irreversible,

operation of enzyme 2 implies 

operation of enzyme 1.



Drawbacks of null-space

 The basis vectors are not given uniquely.

 They are not necessarily the simplest possible.

 They do not necessarily comply with the directionality of 

irreversible reactions.

 They do not always properly describe knock-outs.

P1 P2

P3

1S
1 2

3

10

01

11

K



Drawbacks of null-space

P1 P2

P3

1S
1 2

3

They do not always properly describe knock-outs.

10

01

11

K

After knock-out of enzyme 1, the route {-2, 3} remains!



S. Schuster und C. Hilgetag: J. Biol. Syst. 2 (1994) 165-182

“  et al., Nature Biotechnol. 18 (2000) 326-332.

non-elementary flux mode

elementary flux modes



An elementary mode is a minimal set of enzymes that

can operate at steady state with all irreversible reactions 

used in the appropriate direction

The enzymes are weighted by the relative flux they carry.

The elementary modes are unique up to scaling.

All flux distributions in the living cell are non-negative 

linear combinations of elementary modes 



Non-Decomposability property: 

For any elementary mode, there is no other flux vector

that uses only a proper subset of the enzymes used

by the elementary mode.

For example, {HK, PGI, PFK, FBPase} is not elementary

if {HK, PGI, PFK} is an 

admissible flux distribution.



Simple example:

P1 P2

P3

1S
1 2

3

110

101

011
Elementary modes:

They describe knock-outs properly.



Mathematical background (cont.)

Steady-state condition NV = 0

Sign restriction for irreversible fluxes: Virr 0

This represents a linear equation/inequality system.

Solution is a convex region. 

All edges correspond to elementary modes. 

In addition, there may be elementary modes in the interior. 



Geometrical interpretation

Elementary modes correspond to generating vectors 

(edges) of a convex polyhedral cone (= pyramid) 

in flux space (if all reactions are irreversible)



P1 P2

P
3

1S
1 2

3

If the system involves reversible reactions,

there may be elementary modes in the interior

of the cone.

Example:



Flux cone:

There are elementary modes in the interior of the cone.



Mathematical properties of 

elementary modes

Any vector representing an elementary mode involves at least 

dim(null-space of N) − 1 zero components.

Example:

P1 P2

P3

1S
1 2

3

10

01

11

K

dim(null-space of N) = 2

Elementary modes:

110

101

011

(Schuster et al., J. Math. Biol. 2002, 

after results in theoretical 

chemistry by Milner et al.)



Mathematical properties of 

elementary modes (2)

A flux mode V is elementary if and only if the null-space of

the submatrix of N that only involves the reactions of V is of

dimension one. 
Klamt, Gagneur und von Kamp, IEE Proc. Syst. Biol. 2005, after results in 

convex analysis by Fukuda et al. 

P1 P2

P3

1S
1 2

3

e.g. elementary mode:

110

101

011
N = (1  1)  dim = 1



Biochemical examples



NADP

NADPH

NADP

NADPH

NADHNAD

ADP

ATP

ADP

ATP

CO2

ATP ADP

G6P

X5P

Ru5P

R5P

S7P

GAP

GAP

6PG

GO6P

F6P FP
2

F6P

DHAP

1.3BPG

3PG

2PG

PEP

E4P

Part of monosaccharide metabolism

Red: external metabolites

Pyr



NADHNAD

ADP

ATP

ADP

ATP

ATP ADP

G6P GAPF6P FP
2

DHAP

1.3BPG

3PG

2PG

PEP

1st elementary mode: glycolysis

Pyr



2nd elementary mode: fructose-bisphosphate cycle

ATP ADP

F6P FP2



4 out of 7 elementary modes in glycolysis-

pentose-phosphate system
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Optimization: Maximizing molar yields

ATP:G6P yield = 3 ATP:G6P yield = 2

Pyr



Synthesis of lysine in E. coli



Elementary mode with the highest

lysine : phosphoglycerate yield

(thick arrows: twofold value of flux)



Maximization of tryptophan:glucose yield

Model of 65 reactions in the central metabolism of E. coli.

26 elementary modes. 2 modes with highest tryptophan:

glucose yield: 0.451.

Glc

G6P

233

Anthr

Trp
105

PEP
Pyr

3PG

GAP

PrpP

S. Schuster, T. Dandekar, D.A. Fell,

Trends Biotechnol. 17 (1999) 53



Can fatty acids be transformed into sugar?

 Excess sugar in human diet is converted into 

storage lipids, mainly triglycerides

 Is reverse transformation feasible? Triglyceride 

sugar?



Triglycerides

 1 glycerol + 3 even-chain fatty acids (odd-

chain fatty acids only in some plants and 

marine organisms)

 Glycerol  glucose OK (gluconeogenesis)

 (Even-chain) fatty acids  acetyl CoA ( -

oxidation)

 Acetyl CoA  glucose?

COOH

COOH

COOH



Glucose

AcCoA

Cit

IsoCit

OG

SucCoA

PEP

Oxac

Mal

Fum

Succ

Pyr

CO2

CO2

CO2

CO2

Exact reversal of glycolysis and AcCoA formation

is impossible because pyruvate dehydrogenase

and some other enzymes are irreversible. 

Nevertheless, AcCoA is linked with glucose by a 

chain of reactions via the TCA cycle. 



Graph theory vs. experiment

 By graph theory, it may be assumed that the 
conversion in question would be feasible.

 Experimental observation: If fatty acids are 
radioactively labelled, part of tracer indeed 
arrives at glucose.

 However, sustained formation of glucose at 
steady state is observed in humans only at 
very low rates. 



Metabolism is hypergraph 

due to bimolecular reactions!



Glucose

AcCoA

Cit

IsoCit

OG

SucCoA

PEP

Oxac

Mal

Fum

Succ

Pyr

CO2

CO2

CO2

CO2

If AcCoA, glucose, CO2 and all cofactors  

are considered external, there is NO elementary

mode consuming AcCoA, nor any one producing

glucose. 

Intuitive explanation by

regarding oxaloacetate 

or CO2.



Glucose

AcCoA

Cit

IsoCit

OG

SucCoA

PEP

Oxac

Mal

Fum

Succ

Gly

Pyr

CO2

CO2

CO2

CO2 IclMas

Elementary mode representing 

conversion of AcCoA into glucose.

It requires the glyoxylate shunt.



Animals versus plants

 Green plants can what we can„t.

 Sugar is storage substance.

 In animals: brain cells, red blood cells and 

many other cells feed on glucose. Thus, 

starvation is a problem…

 Animals who died from starvation may still 

have fat reservoirs.



The glyoxylate shunt is present in green plants, yeast, 

many bacteria (e.g. E. coli) and others and – as

the only clade of animals – in nematodes. 

This example shows that a description by usual 

graphs in the sense of graph theory is insufficient…

S. Schuster, D.A. Fell: Modelling and simulating metabolic networks. 

In: Bioinformatics: From Genomes to Therapies (T. Lengauer, ed.) 

Wiley-VCH, Weinheim 2007, pp. 755-805.

L. Figuereido, S. Schuster, C. Kaleta, D.A. Fell: Can sugars be 

produced from fatty acids? Bioinformatics, under revision



Glucose

AcCoA

Cit

IsoCit

OG

SucCoA

PEP

Oxac

Mal

Fum

Succ

Gly

Pyr

CO2

CO2

CO2

CO2

A successful theoretical prediction
Red elementary mode: Usual TCA cycle

Blue elementary mode: Catabolic pathway

predicted in Liao et al. (1996) and Schuster 

et al. (1999) for E. coli. 



Glucose

AcCoA

Cit

IsoCit

OG

SucCoA

PEP

Oxac

Mal

Fum

Succ

Gly

Pyr

CO2

CO2

CO2

CO2

A successful theoretical prediction
Red elementary mode: Usual TCA cycle

Blue elementary mode: Catabolic pathway

predicted in Liao et al. (1996) and Schuster 

et al. (1999) Experimental hints in Wick et al.

(2001). Experimental proof in:

E. Fischer and U. Sauer:

A novel metabolic cycle catalyzes 

glucose oxidation and anaplerosis 

in hungry Escherichia coli,

J. Biol. Chem. 278 (2003) 

46446–46451



Crassulacean Acid Metabolism (CAM)

(Work with David Fell, Oxford)

 Variant of photosynthesis employed by 

a range of plants (e.g. cacti) as an 

adaptation to arid conditions

 To reduce water loss, stomata are 

closed during daytime

 At nighttime, PEP + CO2 

oxaloacetate  malate

 At daytime, malate  pyruvate (or 

PEP) + CO2  carbohydrates



CAM metabolism during daytime
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Elementary modes

Hexose synthesis via 

malic enzyme as occurring 

in Agavaceae and 

Dracaenaceae

Starch synthesis via 

malic enzyme as occurring 

in Cactaceae and 

Crassulacea

FerocactusDracaena
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Simultaneous starch and 

hexose synthesis via malic 

enzyme as occurring in:

Hexose synthesis via PEPCK 

as occurring in Clusia rosea

and in:

Ananus comosus = 

pineapple

Clusia 

minor
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Starch synthesis via 

PEPCK as occurring 

in Asclepidiaceae

Simultaneous starch and 

hexose synthesis via PEPCK 

as occurring in:

Caralluma 

hexagona Aloe vera



„Pure“ pathways

 In a review by Christopher and Holtum (1996), only cases A), 
B), D), and E) were given as “pure” functionalities. F) was 
considered as a superposition, and C) was not mentioned. 

 However, F) is an elementary mode as well, although it 
produces two products. It does not use the triose phosphate 
transporter

 The systematic overview provided by elementary modes 
enables one to look for missing examples. Case C) is indeed 
realized in Clusia minor (Borland et al, 1994). 

 Interestingly, (almost) pure elementary modes are realized 
here. No redundancy? 

S. Schuster, D.A. Fell: Modelling and simulating metabolic networks. 

In: Bioinformatics: From Genomes to Therapies (T. Lengauer, ed.) 

Wiley-VCH, Weinheim, Vol. 2, 755-805. 



Algorithms for computing 

elementary modes

1. Modified Gauss-Jordan method starting with

tableau (NT I). Pairwise combination of rows so that

one column of NT after the other becomes null vector.
S. Schuster et al., Nature Biotechnol. 18 (2000) 326-332.

J. Math. Biol. 45 (2002) 153-181.

2. Column operations on the null-space matrix.

Empirically faster than 1. on biochemical networks.
C. Wagner, J. Phys.Chem. B 108 (2004) 2425–2431.

R. Urbanczik, C. Wagner, Bioinformatics. 21 (2005) 1203-1210. 



Example:

P1 P2

S2

1S
1 2

34

100011

010011

001001

000101

0









T



110000

101010

010110

001100

1









T

100011

010011

001001

000101

0









T

These two rows should

not be combined



P1 P2

S2

1S
1 2

34

Final tableau:

110000

001100
2




T



100011

010011

001001

000101

0









T

Algorithm is faster, if this column is processed first.



Runtime complexity

 Not yet completely clear

 V. Acuña, ..., M.-F. Sagot, L. Stougie: Modes and Cuts 
in Metabolic Networks: Complexity and Algorithms, 
BioSystems, 2009

 Theorem 9. Given a matrix N, counting the number of 
elementary modes is ♯P-complete.

 Theorem 10. In case all reactions in a metabolic network 
are reversible, the elementary modes can be enumerated in 
polynomial time.

 Open question: Can elementary modes be enumerated in 
polynomial time if some reactions are irreversible?



Software involving routines 

for computing elementary modes

METATOOL  - Th. Pfeiffer, F. Moldenhauer, 

A. von Kamp (In versions 5.x, Wagner algorithm)

GEPASI  - P. Mendes

JARNAC - H. Sauro

In-Silico-DiscoveryTM - K. Mauch

CellNetAnalyzer (in MATLAB) - S. Klamt

ScrumPy - M. Poolman

Alternative algorithm in MATLAB – C. Wagner, R. Urbanczik

PySCeS – B. Olivier et al.

YANAsquare (in JAVA) - T. Dandekar

EFMTool – M. Terzer, J. Stelling

On-line computation:

pHpMetatool - H. Höpfner, M. Lange



#P (sharp P) Complexity class

 An NP problem is often of the form, "Are there any 
solutions that satisfy certain constraints?" For example:

 Are there any subsets of a list of integers that add up to 
zero? (subset sum problem) 

 Are there any Hamiltonian cycles in a given graph with 
cost less than 100? 

 The corresponding #P problems ask "how many" rather 
than "are there any". For example:

 How many subsets of a list of integers add up to zero? 

 How many Hamiltonian cycles in a given graph have cost 
less than 100? 



Summary

 Elementary modes are an appropriate concept 
to describe biochemical pathways in wild-type 
and mutants. 

 Information about network structure can be 
used to derive far-reaching conclusions about 
performance of metabolism, e.g. about viability 
of mutants. 

 Elementary modes reflect specific 
characteristics of metabolic networks such as 
steady-state mass flow, thermodynamic 
constraints and molar yields.



Summary (2)

 Pathway analysis is well-suited for computing 
maximal and submaximal molar yields

 Many metabolic systems in various organisms 
have been analysed in this way. In some cases 
new pathways discovered

 Relevant applications: knockout studies 
(biotechnology) and enzyme deficiencies 
(medicine)

 Work still to be done on decomposition 
methods (combinatorial explosion)
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