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Lifeware’s Motto: Cells Compute

« Cells process information from external signals

— noise filtering, ultrasensitivity
— analog-digital conversion
« Make informed decisions
— metabolism change
— cell division
— differentiation
— migration
— apoptosis
« Control process execution
— cell cycle progression, DNA repair
— homeostasis

What are the programs ?
Chemical Reaction Networks (CRN)
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Systems Biology

“Systems Biology aims at systems-level understanding which requires a set of

principles and methodologies that links the behaviors of molecules to systems Wm@ﬂ@ .
characteristics and functions.”  Hiroaki Kitano, ICSB 2000 Two M eanings GG?X@SW{?&@@@%@O s@ uence
W oElCe ’ fon

After the end of Human Genome Project (2000) s for @W@@@%m fol @ Sy ure E@W@@\“@ﬁ
1. Analyze post-genomic data: RNA, proteins s is, @ loge etic tre @D@ggﬁm in cells
Data produced with high-throughput technologies analys'ss {fmﬁ@?m@ﬂ@@ pro
> Databases GO, KEGG, BioCyc, etc 2 sclence © @ nalysis

’ ’ y ’ - [°) @RN @@ﬁw‘?@“ @W@W@

2. Understand and predict cell processes with protein/RNA/gene networks

- Modelling & analysis software (CellDesigner, Cytoscape, Copasi, Biocham, Kappa...)

- Model exchange format for CRN models: Systems Biology Markup Language (SBML)

- Model repositories: e.g. biomodels.net 2000 hand-made models 10000 imported from metabolic maps

- Simulation of a whole-cell mycoplasma genitalium [Karr Covert et al 12]

‘Bioinformatics is the study of informatic processes in biotic systems” Ben Hessper, Paulien Hodgeweg 1970
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Synthetic Biology

Design and implement new functions in either living cells or artificial devices

Synthetic gene networks added to living cells
— MIT BioBrick standard biological part, IGEM competition since 2004
— Production of an antimalarial drug in engineered yeast (UC Berkeley, SANOFI)
— Biofuels (e.g. from engineered algae)

DNA computing @@Kﬁﬂ\@m@\?@
— Atrtificial double strand DNA [Phillips Cardelli 2009]
— Turing complete DNA stack programming [Cook Soloveichik Winfree Bruck 2009 ]

Protein computing
— Cell signal processing, process control [Oishi Klavins 2011, Briat Gupta Khammash 2016]
— Turing complete CRN analog computation [F- Le Guludec Bournez Pouly 2017 next lecture] &
— Atrtificial DNA-free micro-reactor diagnosis vesicles [Courbet Amar F- Renard Molina 2018]
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Analog Computation with CRN Programs

Theorem (Turing-completeness of finite CRNs with ODE semantics) [F- Le Guludec Bournez Pouly CMSB 2017]

Any computable real function (i.e. by a Turing machine with arbitrary requested precision given in input) can
be computed by a finite CRN with mass action law kinetics and at most bimolecular reactions.

Theorem (Online computation, robust stabilization) [Hemery F- cMSB 2022]
The set of real functions computable online by a CRN is the set of real algebraic functions P(x, f(x)) = 0.

5
X
Example Natural MAPK CRN structure Biocham-compiler-generated CRN for I/O function y = P
Sy ~ 1/O function of MAPK signaling
D= er—— ~ gy e i o [Huang Ferrel PNAS 1996]
v = :k», " m;;._xx, > \)& / . . -
=5 , (> — 7 \\/f) stiff sigmoid
X ’, e I analog,-digital, converter
= e L
=g = Sy
——e S /: solution of (k + x%)y — x° =
o= —=ED N <b2 P hence CRN-computable online
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Plan of my Two Lectures

Lecture 1: CRN as a Modelling/Programming Language
1. CRN syntax, hierarchy of semantics and typings by abstract interpretation
2. Model reductions: slow-fast ODE-based decomposition and general graph-theoretic CRN reductions

x o « ) x o
\ st \ kﬁ \ Ezfr
N .;;E N e g

3. Specifying behaviors in (quantitative) temporal logics: verification, robustness measure, parameter search
4. Case study on coupled modeling of the cell cycle and circadian clock
5. Conclusion on high-level rule-based CRN models versus low-level ODE models

Lecture 2: The cell, an analog chemical computer

1. Turing completeness of continuous CRN over a finite set of abstract molecular species
2. Compiler of mathematical functions in abstract CRNs

3. Comparisons to natural CRNs acquired by natural evolution and artificial evolution

4. Conclusion on engineered design by decomposition and learnt design by evolution
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1. CRN Syntax

A CRN is finite set of formal chemical reactions.

Areaction is a triplet (R, P, f) also noted R — P where

* R is a multiset of reactant species, written with stoichiometric coefficients a;R; + --- + a,-R,
« P is a multiset of product species, written with stoichiometric coefficients g, P; + --- + B,-P.
« Acatalyst is a species that appears as both reactant and product with the same coefficient.

« f is a formal rate function with well-formedness conditions that should be imposed in SBML.:
[F- Gay Soliman. Inferring Reaction Systems from Ordinary Differential Equations. TCS 2015]

— S e Rifand only ifg—’; + 0 (negative for an inhibitor reactant)

— S ER, a—lfw > 0 imply f([S] = 0) = 0 (ensures positivity)

: Ny : : : . S T sn
E.g. Mass action law kinetic function f = k Rfl ..R;", Michaelis-Menten kinetics ﬁ , Hill kinetics kv+S”
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Graphical Representations of CRN

Reaction hypergraph: bipartite graph of species and reactions (Petri net structure, SBGN compatible)

o=

reactionl
Ll
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Model Building: Two Contradictory Perspectives

1) Model for representing knowledge: the more detailed the better (do not miss any known information)
2) Model for answering a concrete question: the more abstract the better (get rid of irrelevant information)

o
. _ Excliny-p
1) Generic annotated graph model [Kohn's 99 map cell cycle] 2) Reduced graph models P
i —— - ’ [Tyson’s 91 model cell cycle] ‘\”5 . jr’
F: i s(,)clm box ) p - \ P / 3
i j @MPDorcro 25 A c 1 ) ” . i i i ,"—""""""m_‘f;‘""_"_‘-‘, °
: St T = 2) Reduced boolean models (and’s or or’s?)
= 2) Reduced Petri net models (discrete levels)
== T st 1L U 2)Reduced stochastic CTMC models (intrinsic noise, time)
L e ||| =Tl d[C2]/dt = ke[M] — ks[~P][C2] + ko[CP]
2 z s | .. d[CP]/dt = —ks[CPI[Y] + kg[~P][C2] — ko[CP]
b | 2) Reduced ODE models (timing) dpMd: = kICPIY] - (pMIFqM) + ks ~PIM]
dIM]/dt = [PMIF(M)) ~ ksl~PIIM] = ke[M]
[Tyson’s 91 model cell cycle] d[Y]/dt = k[aa] - kY] — ks[CPI[Y]

d[YP]/dt = ke[M] — ks[YP]
Requires general notions of CRN structure reductions and CRN dynamics abstractions
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, k.A.B
CRN Semantics A+ B—C

Differential semantics: concentrations, continuous time evolution
dA dB

Ordinary differential equations (ODE) e —k.A.B Pl —k.A.B % =k.A.B

ODE simulation of Tyson’s 1991 model of the cell cycle:

1 —
0.8 :
0.6 —-
§ 7
] ~— Cdc2-Cyclin~{p1,p2}
4 ~— Cdc2-Cyclin~{p1}
0.2 —— Cdc2~{p1}
4 ~— Cyclin
0 - —— Cyclin~{p1}
LA L B | L L B | T T T | T 1 L | LN B LA B
0 20 40 60 80 100
Time (s)

-
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, k.A.B
CRN Semantics A+ B—C

Differential semantics: concentrations, continuous time evolution

Ordinary differential equations (ODE) % = —k.A.B C;—]j =—k.A.B % =k.A.B

Stochastic semantics: numbers of molecules, probability and time of transition (intrinsic noise)

, _ _ p(Sy), t(Si)
Continuous Time Markov Chain (CTMC) A, B——— C++, A--, B--

100
80

60 -

mol

40 - — Cdc2

i ~— Cdc2-Cyclin~p1,p2}
~— Cdc2-Cyclin~{p1}
—— Cdc2~{p1}
~— Cyclin
—— Cyclin~p1}

20
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T | T
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, k.A.B
CRN Semantics A+ B—C

Differential semantics: concentrations, continuous time evolution

Ordinary differential equations (ODE) % = —k.A.B C;—]j =—k.A.B % =k.A.B

Stochastic semantics: numbers of molecules, probability and time of transition (intrinsic noise)

, _ _ p(Sy), t(Si)
Continuous Time Markov Chain (CTMC) A, B——— C++, A--, B--

Petri net semantics: numbers of molecules A, B - C++, A--, B--
Multiset rewriting
Structural invariants for ODEs
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, k.A.B
CRN Semantics A+ B—C

Differential semantics: concentrations, continuous time evolution

Ordinary differential equations (ODE) % = —k.A.B z—]: = —k.A.B % = k.A.B

Stochastic semantics: numbers of molecules, probability and time of transition (intrinsic noise)

_ _ _ p(Sy), t(Si)
Continuous Time Markov Chain (CTMC) A, B——— C++, A--, B--

Petri net semantics: numbers of molecules A, B - C++, A--, B--
Multiset rewriting ) | eyl
Structural invariants for ODEs o

Cdc2-Cyclin~{p1} ‘ Cdc2
Cdc2-Cyclin~ {p1,p2}
Cdc2-Cyclin~ {p1}

- Cordinetng a2
Cdc2-Cyclin~{p1,p2} ‘ ’ Cyclin~{p1}

Boolean semantics: presence/absence AAB->CA—-AA—-B
Asynchronous transition system AAB->CAAA—-B
AAB->CA—-AAB

AAB—->CAAAB N

Cdc2

Cdc2~{p1}

0 5 10 15 20 25 30 35 40 45 50
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Example of Lotka-Volterra Dynamics

CRN Multiple Semantics

CRN: reaction rules with kinetics
MA (k1) for A+B=>2*B

MA (k2) for A=>2*A
MA (k3) for B=>_

« ODE semantics:

_ffz:= kl*Ax B—k3 % B
dt
%§i=k2*/l—kl*/l*3

sustained osscillations

« Stochastic semantics (continuous time Markov chain):
almost sure extinction of the predator

« Boolean semantics:

Bioregul 2023

list stable states.

[A-0,B-0]
[A-1,B-0]

generate ctl not.

reachable(stable(A))
reachable(stable(notA))
reachable(stable(notB))
reachable(steady(B))

500 —:
400 —:
300 —:
200 —:

100

10
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Model Dynamics Abstractions

Theory of Abstract Interpretation for computer programming [Cousot Cousot POPL 1977]
applied here to the CRN programming language to define
* a hierarchy of CRN semantics

« various CRN typings (making SBML annotations formal) Boolean semantics
Theorem (abstract interpretation—") Galois connections T
between the syntactical, stochastic CTMC, Petri net and Di ( 6
Boolean transition semantics [F- Soliman TCS 2008] ISCrete semantics

Differential semantics
If a behavior is not possible in the Boolean semantics v (ODE)
(verifiable by model-checking) it is not possible in the

stochastic semantics for any reaction rates.

(Petri Net) I

PSe
.
.
.
.
.
.
Pl
.

Stochastic semantics
Boolean model behaviors may correspond to rare events. (CTMC)

Theorem (approximation «"') When volume and molecule numbers _
tend to infinity the ODE trace approximates the mean stochastic trace ~ ieaction set (CRN)
at all time points [Kurtz 1978, 1992]

Bioregul 2023 2 Francois Fages 15
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Computation Domains as Lattices

A computation domain is a lattice D(C, LI,1M) i.e. a poset
@ partially ordered by C approximation ordering (precision loss ordering)
@ existence of least upper bound lub x LIy and glb xIMy

Complete lattice D(C, L, T, U, M) if any subset has lub and glb
E.g. power-set domain P(S)(C,0,S,U,N) ordered by set inclusion
(0: least element, no approximation, S: universal element, greatest approximation

Example (set of possible results or traces of a program execution)

Answer sets of integers P(Z)(<,0,Z,U,N).

Answer sets of signs P({+, —})(S, 0, {+, —},U,N).

Integer vector state transition traces P((N")¥)(<C, 0, (N")¥,U,N): Petri Net traces
Integer vector state transition traces P((N™)?)(C, 0, (N")?,U,N): Petri Net transitions

Boolean traces P(({0,1}")“)(<, 0, ({0,1}")“,U,N) Boolean CRN traces
Boolean transitions P(({0, 1}")?)(<, 0, ({0,1}")?,U,N) Boolean CRN transitions
———

Bioregul 2023 7 vmetr mranets Francois Fages 16



CRN Syntactical Domain

Given a finite set M of molecule names, the universe of all possible reactions is the set
R={f for S=>5S"| S and S’ are multisets over M and f a formal rate function

Definition

The syntactic domain Cr of reaction systems over M is the poset (P(R), C)
with 1 = () the empty model and T = R the universal model.

Remark: Monotonicity of non-deterministic trace semantics a(R): more reactions give
more (stochastic, Petri net or Boolean) traces, R C R’ = a(R) C a(R’)
Remark: Learning CRNs from observed traces can try to

o start from the universal model (most abstract CRN)

o keep only the reactions supported by the data (minimal support CRN)

Bioregul 2023 - Frangois Fages 17
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Domain of Petri Net Transitions

Definition
A discrete (Petri Net) state is a vector of non-negative integers in NIM!.
The domain of discrete (Petri Net) transitions is Dp = (P(NMl x NWMI) Q).

Remark: Discrete states and reactant/product multisets have the same mathematical
structure: |M|-dimensional integer vectors.

Remark: In a given discrete state S, the rate function f of a reaction gets a value
f(S) € R called the weight, intensity or propensity of the reaction (probability after
normalisation).

Remark: For a given volume V) of the location where a compound x, resides, a
concentration C, for a molecule is translated into a number of molecules

Nk = | Cx X Vi X Na|, where N4 is Avogadro’s number, or in practice a smaller
conversion factor (Na = 100 by default in Biocham)

Bioregul 2023 7 s mananati Francois Fages 18



Stochastic Transitions and Gillespie's Stochastic Simulation Algorithm

The universe S of stochastic transitions over M is the set of triplets (S, S’, ) where

propensity T € R and S, S’ are discrete states over M.
The domain of stochastic transitions is Dg = (P(S), Q).

Initialize state S and time t
Let f = ), f,(S) total reaction propensities in state S
Let r1, r» be two independent uniform(0,1) random numbers **- A

Let 6t = —In(r1)/f be the next reaction time a0
(exponential distribution of mean 1/f)
Choose reaction r such that Y /_} fi < nf <35 _, fi
i.e. reaction r with probability f.(S)/f \

© 0 0000

Update S :=S— S5, + S/ and t := t + dt and loop in 2.

Bioregul 2023 - Frangois Fages 19
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What is an Abstraction Formally 7

In what sense can we formally relate, for a given CRN
@ the set of its reactions
@ the set of its Stochastic transitions
@ the set of its Petri net transitions

@ the set of its boolean transitions

as successive increasing abstractions of the CRN dynamics ?

Bioregul 2023 7 s mananati Francois Fages 20



Theory of Abstractions as Galois Connections

; : =" . : : :
A Galois connection C <—~ A between two lattices C and A is a pair of abstraction

a : C — A and concretization vy : A — C adjoint functions:
VceC,Vae A: cCevy(a) © al(c) Ty a )

Bioregul 2023 Francgois Fages 21



Theory of Abstractions as Galois Connections

(8
A Galois connection C :7 A between two lattices C and A is a pair of abstraction

a : C — A and concretization vy : A — C adjoint functions: Yc € C,Va € A
cCcv(a) & alc) Eq a

-
© duality: (A, J4) — (C,Jc) is also a Galois connection
@ 7o« is extensive (precision lost by abstraction)

VceC cCe yoafc) take a = a(c) in the definition
© « o is contracting (precision gained by concretization!)
Vac Aaovy(a)Cy a take ¢ = 7y(a) in the definition

© « and «y are monotonic
cCed=cCevyoa(d) by 2. = a(c) E4 a(d) by def.
aCgb=aovy(a) Ty bby3. = v(a) Cc v(b) by def.

Bioregul 2023 7 s mananati Francois Fages 22
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Pointwise Galois Connections between Powersets

Between powersets, any mapping defined pointwise is monotonic and defines a Galois
connection abstraction.

Corollary

Let C and A be two sets, and o : P(C) — P(.A) be a function such that
a(c) = [ a({e}).
ecc

Then the function y(a) = | Ja~*({ a) forms a Galois connection P(C) <:>: P(A)
between (P(C), C) and (P(A), Q).

a is monotonic since ¢ C d implies | J .. a({e}) € Uycqa({€e'})-
The previous proposition on y(a) concludes the proof.

Bioregul 2023 7 rvrmor mmanets Francois Fages 23
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Abstraction: Syntactic CRN Domain — Stochastic Trace Domain

Definition
Let ars : Cr — Ds associate the set of transition triplets with propensities
{(5,5,f(S) | SeS, (fi for S, =S))eR,5>S5, S=5-5+5]}

Proposition

1 —ARS . . .
Let yrs(s) = Jars (I s). Cr <—~rs Ds is a Galois connection.

Remark: aps is not surjective. Because of the properties of CRN stochastic traces,
e.g.

Bioregul 2023 - Francgois Fages 24
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Abstraction: Syntactic CRN Domain — Stochastic Trace Domain

Definition
Let ars : Cr — Dgs associate the set of transition triplets with propensities
{(5,5,1(5)|SeS, (ffor S, =S))eR, S>S5,,5=5-5+S5}

Proposition

1 —IRS . . .
Let yrs(s) =Uars (1 s). Cr «—~rs Ds is a Galois connection.

Remark: ars is not surjective. Because of the properties of CRN stochastic traces,
e.g. monotonicity (51,S,f(51)) € ars(R) = (52,5 + S2 — 51,1(S2)) € ars(R) for
51 < 5,. The information gained by a o 7 is the elimination of incomplete transitions.

Bioregul 2023 - Francgois Fages 25
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Abstraction: Syntactic CRN Domain — Stochastic Trace Domain

Definition

Let ars : Cr — Ds associate the set of transition triplets with propensities
{(5,5,f(S)) | SeS, (f for S, = S))eR, S>S, =5-5+S5]}

Proposition

1 —>FRS : : :
Let yrs(s) = Uars (I 5). Cr ¢—~rs Ds is a Galois connection.

Remark: aps is not surjective. Because of the properties of CRN stochastic traces,
e.g. monotonicity (51,S5,f(51)) € ars(R) = (52,5 + S2 — 51,1(52)) € ars(R) for
51 < S5,. The information gained by « o 7y is the elimination of incomplete transitions.
Remark: aps is not injective. The same set of stochastic transitions is obtained with
CRN1 = {e for A=>B} and CRN2 = CRN1U {e for 2xA=>A+B}. o« is not the
identity. The information lost is the absence of redundant reactions CRN1 C CRN2.

Bioregul 2023 - Frangois Fages 26
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Abstraction: Stochastic Trace — Petri Net Trace

Trivial forgetful functor abstraction: just forget about propensities.

Let asp : Ds — Dp be the function associating to a set of stochastic transitions the
discrete transitions obtained by projection on the two first components, and

vsp(d) = Uasp ™ ({ d).

e sD
Ds <—~sp Dp is a Galois connection.

Remark: agsp is surjective, but not asp o ars by previous prop.

asp Is not injective as the transition rates are simply forgotten.

Bioregul 2023 7 s mananati Francois Fages 27



Abstraction: Petri Net Trace — Boolean Trace

Let a boolean state be a vector of booleans of dimension | M| indicating the
absence/presence of each molecule in the state.

Definition

The universe B of boolean transitions is the set of pairs of boolean states. The domain
of boolean transitions is Dg = (P(B), Q).

Let app : NMMI — BIMI be the zero/non-zero abstraction ang(v) = (v # 0) and its
pointwise extension from discrete states to boolean states.

Let app : Dp — Dg be the set extension of anp. Let ypp(b) = | Japs™t({ b).

—\ODB . ) )
Dp <—~,5 Dp is a Galois connection.

Remark: apg is surjective but obviously not injective: gets rid of molecule numbers.

Bioregul 2023 7 vmetr mranets Francois Fages 28
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Abstraction: Syntactic CRN — Biocham Boolean Trace Semantics

arg({R — P}) ={(5,5") € B| S > ans(R)
(S A=ans(R)) Vans(P)) < S"<(SVans(P))}

Boolean transitions obtained with possible consumption or not of the reactants.

Remark: Biocham differs from standard boolean PN semantics which consumes all
reactants. For instance, the reaction A+B=>C+D gives rise to 4 transitions:

@ SAAAB — SA—-AA-=BA CA D Question: which fransitions should be associated for
the boolean threshold abstraction ag(v) = (v > 6)

@« SAAAB —SA-AANBACAD instead of zero/non-zero abstraction a(v) = (v # 0) ?

°* SANANB »SNAN-BANCAD Answer: add transitions for production or not of C, D.

e SAAAB —SSANAANBANCAD Reaction synchrony lost: equivalent to influence model
with generalized asynchronous semantics.

For any reaction system R, app(asp(ars(R))) C ars(R). \

Bioregul 2023 7 s mananati Francois Fages 29




Type Checking/Inference by Abstract Interpretation

A type system for C is a Galois connection C —,, A.

The type inference problem is
Input a concrete element x € C, e.g. a CRN

Output its typing a(x), e.g. parameter dimensions.

The type checking problem is,

Input x € C with a typing y € A

Output whether x C¢ v(y)
(correct typing)
or equivalently a(x) C 4 y
(compatible with inferred type)

In linear time for abstractions computable reaction per reaction.

Bioregul 2023 - Frangois Fages 30
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Dimensional Analysis: Typing of Kinetic Parameters

The dimension of parameters (in terms of time and volume)
can be inferred from the rate functions of the reactions

by accumulation of dimension constraints

as a typing abstraction:

biocham: v*A/(k+A) for A => B.
biocham: parameter(k =1, v = 1).
biocham: list_dimensions.

v has dimension time~(-1).volume~ (0)
k has dimension time~(0).volume~(-1)

Typing constraints used:

dim(k) = volume=' A dim(v).volume=!/volume=!

— time1

Bioregul 2023 G
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Typing CRNs by their Differential Influence Graph (DIG)

k1l for => A X.A:k].—k2*XA—k3*XA*XB
k2« [A] for A => _ Xg = —k3 % Xxp * Xg
k3%[A]*[B] for A + B => C Xc = k3 x xp * XB

The differential semantics of a reaction model

R = {f,- for [[ => ri}i=1,...,n

is the ODE system dxy /dt = xx = > i1 vi(xx) * f;
where v; = r; — I; is the stoichiometric change vector of reaction i.

Positive and negative influences can be defined by
the Jacobian matrix J;; = 0x;/0x;

Bioregul 2023 2

Francois Fages 32




Typing CRNs by their Differential Influence Graph (DIG)

A LB if positive influence of molecule A on molecule B
A — B if negative influence of molecule A on molecule B

The differential influence graph (DIG) of a reaction model R is the graph of molecules

. + : - T
VithtwoIkindelored ress azs7(R) ={A t)B | 8x-3/8xA > 0 at some pOI.nt l.n R7 }
U{A =B | Oxg/0xa < 0 at some point in R }

v

kl for _ => A XA = k1 — k2 x xp — k3 * xa * XB
k2*%[A] for A => _ XB = —k3 % x4 * XB
k3*[A]*[B] for A + B => C Xc = k3 x xa * XB

DIG = {ASA, B5A, ASB, B3B, ASC, BSC)

Bioregul 2023 7 s mananati Francois Fages 33
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Typing CRNs by their Stoichiometric Influence Graph (SIG)

The stoichiometric influence graph (SIG) of a reaction model R is defined by
arz(R)= {ASB |3(f forl; =r) €R,
/,(A) > 0 and V,'(B) > 0}
U{A =B | 3(f; for l; = r;) € R,
/,'(A) > 0 and V,'(B) < 0}

arz({B => B+A}) = {B HA}

arz({A + B => B _})={B —A, A —A}

arz({A + C => C+ B })={C SA, A SA, A 5B, C 5B}

arz({A + B => ¢}) = {A 5C, B 5C, A 5B, B SA, A SA, B 5B, }

Proposition

The SIG of n reaction rules is computable in O(n) time

Bioregul 2023 -~ Frangois Fages 34
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The SIG of Kohn's Map of the Mammalian Cell Cycle

Reaction model:
500 variables
800 reaction rules

Stoichiometric Influence Graph:

computed in 0.2 sec.
1231 positive influences
1089 negative influences

No tuple (A,B) with both A 5B and A 5B.

Bioregul 2023
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DIGCSIG

For any reaction model R with increasing kinetics, the DIG is a subgraph of the SIG:
ajI(R) g OzRI(R).

If (A 5B) € asz(R) then dxg/8xa > 0 at some point,

hence there exists a term of the form v;(B) * f; with 0f;/Oxa of the same sign as v;(B).

If v;(B) > 0, then 0f;/Ox4 > 0 and /;(A) > 0 as f; is increasing

so (A 5B) € arz(R).

If on the contrary v;(B) < 0, then 0f;/0xa < 0, contradiction.

The proof is symmetrical for (A —B). O]

DIG# SIG for {k; x Afor A=>_, kyxAfor A=>2xA}
Xa = (ko — k1) * xa can be made positive, null or negative.
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DIG=SIG Condition

Let R be a reaction model with well-formed increasing kinetics and where no molecule
Is at the same time an activator and an inhibitor of the same target molecule, then

(XRI(R) — OAJI(R).

The DIG of a CRN is independent of the kinetic expressions as long as they are
well-formed increasing, and there is no positive—negative influence pairs in the SIG.

The DIG of a CRN with n reactions with well-formed increasing kinetics is computable
in time O(n) if there is no positive—negative pair in the SIG.
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2. CRN Reductions

1. Example of Michaelis-Menten reduction
— Conservation laws
— Quasi-steady state approximation

2. Slow-fast ODE system decompositions
— Tikhonov theorem

3. General notion of CRN reduction by subgraph epimorphism (SEPI)
— Graph-theoretic model reduction operations
— NP-completeness of SEPI detection
— Automatic reconstruction of model hierarchies in BioModels.net
— Comparison between synthetic CRNs and natural CRNs

Bioregul 2023 2
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Michaelis-Menten CRN

An enzyme E binds to a substrate S to catalyze the formation of product P:
E+S 5K C > E+P
E+S <2 C
Mass action law kinetics ODE:
dE/dt = -k1.E.S+(k2+k3).C
dS/dt = -k1.E.S+k2.C
dC/dt = k1.E.S-(k2+k3).C
dP/dt = k3.C

Two conservation laws (species s.t. 2.".-sMi = constant as %"i-; dMi/dt = 0, also Petri net place invariant)
E+C=E+Cjy, S+C+P=Sy+Cy+P

One can eliminate two variables E= E¢+C,-C and P and get the equivalent ODE system with C, S, fixed
dS/dt = -k1.(Eq+Cyp-C).S+k2.C (bad practice to deposit SBML model with invariant eliminated)
dC/dt = k1.(Ep+Cy).S-(k1.S+k2+k3).C

Let us further assume Cy,=0, P,=0

Bioregul 2023 e Francois Fages 39
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Michaelis-Menten Slow/Fast Time Scales

Hydrolysis of benzoyl-L-arginine ethyl ester by trypsin (protein of 223 amino acids)

present (E, 1e-8) . present (S,le-5).
parameter (kl=4e6, k2=25, k3=15).
k1*E*S for E+S => C.

k2*C for C => E+S.

k3*C for C => E+P.

Complex formation 5e-9 in 0.1s

1.400e-8 —
1.200e-8 —
1.000e-8 —
8.000e-9 —

6.000e-9

4.000e-9
] —P
2.000e-9 —E
] —C
0.000e+0

T+
0 0.05 0.1 0.15 0.2
Time

Bioregul 2023

E<<S

Product formation 1e-5 in 400s

1.000e-5 E
8.000e-6 E
6.000e-6 E
4.000e-6 E

2.000e-6 —

0.000e+0 —

informatics gFmathematics
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Quasi-Steady State Approximation (QSSA)

Vmax

After short time assume dC/dt =~ 0 = k1E;S-(k1S+k2+k3)C
Then C = K1ES/(k1S+k2+k3)

= EoS/(S+(k2+k3) /k1)

= EoS/(K+S) with K,=(k2+k3)/k1
Km is substrate concentration with half maximum velocity Km

Vmax/2

Reaction velocity v

We get dP/dt = -dS/dt = -k1(E,-C)S+k2C
= -kK1ES + (k1S+k2) E¢ S / (K, +S)
=VnS/(K,+S) where V= k3Eg

Vi is maximum velocity at saturing substrate concentration

Substrate concentration [S]

Michaelis-Menten kinetics: Vv, S/ (K,+S) for S => P

Leonor Michaelis and Maude Menten 1913  Victor Henry (X) 1903

C and E are eliminated but sometimes E is re-injected as a slow variable...
k3*E*S / (K,+S) for S+E => E+P

Bioregul 2023 -~ Francois Fages 41
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Slow-Fast ODE Decomposition and Reduction to Slow Dynamics

Tikhonov theorem.
Consider an ODE system defined for (X,Y) € R"XR™
dX/dt = f(X,Y)
edY/dt = g(X,Y) withe <1
suchthatforX e U g(X,V) =0 VY =GX)with (X, Y)e W
and G (X) is an asymptotically stable fixed point for the fast subsystem
then,
for any initial condition (X0,Y0) s.t. YO belongs to the basin of attraction of G (X0) for the fast subsystem,
the solution (X(t),Y (t)) tends to (x(t), G(x(t))), when € — 0,
where x(t) is the solution of the slow subsystem dx/dt = f(x, G(x)) with initial condition X0.

« Limit theorem with no bound on the error.
« Solution Y=G(X) may be difficult to express and stability difficult to prove.
« Different decompositions for different regimes lead to an automaton of reduced ODE systems with gluing pb

informatics gFmathematics
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Model Reductions on the CRN Hypergraph Structure by
Subgraph Epimorphisms [Gay - soliman eccs 2010]

Reaction hypergraph represented by bipartite graph of species and reactions.

SEPI: merge r1 r3 delete r2 SE SEPI, SISO: delete E
{rule; - rule, rule; - rule, SE —»1, rule, —>1} {E ->1}

Model reduction by 4 graph edition operations:

* Delete (irrelevant) species nodes

« Delete (neglectable) reaction nodes

« Merge (similar) species nodes ) EPI: epimorphism

* Merge (chain) reaction nodes

A graph morphism from G to G’ associates G’ hodes to G nodes and preserves G arcs

Theorem. Let G = (S, R, A) and G' = (S', R', A’) be two reaction graphs.

There exists a subgraph epimorphism u from G to G' if and only if there exists a finite sequence
of delete and merge operations that, when applied to G, yield a graph isomorphic to G'.

) SISO: subgraph isomorphism
SEPI: subgraph epimorphism

Bioregul 2023 -~ Francois Fages 43
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Detecting the Existence of a SEPI between CRN Graphs

E = D
5 = A g4 I >®
P » B

merge{ ; _; : ' L

delete d — _ \

delete C — _ @ 4L ’@

Theorem. [Gay Martinez F- Soliman Solnon DAM 2014] Let G = (S, R, A) and G' = (S', R', A’) be two reaction graphs.
Deciding the existence of a subgraph epimorphism p from G to G'is NP-complete.

« Implemented in Biocham using Constraint Logic Program or SAT solver.
« Some timeouts in BioModels for models above 100 species

* Non-unique sepi-glb(G, G’) nor sepi-lub(G,G’) which combines details of G and G’ for free!
* No good algorithm to restrict the merge operation to neighboring species or reactions (as in graph minors)
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SEPI-detection of Metamodels in BioModels

MAPK metamodel: B o 026_Mark

010_Khol 029_Mark 031_Mark

Calcium oscillation metamodel:

Circadian clock metamodel:

Also used to compare synthetic CRN to natural CRNs (next evening lecture) [F- Le Guludec Bournez Pouly CMSB 2017
Hemery F- CMSB 2023 ?]
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Model Reduction Methods for CRN versus ODE Models

SEPI
i(x)
{R;j(x ) A ) Pi(x)} CRN —_— crn Programming language
A A A
| [ |
| | I
| | |
'[3] '[3] ' decompiler
| | |
I, . . . | |
z p R.(x). F(x) Y invariant elimination” v
jECRN( (%) i) £ ODE — ode bAssembIer code
Algebraic & slow-fast -
transformation decomposition [4] Optimization
x=¢€.f(x,y)
y=g9xy)

[3] Frangois Fages, Steven Gay, Sylvain Soliman. Inferring Reaction Systems from Ordinary Differential Equations. TCS 2015.
[4] Sylvain Soliman, Frangois Fages, Ovidiu Radulescu. A constraint solving approach to model reduction by tropical equilibration. AMB, 2014.
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4. Temporal Logics as Specification Language of CRN Behaviors

How to query the possible transitions of Kohn’s map (1999) of the cell cycle ?
By model-checking ! [chabrier F- CMSB 2003, Bernot Comet Peres Richard CMSB 2003, Lincoln et al PCB 2002]
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Transcription of Kohn’s Map in Reaction System

Detail of the complexation of cdk2 with cycA and cycE : O ‘ﬂ‘.’ i
Total: mﬂ@k_l St
- 165 proteins and genes co6 =1 os| | PEat(edk2
-> 532 variables "ﬁ‘\%“_—’ Ei5
> 732 reactions Q'CT@ - e

No kinetics

Boolean state transition semantics:

* Asynchronous: selection of one reaction firing at a time: A+B => C

» Non-deterministic: selection of one Boolean transition for that reaction:
AAB->CA—-AA-B
AAB->CAAA—-B

AAB—->CA—-AAB
AAB—->CAAAB

» zero/non-zero abstraction of the stochastic/Petri net transitions (first course)

Bioregul 2023 S Frangois Fages



Symbolic Representation of Boolean Transition Systems

How to represent a transition system over
« 532 boolean variables ?
o 2932 ~10"7 boolean states ?? >>1080 the number of atoms in the observable universe
. 22°% gets of boolean states ???
Represent a set of states by a Boolean constraint over n Boolean variables:
False: empty set
True: full set of 2532 states
A: set of 2531 states where A is present
« Av— B: set of 3.2530 states with either A present or B absent
« Of course some (bad) sets require formulae of exponential size
Represent a transition relation by a Boolean constraint over 2.n variables
* R(A4 .., Ay A4, ..., A’,) disjunction of the relation associated to each reaction
 Reaction A+B => C transition relation over set of species {A,B, C, D, E} ?
ANBANC' ' AN(D'=D)A(E'=E)
i.e. C appears (C' is true) A and B may disappear, D, E remain unchanged
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Kohn’s Map Model-Checking

BIOCHAM NuSMV symbolic model-checker time in seconds [Chabrier Fages CMSB 2003]

Initial state G2 Query: Time:
Compiling of the set of initial states 29s
and transition system

Reachability of G1 phase | EF CycE 2s
Reachability of G1 phase | EF CycD 1.9s
Checkpoint —E (—Cdc25Nterm U Cdk1Thr161-CycB 2.2s
for mitosis complex
Oscillations CycA EG ( (EF — CycA) A (EF CycA)) 31.8s
Oscillations CycB EG ( (EF — CycB) A (EF CycB)) 6s
false ! (omission of CycB synthesis in Kohn’s map)

Bioregul 2023 - Frangois Fages



Computation Tree Logic CTL*

Infinite computation pathways.

Propositional logic with modal operators for qualifying when (in logical time future)
and where (on which computation path) a Boolean proposition is true.

Introduced for program verification and program synthesis in [Pnueli 1977]

\ Pathways E A

Time Exists path | All paths

X next EX(d) AX()

F EF(¢) AF(9)
finally reachability | liveness

G EG(¢) AG(9)

globally safety
U until E (0 Udy) | Ald U ¢)

Bioregul 2023
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Time

.......

Pathways E,A

\/\ AG

\EF
/
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Kripke Semantics of CTL*

A Kripke structure K=(S,R) is a set S of states with a total relation RcSxS
The truth of a formula ¢ in a state s or on a path © of K is defined by:
n = ¢ for a state formula ¢ if s = ¢ where s is the initial state of =

s £ ¢ if ¢ is a propositional formula true in s

s = E ¢ if there is a path = starting from s such that © = ¢ Exists path

s = A ¢ if for every path & starting from s such that n & ¢ For all paths

nE X ¢if n' = ¢ where i is the suffix of © without its first state At next time point
n &= F ¢ if 3 k 2 0 such that nk = ¢ where nk is the ki suffix of © At some time point
TtEGoiIfVK20,nkE At all time points
TEQUQIFIKZ0O(KEpLAV|<kdEd ) Until

TE) R§pifVKZ0O(nkEdp vIj<kadEd ) Release

Dualil‘y:—.Ed): A—|(I), —|F(|)= G_Id),_IX¢= X—|(1), —|((|)1U(|)2)= _'4)1R_‘(|)2
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CTL Fragment of CTL*

In CTL fragment, each temporal operator must be preceded by a path quantifier

Basis of three operators: EX, EG, EU

« EF ¢ = E(true U ¢) sEEF¢if Anfroms Ik=20 nkE ¢
« AXop==-EX=¢ sEAX¢If Vafroms n' = ¢

« AFo=—-EG—-¢ sEAF¢if Vafroms Ik=20 nkE¢
- AGo)=—EF-9¢ sEAGoifvrnfroms VK20, nkE ¢
« Etc...

Any CTL formula is thus a state formula and can be identified to the set of states that satisfy it
d={seS:sE¢} [Emerson 90]

Example in metabolism: EF(product) = {metabolites : present metabolites = EF(product) }
a symbolic model-checker returns a set (or the sets) of metabolites sufficient for the production

Bioregul 2023 s e Frangois Fages



Biochemical Reachability Properties in CTL
(from some initial state)

Initial state = initial biological conditions = molecules present / absent (/ undetermined)

» Can the cell produce some protein P (from initial state) ?
— EF(P) £ reachable (P)

» Can the cell produce P, Q and not R?
— reachable (P"Q"—R)

About pathways:

» Can the cell reach a given set s of states while passing by another set of states s,?
— EF(s,”EFs)

» Is it possible to produce P without Q before ?
— E(—Q U P)

» If not, this gives a phenomenological non-causal notion of checkpoint \q

@W@@%@
— —E(—s, U s) £ checkpoint(s,, s) h@© 5@@ \ﬂ@@
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Biochemical Reachability Properties in CTL
(from some initial state)

« Is a given set of states s a stable state set (infinite loop with no escaping possibility)?
— stable(s) £ AG(s)

« Is s a steady state (infinite loop with escaping possibility) ?
— steady(s) = EG(s)

« Can the cell reach a given stable state s?
— reachable(stable(s))
alternance of path quantifiers EF AG ¢ (not expressible in LTL)

» Must the cell reach a given stable state s?
— AF (stable(s))

« What are the stable states?

— Not expressible in CTL.
needs to combine CTL with enumeration, see Biocham generate ctl (stable(s))

Bioregul 2023 i Frangois Fages



Oscillation Properties in CTL*/CTL

CTL* EG((F —P) ~ (F P)) expresses possibility of oscillation but is notin CTL
CTL: EG((EF —P) ~ (EF P))provides a (weaker) necessary condition for oscillation

 not sufficient condition for oscillations without fairness:

O

—>—|P

« also with weak fairness (no rule stays continuously fireable without being fired)

Py

P —>_IP

|

P,Q
* Needs strong fairness (no rule is infinitely often fireable without being fired)
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Basic CTL Model-Checking Algorithm

Dynamic programming algorithm for computing the set of states satisfying a CTL formula:

{seK:s E ¢} in a finite Kripke structure K.

Represent K explicitly by the finite graph of all state transitions
and iteratively label the nodes with the subformulas of ¢ that are true in that node:

Add proposition ¢ to the states satisfying ¢

Add EX ¢ to the immediate predecessors of the states labeled by ¢
Add EF ¢ to all the predecessors of the states labeled by ¢

Add E(¢1 U ¢2 ) to the predecessor states of $2 while they satisfy ¢1

Add EG ¢ to the states of the subgraph satisfying ¢ which are on a path leading to a
non trivial (i.e. containing at least one edge) strongly connected component.

Space and time in O(|K|*[d]),
CTL model-checking is Ptime-complete in non-succinct (explicit) representation of K

Bioregul 2023
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Bioregul 2023

Example

Apply the previous basic model-checking algorithm to show

O

P

Subformulae:
P 1
- P 0
EF P 1
EF —P 1
(EF —P) ~ (EF P) 1
EG((EF —P) ~ (EF P)) 1

P E

oo —~ o -~ O

informatics gFmathematics
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Symbolic CTL Model-Checking Algorithm

Represent a set of states by a symbolic boolean constraint c(V) over state variables V
e.g. p V —q represents the set of all states where p is present and q absent

Represent the transition relation by a boolean constraint r(V,V’) on twice state variables
e.g. the constraint p v (=p A —p’) represents the transition graph p - —p

O

Represent CTL operators by state constraint transformers
e.qg. [EX(c(V)]=3av'r(V,V)Ac(V") £ ex(c(V))
constraint of having one immediate successor r(V,V’) satisfying c(V’)

e.qg. [AX(c(WV)]=vWV'r(V,V) =cV") 2 ax(c(V))
constraint of having all immediate successors r(V,V’) satisfying c(V’)

Returns Boolean state constraints to satisfy an input CTL formula

Bioregul 2023 ;’ s Frangois Fages



TP Chemical Signalling

http://lifeware.inria.fr/biocham4/online/notebooks/C2-19-Biochemical-Programming/22ctl.ipynb

Growth factor
Receptor
In [24]): expand_ctl(checkpoint(A, B)).
Out[24]: not EU(not A,B)
(" SEREEREEE MAPKKK
In [25]: expand_ctl(checkpoint2(A, B)). !
--------- MAPKK
Out[25]: not B/\EF(B)/\not EU(not A,B) @‘:E:>
@R - MAPK
In [26]: check_ctl(query:checkpoint2(KKpp,Kpp)).
Out[26]: Trace: //////?/:;’“————_——ﬁ“‘\\\\\\\
present({E1, KKK, E2, KK, KKPase, KKpp, K, KPase, Kpp}). ® f
= " Transcription

checkpoint2 (KKpp,Kpp) is false

In [27]: check_ctl(query:checkpoint(KKpp,Kpp), boolean initial states: some).

Out[27]: Trace:
present ({E1, KKK, E2, KK, KKPase, KKpp, K, KPase}).

checkpoint (KKpp,Kpp) is true

Bioregul 2023 s intormatics SFmacramoics Francois Fages


http://lifeware.inria.fr/biocham4/online/notebooks/C2-19-Biochemical-Programming/22ctl.ipynb

Logical Paradigm for Systems Biology

Use of model-checking algorithms [Lincoln et al. 2002] [Chabrier Fages 2003] [Bernot et al. 2004]...

Biological process model = State Transition System K
Biological property = Temporal Logic Formula ¢
Model validation = model-checking: K, s E? ¢

Model reduction = model-checking: K'?cK K', s E ¢

Static experiment design = model-checking: K, s? = ¢

Model behaviors = enumeration of true formulae: K, s & ¢?
Model Inference, dyn. exp. design = constraint solving: K?, s? £ ¢

Generalizations to quantitative temporal logics
*  FO-LTL(Rj) [Rizk, Batt, F, Soliman 09] STL [Donze Maler 12] parameter search, robustness
« SAT modulo ODE [Gao clarke 2012] formal verification on parameter range

=)

X
c+x4

« CRN synthesis: K?, s?  reachable(stable(y =

Bioregul 2023 ;’ S - Frangois Fages



First-Order Linear Time Logic FO-LTL(RR;,)

1 FO-LTL(R) closed formulae

e Syntax and semantics on a trace
e Model-checking algorithm, parameter search by scanning

2 FO-LTL(RRj;,) constraints with free variables

e Syntax and validity domain semantics on a trace
e Constraint Solving algorithm

3 FO-LTL(Ry,) continuous satisfaction degree

e Parameter optimization by evolutionary algorithm
e Robustness and parameter sensitivity estimation

F. Fages, P. Traynard. Temporal Logic Modeling of Dynamical Behaviors: First-Order Patterns and Solvers. In Logical Modeling of Biological
Systems, pages 291-323. John Wiley Sons, Inc., 2014.

A. Rizk, G. Batt, F. Fages, S. Soliman. Continuous Valuations of Temporal Logic Specifications with applications to Parameter Optimization and
Robustness Measures. Theoretical Computer Science, 412(26):2827-2839, 2011.

Aurélien Rizk, Grégory Batt, Francois Fages, Sylvain Soliman. A general computational method for robustness analysis with applications to synthetic
gene networks. Bioinformatics, 12(25):il69-il78, 2009.

F. Fages, A. Rizk. On Temporal Logic Constraint Solving for the Analysis of Numerical Data Time series. Theoretical Computer Science,
408(1):55-65, 2008.
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Interpretation of FO-LTL(IR) Formulae over Finite Traces

Trace (experiment or simulation): i 2

State variables: time, concentrations A.

Closed arithmetic propositions over state variables (no free variable)
Temporal operators: X, F, G, U, R

Minimum threshold reachability: F([A] > 0.2)
Minimum threshold stability: G([A] > 0.2)

Reachability of stable state: FG([A] > 0.2)
Curve fitting:

F(Time == 1A[M] ==0.05 A F(Time ==2A[M]==0.12A[M] ==0.12A ..

Bioregul 2023 -
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FO-LTL(R) Verification Algorithm

Input: A finite trace m and a FO-LTL(R) formula ¢

Output: whether or not 7 = ¢

1 Complete the trace with a loop on the last state
2 lteratively label the states with the sub-formulae of ¢ that are true:

3 Return true if the initial state is labelled by ¢, and false otherwise

Bioregul 2023

Add state proposition labels to the states where they are true
Label X¢ the immediate predecessor of any state labeled by ¢,

Label ¢ U 1) the predecessors of any state labelled by 1) while they satisfy ¢,
Label ¢ R 9

the last state if it is labelled by ),
the states labelled by ¢ and v

their successors,

and their predecessors while 1 holds

informatics gFmathematics
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Parameter Scanning for Satisfying an FO-LTL(RR) Formula

input: a parametric CRN R(k) with B
n kinetic parameters k given with range [k;, k;], step size s;
and an FO-LTL(R) formula ¢ to satisfy over time horizon T

output: (fail or) parameter values v such that
7(v) = ¢ where w(v) is a simulation trace of R(v) up to time T

1 Scan the parameter value space M7[k;, k;] with a fixed step size s; for each
parameter k;

2 Test whether 7(v) = ¢ by model checking

3 Return the first value set v which satisfies f

Exponential complexity in the number n of parameters O((k;K)")

Bioregul 2023 7 s mananati Francois Fages 66



From “Generate and Test” to Guided Search

The True/False valuation of temporal logic formulae is not well adapted to several
problems :

e parameter search, optimization and control of continuous models
e quantitative estimation of robustness
e parameter sensitivity analyses

— one would like to use the temporal logic formulae to guide the search
— need for a continuous degree of satisfaction of temporal logic formulae

How far is the system from verifying the specification ?

Bioregul 2023 T e Francois Fages 67
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Model-Checking Generalized to Temporal Constraint Solving

[ﬁ«] T
10p---- R AR R R R
o4
+ + +
+ + +
+
) D AP
>time
LTL(R)
O=F([A]=7
AF([A]=0))
~
Model-checking

~

the formula is false

Bioregul 2023 7 s mamenans Frangois Fages 68
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Model-Checking Generalized to Temporal Constraint Solving

N T
10f---- R
* 4
* + -
+ + *
+
) DU L T
> 4 >
time ¢ X
LTL(R) . QFLTL(R)
O=F(Alz7 | O*'=F((Al=x
AF([A]<0)) AF([Al=y))
P : e
Model-checking | Constraint sgl‘ving
/ the formula is true for any
the formula is false  vd=2 sd=1/3 | x<10 A y=2

Bioregul 2023

validity domain
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Model-Checking Generalized to Temporal Constraint Solving

[i\l P
10p---- e A I
oy
+ + +
- + 7
+
3 EE—— L
> 1 »
time ¢ X
LTL(R) : QFLTL(R)
O=F(Alz7 | O*'=F((Alx
AF([A]<0)) AF([Al=y))
s : o
Model-checking | Constraint sgl‘ving
the f 1a is fal d=2 sd=1/3 the formula is true for any
clormialisidse  ve=s s¢= x<10 A y=2 validity domain

Violation degree vd( T, ¢) = distance(Dy-(T), val(¢)) to objective values in ¢
Continuous satisfaction degree sd(T, ¢) = 1+Vd1(-,- e [0, 1]
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FO-LTL(R/;,) Constraints with Free Variables

@ Free variables x, y, ...

@ Linear constraints as atomic propositions
@ Logical quantifiers Vx dy

@ Temporal operators: X, F, G, U, R

maximum(A,x): G(A <= x) A F(A >= x)
local_maximum(A,x): F(A < x A X(A >= x A X(A <= x)))
decrease(A,x): A >= x A X(A <= x)

decrease(A): Ix A >= x A X(A <= x)

peak(Ax,t)): A< xAX(A>=xAX(A<=x)A Time = t)

Bioregul 2023 G
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Validity Domains of Free Variables

FO-LTL(R/;,) formula ¢(y) with free variables y

The validity domain of ¢(y) on a finite trace T is the set of values x where ¢(x)

holds: DT,¢(y) — {X e RY | T |= (b(X)}

Linear constraints over R define polyhedra
Validity domains D 4(y) are finite unions of polyhedra

e polyhedra for linear constraints,

e intersection for conjunction and G
e union for disjunction and F

e complementation for negation,

e projection for 3

— Finite unions of polyhedra
BIOCHAM uses the Parma Polyhedral Library PPL

Bioregul 2023 G
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Inductive Definition of Validity Domains

The validity domain D 4 of the free variables of ¢ on a trace T = (sp, ..., sp) is the
vector Dy, 4 of least domains satisfying

D c(x) =1{v € R¥ | s; = c[v/x]} for a constraint c(x),
Ds;.pnp = Ds;,p N Ds;y, @and Ds, gvy = Dy ¢ U Dy,

Dsi’ﬁqb — [: Dsi7¢'
Ds; 3xp = NxDs; ¢, and Dg, yxp = Ds; ~3x-¢:
Ds, x¢ = Ds,,,,¢ if i < n, and D, x¢ = Ds, ¢,

Ds. k¢ = Ui=; Ds;,¢, and Dg, g4 = ();_; Ds; 6,
—1
Ds.puyp = U_;,:I'(Dsja"p M Wk:ipsk,fb)-

where [ is set complement over domains,
[1, is domain projection out of x, restoring domain R for x.
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Continuous Satisfaction Landscape of FO-LTL(RR};.) Objective

Example with :
@ yeast cell cycle model [Tyson PNAS 91]
@ oscillation of at least 0.3
¢*: F( [A]>x) A F([A]<y); amplitude x-y>0.3

- - 100 | Violation degree in parameter space
s g .
-4 0.18
0.16
0,14
0.12
-— 0.1
tE 0.08
E 100 ! 0.06
S 100 = = 0.04
x\' 1 0.02
0
10t
L A J ]() ]_ &)
0. 10 0 : s
o 2 = min”! . . .
B ATION AIaPram ; N _dlagram
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Covariance Matrix Adaptation Evolutionary Strategy

CMA-ES maximizes a black box fitness function (here sd(¢)) in continuous domain
(here parameter values) [Hansen Osermeier 01]

1 probabilistic neighborhood: multivariate normal distribution

2 estimation of covariance matrix by sampling (e.g. 50 best parameter set points
from 100 random points simulations)

3 distribution (ellipsoid) update according to covariance matrix

Generation 1 Generation 2 Generation 3

JE .k

Generation 4 Generation 5 Generation 6

Y25

intormatics S meshematics Francois Fages 75
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Parameter Optimization with Period Objective

@ Pb : find values of 8 parameters such that period is 20
formula:F(local_max(MPF) ATime=t1A F(local_max(MPF) ATime=t2) ) A
z=t2-tl
objective pseudo period: z=20

@ Solution found after 60s (200 calls to the fitness function)
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Oscillations in MAPK signal transduction cascade

@ MAPK signaling model [Huang Ferrel PNAS 96]

I

)

e search for oscillations in 37 dimensions (30 parameters and 7 initial conditions)
Solution found after 3 min (200 calls to the fitness function)

® No negative feedback in the reaction graph, but negative circuit in the influence
graph (necessary condition)
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Robustness Measure Definition

Robustness defined with respect to :
@ a biological system
@ a functionality property D,
@ a set P of perturbations

@ General notion of robustness proposed in [Kitano MSB 07]:
Rap = [ Du(p) prob(p) dp
peP
@ Computational measure of robustness w.r.t. FO-LTL(IR;,) by sampling:

Rep =Y _ sd(T(p),) prob(p)
peP

where T(p) is the trace obtained by numerical integration of the ODE for
perturbation p
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Robustness measure w.r.t parameter perturbations (extrinsic noise)

Example in cell cycle model [Tyson PNAS 91]

¢*: F( [A]2x) A F([A]l<y) Az>x -y

amplitude objective z = 0.2

parameters normally distributed with coefficent of variation 0.2

s Violation degree in parameter space

100}

s
k‘, min

0%

k6' min

Rep, =0.83, Ry pz = 0.43, Ry p. = 0.49
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4. Case study on coupled modeling of the cell cycle and circadian clock

« Time gating for mitosis by effects of clock genes on cell cycle genes

inhibition of Wee1 synthesis by Clock-Bmal1 [Matsuo et al 2003]

« Model-based predictions on conditions of entrainment [Calzone Soliman 2006] and period doubling (24h, 48h)

phenomena [Gerard Goldbeter 2012]

« also repression of c-Myc by Clock-Bmal1 and inhibition of p21 by Reverb-«a

Tlme cues

“ Central
Ylock

Behaviowr

/‘ocal

clocks

- \
3

Bioregul 2023

Mormont MC, Levi F.

Cancer chronotherapy: principles, applications, and perspectives.
Cancer, 2003.
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Formal Behavior Specification in Temporal Logic

« Linear Time Temporal logic (LTL) extends classical logic with time operators X: next, F: finally, G:
globally, U: until
— Reachability of a stable set of states FG(s)

» First-order LTL with linear constraints, FO-LTL(R;,), express quantitative properties about
concentrations:

— Reachability of threshold F(x>c)
— Maximum value G(x<v)

<>
— Distance between successive peaks
— Amplitude of next peak I

— Period constraints
— Phase constraints ...
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Cell Cycle Model [qu-McLellan-Weiss Model 2003]

— Focus on G2/M phase
— 10 molecular species including Wee1
— 31 kinetic parameters

42-
40-
38-
36-
34-
32-

030~
éza-
26-
24-
22-
20-
18-

00 01 02 03
kdie

Variation of the cell cycle free period
by kdie degradation rate constant
(important in growing G1 phase)

Bioregul 2023

informatics gFmathematics

WEE1

-
-
-
-

— ]
Cdc25P

MPF

c2sp/
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Circadian Clock Model [Leloup Goldbeter 03]

— 19 species, 70 parameters
4 genes: Per, Cry, Rev-erb a, Bmal1
2 negative feedback loops:

* Per-Cry
* Rev-erb a
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Coupled Circadian Clock Model = Cell Cycle [calzone soliman 2006]

Cell cycle Circadian cycle kimpf=0.01 kimpf=0.8 kimpf=1.5
Weel| 00 Z_.
e e . | BMAL1/CLOCK .
e ¥ T
o 3 o b
/ Weel M -+
: ' [—y it ‘\_\-- L PER/CRY
: —'—’._i_ preMPF il
! . b
Cde25P
Cde25 il
\b::
Time gating of mitosis hypothesis [Matsuo et al 2003] Entrainment conditions on parameter values

Coupling synthesis reaction of Wee1activated by Bmal1 repressed by Per-Cry:

(ksweemp+ksweem* [Bmall]) / (Kweem+kwpcn* [PC]) for __ => mWeel
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Irinotecan Exposure Chronotherapy Optimisation [pe Maria F- Soliman 7¢s 2011]

Coupled cycle-clock-p53Mdm2-Irinotecan model

Cell cycle Woel < Brall L Circadian clock

iy /
CycA CycE Bmall m
/\1321 / / / "1 on safe cell
[ DNAdan Topl »
P53 E DDDDDD
[ p53/Mdm?2 } DNA damage Irinotecan H Injection control }
Optimal control of drug exposure J : ) / A
* max pulses satisfying always DNAdam<1 on safe cells h
« and DNA damage>1 on phase shifted cells
| / Ry ” shifted phase
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Unexpected Acceleration of the Clock at high FBS in NIH3T3 Fibroblasts

Time series data in individual mice fibroblasts [Feillet Delaunay 2012]
Fluorescent markers of the cell cycle and the circadian clock (RevErba)
Medium with various concentrations of serum (FBS)
 FBS modulates the cell cycle frequency
* No observed time gating for mitosis
» But observed acceleration of the circadian clock

in fastly dividing cells ! and not in confluent cells (24h)

FBS 10% - Cell cycle 22h - Circadian clock 22h, phase 7h

FBS 15% - Cell cycle 19h - Circadian clock 18h, phase 7h

== Clock Period o Cell Cycle Period

§ 30 70 ‘ 20

o 25 10% FBS 15% FBS 20.14 A e

8 20 = : 1 S

0.1 i

s o a0\ 10-2

prd 30 (@) \ 2

® a0 0.06 L |5 O

= /

a5 | 7 | 10 0.02 ___/ \\

< LAl — 0 a2 = 32r 2x
10 20 30 40 10 20 30 40
Period [h] Period [h] Clock Phase

Statistical model 1:1, 5:4, 3:2 phase locking [Feillet et al Delaunay Rand PNAS 2014]
Bioregul 2023 s’ v Frangois Fages



Mechanistic Model for Reverse Effect Cell Cycle = Clock

[Traynard, Feillet, Soliman, Delaunay, F., Biosystems 2016]

D=0

Hypothesis 1: Uniform inhibition of gene transcription during mitosis
« Entrainment in period
* No entrainment in phase

Hypothesis 2: Selective regulation of clock genes during mitosis

« Entrainment in period and phase fitted to experimental data

* Prediction of Reverb up-regulation or of Bmal1 down-regulation during mitosis
* Proposal of experiment at FBS 5% to discriminate between the two
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Relogio-Herzel Model of the Circadian Clock (2011)

ROR, - RBR loop

cytoplasm &

« 20 species, 71 parameters

» 60 parameters fitted to liver cell data
— amplitude, period and phase data

* Per, Cry, Reverb, Ror, Bmal genes

Reldgio, A., Westermark, P. O., Wallach, T., Schellenberg, K., Kramer, A., & " ToTR A -
Herzel, H. (2011). Tuning the mammalian circadian clock: robust synergy of two :
loops. PLoS Computational Biology.

7 Ror::nucl
RevErb::nucl
6 Bmal-Clock::nucl
Cry-Per::nucl
5 =
4
3
2 =
1 =
/\/\M -
0 1 1 1 1 Fiaure S1 PC loop
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Hyp. 1: Uniform Inhibition of Transcription during Mitosis [kang et al. 2008]

J

R
(" cell cycle weer) == [weme ) )

~—/

/Per-Cry L—-\

/@\ m* > (e ) ?i N
=) -,
_ - - )

Rev-erba

X
@)
=

« Correct acceleration of both the cell cycle and the circadian clock

/\ [ /\\ \ / /\ ﬁ‘\ [ /\‘ :R E_b |
st [T ] == e
- Butimpossible to fit the observed phase shift 2 /\ / /\ L /U\
between cell division time and RevErb peak TAVAVAVAVAVAVAVAL

— Experimental phase: 7h
— Model phase: 18h
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Hyp. 2: Selective Regulation of Clock Genes during Mitosis

" Cell Cycle

(Z]

WEE1

WEE1P \
| preMPF |

\

m
\ CDC25

/ MPF
'\?’
CDC25P /

Correct fit of period and phase experimental data

playing with only coupling strength regulation parameters

Two sets of parameter values fit the data:
» either down-regulation of Bmal1
« or up-regulation of RevErba during mitosis

Bioregul 2023

i| Per-Cry k-\
\ | Bmall
I| Rev-erba / g 5
'l Ror /

Parameters First set | Second set
Synthesis coefficient for Per 0.66 2.40
Synthesis coefficient for Cry 2.30 0.67
Synthesis coefficient for RevErb-a 1.04 1.92
Synthesis coefficient for Ror 2.1 1.51
Synthesis coefficient for Bmall 0 0.78
Duration 2.97h 2.81h
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Hypothesis 2: Results and Predictions

Results: Inhibition of Bmall or Activation of RevErb
§5 38 = Cell cycle period
28- 284 \ = Circadian clock period
%2 %‘61 = Time after mitosis
22- 22
20- 20- oo
18- 18- =
164 16
14+ 14+
12+ 121
10+ 10
8- 8-
6_ 6_ f‘m
4- [ 4]
2- 2+
0_ T T T T T 0- T T T T T
0.05 0.10 0.15 0.20 0.25 0.05 0.10 0.15 0.20 0.25

kdie kdie
Prediction: different behaviors for a slow cell cycle (5% FBS)

3.5

1

Score for the property:
>4 The cell cycle and the circadian
oo  clock have the same period

timeinhib

Stronger control of
the clock by the

divisions 0
0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
kdie
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Model Predictions for Treatment by Dexamethasone

0

Dexamethasone synchronize cellular clocks, but complex dynamics observed
Medium | Clock period | Division period | Mean delay ol [
FBS 10% | 242h+£05h |201h+094h [ 10.7h

FBS 20% | 21.25h +0.36 h | 19.5h +042h | 8.3 h
29 h+1.05 h 16.05 h+0.48 h | 6h/12h/22h ST E AT

Density

0

Interpreted as 5:4 and 1:1 locking modes for 10% FBS and 3:2 and 1:1 for 15%

[ ]
[C. Feillet et al. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle., PNAS 2014]

In our model, Dex pulse is modeled by induction of a high level of Per.

— Clock perturbation varies according to the time T of the pulse
— Stabilization of the clock may occur well after the 70h of observed data...

peak-peak distance in - NN o A
. 28 1 | N | “ | “ “‘ 28 | \“ x} |
[18.8,22.7] with T=162h = | |
241 | | \\ “‘ | | 24l | ‘ “\
[20.9, 21.7]with T=170h [ | HEIRTRERERYRE
IRAVERY oy R R VA A VA R VY
1.8 \ 1.8

16 L L L L L L L
160 180 200 220 240 260 280 300
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Conclusion on CRN Modeling and Programming Language

Programming theory of biological processes can provide efficient

* Model building methods (modular, updates, testing, continuous integration, GitHub ...)
« Model analysis methods (graph theoretic, abstract interpretation, model-checking, ...)
« Before using classical mathematical analysis methods

High-level CRN modeling/programming language
« Hierarchy of semantics ODE, CTMC, Petri Net, Boolean

« Explicit graph structure allowing for efficient analyses
— Model comparison in the large by subgraph epimorphism SEPI
— Graphical conditions for ODE conservation laws (P-invariants), extreme fluxes (T-invariants), rate-independence

— Graphical requirements for multistationarity in CRNSs [Baudier F- Soliman. Journal of Theoretical Biology, 459:79-89, 2018]

e Usedin ‘ BIOCHAM modeling platform
— together with temporal logic language to specify desired behaviors, verify and optimize them

Next lecture: abstract CRN synthesis to implement input/output functions and comparison to natural CRNs
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