Méthodes Formelles pour la Biologie des Systemes

Francois Fages
Project-Team Lifeware
http://lifeware.inria.fr/

Institut National de Recherche en Informatique et Automatique
Inria Saclay — lle de France

Modeling Behaviours inTemporal Logic

Qualitative semantics: applies to very large systems without knowing reaction rates
How to query the asynchronous non-deterministic Boolean dynamics ?

1.

Sl A

Example of Kohn’s map of the mammalian cell cycle
Computation Tree Logic CTL query language
State-based model-checking algorithm

Symbolic model-checking algorithm

Model reduction preserving CTL properties

Quantitative semantics:
How to generalize to quantitative continuous/stochastic semantics ?

1.

First-order FO-LTL(RIin) on finite traces

2. FO-LTL(RIin) constraint solving

Bioregul 2019

v d
A 2

Cell Division Cycle
GO 2> G1->Synthesis—> G2-> Mitosis

Cdk1-cyclin B

Cdk1-cyclin A
G, M

Cdk2-cyclin A

Cdka-cy DI
Cdk6-cyD

Sir Paul Nurse
Nobel prize 2001
Cdk2-cyclin E for his work on Cyclins

G1: CdK4-CycD S: Cdk2-CycA G2,M: Cdk1-CycA
Cdk6-CycD Cdk1-CycB (MPF)
Cdk2-CycE
Bioregul 2019 3

Cell Division Cycle Control

E Chromosome-segregation
Spindle-assembly checkpoint
checkpoint J_
e APC-Cdh1
b P polyubiquitination «<— Cdc14 —> Sic1
l of B-type cyclins
- APC-Cdc20 | 0
ATM/R polyubiquitination Telonh ATM/R
m l of securin oDnase l m
53 p53 _
DNA-damage & \A‘na b B D':\IAkdar_nage
checkpoint l P checkpoint
p21CIP 8 Cyclin D-CDK4/6 |— p21CIP
Cyclin A/B-CDK1 ———> M-phase
/‘ entry =
. 4 G
7 Y 2 | 4 .
Lriiat 3 s 40, S-phase «— Cyclin E/A-CDK2
T - _ 8 entry T T
n Chk1) o
Jnreplicated-DNA T ' . p21¢i Cdc25A
checkpoint Cyclm A-CDK2 T
ATR I 4bl
D2e DNA-d
p21CIP Cdc25A chec;(pirirr‘:ge
4c| T ATM/R —> Chk1/2
DNA-damage P33
checkpoint
ATM/R —— Chk1/2
Bioregul 2019 g

: informatics #Fmathematics

Mammalian Cell Cycle Control Map [Kohn 99]

LZZ

c14 —P48

B e mmeun ~
VTranscription | || | o e L
1 i . A
)
i o o i Cyclin box]
o cdk ! i
' i P 5 c1al
= lo—c12 to c24 H
P H

- o

cdc25 A ¢35 Myc:Mas : Myec box

I H i 1

. ‘ €31 : 1 i
@ @ p19ARF 1 1 M1 H
1 [ciie i H : @ M :
) : _*:A> w2 <Max> 1 :

1 M3 1

1 1

1 o> 1

! —é—ct !

: : Lacasa Q H
Replication \ o o : il
i 1

Ay I

1
BN b
RIO Zl/Ginddl

HDAC!

c11b @

e e e e e e e s
i
' 52’2@ R
H E20 R P H PSS e e e —— ~
i Tu B H :’ Chromatin & \=
o 1 acetylase box i
-) 1
o || -
£3 D6 = - o
Cy<A = 2] P2e—2= ! - !
|_E10 £7 E5 ! E ! { E
1
p53 box E2F4 i i m H
i H
] 1
1 1
\ H

DVIPI
¥
-:1

@_T
o
3

7/
i

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

{
\,

Rafl

? t ZA] E25 E22
" —H J 191;RF id i
ca1,—€37 —| PC” edkD) (ChsD £37 L
- o* I (1 = 1 :

e

m
~N
c-mye

pRb—»

~ 1

4

%

o

>
p107

4—§‘

}

J

3

-

S EORERA RN o (U RPN IR S - PL? I i T, W gy g
_ N B ———— q

cyclins, pol a

(&)

Bioregul 2019 s’ N

Kohn’s map detail for Cdk2

E.g. complexation of cdk2 with cycA and cycE

Kohn’s map:

- 732 reactions

- 165 proteins and genes
- 532 variables

How to analyze a transition system over 2°32 states ? and 22°% sets of states ?
Symbolic model-checking

Represent a set of states by a Boolean constraint:

« True: full set of 2532 states,

False: empty set,

M: set of 2531 states where M is present,

Mv—N : set of 3.2530 states with M present or N absent

- efc.
Bioregul 2019 AT

Ordered Binary Decision Diagrams OBDD

Ordered Binary Decision Diagrams OBDD [Bryant 85] are decision graphs
With fixed ordering of variables by levels
And compressed in binary graphs with maximum sharing of common subtrees

X

Example: (xV-y)A(YV-2z)A(zV-X) OBDD(x,y,z) 0/l
Y

: /\
(XV=2)A(2V-y)A(yV-x) has the same OBDD(x,y,z) R .
and is indeed equivalent W
OBDD provide canonical forms for Boolean formulas
OBDD decide not only SAT in NP but also TAUT in co-NP

Bioregul 2019 N 7

Computation Tree Logic CTL

Temporal logics extend classical logic with modal operators for time and non-
determinism. Introduced for program verification by [Pnueli 77]

Non-det. E A
Time exists always
X EX(o) AX(¢p)
next time
F EF(o) AF (o)
finally -AG(= o) liveness
G EG(p) AG()
globally — AF(= o) safety
F,?,U
U E(p1Uo2) | Aol U@2) Time
until

Bioregul 2019

informatics #Fmathematics

- ‘_;7.)

Non-determinism E, A

- AGh

Kohn’s Map Model-Checking

BIOCHAM NuSMYV symbolic model-checker time in seconds [Chabrier Fages 2003 CMSB]

Initial state G2 Query: Time:
compiling 29
Reachability G1 EF CycE 2
Reachability G1 EF CycD 1.9
Checkpoint —E (—Cdc25~{Nterm} U Cdk1~{Thr161}-CycB) 2.2
for mitosis complex
Oscillations CycA EG ((EF — CycA) A (EF CycA)) 31.8
Osciallations CycB EG ((EF — CycB) A (EF CycB)) 6
false in Kohn’s map ! (omission of CycB synthesis)

Bioregul 2019 T 9

Kripke Semantics of CTL*

A Kripke structure K=(S,R) is a set S of states with a total relation RcSxS
The truth of a formula ¢ in a state s or on a path n of K is defined by:
s = ¢ if ¢ is a proposition true in s
s = E ¢ if there is a path & starting from s such that t = ¢
s = A ¢ if for every path = starting from s such that t = ¢
n = ¢ for a state formula ¢ if s+ ¢ where s is the first state of «
nE X ¢ if ! = ¢ where n! is the suffix of © without its first state
n = F ¢ if 3 k 2 0 such that nk = ¢ where n* is the ki suffix of =
nFGoifVk20, nkE ¢
nEd, Ud,ifIk20nFP, AV j<kF o,
nEd, RO, ifVK20nkEo,vIj<knF o,
Duality: ~E¢=A—-¢, - Fop=G—¢, - X¢=X-¢, = (¢, U¢;)=—¢, R ¢,

Bioregul 2019 T 10

Minimal Set of CTL* Operators

Logical connectives: v

Path quantifier: E “exists”

Temporal operators: X “next”
U “until”

Abbreviations (duality):
Ap=—E—-¢ “always”
Go=—F—=¢ “globally”
¢, R, == (=9, U—¢,) “release”
Fo=true U ¢ “finally”

Bioregul 2019 e

11

CTL Fragment of CTL"

In CTL, each temporal operator must be preceded by a path quantifier

Any CTL formula is thus a state formula
and can be identified to the set of states which satisfy it
d» ={SeS :s = ¢ } [Emerson 90]

Basis of three operators: EX, EG, EU
others defined by duality:
EF ¢ = E(true U ¢)
AXo=—EX—-¢
AFo=—EG—-¢
AGo=—EF—-¢

Bioregul 2019 S

LTL Fragment of CTL*

Linear Time Logic (LTL) formulae are of the form A¢
where ¢ contains no path quantifier, only temporal operators

Basis of two operators: X, U
The LTL formula A(FG ¢) is not expressible in CTL
AF(AG ¢) is stronger, e.qg. false onp ——— p ——p

® O

AF(EG ¢) is weaker, e.g. trueon p — _,—p

The CTL formula EF(AG ¢) is not expressible in LTL

LTL and CTL are strict fragments of CTL*

Bioregul 2019 &’«Lo/

13

Basic CTL Model-Checking Algorithm

Dynamic programming algorithm for computing, in a finite Kripke structure K,
the set of states satisfying a CTL formula: {seK:s=¢ }.

Bioregul 2019 -

14

Basic CTL Model-Checking Algorithm

Dynamic programming algorithm for computing, in a finite Kripke structure K,
the set of states satisfying a CTL formula: {seK:s=¢ }.

Represent K explicitly as a finite graph and iteratively label the nodes with the
subformulas of ¢ that are true in that node:

Add ¢ to the states satisfying ¢
Add EF ¢ (EX ¢) to

Bioregul 2019 -

15

Basic CTL Model-Checking Algorithm

Dynamic programming algorithm for computing, in a finite Kripke structure K,
the set of states satisfying a CTL formula: {seK:s=¢ }.

Represent K explicitly as a finite graph and iteratively label the nodes with the
subformulas of ¢ that are true in that node:

Add ¢ to the states satisfying ¢
Add EF ¢ (EX ¢) to the (immediate) predecessors of states labeled by ¢
Add E(¢1 U ¢2) to

Bioregul 2019 &’10/ 16

Basic CTL Model-Checking Algorithm

Dynamic programming algorithm for computing, in a finite Kripke structure K,
the set of states satisfying a CTL formula: {seK:s=¢ }.

Represent K explicitly as a finite graph and iteratively label the nodes with the
subformulas of ¢ that are true in that node:

Add ¢ to the states satisfying ¢

Add EF ¢ (EX ¢) to the (immediate) predecessors of states labeled by ¢
Add E(¢1 U ¢2) to the predecessor states of ¢2 while they satisfy ¢1
Add EG ¢ to

Bioregul 2019 17

Informatics Pmathematics
lrrsia

Basic CTL Model-Checking Algorithm

Dynamic programming algorithm for computing, in a finite Kripke structure K,
the set of states satisfying a CTL formula: {seK:s=¢ }.

Represent K explicitly as a finite graph and iteratively label the nodes with the
subformulas of ¢ that are true in that node:

Add ¢ to the states satisfying ¢
Add EF ¢ (EX ¢) to the (immediate) predecessors of states labeled by ¢
Add E(¢1 U ¢2) to the predecessor states of ¢2 while they satisfy ¢1

Add EG ¢ to the states of the subgraph satisfying ¢ which are on a path to a
non trivial (i.e. containing at least one edge) strongly connected component.

Space and time in

Bioregul 2019 &’10/ 18

Basic CTL Model-Checking Algorithm

Dynamic programming algorithm for computing, in a finite Kripke structure K,
the set of states satisfying a CTL formula: {seK:s=¢ }.

Represent K explicitly as a finite graph and iteratively label the nodes with the
subformulas of ¢ that are true in that node:

Add ¢ to the states satisfying ¢
Add EF ¢ (EX ¢) to the (immediate) predecessors of states labeled by ¢
Add E(¢1 U ¢2) to the predecessor states of ¢2 while they satisfy ¢1

Add EG ¢ to the states of the subgraph satisfying ¢ which are on a path to a
non trivial (i.e. containing at least one edge) strongly connected component.

Space and time in O(IKI*I¢l), CTL model-checking is Ptime-complete

Bioregul 2019 &’10/ 19

Basic CTL Model-Checking Algorithm

Dynamic programming algorithm for computing, in a finite Kripke structure K,
the set of states satisfying a CTL formula: {seK:s=¢ }.

Represent K explicitly as a finite graph and iteratively label the nodes with the
subformulas of ¢ that are true in that node:

Add ¢ to the states satisfying ¢
Add EF ¢ (EX ¢) to the (immediate) predecessors of states labeled by ¢
Add E(¢1 U ¢2) to the predecessor states of ¢2 while they satisfy ¢1

Add EG ¢ to the states of the subgraph satisfying ¢ which are on a path to a
non trivial (i.e. containing at least one edge) strongly connected component.

Space and time in O(IKI*I¢l), CTL model-checking is Ptime-complete

O

Exercise: apply it to show EG((EF —P) ~ (EF pP))on P —— <P
Bioregul 2019 &;o,,a/_ 20

Symbolic CTL Model-Checking Algorithm

Represent a set of states by a boolean constraint c(V) over state variables V
e.g. p V g represents the set of all states where p is present and q absent

Represent the transition relation by a boolean constraint r(V,V’) Q Q
e.g. the constraint p v (=p A =p’) represents the transition graph p - —p

Represent CTL operators by constraint transformers
e.qg. [EX(c)]=3avV'r(V, V') Ac[V'/V] £ ex(c)
constraint of being one immediate predecessor r(V,V’) of a state satisfying c(V’)

e.qg. [AX(c)] =vV' r(V,V") = c[V'/V] £ ax(c)
constraint of having all successors r(V,V’) satisfying c(V’)

Bioregul 2019 T 21

Logical Paradigm for Systems Biology

Use of model-checking algorithms [Lincoln et al. 02] [Chabrier Fages 03] [Bernot et al. 04]...

Biological process model = State Transition System K
Biological property = Temporal Logic Formula ¢
Model validation = model-checking K;s =7 ¢

Model reduction = model-checking K'?CK K’ s F @

Static experiment design = model-checking K, s? = ¢

Model functions = true formulae enumeration K, s = ¢?
Model Inference, dyn. exp. design = constraint solving K?,s? o

Generalizations to quantitative temporal logics
« FO-LTL(R,) IRizk, Batt, F, Soliman 09] MTL [Donze Maler 12] parameter search, robustness
« SAT modulo ODE [cao clarke 2012] formal verification on parameter range

)

x4—

c+x?

« Continuous CRN design K?, s? = reachable(stable(y =

Bioregul 2019 AT 292

TD8 MAPK Signalling

http://lifeware.inria.fr/biocham4/online/

In [12]: check_ctl(query:checkpoint2(PP_KK,PP _K)).

Out[12]: checkpoint2(PP_KK,PP_K) is true

In [13]: check_ctl(query:checkpoint2(PP_KK KKPase,PP K)).

Out[13]: checkpoint2(PP_KK KKPase,PP_K) is false

In [14]: check_ctl(query:checkpoint2(PP_KK KKPase,PP_K), nusmv_counter_ example:yes).

Out[1l4]: Trace:

El El_KKK E2 E2_P_KKK K KK KKK KKPase KKPase PP_KK KKPas
e P KK KPase KPase PP K KPase P K PP_KK PP KK K PP_KK P K P_K P_KK
P_KKK P_KKK KK P_KKK P KK PP_K PP_KK_KKPase

TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE
FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

checkpoint2 (PP_KK_KKPase,PP_K) is false

In [15]: reduce_model.

Out[15]: removed [(rla__dl*'El KKK'for'El KKK'=>'KKK'+'El'),(r2a__d2*'E2 P KKK'for'E2 P KKK'=>'P_KK
K'+'E2'),(r3a__d3*'P_KKK KK'for'P KKK KK'=>'KK'+'P_KKK'), (r4a__d4*'KKPase P _KK'for'KKPase P K
K'=>'P_KK'+'KKPase'), (r5a_ d5*'P_KKK P_KK'for'P KKK P _KK'=>'P_KK'+'P_KKK'), (r6a__dé6*'KKPase P
P_KK'for'KKPase PP KK'=>'PP KK'+'KKPase'),(r7a__d7*'PP_KK K'for'PP KK K'=>'K'+'PP_KK'), (r8a__
d8*'KPase P_K'for'KPase P K'=>'P_K'+'KPase'),(r9a__d9*'PP_KK P K'for'PP_ KK P K'=>'P_K'+'PP_K
K'),(rl0a__dlo*'KPase PP_K'for'KPase PP_K'=>'PP_K'+'KPase')]

Bioregul 2019 5, N Francois Fages

