
Méthodes Formelles pour la Biologie des Systèmes

François Fages
Project-Team Lifeware
http://lifeware.inria.fr/

Institut National de Recherche en Informatique et Automatique
Inria Saclay – Ile de France

Bioregul 2019 2

Modeling Behaviours inTemporal Logic

Qualitative semantics: applies to very large systems without knowing reaction rates
How to query the asynchronous non-deterministic Boolean dynamics ?

1. Example of Kohn’s map of the mammalian cell cycle
2. Computation Tree Logic CTL query language
3. State-based model-checking algorithm
4. Symbolic model-checking algorithm
5. Model reduction preserving CTL properties

Quantitative semantics:
How to generalize to quantitative continuous/stochastic semantics ?

1. First-order FO-LTL(Rlin) on finite traces
2. FO-LTL(Rlin) constraint solving

Bioregul 2019 3

Cell Division Cycle
G0 àG1àSynthesisàG2àMitosis

G1: CdK4-CycD S: Cdk2-CycA G2,M: Cdk1-CycA
Cdk6-CycD Cdk1-CycB (MPF)
Cdk2-CycE

Sir Paul Nurse
Nobel prize 2001
for his work on Cyclins

Bioregul 2019 4

Cell Division Cycle Control

Bioregul 2019 5

Mammalian Cell Cycle Control Map [Kohn 99]

Bioregul 2019 6

Kohn’s map detail for Cdk2
E.g. complexation of cdk2 with cycA and cycE

Kohn’s map:
à 732 reactions
à 165 proteins and genes
à 532 variables
How to analyze a transition system over 2532 states ? and 22532 sets of states ?
Symbolic model-checking
Represent a set of states by a Boolean constraint:
• True: full set of 2532 states,
• False: empty set,
• M: set of 2531 states where M is present,
• MÚ¬N : set of 3.2530 states with M present or N absent
• etc.

Bioregul 2019 7

Ordered Binary Decision Diagrams OBDD
Ordered Binary Decision Diagrams OBDD [Bryant 85] are decision graphs
• With fixed ordering of variables by levels
• And compressed in binary graphs with maximum sharing of common subtrees

Example: (x⋁¬y)⋀(y⋁¬z)⋀(z⋁¬x) OBDD(x,y,z) :

(x⋁¬z)⋀(z⋁¬y)⋀(y⋁¬x) has the same OBDD(x,y,z)
and is indeed equivalent

OBDD provide canonical forms for Boolean formulas
OBDD decide not only SAT in NP but also TAUT in co-NP

Bioregul 2019 8

Computation Tree Logic CTL
Temporal logics extend classical logic with modal operators for time and non-

determinism. Introduced for program verification by [Pnueli 77]

Bioregul 2019 9

Kohn’s Map Model-Checking
BIOCHAM NuSMV symbolic model-checker time in seconds [Chabrier Fages 2003 CMSB]

Initial state G2 Query: Time:

compiling 29

Reachability G1 EF CycE 2

Reachability G1 EF CycD 1.9

Checkpoint
for mitosis complex

¬E (¬Cdc25~{Nterm} U Cdk1~{Thr161}-CycB) 2.2

Oscillations CycA EG ((EF ¬ CycA) Ù (EF CycA)) 31.8

Osciallations CycB EG ((EF ¬ CycB) Ù (EF CycB))
false in Kohn’s map ! (omission of CycB synthesis)

6

Bioregul 2019 10

Kripke Semantics of CTL*

A Kripke structure K=(S,R) is a set S of states with a total relation RÍSxS
The truth of a formula f in a state s or on a path p of K is defined by:

s ⊨ f if f is a proposition true in s
s ⊨ E f if there is a path p starting from s such that p ⊨ f
s ⊨ A f if for every path p starting from s such that p ⊨ f
p ⊨ f for a state formula f if s ⊨ f where s is the first state of p
p ⊨ X f if p1 ⊨ f where p1 is the suffix of p without its first state
p ⊨ F f if $ k ≥ 0 such that pk ⊨ f where pk is the kth suffix of p
p ⊨ G f if " k ≥ 0, pk ⊨ f
p ⊨ f1 U f2 if $ k ≥ 0 pk ⊨ f2 Ù " j < k pj ⊨ f1

p ⊨ f1 R f2 if " k ≥ 0 pk ⊨ f2 Ú $ j < k pj ⊨ f1

Duality: ¬ Ef = A ¬ f , ¬ Ff = G ¬ f , ¬ Xf = X ¬ f, ¬ (f1 U f2)= ¬ f1 R ¬ f2

Bioregul 2019 11

Minimal Set of CTL* Operators

• Logical connectives: Ú
¬

• Path quantifier: E “exists”
• Temporal operators: X “next”

U “until”

Abbreviations (duality):
Af = ¬ E ¬ f “always”
Gf = ¬ F ¬ f “globally”
f1 R f2 = ¬ (¬ f1 U ¬ f2) “release”
Ff = true U f “finally”

Bioregul 2019 12

CTL Fragment of CTL*

In CTL, each temporal operator must be preceded by a path quantifier

Any CTL formula is thus a state formula
and can be identified to the set of states which satisfy it

f ≃ {sÎS : s ⊨ f } [Emerson 90]

Basis of three operators: EX, EG, EU
others defined by duality:
• EF f = E(true U f)
• AX f = ¬ EX ¬ f
• AF f = ¬ EG ¬ f
• AG f = ¬ EF ¬ f

Bioregul 2019 13

LTL Fragment of CTL*

Linear Time Logic (LTL) formulae are of the form Af
where f contains no path quantifier, only temporal operators

Basis of two operators: X, U
• The LTL formula A(FG f) is not expressible in CTL

AF(AG f) is stronger, e.g. false on p ¬ p p

AF(EG f) is weaker, e.g. true on p ¬ p

• The CTL formula EF(AG f) is not expressible in LTL

• LTL and CTL are strict fragments of CTL*

Bioregul 2019 14

Basic CTL Model-Checking Algorithm

Dynamic programming algorithm for computing, in a finite Kripke structure K,
the set of states satisfying a CTL formula: {sÎK : s ⊨ f }.

Bioregul 2019 15

Basic CTL Model-Checking Algorithm

Dynamic programming algorithm for computing, in a finite Kripke structure K,
the set of states satisfying a CTL formula: {sÎK : s ⊨ f }.

Represent K explicitly as a finite graph and iteratively label the nodes with the
subformulas of f that are true in that node:
• Add f to the states satisfying f
• Add EF f (EX f) to

Bioregul 2019 16

Basic CTL Model-Checking Algorithm

Dynamic programming algorithm for computing, in a finite Kripke structure K,
the set of states satisfying a CTL formula: {sÎK : s ⊨ f }.

Represent K explicitly as a finite graph and iteratively label the nodes with the
subformulas of f that are true in that node:
• Add f to the states satisfying f
• Add EF f (EX f) to the (immediate) predecessors of states labeled by f
• Add E(f1 U f2) to

Bioregul 2019 17

Basic CTL Model-Checking Algorithm

Dynamic programming algorithm for computing, in a finite Kripke structure K,
the set of states satisfying a CTL formula: {sÎK : s ⊨ f }.

Represent K explicitly as a finite graph and iteratively label the nodes with the
subformulas of f that are true in that node:
• Add f to the states satisfying f
• Add EF f (EX f) to the (immediate) predecessors of states labeled by f
• Add E(f1 U f2) to the predecessor states of f2 while they satisfy f1
• Add EG f to

Bioregul 2019 18

Basic CTL Model-Checking Algorithm

Dynamic programming algorithm for computing, in a finite Kripke structure K,
the set of states satisfying a CTL formula: {sÎK : s ⊨ f }.

Represent K explicitly as a finite graph and iteratively label the nodes with the
subformulas of f that are true in that node:
• Add f to the states satisfying f
• Add EF f (EX f) to the (immediate) predecessors of states labeled by f
• Add E(f1 U f2) to the predecessor states of f2 while they satisfy f1
• Add EG f to the states of the subgraph satisfying f which are on a path to a

non trivial (i.e. containing at least one edge) strongly connected component.
Space and time in

Bioregul 2019 19

Basic CTL Model-Checking Algorithm

Dynamic programming algorithm for computing, in a finite Kripke structure K,
the set of states satisfying a CTL formula: {sÎK : s ⊨ f }.

Represent K explicitly as a finite graph and iteratively label the nodes with the
subformulas of f that are true in that node:
• Add f to the states satisfying f
• Add EF f (EX f) to the (immediate) predecessors of states labeled by f
• Add E(f1 U f2) to the predecessor states of f2 while they satisfy f1
• Add EG f to the states of the subgraph satisfying f which are on a path to a

non trivial (i.e. containing at least one edge) strongly connected component.
Space and time in O(|K|*|f|), CTL model-checking is Ptime-complete

Bioregul 2019 20

Basic CTL Model-Checking Algorithm

Dynamic programming algorithm for computing, in a finite Kripke structure K,
the set of states satisfying a CTL formula: {sÎK : s ⊨ f }.

Represent K explicitly as a finite graph and iteratively label the nodes with the
subformulas of f that are true in that node:
• Add f to the states satisfying f
• Add EF f (EX f) to the (immediate) predecessors of states labeled by f
• Add E(f1 U f2) to the predecessor states of f2 while they satisfy f1
• Add EG f to the states of the subgraph satisfying f which are on a path to a

non trivial (i.e. containing at least one edge) strongly connected component.
Space and time in O(|K|*|f|), CTL model-checking is Ptime-complete

Exercise: apply it to show EG((EF ¬P) ^ (EF P)) on P ¬ P

Bioregul 2019 21

Symbolic CTL Model-Checking Algorithm

• Represent a set of states by a boolean constraint c(V) over state variables V
e.g. 𝑝 ∨ ¬𝑞 represents the set of all states where p is present and q absent

• Represent the transition relation by a boolean constraint r(V,V’)
e.g. the constraint 𝑝 ∨ ¬𝑝 ∧ ¬𝑝& represents the transition graph 𝑝 → ¬𝑝

• Represent CTL operators by constraint transformers
e.g. 𝐸𝑋 𝑐 = ∃𝑉&	𝑟 𝑉, 𝑉& ∧ 𝑐 𝑉&/𝑉 ≜ 𝑒𝑥 𝑐
constraint of being one immediate predecessor r(V,V’) of a state satisfying c(V’)

e.g. 𝐴𝑋 𝑐 = ∀𝑉&	𝑟 𝑉, 𝑉& ⇒ 𝑐 𝑉&/𝑉 ≜ 𝑎𝑥 𝑐 	
constraint of having all successors r(V,V’) satisfying c(V’)

Bioregul 2019 22

Logical Paradigm for Systems Biology

Use of model-checking algorithms [Lincoln et al. 02] [Chabrier Fages 03] [Bernot et al. 04]…

Biological process model = State Transition System K
Biological property = Temporal Logic Formula φ
Model validation = model-checking K, s ⊨? φ

Model reduction = model-checking K’?⊂K K’, s ⊨ φ
Static experiment design = model-checking K, s? ⊨ φ

Model functions = true formulae enumeration K, s ⊨ φ?
Model Inference, dyn. exp. design = constraint solving K?, s? ⊨ φ

Generalizations to quantitative temporal logics
• FO-LTL(Rlin) [Rizk, Batt, F, Soliman 09] MTL [Donze Maler 12] parameter search, robustness
• SAT modulo ODE [Gao Clarke 2012] formal verification on parameter range

• Continuous CRN design K?, s? ⊨ reachable(stable(y	≈	 F
G

HIFG
)

TD8 MAPK Signalling
http://lifeware.inria.fr/biocham4/online/

Bioregul 2019 François Fages

