
Actes JFPC 2021

Ddo, un cadre générique et performant pour
l’optimisation à base de diagrammes de décision

Xavier Gillard∗ Pierre Schaus Vianney Coppé
UCLouvain, 1348 Louvain-la-Neuve, Belgique

{xavier.gillard, pierre.schaus, vianney.coppe}@uclouvain.be

Résumé
Cet article est un combine et résume les articles sui-

vants : [6, 5]. Il présente ddo, une bibliothèque générique
et performante pour résoudre des problèmes d’optimisa-
tion à l’aide de diagrammes de décision. Pour ce faire,
notre bibliothèque implémente l’approche par "branche-
ments et bornage" proposée par [3] afin de trouver la
solution optimale de programmes dynamiques. Grâce à
notre bibliothèque nous avons non seulement été en me-
sure d’implémenter des solveurs pour les problèmes MISP,
MCP, MAX2SAT et TSPTW. Aussi, ddo tire parti des
capacités de calcul en parallèle du matériel sur lequel il
s’exécute sans que le développeur n’ait d’effort particulier
à fournir. Il en résulte que les solveurs implémentés avec
ddo sont hautement performants. En particulier, nos ex-
périences montrent que ddo surclasse Gurobi pour MCP.
Ddo et nos solveurs d’exemples sont publiés sous une
licence libre et leur code source est accessible en ligne 1.

1 Introduction

Les diagrammes de décision multivalués (MDD) sont
une généralisation des diagrammes de décision binaires
(BDD), lesquels sont utilisés depuis longtemps, e.a.
parce qu’ils permettent de réaliser le model checking
de systèmes complexes[4]. Plus récemment, ces modèles
graphiques ont attiré l’attention de chercheurs dans les
communautés PC et RO. La popularité des diagrammes
de décision (DD) vient de leur capacité à encoder de
larges espaces d’états de façon très compacte. C’est
pourquoi ils sont entre autre utilisés dans le cas de la
contrainte Table[7, 8]. Cet intérêt accru pour les DD a
donné naissance à l’optimisation à base de DD (DDO)
[2]. L’objectif de cette technique est de résoudre effica-
cement des problèmes d’optimisation combinatoires en
exploitant la structure de ceux-ci au travers de DDs.

∗Papier doctorant : Xavier Gillard est auteur principal.
1. https ://github.com/xgillard/ddo

Cet article s’inscrit dans cette ligne et poursuit un
double objectif : d’une part, faire connaitre la tech-
nique au plus grand nombre. Et d’autre part, faciliter
l’intégration de celle-ci avec d’autres solveurs et outils
grâce à une bibliothèque générique et performante.

2 Les fondements

Un problème d’optimisation discrète est avant tout
un problème de satisfaction de contraintes auquel une
fonction d’objectif est associée. Parmi ces problèmes,
certains ont une structure de sous-problème optimal qui
leur permet d’être formulés comme des programmes
dynamiques (DP). Bien que les modèles DP soient
typiquement envisagés sous l’angle de la récursion, il
est aussi naturel de les considérer comme des systèmes à
transitions d’états. Auquel cas, un modèle DP consiste
de : (a) un espace de solutions défini par les variables
du problème et leurs domaines ; (b) un état initial, (c)
une valeur initiale ; (d) une fonction de transition et
(e) une fonction de coût de transition.

Au coeur de DDO, on trouve l’idée selon laquelle un
système de transition DP se matérialise facilement sous
la forme d’un diagramme de décision (réduit). Toutefois,
bien qu’ils soient compacts, la construction de ces DD
peut requérir une quantité de mémoire (et de temps)
exponentielle. C’est pourquoi il est impossible d’enco-
der exactement l’espace d’états pour des instances de
problèmes réelles. Pour palier à cela, DDO utilise des
DDs ayant une taille maximum bornée. Ceux-ci per-
mettent de fournir deux types d’approximations pour
le problème à résoudre. En supposant une fonction
d’objectif à maximiser, les DD restreints et relâchés
[1] permettent respectivement de dériver une borne
inférieure et supérieure pour le problème à résoudre.

Compiler un DD restreint à partir d’une formulation
DP est assez simple : il suffit de s’assurer que la lar-

geur des niveaux du DD soit limitée en supprimant les
nœuds les moins prometteurs de chaque niveau. Ceci
supprime un certain nombre de solutions du DD, mais
n’introduit jamais de non-solutions dans celui-ci. La
compilation d’un DD relâché est un peu différente car
elle nécessite qu’on lui fournisse une relaxation per-
mettant la fusionner des noeuds surnuméraires. C’est
pourquoi, lorsqu’on souhaite résoudre un problème avec
DDO, il est nécessaire de donner à la fois un modèle
DP et une relaxation du problème.

3 La bibliothèque ddo

C’est là tout ce dont notre bibliothèque ddo a besoin
pour résoudre un problème automatiquement et effica-
cement : la définition de ce problème et une relaxation.
Naturellement, ddo permet en outre de guider la réso-
lution via des heuristiques propres au problème. Mais
leur emploi n’est pas requis.

Nous illustrons notre propos via un exemple minima-
liste mais complet. Celui-ci montre comment modéliser
et résoudre un problème de sac à dos avec ddo. Le
Listing 1, montre bien à quel point le modèle ddo res-
semble aux abstractions mathématiques évoquées dans
la section précédente. En particulier, l’implémentation
du trait Problem<usize> par la structure Sac dé-
crit la formulation DP du problème de sac à dos dont
l’état consiste en un entier non signé (usize). L’es-
pace de solution du problème (a) est caractérisé par les
méthodes nb_vars() et domain_of() (lignes 8–15).
De même les quatre autres éléments constitutifs d’un
modèle DP (état init. (b), valeur init. (c), fonction de
transition (d) et fonction de coût (e)) sont tous im-
pléméntés par leurs fonctions éponymes (lignes 16–29).
Aussi, la structure SacRelax qui implémente le trait
Relaxation<usize> montre un exemple de fusion
d’états (lines 36–45). Dans notre exemple, le nouvel
état relâché est obtenu en gardant la capacité maxi-
mum des états à fusionner et il n’est pas nécessaire
de modifier le poids des arcs entrants du noeud ainsi
relâché.
1 #[derive(Clone, Debug)]
2 struct Sac {
3 capacite: usize,
4 profit: Vec<usize>,
5 poids: Vec<usize>
6 }
7 impl Problem<usize> for Sac {
8 fn nb_vars(&self) -> usize {
9 self.profit.len()

10 }
11 fn domain_of<’a>(&self,
12 state: &’a usize,
13 var: Variable) -> Domain<’a> {
14 vec![0, 1].into()
15 }
16 fn initial_state(&self) -> usize {
17 self.capacite
18 }
19 fn initial_value(&self) -> isize {
20 0

21 }
22 fn transition(&self, state: &usize,
23 vars: &VarSet, d: Decision) -> usize {
24 let var = d.variable.id();
25 state - self.poids[var] * d.value as usize
26 }
27 fn transition_cost(&self, state: &usize,
28 vars: &VarSet, d: Decision) -> isize {
29 let var = d.variable.id();
30 self.profit[var] as isize * d.value
31 }
32 }
33 #[derive(Clone, Copy)]
34 struct SacRelax;
35 impl Relaxation<usize> for SacRelax {
36 fn merge_states(&self,
37 states: &mut dyn Iterator<Item=&usize>)
38 -> usize {
39 states.copied().max().unwrap_or(0)
40 }
41 fn relax_edge(&self, src: &usize, dst: &usize,
42 relaxed: &usize, d: Decision, cost: isize)
43 -> isize {
44 cost
45 }
46 }
47 fn main() {
48 let problem = Sac {/*omis*/};
49 let config = config_builder(&problem, SacRelax)
50 .build();
51 let mdd = DeepMDD::from(config);
52 let mut solver = ParallelSolver::new(mdd);
53 solver.maximize();
54 }

Listing 1 – Detailed example

Enfin, les lignes 48–53 du Listing 1 montrent com-
ment instancier le solveur et l’utiliser pour résoudre une
instance du problème de sac à dos binaire en utilisant
tous les fils d’exécution matériels de la machine.

4 Résultats expérimentaux et conclusion

Nous voudrions clôturer notre présentation de ddo
en pointant certains résultats expérimentaux très en-
courageants. En effet, celui-ci montre que malgré que
ddo soit entièrement générique il parvient à être ex-
trêmement performant. En l’occurrence, la Figure 1
montre que lors de nos expériences, notre solveur a
su résoudre les 265 instances de MCP testées en un
peu moins de 800 secondes sur 24 fils d’exécution alors
que dans les mêmes conditions, Gurobi 9.0.2 n’est pas
parvenu à toutes les résoudre en 30 minutes.

 120

 140

 160

 180

 200

 220

 240

 260

 280

 0 200 400 600 800 1000 1200 1400 1600 1800

Toutes les instances

#
 R
é
s
o
lu
s

Durée (s)

DDO
Gurobi 9.0.3

Comparaison DDO/Gurobi 9.0.3 (MCP)

Figure 1 – Comparaison ddo/Gurobi

Références

[1] H. R. Andersen, T. Hadzic, J. N. Hooker et
P. Tiedemann : A constraint store based on mul-
tivalued decision diagrams. In Christian Bessière,
éditeur : Principles and Practice of Constraint Pro-
gramming, volume 4741 de LNCS, pages 118–132.
Springer, 2007.

[2] David Bergman et Andre A. Cire : Theoretical
insights and algorithmic tools for decision diagram-
based optimization. Constraints, 21(4):533–556,
2016.

[3] David Bergman, Andre A. Cire, Willem-Jan van
Hoeve et J. N. Hooker : Discrete optimization
with decision diagrams. INFORMS Journal on
Computing, 28(1):47–66, 2016.

[4] J.R. Burch, Clarke E.M., McMillan K.L., Dill
D.L. et Hwang H.L. : Symbolic model checking :
1020 states and beyond. Information and Compu-
tation, 98(2):142–170, 1992.

[5] Xavier Gillard, Pierre Schaus et André Ciré
Coppé, Vianney : Improving the filtering of branch-
and-bound mdd solver. 2021.

[6] Xavier Gillard, Pierre Schaus et Vianney
Coppé : Ddo, a generic and efficient framework for
mdd-based optimization. 2020.

[7] Guillaume Perez et Jean-Charles Régin : Effi-
cient operations on mdds for building constraint
programming models. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial
Intelligence (IJCAI-15), pages 374–380, 2015.

[8] Hélène Verhaeghe, Christophe Lecoutre et
Pierre Schaus : Compact-mdd : Efficiently filtering
(s) mdd constraints with reversible sparse bit-sets.
In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence (IJCAI-
18), pages 1383–1389, 2018.

Ddo, a Generic and Efficient Framework for MDD-Based Optimization

Xavier Gillard ∗ , Pierre Schaus and Vianney Coppé
UCLouvain

{xavier.gillard, pierre.schaus, vianney.coppe}@uclouvain.be

Abstract
This paper presents ddo, a generic and efficient
library to solve constraint optimization problems
with decision diagrams. To that end, our frame-
work implements the branch-and-bound approach
which has recently been introduced by [Bergman
et al., 2016b] to solve dynamic programs to opti-
mality. Our library allowed us to successfully re-
produce the results of Bergman et al. for MISP,
MCP and MAX2SAT while using a single generic
library. As an additional benefit, ddo is able to ex-
ploit parallel computing for its purpose without im-
posing any constraint on the user (apart from mem-
ory safety). Ddo is released as an open source1

rust library (crate) alongside with its companion ex-
ample programs to solve the aforementioned prob-
lems. To the best of our knowledge, this is the first
public implementation of a generic library to solve
combinatorial optimization problems with branch-
and-bound MDD.

1 Introduction
Multivaluated Decision Diagrams (MDD) are a generaliza-
tion of Binary Decision Diagrams (BDD) which have long
been used in the verification community, e.g. for model
checking purposes [Burch et al., 1992]. More recently, these
graphical models have drawn the attention of researchers
from the CP and OR communities. The popularity of these
decision diagrams (DD) stems from their ability to pro-
vide a compact representation of large solution spaces as
in the case of the table constraint [Perez and Régin, 2015;
Verhaeghe et al., 2018]. One of the research streams
which emerged from this increased interest about MDDs is
decision-diagram-based optimization (DDO) [Bergman and
Cire, 2016]. Its purpose is to efficiently solve combinatorial
optimization problems by exploiting the structure of the prob-
lem being solved through the use of DDs. So far, the tech-
niques developed in this context have largely been successful
and outperforms state-of-the-art IP solvers for the problems
where they are applicable. This paper belongs to the DDO

∗Contact Author
1https://github.com/xgillard/ddo

subfield and intends to broaden the DDO-awareness and facil-
itate its integration with other solvers and techniques through
the release of a generic and efficient open-source rust library
implementing these algorithms and data structures.

2 Background
A discrete optimization problem is first and foremost a con-
straint satisfaction problem with an associated objective func-
tion to be maximized. Among these problems, some exhibit
an optimal subproblem structure making them suitable for a
dynamic programming (DP) formulation. Even though DP
models are typically thought of in terms of recursion, it is also
natural to consider them as transition systems. In that case,
a DP model consists of: (a) a solution space defined by the
problem variables and their domains; (b) an initial state, (c)
an initial value; (d) a transition function and (e) a transition
cost function.

At the heart of DDO, is the idea that DP transition systems
naturally lend themselves to materialization in the form of a
(reduced) decision diagram. However, despite their compact-
ness, the construction of DD suffers from a potentially expo-
nential time and memory requirements. Using DDs to exactly
encode the solution space of a problem is thus out of reach
for any practical problem instance. This is why, DDO relies
on the use of bounded-size DDs to approximate a solution
of the actual problem. Two types of approximate bounded-
size DDs have been devised for that purpose: relaxed and re-
stricted DDs. These respectively encode an over- and under-
approximation of the solution-space. Assuming a maximiza-
tion problem, relaxed DDs [Andersen et al., 2007] are thus
capable of providing an upper bound on the optimal solution.
Conversely, restricted DDs yield good lower bounds, as they
contain a subset of the feasible solutions of the problem.

Deriving a restricted MDD from the DP formulation of a
problem is quite simple. For that purpose, it suffices to limit
the width of the MDD layers by simply dropping the less
promising nodes of that layer. This process only removes
solutions from the set of solutions represented by the MDD
but it does not create any infeasible solution. Deriving a re-
laxed MDD from the same DP formulation is a different mat-
ter though. For that purpose, one needs to provide a relaxation
to merge nodes that exceed the maximum width bound. For
that reason, anyone willing to use DDO to solve a new kind
of problem must provide both a DP formulation and a suit-

able relaxation for the problem; and in an ideal world, these
would be the only two required inputs.

3 The ddo Library
This is exactly what our ddo framework aims to do: it starts
from the definition of a problem and its relaxation to automat-
ically and efficiently solve the problem to optimality. Further-
more, it allows a user to specify and use custom heuristics.
But these are not mandatory, and the framework readily pro-
vides default heuristics.

We illustrate our point going through a minimalistic yet ex-
tensive example. Which one shows how to model and solve
the binary knapsack problem with ddo. From Listing 1, one
can observe how closely the ddo model matches with the
mathematical abstractions outlined in the previous section.
In particular, the implementation of the Problem<usize>
trait by Knapsack describes the DP formulation of a bi-
nary knapsack problem whose state consists of a single un-
signed integer (usize). The solution space (a) of the
problem is characterized by the methods nb vars() and
domain of() (lines 9–16). Similarly, the other four el-
ements constitutive of a DP model (initial state (b), initial
value (c), transition function (d) and transition cost func-
tion (e)) are all implemented by their eponymous method
(lines 16–32). Also, KPRelax implementing the trait
Relaxation<usize> shows what it takes to merge sev-
eral nodes so as to derive a new relaxed node standing for
them all (lines 38–49). In our example, the relaxed state of
the new node is obtained by taking the maximum remaining
capacity available in any of the merged nodes. The arcs to-
wards the new relaxed node are obtained by (approximately)
considering that the longest path to any of the merged nodes
yields the relaxed node.

1 /// Lines 1-33 describe the problem DP formulation
2 #[derive(Debug, Clone)]
3 struct Knapsack {
4 capacity: usize,
5 profit : Vec<usize>,
6 weight : Vec<usize>
7 }
8 impl Problem<usize> for Knapsack {
9 fn nb_vars(&self) -> usize {

10 self.profit.len()
11 }
12 fn domain_of<’a>(&self,state: &’a usize,
13 var : Variable)
14 ->Domain<’a> {
15 vec![0, 1].into()
16 }
17 fn initial_state(&self) -> usize {
18 self.capacity
19 }
20 fn initial_value(&self) -> i32 {
21 0
22 }
23 fn transition(&self,state:&usize,
24 vars :&VarSet,
25 dec :Decision) -> usize {
26 state - self.weight[dec.variable.id()]
27 }
28 fn transition_cost(&self,state:&usize,
29 vars :&VarSet,
30 dec :Decision) -> i32 {
31 self.profit[dec.variable.id()] as i32 * dec.value
32 }
33 }
34 /// Lines 34-50 implement the problem relaxation

35 #[derive(Debug, Clone)]
36 struct KPRelax;
37 impl Relaxation<usize> for KPRelax {
38 fn merge_nodes(&self, nodes: &[Node<usize>])
39 -> Node<usize> {
40 let lp_info = nodes.iter()
41 .map(|n| &n.info)
42 .max_by_key(|i| i.lp_len);
43 let max_capa= nodes.iter()
44 .map(|n| n.state)
45 .max();
46 Node::merged(max_capa,
47 lp_info.lp_len,
48 lp_info.lp_arc.clone())
49 }
50 }
51 fn main() {
52 let problem = Knapsack {/* elided */};
53 let mdd = mdd_builder(&problem, KPRelax).build();
54 let mut solver = ParallelSolver::new(mdd);
55 let (optimal, solution) = solver.maximize();
56 }

Listing 1: Detailed example

Finally, the last fragment (lines 51–56) of Listing 1 show
what it takes to instantiate the solver and use it to solve a
knapsack problem instance with ddo using all the hardware
threads available on the machine.

4 Experimental Results
To conclude our brief presentation of ddo, we would like to
showcase some experimental results (Table 1). These figures
measure the time it took (in seconds) to solve a subset of the
well known MISP/Max-Clique instances from the DIMACS
challenge. These measurements have been taken on a ma-
chine equipped with two Intel E5-2640v3 CPU (2.60GHz,
8 cores, 2 threads/core for a total of 32 available hardware
threads) and 128G of RAM. The timeout for each run was set
to 600 seconds and we set a maximum width of 100 nodes
per layer of our restricted and relaxed MDDs.

These results are very promising as they indicate that even
though our library is truly generic, it delivers an overall per-
formance on par with that of DDX10[Bergman et al., 2014;
Bergman et al., 2016a]. The latter having been favorably
compared by its authors to IBM ILOG CPLEX 12.5.1.

Instance 1 thread 16 threads 32 threads

hamming8-4.clq 25.45 2.58 2.17
brock200 4.clq 18.65 1.78 1.56
san400 0.7 1.clq 48.67 4.98 4.35
p hat300-2.clq 14.98 1.88 1.64
san1000.clq 124.46 23.18 21.78
p hat1000-1.clq 73.98 20.07 19.58
sanr400 0.5.clq 74.07 6.80 6.21
san200 0.9 2.clq 64.94 3.13 2.62
sanr200 0.7.clq 69.67 5.81 4.91
san400 0.7 2.clq 250.07 19.74 15.94
p hat1500-1.clq timeout 89.28 88.40
brock200 1.clq 316.30 25.64 21.01

Table 1: Runtime (seconds) to solve MISP/Max-Clique instances
from the DIMACS challenge. Timeout 600 seconds.

5 Demonstration
This demonstration will focus on how a practician can use our
library to solve combinatorial optimization problems. Start-
ing from the above knapsack example, we will show how one
can tune the behavior of the solver to make the most of the
available resources and problem knowledge. In particular, we
will show how to opt for a static vs dynamic maximum layer
width; how to opt for a single vs multi-threaded resolution
and how to specify a custom variable selection heuristic in
replacement of the default (natural-order) one.

References
[Andersen et al., 2007] Henrik Reif Andersen, Tarik Hadzic,

John Hooker, and Peter Tiedemann. A constraint store
based on multivalued decision diagrams. In Christian
Bessière, editor, Principles and Practice of Constraint
Programming, volume 4741 of LNCS, pages 118–132.
Springer, 2007.

[Bergman and Cire, 2016] David Bergman and Andre Cire.
Theoretical insights and algorithmic tools for decision
diagram-based optimization. Constraints, 21(4):533–556,
2016.

[Bergman et al., 2014] David Bergman, Andre Cire, Ashish
Sabharwal, Samulowitz Horst, Saraswat Vijay, and
Willem-Jan and van Hoeve. Parallel combinatorial opti-
mization with decision diagrams. In Helmut Simonis, ed-
itor, Integration of AI and OR Techniques in Constraint
Programming, volume 8451, pages 351–367. Springer,
2014.

[Bergman et al., 2016a] David Bergman, Andre Cire,
Willem-Jan van Hoeve, and John Hooker. Decision
Diagrams for Optimization. Springer, 2016.

[Bergman et al., 2016b] David Bergman, Andre Cire,
Willem-Jan van Hoeve, and John Hooker. Discrete
optimization with decision diagrams. INFORMS Journal
on Computing, 28(1):47–66, 2016.

[Burch et al., 1992] Jerry Burch, Clarke Edmund, McMillan
Kenneth, Dill David, and Hwang H.L. Symbolic model
checking: 1020 states and beyond. Information and Com-
putation, 98(2):142–170, 1992.

[Perez and Régin, 2015] Guillaume Perez and Jean-Charles
Régin. Efficient operations on mdds for building constraint
programming models. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intel-
ligence (IJCAI-15), pages 374–380, 2015.

[Verhaeghe et al., 2018] Hélène Verhaeghe, Christophe
Lecoutre, and Pierre Schaus. Compact-mdd: Efficiently
filtering (s) mdd constraints with reversible sparse bit-sets.
In Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence (IJCAI-18), pages
1383–1389, 2018.

Improving the filtering of Branch-And-Bound
MDD solver

Xavier Gillard1[0000−0002−4493−6041], Vianney Coppé1[0000−0001−5050−0001],
Pierre Schaus1[0000−0002−3153−8941], and André Augusto

Cire2[0000−0001−5993−4295]

Université Catholique de Louvain, BELGIUM
University of Toronto Scarborough and Rotman School of Management, CANADA

{xavier.gillard, pierre.schaus, vianney.coppe}@uclouvain.be,
andre.cire@rotman.utoronto.ca

Abstract. This paper presents and evaluates two pruning techniques
to reinforce the efficiency of constraint optimization solvers based on
multi-valued decision-diagrams (MDD). It adopts the branch-and-bound
framework proposed by Bergman et al. in 2016 to solve dynamic pro-
grams to optimality. In particular, our paper presents and evaluates the
effectiveness of the local-bound (LocB) and rough upper-bound pruning
(RUB). LocB is a new and effective rule that leverages the approximate
MDD structure to avoid the exploration of non-interesting nodes. RUB
is a rule to reduce the search space during the development of bounded-
width-MDDs. The experimental study we conducted on the Maximum
Independent Set Problem (MISP), Maximum Cut Problem (MCP), Max-
imum 2 Satisfiability (MAX2SAT) and the Traveling Salesman Problem
with Time Windows (TSPTW) shows evidence indicating that rough-
upper-bound and local-bound pruning have a high impact on optimiza-
tion solvers based on branch-and-bound with MDDs. In particular, it
shows that RUB delivers excellent results but requires some effort when
defining the model. Also, it shows that LocB provides a significant im-
provement automatically; without necessitating any user-supplied infor-
mation. Finally, it also shows that rough-upper-bound and local-bound
pruning are not mutually exclusive, and their combined benefit super-
sedes the individual benefit of using each technique.

Introduction

Multi-valued Decision Diagrams (MDD) are a generalization of Binary Deci-
sion Diagrams (BDD) which have long been used in the verification, e.g., for
model checking purposes [10]. Recently, these graphical models have drawn the
attention of researchers from the CP and OR communities. One of the research
streams which emerged from this increased interest about MDDs is decision-
diagram-based optimization (DDO) [5]. Its purpose is to efficiently solve com-
binatorial optimization problems by exploiting problem structure through DDs.
This paper belongs to the DDO sub-field and intends to further improve the

2 X. Gillard et al.

efficiency of DDO solvers through the introduction of two bounding techniques:
local-bounds pruning (LocB) and rough-upper-bound pruning (RUB).

This paper starts by covering the necessary background on DDO. Then, it
presents the local-bound and rough-upper-bound pruning techniques in Sections
2.1 and 2.2. After that, it presents an experimental study which we conducted
using ‘ddo’ [17]1, our open source fast and generic MDD-based optimization
library. This experimental study investigates the relevance of RUB and LocB
through four disinct NP-hard problems: the Weighted Maximum Independent
Set Problem (MISP), Maximum Cut Problem (MCP), Maximum 2 Satisfiability
Problem (MAX2SAT) and the Traveling Salesman Problem with Time Windows
(TSPTW). Finally, section 4 discusses previous related work before drawing
conclusions.

1 Background

The coming paragraphs give an overview of discrete optimization with decision
diagrams. Most of the formalism presented here originates from [8]. Still, we
reproduce it here for the sake of self-containedness.

Discrete optimization. A discrete optimization problem is a constraint satis-
faction problem with an associated objective function to be maximized. The
discrete optimization problem P is defined as max {f(x) | x ∈ D ∧ C(x)} where
C is a set of constraints, x = 〈x0, . . . , xn−1〉 is an assignment of values to vari-
ables, each of which has an associated finite domain Di s.t. D = D0×· · ·×Dn−1
from where the values are drawn. In that setup, the function f : D → R is the
objective to be maximized.

Among the set of feasible solutions Sol(P) ⊆ D (i.e. satisfying all constraints
in C), we denote the optimal solution by x∗. That is, x∗ ∈ Sol(P) and ∀x ∈
Sol(P) : f(x∗) ≥ f(x).

Dynamic programming. Dynamic programming (DP) was introduced in the mid
50’s by Bellman [3]. This strategy is significantly popular and is at the heart
of many classical algorithms (e.g., Dijkstra’s algorithm [12, p.658] or Bellman-
Ford’s [12, p.651]).

Even though a dynamic program is often thought of in terms of recursion, it
is also natural to consider it as a labeled transition system. In that case, the DP
model of a given discrete optimization problem P consists of:

– a set of state-spaces S0, . . . , Sn among which one distinguishes the initial
state r, the terminal state t and the infeasible state ⊥.

– a set of transition functions ti : Si×Di → Si+1 for i = 0, . . . , n−1 taking the
system from one state si to the next state si+1 based on the value d assigned
to variable xi (or to ⊥ if assigning xi = d is infeasible). These functions
should never allow one to recover from infeasibility (ti(⊥, d) = ⊥ for any
d ∈ Di).

1 https://github.com/xgillard/ddo

Improving the filtering of Branch-And-Bound MDD solver 3

– a set of transition cost functions hi : Si×Di → R representing the immediate
reward of assigning some value d ∈ Di to the variable xi for i = 0, . . . , n− 1.

– an initial value vr.

On that basis, the objective function f(x) of P can be formulated as follows:

maximize f(x) = vr +
n−1∑

i=0

hi(s
i, xi)

subject to

si+1 = ti(s
i, xi) for i = 0, . . . , n− 1;xi ∈ Di ∧ C(xi)

si ∈ Si for i = 0, . . . , n

where C(xi) is a predicate that evaluates to true when the partial assignment
〈x0, . . . , xi〉 does not violate any constraint in C.

The appeal of such a formulation stems from its simplicity and its expres-
siveness which allows it to effectively capture the problem structure. Moreover,
this formulation naturally lends itself to a DD representation; in which case it
represents an exact DD encoding the complete set Sol(P).

1.1 Decision diagrams

Because DDO aims at solving constraint optimization problems and not just
constraint satisfaction problems, it uses a particular DD flavor known as reduced
weighted DD – DD as of now. As initially posed by Hooker[21], DDs can be
perceived as a compact representation of the search trees. This is achieved, in
this context, by superimposing isomorphic subtrees.

To define our DD more formally, we will slightly adapt the notation from [5].
A DD B is a layered directed acyclic graph B = 〈n,U,A, l, d, v, σ〉 where n is
the number of variables from the encoded problem, U is a set of nodes; each of
which is associated to some state σ(u). The mapping l : U → {0 . . . n} partitions
the nodes from U in disjoint layers L0 . . . Ln s.t. Li = {u ∈ U : l(u) = i} and the
states of all the nodes belonging to the same layer pertain to the same DP-state-
space (∀u ∈ Li : σ(u) ∈ Si for i = 0, . . . , n). Also, it should be the case that no
two distinct nodes of one same layer have the same state (∀u1, u2 ∈ Li : u1 6=
u2 =⇒ σ(u1) 6= σ(u2), for i = 0, . . . , n).

The set A ⊆ U×U from our formal model is a set of directed arcs connecting
the nodes from U . Each such arc a = (u1, u2) connects nodes from subsequent
layers (l(u1) = l(u2) − 1) and should be regarded as the materialization of a
branching decision about variable xl(u1). This is why all arcs are annotated via
the mappings d : A→ D and v : A→ R which respectively associate a decision
and value (weight) with the given arc.

Example 1. An arc a connecting nodes u1 ∈ L3 to u2 ∈ L4, annotated with
d(a) = 6 and v(a) = 42 should be understood as the assignment x3 = 6 per-
formed from state σ(u1). It should also be understood that t3(σ(u1), 6) = σ(u2)
and the benefit of that assignment is v(a) = h3(σ(u1), 6) = 42.

4 X. Gillard et al.

Because each r-t path describes an assignment that satisfies P, we will use
Sol(B) to denote the set of all the solutions encoded in the r-t paths of DD B.
Also, because unsatisfiability is irrecoverable, r-⊥ paths are typically omitted
from DDs. It follows that a nice property from using a DD representation B for
the DP formulation of a problem P, is that finding x∗ is as simple as finding the
longest r-t path in B (according to the relation v on arcs).

Exact-MDD. For a given problem P, an exact MDD B is an MDD that exactly
encodes the solution set Sol(B) = Sol(P) of the problem P. In other words,
not only do all r-t paths encode valid solutions of P, but no feasible solution
is present in Sol(P) and not in B. An exact MDD for P can be compiled in
a top-down fashion2. This naturally follows from the above definition. To that
end, one simply proceeds by a repeated unrolling of the transition relations until
all variables are assigned.

1.2 Bounded-Size Approximations

In spite of the compactness of their encoding, the construction of DD suffers
from a potentially exponential memory requirement in the worst case3. Thus,
using DDs to exactly encode the solution space of a problem is often intractable.
Therefore, one must resort to the use of bounded-size approximation of the exact
MDD. These are compiled generically by inserting a call to a width-bounding
procedure to ensure that the width (the number |Li| of distinct nodes belonging
to the Li) of the current layer Li does not exceed a given bound W . Depending
on the behavior of that procedure, one can either compile a restricted-MDD (=
an under-approximation) or a relaxed-MDD (= an over-approximation).

Restricted-MDD: Under-approximation. A restricted-MDD provides an under-
approximation of some exact-MDD. As such, all paths of a restricted-MDD en-
code valid solutions, but some solutions might be missing from the MDD. This
is formally expressed as follows: given the DP formulation of a problem P, B is
a restricted-MDD iff Sol(B) ⊆ Sol(P).

To compile a restricted-MDD, it is sufficient to simply delete certain nodes
from the current layer until its width fits within the specified bound W . To that
end, the width-bounding procedure simply selects a subset of the nodes from Li
which are heuristically assumed to have the less impact on the tightness of the
bound. Various heuristics have been studied in the literature [7], and minLP was
shown to be the heuristic that works best in practice. This heuristic decides to
select (hence remove) the nodes having the shortest longest path from the root.

2 An incremental refinement a.k.a. construction by separation procedure is detailed in
[11, pp. 51–52] but we will not cover it here for the sake of conciseness.

3 Consequently, it also suffers from a potentially exponential time requirement in the
worst case. Indeed, time is constant in the final number of nodes (unless the transition
functions themselves are exponential in the input).

Improving the filtering of Branch-And-Bound MDD solver 5

Relaxed-MDD: Over-approximation. A relaxed-MDD B provides a bounded-
width over-approximation of some exact-MDD. As such, it may hold paths that
are no solution to P, the problem being solved. We have thus formally that
Sol(B) ⊇ Sol(P).

Compiling a relaxed-MDD requires one to be able to merge several nodes
into an inexact one. To that end, we use two operators:

– ⊕ which yields a new node combining the states of a selection of nodes so
as to over-approximate the states reachable in the selection.

– Γ which is used to possibly relax the weight of arcs incident to the selected
nodes.

These operators are used as follows. Similar to the restricted-MDDs case, the
width-bounding procedure starts by heuristically selecting the least promising
nodes and removing them from layer Li. Then the states of these selected nodes
are combined with one another so as to create a merged nodeM = ⊕(selection).
After that, the inbound arcs incident to all selected nodes are Γ -relaxed and
redirected towards M. Finally, the result of the merger (M) is added to the
layer in place of the initial selection of nodes.

Summary. Fig. 1 summarizes the information from sections 1.1 and 1.2. It dis-
plays the three MDDs corresponding to one same example problem having four
variables. The exact MDD (a) encodes the complete solution set and, equiva-
lently, the state space of the underlying DP encoding. One easily notices that
the restricted DD (b) is an under approximation of (a) since it achieves its width
boundedness by removing nodes d and e and their children (i, j). Among others,
it follows that the solution [x0 = 0, x1 = 0, x2 = 0, x3 = 0] is not represented in
(b) even though it exists in (a). Conversely, the relaxed diagram (c) achieves a
maximum layer with of 3 by merging nodes d, e and h into a new inexact node
M and by relaxing all arcs entering one of the merged nodes. Because of this,
(c) introduces solutions that do not exist in (a) as is for instance the case of the
assignment [x0 = 0, x1 = 0, x2 = 3, x3 = 1]. Moreover, because the operators ⊕
and Γ are correct4, the length of the longest path in (c) is an upper bound on
the optimal value of the objective function. Indeed, one can see that the length
of the longest path in (a) (= the exact optimal solution) has a value of 25 while
it amounts to 26 in (c).

1.3 The Dynamics of Branch-and-Bound with DDs

Being able to derive good lower and upper bounds for some optimization problem
P is useful when the goal is to use these bounds to strengthen algorithms [13,
31, 32]. But it is not the only way these approximations can be used. A complete
and efficient branch-and-bound algorithm relying on those approximations was
proposed in [8] which we hereby reproduce (Alg. 1).

4 The very definition of these operators is problem-specific. However, [22] formally
defines the conditions that are necessary to correctness.

6 X. Gillard et al.

r

a b c

d e f g h

kji

t

(a) Exact

r

a b c

f g h

k

t

(b) Restricted

r

a b c

f g

kji

t

(c) Relaxed

M
⊕(d, e, h)

x1

x2

x3

x0 0 1 2

0 1 0 2 0 1 2

0 0 1 0 2 3

0 0 1

4 2 6

0 7 2 5 9 7 4

1 1 3 4 3 1

1 6 6

0 1 2

2 0 1 2

0 2 3

1

4 2 6

5 9 7 4

4 3 1

6

0 1 2

2 0 1

0 1 0 23

0 0 1

4 2 6

5 9 7

1 3 4 33

1 6 6

0 0

1 3

Γ (a, e)

2

4

1

13

Fig. 1. The exact (a), restricted (b) and relaxed (c) versions of an MDD with four
variables. The width of MDDs (b) and (c) have been bounded to a maximum layer
width of three. The decision labels of the arcs are shown above the layers separation
lines (dashed). The arc weights are shown below the layer separation lines. The longest
path of each MDD is boldfaced. In (c), the node M is the result of merging nodes
d, e and h with the ⊕ operator. Arcs that have been relaxed with the Γ operator are
pictured with a double stroke. Note, because these arcs have been Γ -relaxed, their value
might be greater than that of corresponding arcs in (a), (b). Similarly, all “inexact”
nodes feature a double border.

This algorithm works as follows: at start, the node r is created for the initial
state of the problem and placed onto the fringe – a global priority queue that
tracks all nodes remaining to explore and orders them from the most to least
promising. Then, a loop consumes the nodes from that fringe (line 1), one at
a time and explores it until the complete state space has been exhausted. The
exploration of a node u inside that loop proceeds as follows: first, one compiles
a restricted DD B for the sub-problem rooted in u (line 5). Because all paths
in a restricted DD are feasible solutions, when the lower bound v∗(B) derived
from the restricted DD B improves over the current best known solution v; then
the longest path of B (best sol. found in B) and its length v∗(B) are memorized
(lines 7-9).

In the event where B is exact (no restriction occurred during the compilation
of B), it covers the complete state space of the sub-problem rooted in u. Which
means the processing of u is complete and we may safely move to the next node.
When this condition is not met, however, some additional effort is required.In
that case, a relaxed DD B is compiled from u(line 11). That relaxed DD serves
two purposes: first, it is used to derive an upper bound v∗(B) which is compared
to the current best known solution (line 12). This gives us a chance to prune
the unexplored state space under u when v∗(B) guarantees it does not contain
any better solution than the current best. The second use of B happens when
v∗(B) cannot provide such a guarantee. In that case, the exact cutset of B is used
to enumerate residual sub-problems which are enqueued onto the fringe (lines
13-14).

Improving the filtering of Branch-And-Bound MDD solver 7

A cutset for some relaxed DD B is a subset C of the nodes from B such that
any r − t path of B goes through at least one node ∈ C. Also, a node u is said
to be exact iff all its incoming paths lead to the same state σ(u). From there,
an exact cutset of B is simply a cutset whose nodes are all exact. Based on this
definition, it is easy to convince oneself that an exact cutset constitutes a frontier
up to which the relaxed DD B and its exact counterpart B have not diverged.
And, because it is a cutset, the nodes composing that frontier cover all paths
from both B and B; which guarantees the completeness of Alg. 1 [8].

Any relaxed-MDD admits at least one exact cutset – e.g. the trivial {r} case.
Often though, it is not unique and different options exist as to what cutset to
use. It was experimentally shown by [8] that most of the time, the Last Exact
Layer (LEL) is superior to all other exact cutsets in practice. LEL consists of
the deepest layer of the relaxed-MDD having all its nodes exact.

Example 2. In Fig.-1 (c), the first inexact node M occurs in layer L2. Hence,
the LEL cutset comprises all nodes (a, b, c) from the layer L1. Because M is
inexact, and because it is a parent of nodes i, j and k, these three nodes are
considered inexact too.

Algorithm 1 Branch-And-Bound with DD

1: Create node r and add it to Fringe
2: x← ⊥
3: v ← −∞
4: while Fringe is not empty do
5: u← Fringe.pop()
6: B ← Restricted(u)
7: if v∗(B) > v then
8: v ← v∗(B)
9: x← x∗(B)

10: if B is not exact then
11: B ← Relaxed(u)
12: if v∗(B) > v then
13: for all u′ ∈ B.exact cutset() do
14: Fringe.add(u′)
15: return (x, v)

Algorithm 2 Local bound pruning

1: Create node r and add it to Fringe
2: x← ⊥
3: v ← −∞
4: while Fringe is not empty do
5: u← Fringe.pop()
6: if v|∗u ≤ v then
7: continue
8: B ← Restricted(u)
9: if v∗(B) > v then

10: v ← v∗(B)
11: x← x∗(B)
12: if B is not exact then
13: B ← Relaxed(u)
14: if v∗(B) > v then
15: for all u′ ∈ B.exact cutset() do
16: if v|∗u′ > v then
17: Fringe.add(u′)
18: return (x, v)

2 Improving the filtering of branch-and-bound MDD

In the forthcoming paragraphs, we introduce the local bound and present the
rough upper bound: two reasoning techniques to reinforce the pruning strength
of Alg. 1.

2.1 Local bounds (LocB)

Conceptually, pruning with local bounds is rather simple: a relaxed MDD B
provides us with one upper bound v∗(B) on the optimal value of the objec-
tive function for some given sub-problem. However, in the event where v∗(B)

8 X. Gillard et al.

is greater than the best known lower bound v (best current solution) nothing
guarantees that all nodes from the exact cutset of B admit a longest path to t
with a length of v∗(B). Actually, this is quite unlikely. This is why we propose to
attach a “local” upper bound to each node of the cutset. This local upper bound
– denoted v|∗u for some cutset node u – simply records the length of the longest
r-t path passing through u in the relaxed MDD B.

In other words, LocB allows us to refine the information provided by a relaxed
DD B. On one hand, B provides us with v∗(B) which is the length of the longest
r-t path in B. As such, it provides an upper bound on the optimal value that can
be reached from the root node of B. With the addition of LocB, the relaxed DD
provides us with an additional piece of information. For each individual node u
in the exact cutset of B, it defines the value v|∗u which is an upper bound on the
value attainable from that node.

As shown in Alg. 2, the value v|∗u can prove useful at two different moments.
First, in the event where v|∗u ≤ v, this value can serve as a justification to not
enqueue the subproblem u (line 16) since exhausting this subproblem will yield
no better solution than v. More formally, by definition of a cutset and of LocB,
it must be the case that the longest r-t path of B traverses one of the cutset
nodes u and thus that v∗(B) = v|∗u (where v|∗u is the local bound of u). Hence
we have: ∃u ∈ cutset of B : v∗(B) = v|∗u. However, because v∗(B) is the length
of the longest r-t path of B, there may exist cutset nodes that only belong to r-t
paths shorter than v∗(B). That is: ∀u′ ∈ cutset of B : v∗(B) ≥ v|∗u′ . Which is
why v|∗u′ can be stricter than v∗(B) and hence let LocB be stronger at pruning
nodes from the frontier.

The second time when v|∗u might come in handy occurs when the node u is
popped out of the fringe (line 6). Indeed, because the fringe is a global priority
queue, any node that has been pushed on the fringe can remain there for a long
period of time. Thus, chances are that the value v has increased between the mo-
ment when the node was pushed onto the fringe (line 17) and the moment when
it is popped out of it. Hence, this gives us an additional chance to completely
skip the exploration of the sub-problem rooted in u.

Let us illustrate that with the relaxed MDD shown on Fig.2, for which the
exact cutset comprises the highlighted nodes a and b. Please note that because
this scenario may occur at any time during the problem resolution, we will
assume that the fringe is not empty when it starts. Assuming that the current
best solution v is 20 when one explores the pictured subproblem, we are certain
that exploring the subproblem rooted in a is a waste of time, because the local
bound v|∗a is only 16. Also, because the fringe was not empty, it might be the
case that b was left on the fringe for a long period of time. And because of this,
it might be the case that the best known value v was improved between the
moment when b was pushed on the fringe and the moment when it was popped
out of it. Assuming that v has improved to 110 when b is popped out of the
fringe, it may safely be skipped because v|∗b guarantees that an exploration of b
will not yield a better solution than 102.

Improving the filtering of Branch-And-Bound MDD solver 9

Alg. 3 describes the procedure to compute the local bound v|∗u of each node
u belonging to the exact cutset of a relaxed MDD B. Intuitively, this is achieved
by doing a bottom-up traversal of B, starting at t and stopping when the traver-
sal crosses the last exact layer (line 5). During that bottom-up traversal, the
algorithm marks the nodes that are reachable from t. This way, it can avoid
the traversal of dead-end nodes. Also, Alg. 3 maintains a value v∗↑t(u) for each
node u it encounters. This value represents the length of the longest u-t path.
Afterwards (line 13), it is summed with the length of the longest r-u path v∗r−u
to derive the exact value of the local bound v|∗u.

Algorithm 3 Computing the local bounds

1: lel← Index of the last exact layer
2: v∗↑t(u)← −∞ for each node u ∈ B // init. longest u-t path

3: mark(t)←true
4: v∗↑t(t)← 0 // longest t-t path

5: for all i = n to lel do
6: for all node u ∈ Li do
7: if mark(u) then
8: for all arc a = (u′, u) incident to u do
9: mark(u′)← true

10: v∗↑t(u
′)← max(v∗↑t(u

′), v∗↑t(u) + v(a)) // longest u’-t path

11: for all node u ∈ B.exact cutset() do
12: if mark(u) then
13: v|∗u ← v∗r−u + v∗↑t(u) // longest r-u path + longest u-t path

14: else
15: v|∗u ← −∞

2.2 Rough upper bound (RUB)

Rough upper bound pruning departs from the following observation: assuming
the knowledge of a lower bound v on the value of v∗, and assuming that one
is able to swiftly compute a rough upper bound vs on the optimal value v∗s of
the subproblem rooted in state s; any node u of a MDD having a rough upper
bound vσ(u) ≤ v may be discarded as it is guaranteed not to improve the best
known solution. This is pretty much the same reasoning that underlies the whole
branch-and-bound idea. But here, it is used to prune portions of the search space
explored while compiling approximate MDDs.

To implement RUB, it suffices to adapt the MDD compilation procedure
(top-down , iterative refinement, ...) and introduce a check that avoids creating
a node u′ with state next when vnext ≤ v.

The key to RUB effectiveness is that RUB is used while compiling the re-
stricted and relaxed DDs. As such, its computation does not directly appear in
Alg. 1, but rather is accounted within the compilations of Restricted(u) and

10 X. Gillard et al.

Relaxed(u) from Alg. 1. Thus, it really is not used as yet-an-other-bound com-
peting with that of line 12, but instead to speed up the computation of restricted
and relaxed DDs. More precisely, this speedup occurs because the compilation of
the DDs discards some nodes that would otherwise be added to the next layer of
the DD and then further expanded, which are ruled out by RUB. A second ben-
efit of using RUBs is that it helps tightening the bound derived from a relaxed
DD (Alg.1 line 12). Because the layers that are generated in a relaxed DD are
narrower when applying RUB, there are fewer nodes exceeding the maximum
layer width. The operator ⊕ hence needs to merge a smaller set of nodes in order
to produce the relaxation.

The dynamics of RUB is graphically illustrated by Fig.-3 where the set of
highlighted nodes can be safely elided since the (rough) upper bound computed
in node s is lesser than the best lower bound.

r

a b

0 0 0 0

10 0

2 100 5

41 24

t

v|∗b = 102
v|∗a = 16

v∗ = 102

Fig. 2. An example relaxed-MDD having
an exact cutset {a, b} with local bounds
v|∗a and v|∗b . The nodes with a simple
border represent exact nodes and those
with a double border represent “inexact”
nodes. The edges along the longest path
are displayed in bold.

r

s

t

v = 100

vs = 42

Fig. 3. Assuming a lower bound v of 100
and a rough upper bound vs of 42 for
the node s, all the highlighted nodes (in
red, with a dashed border) may be pruned
from the MDD.

Important Note It is important to understand that because the RUB is com-
puted at each node of each restricted and relaxed MDD compiled during the
instance resolution, it must be extremely inexpensive to compute. This is why
RUB is best obtained from a fast and simple problem specific procedure.

Improving the filtering of Branch-And-Bound MDD solver 11

3 Experimental Study

In order to evaluate the impact of the pruning techniques proposed above, we
conducted a series of experiments on four problems. In particular, we con-
ducted experiments on the Maximum Independent Set Problem (MISP), the
Maximum Cut Problem (MCP), the Maximum Weighted 2-Satisfiablility Prob-
lem (MAX2SAT) and the Traveling Salesman Problem with Time Windows
(TSPTW). For the first three problems, we generated sets of random instances
which we attempted to solve with different configurations of our own open source
solver written in Rust [17]5. For TSPTW, we reused openly available sets of
benchmarks which are usually used to assess the efficiency of new solvers for
TSPTW[27]. Thanks to the generic nature of our framework, the model and all
heuristics used to solve the instances were the same for all experiments. This al-
lowed us to isolate the impact of RUB and LocB on the solving performance and
neutralize unrelated factors such as variable ordering. Indeed, the only variations
between the different solver flavors relate to the presence (or absence) of RUB
and LocB. All experiments were run on the same physical machine equipped
with an AMD6176 processor and 48GB of RAM. A maximum time limit of 1800
seconds was allotted to each configuration to solve each instance.

The details of the DP models and RUBs we formulated for all four problems
are given in the appendices to the extended version of this paper 6.

MISP. To assess the impact of RUB and LocB on MISP, we generated random
graphs based on the Erdos-Renyi model G(n, p) [15] with the number of vertices n
= 250, 500, 750, 1000, 1250, 1500, 1750 and the probability of having an edge con-
necting any two vertices p = 0.1, 0.2, ... , 0.9. The weight of the edges in the gener-
ated graphs were drawn uniformly from the set {−5,−4,−3,−2,−1, 1, 2, 3, 4, 5}.
We generated 10 instances for each combination of size and density (n, p).

MCP. In line with the strategy used for MISP, we generated random MCP
instances as random graphs based on the Erdos-Renyi model G(n, p). These
graphs were generated with the number of vertices n = 30, 40, 50 and the
probability p of connecting any two vertices = 0.1, 0.2, 0.3, .., 0.9. The weights
of the edges in the generated graphs were drawn uniformly among {−1, 1}. Again,
we generated 10 instances per combination n, p.

MAX2SAT. Similar to the above, we used random graphs based the Erdos-Renyi
model G(n, p) to derive MAX2SAT instances. To this end, we produced graphs
with n = 60, 80, 100, 200, 400, 1000 (hence instances with 30, 40, 50, 100, 200
and 500 variables) and p = 0.1, 0.2, 0.3, .. , 0.9. For each combination of size
(n) and density (p), we generated 10 instances. The weights of the clauses in the
generated instances were drawn uniformly from the set {1, 2, 3, 5, 6, 7, 8, 9, 10}.
5 https://github.com/xgillard/ddo
6 Available online at: http://hdl.handle.net/2078.1/245322

12 X. Gillard et al.

TSPTW. To evaluate the effectiveness of our rules on TSPTW, we used the
467 instances from the following suites of benchmarks, which are usually used
to assess the efficiency of new TSPTW solvers. AFG [2], Dumas [14], Gendreau-
Dumas [16], Langevin [26], Ohlmann-Thomas [28], Solomon-Pesant [29] and
Solomon-Potvin-Bengio [30].

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200 1400 1600 1800

#
 s
o
lv
e
d

 t
o

 o
p
tim

a
lit
y

Duration (s)

None (1 thread)
RUB (1 thread)
LocB (1 thread)

RUB+LocB (1 thread)
RUB+LocB (24 threads)
Gurobi 9.0.3 (24 threads)
Gurobi 9.0.3 (1 thread)

(a) MISP: Solved over time

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200 1400 1600 1800

All instances

#
 s
o
lv
e
d

 t
o

 o
p
tim

a
lit
y

Duration (s)

None (1 thread)
RUB (1 thread)
LocB (1 thread)

RUB+LocB (1 thread)
RUB+LocB (24 threads)
Gurobi 9.0.3 (24 threads)
Gurobi 9.0.3 (1 thread)

(b) MCP: Solved over time

 300

 350

 400

 450

 500

 0 200 400 600 800 1000 1200 1400 1600 1800

#
 s
o
lv
e
d

 t
o

 o
p
tim

a
lit
y

Duration (s)

None (1 thread)
RUB (1 thread)
LocB (1 thread)

RUB+LocB (1 thread)
RUB+LocB (24 threads)
Gurobi 9.0.3 (24 threads)
Gurobi 9.0.3 (1 thread)

(c) MAX2SAT: Solved over time

 200

 210

 220

 230

 240

 250

 260

 270

 280

 0 200 400 600 800 1000 1200 1400 1600 1800

#
 s
o
lv
e
d

 t
o

 o
p
tim

a
lit
y

Duration (s)

None (1 thread)
RUB (1 thread)
LocB (1 thread)

RUB+LocB (1 thread)
RUB+LocB (24 threads)

(d) TSPTW: Solved over time

Fig. 4. Number of solved instances over time for each considered problem

Figure 4 gives an overview of the results from our experimental study. It
respectively depicts the evolution over time of the number of instances solved
by each technique for MISP (a), MCP (b) and MAX2SAT (c) and TSPTW (d).

As a first step, our observation of the graphs will focus on the differences that
arise between the single threaded configurations of our ddo solvers. Then, in a
second phase, we will incorporate an existing state-of-the-art ILP solver (Gurobi
9.0.3) in the comparison. Also, because both Gurobi and our ddo library come
with built-in parallel computation capabilities, we will consider both the single
threaded and parallel (24 threads) cases. This second phase, however, only bears
on MISP, MCP and MAX2SAT by lack of a Gurobi TSPTW model.

DDO configurations The first observation to be made about the four graphs in
Fig.4, is that for all considered problems, both RUB and LocB outperformed the
’do-nothing’ strategy; thereby showing the relevance of the rules we propose. It
is not clear however which of the two rules brings the most improvement to the
problem resolution. Indeed, RUB seems to be the driving improvement factor for
MISP (a) and TSPTW (d) and the impact of LocB appears to be moderate or

Improving the filtering of Branch-And-Bound MDD solver 13

weak on these problems. However, it has a much higher impact for MCP (b) and
MAX2SAT (c). In particular, LocB appears to be the driving improvement fac-
tor for MCP (b). This is quite remarkable given that LocB operates in a purely
black box fashion, without any problem-specific knowledge. Finally, it should
also be noted that the use of RUB and LocB are not mutually exclusive. More-
over, it turns out that for all considered problems, the combination RUB+LocB
improved the situation over the use of any single rule.

Furthermore, Fig.5 confirms the benefit of using both RUB and LocB to-
gether rather than using any single technique. For each problem, it measures
the “performance” of using RUB+LocB vs the best single technique through

the end gap. The end gap is defined as
(

100 ∗ |UB|−|LB||UB|

)
. This metric allows

us to account for all instances, including the ones that could not be solved to
optimality. Basically, a small end gap means that the solver was able to confirm
a tight confidence interval of the optimum. Hence, a smaller gap is better. On
each subgraphs of Fig.5, the distance along the x-axis represents the end gap
for reach instance when using both RUB and LocB whereas the distance along
y-axis represents the end gap when using the best single technique for the prob-
lem at hand. Any mark above the diagonal shows an instance for which using
both RUB and LocB helped reduce the end gap and any mark below that line
indicates an instance where it was detrimental.

From graphs 5-a, 5-c and 5-d it appears that the combination RUB+LocB
supersedes the use of RUB only. Indeed the vast majority of the marks sit above
the diagonal and the rest on it. This indicates a beneficial impact of using both
techniques even for the hardest (unsolved) instances. The case of MCP (graph
5-b) is less clear as most of the marks sit on the diagonal. Still, we can only
observe three marks below the diagonal and a bit more above it. Which means
that even though the use of RUB in addition to LocB is of little help in the case
of MCP, its use does not degrade the performance for that considered problem.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

R
U
B

RUB+LocB

(a) MISP end gap comparison

 0

 5

 10

 15

 20

 0 5 10 15 20

L
o
c
B

RUB+LocB

(b) MCP end gap comparison

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

R
U
B

RUB+LocB

(c) MAX2SAT end gap comparison

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

R
U
B

RUB+LocB

(d) TSPTW end gap comparison

Fig. 5. End gap: The benefit of using both techniques vs the best single one

Comparison with Gurobi 9.0.3 The first observation to be made when comparing
the performance of Gurobi vs the DDO configurations, is that when running on
a single thread, ILP outperforms the basic DDO approach (without RUB and
LocB). Furthermore, Gurobi turns out to be the best single threaded solver for

14 X. Gillard et al.

MCP by a fair margin. However, in the MISP and MAX2SAT cases, Fig. 4 shows
that the DDO solvers benefitting from RUB and LocB were able to solve more
instances and to solve them faster than Gurobi. Which underlines the importance
of RUB and LocB.

When lifting the one thread limit, one can see that the DD-based approach
outperform ILP on each of the considered problems. In particular, in the case
of MCP for which Gurobi is the best single threaded option; our DDO solver
was able to find and prove the optimality of all tested instances in a little less
than 800 seconds. The ILP solver, on the other end, was not able to prove the
optimality of the 9 hardest instances within 30 minutes. Additionally, we also
observe that in spite of the performance gains of MIP when running in parallel,
Gurobi fails to solve as many MISP and MAX2SAT instances and to solve them
as fast as the single threaded DDO solvers with RUB and LocB. This emphasizes
once more the relevance of our techniques. It also shows that the observation
from [9] still hold today: despite the many advances of MIP the DDO approach
still scales better than MIP on the considered problems when invoked in parallel.

4 Previous work

DDO emerged in the mid’ 2000’s when [24] proposed to use decision diagrams
as a way to solve discrete optimization problems to optimality. More or less
concomitantly, [1] devised relaxed-MDD even though the authors envisioned its
use as a CP constraint store rather than a means to derive tight upper bounds
for optimization problems. Then, the relationship between decision diagrams and
dynamic programming was clarified by [21].

Recently, Bergman, Ciré and van Hoeve investigated the various ways to
compile decision diagrams for optimization (top-down, construction by separa-
tion) [11]. They also investigated the heuristics used to parameterize these DD
compilations. In particular, they analyzed the impact of variable ordering in [11,
7] and node selection heuristics (for merge and deletion) in [7]. Doing so, they
empirically demonstrated the crucial impact of variable ordering on the tightness
of the derived bounds and highlighted the efficiency of minLP as a node selection
heuristic. Later on, the same authors proposed a complete branch-and-bound al-
gorithm based on DDs [8]. This is the algorithm which we propose to adapt with
extra reasoning mechanisms and for which we provide a generic open-source im-
plementation in Rust [17]. The impressive performance of DDO triggered some
theoretical research to analyze the quality of approximate MDDs [5] and the
correctness of the relaxation operators [22].

This gave rise to new lines of work. The first one focuses on the resolution of
a larger class of optimization problems; chief of which multi-objective problems
[4] and problems with a non-linear objective function. These are either solved
by decomposition [4] or by using DDO to strengthen other IP techniques [13]. A
second trend aims at hybridizing DDO with other IP techniques. For instance, by
using Lagrangian relaxation [23] or by solving a MIP [6] to derive with very tight
bounds. But the other direction is also under active investigation: for example,

Improving the filtering of Branch-And-Bound MDD solver 15

[31, 32] use DD to derive tight bounds which are used to replace LP relaxation
in a cutting planes solver. Very recently, a third hybridization approach has
been proposed by Gonzàlez et al.[18]. It adopts the branch-and-bound MDD
perspective, but whenever an upper bound is to be derived, it uses a trained
classifier to decide whether the upper bound is to be computed with ILP or by
developing a fixed-width relaxed MDD.

The techniques (ILP-cutoff pruning and ILP-cutoff heuristic) proposed by
Gonzalez et al.[18] are related to RUB and LocB in the sense that all techniques
aim at reducing the search space of the problem. However, they fundamentally
differ as ILP-cutoff pruning acts as a replacement for the compilation of a relaxed
MDD whereas the goal of RUB is to speed up the development of that relaxed
MDD by removing nodes while the MDD is being generated. The difference is
even bigger in the case of ILP-cutoff heuristic vs LocB: the former is used as a
primal heuristic while LocB is used to filter out sub-problems that can bear no
better solution. In that sense, LocB belongs more to the line of work started by
[1, 19, 20]: it enforces the constraint lb ≤ f(x) ≤ ub and therefore provokes the
deletion of nodes and arcs that cannot lead to the optimal solution.

More recently, Horn et al explored an idea in [25] which closely relates to
RUB. They use “fast-to-compute dual bounds” as an admissible heuristic to
guide the compilation of MDDs in an A* fashion for the prize-collecting TSP.
It prunes portions of the state space during the MDD construction, similarly to
when RUB is applied. Our approach differs from that of [25] in that we attempt
to incorporate problem specific knowledge in a framework that is otherwise fully
generic. More precisely, it is perceived here as a problem-specific pruning that
exploits the combinatorial structure implied by the state variables. It is inde-
pendent of other MDD compilation techniques, e.g., our techniques are com-
patible with node merge (⊕) operators and other methodologies defined in the
DDO literature. We also emphasize that, as opposed to more complex LP-based
heuristics that are now typical in A* search, we investigate quick methodologies
that are also easy to incorporate in a MDD branch and bound.

Conclusion and future work

This paper presented and evaluated the impact of the local bound and rough up-
per bound techniques to strengthen the pruning of the branch-and-bound MDD
algorithm. Our experimental study on MISP, MCP, MAX2SAT and TSPTW
confirmed the relevance of these techniques. In particular, our experiments have
shown that devising a fast and simple rough upper bound is worth the effort as
it can significantly boost the efficiency of a solver. Similarly, our experiments
showed that the use of local bound can significantly improve the efficiency of
DDO solver despite its problem agnosticism. Furthermore, it revealed that a
combination of RUB and LocB supersedes the benefit of any single reasoning
technique. These results are very promising and we believe that the public avail-
ability of an open source DDO framework implementing RUB and LocB might
serve as a basis for novel DP formulation for classic problems.

16 X. Gillard et al.

References

1. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based
on multivalued decision diagrams. In: Bessière, C. (ed.) Principles and Practice of
Constraint Programming. LNCS, vol. 4741, pp. 118–132. Springer (2007)

2. Ascheuer, N.: Hamiltonian path problems in the on-line optimization of flexible
manufacturing systems (1996)

3. Bellman, R.: The theory of dynamic programming. Bulletin of
the American Mathematical Society 60(6), 503–515 (11 1954),
https://projecteuclid.org:443/euclid.bams/1183519147

4. Bergman, D., Cire, A.A.: Multiobjective optimization by decision diagrams. In:
Rueher, M. (ed.) Principles and Practice of Constraint Programming. LNCS,
vol. 9892, pp. 86–95. Springer (2016)

5. Bergman, D., Cire, A.A.: Theoretical insights and algorithmic tools for
decision diagram-based optimization. Constraints 21(4), 533–556 (2016).
https://doi.org/10.1007/s10601-016-9239-9, https://doi.org/10.1007/s10601-016-
9239-9

6. Bergman, D., Cire, A.A.: On finding the optimal bdd relaxation. In: Salvagnin, D.,
Lombardi, M. (eds.) Integration of AI and OR Techniques in Constraint Program-
ming. LNCS, vol. 10335, pp. 41–50. Springer (2017)

7. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Optimiza-
tion bounds from binary decision diagrams. INFORMS Journal on Com-
puting 26(2), 253–268 (2014). https://doi.org/10.1287/ijoc.2013.0561,
https://doi.org/10.1287/ijoc.2013.0561

8. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization
with decision diagrams. INFORMS Journal on Computing 28(1), 47–66 (2016).
https://doi.org/10.1287/ijoc.2015.0648, https://doi.org/10.1287/ijoc.2015.0648

9. Bergman, D., Cire, A.A., Sabharwal, A., Samulowitz, H., Saraswat, V., van Hoeve,
W.J.: Parallel combinatorial optimization with decision diagrams. International
Conference on AI and OR Techniques in Constriant Programming for Combinato-
rial Optimization Problems pp. 351–367 (2014)

10. Burch, J., E.M., C., K.L., M., D.L., D., H.L., H.: Symbolic model checking:
1020 states and beyond. Information and Computation 98(2), 142–170 (1992).
https://doi.org/10.1016/0890-5401(92)90017-A, https://doi.org/10.1016/0890-
5401(92)90017-A

11. Cire, A.A.: Decision Diagrams for Optimization. Ph.D. thesis, Carnegie Mellon
University Tepper School of Business (2014)

12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms.
MIT press (2009)

13. Davarnia, D., van Hoeve, W.J.: Outer approximation for integer nonlinear pro-
grams via decision diagrams (2018)

14. Dumas, Y., Desrosiers, J., Gelinas, E., Solomon, M.M.: An optimal algorithm for
the traveling salesman problem with time windows. Operations research 43(2),
367–371 (1995)

15. Erdös, P., Rényi, A.: On random graphs i. Publicationes Mathematicae Debrecen
6, 290 (1959)

16. Gendreau, M., Hertz, A., Laporte, G., Stan, M.: A generalized insertion heuristic
for the traveling salesman problem with time windows. Operations Research 46(3),
330–335 (1998)

Improving the filtering of Branch-And-Bound MDD solver 17

17. Gillard, X., Schaus, P., Coppé, V.: Ddo, a generic and efficient framework for mdd-
based optimization. Accepted at the International Joint Conference on Artificial
Intelligence (IJCAI-20); DEMO track (2020)

18. Gonzalez, J.E., Cire, A.A., Lodi, A., Rousseau, L.M.: Integrated integer program-
ming and decision diagram search tree with an application to the maximum inde-
pendent set problem. Constraints pp. 1–24 (2020)

19. Hadžić, T., Hooker, J., Tiedemann, P.: Propagating separable equalities in an mdd
store. In: CPAIOR. pp. 318–322 (2008)

20. Hoda, S., Van Hoeve, W.J., Hooker, J.N.: A systematic approach to mdd-based
constraint programming. In: International Conference on Principles and Practice
of Constraint Programming. pp. 266–280. Springer (2010)

21. Hooker, J.N.: Decision diagrams and dynamic programming. In: Gomes, C., Sell-
mann, M. (eds.) Integration of AI and OR Techniques in Constraint Programming.
LNCS, vol. 7874, pp. 94–110. Springer (2013)

22. Hooker, J.N.: Job sequencing bounds from decision diagrams. In: Beck, J.C. (ed.)
Principles and Practice of Constraint Programming. LNCS, vol. 10416, pp. 565–
578. Springer (2017)

23. Hooker, J.N.: Improved job sequencing bounds from decision diagrams. In: Schiex,
T., de Givry, S. (eds.) Principles and Practice of Constraint Programming. LNCS,
vol. 11802, pp. 268–283. Springer (2019)

24. Hooker, J.: Discrete global optimization with binary decision diagrams. GICOLAG
2006 (2006)

25. Horn, M., M̃aschler, J., R̃aidl, G.R., R̃önnberg, E.: A*-based
construction of decision diagrams for a prize-collecting schedul-
ing problem. Computers & Operations Research 126, 105125
(2021). https://doi.org/https://doi.org/10.1016/j.cor.2020.105125,
http://www.sciencedirect.com/science/article/pii/S0305054820302422

26. Langevin, A., Desrochers, M., Desrosiers, J., Gélinas, S., Soumis, F.: A two-
commodity flow formulation for the traveling salesman and the makespan problems
with time windows. Networks 23(7), 631–640 (1993)

27. López-Ibáñez, M., Blum, C.: Benchmark instances for the travelling salesman prob-
lem with time windows. Online (2020), http://lopez-ibanez.eu/tsptw-instances

28. Ohlmann, J.W., Thomas, B.W.: A compressed-annealing heuristic for the traveling
salesman problem with time windows. INFORMS Journal on Computing 19(1),
80–90 (2007)

29. Pesant, G., Gendreau, M., Potvin, J.Y., Rousseau, J.M.: An exact constraint logic
programming algorithm for the traveling salesman problem with time windows.
Transportation Science 32(1), 12–29 (1998)

30. Potvin, J.Y., Bengio, S.: The vehicle routing problem with time windows part ii:
genetic search. INFORMS journal on Computing 8(2), 165–172 (1996)

31. Tjandraatmadja, C.: Decision Diagram Relaxations for Integer Programming.
Ph.D. thesis, Carnegie Mellon University Tepper School of Business (2018)

32. Tjandraatmadja, C., van Hoeve, W.J.: Target cuts from relaxed deci-
sion diagrams. INFORMS Journal on Computing 31(2), 285–301 (2019).
https://doi.org/10.1287/ijoc.2018.0830, https://doi.org/10.1287/ijoc.2018.0830

	Introduction
	Les fondements
	La bibliothèque ddo
	Résultats expérimentaux et conclusion

