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tThe aim of the paper is to revisit the model of Biologi
al RegulatoryNetworks (BRN) whi
h was proposed by René Thomas to model theintera
tions between a set of genes. We give a formal semanti
s forBRN in terms of transition systems whi
h formalizes the evolutionrules given by René Thomas. Then we show how to use this model to�nd interesting properties of a BRN like the set of stable states, 
y
leset
 using tools for analyzing transition systems.1 Introdu
tionModeling of Biologi
al Systems. The arrival of massive amount of ex-pression data puts the emphasis on 
omputational methods to over
ome thedi�
ulties of interpretation of experimental data. Instead of providing a
lear explanation of biologi
al systems, data reveals the di�
ulty for analyz-ing them. The variety of 
omponents and their intera
ting 
apabilities leadto 
ope with their 
omplexity. This opens a �eld of modeling to investigate
omputational biologi
al systems. 1



Computational systems biology [Wol01℄ tries to establish methods andte
hniques that enable us to understand the stru
ture of the system, su
has gene/metaboli
/signal transdu
tion networks. The modeling of the dy-nami
s of su
h systems is a �rst step towards the 
ontrol, the design and themodi�
ation of the systems in order to ensure some desired properties[Kit02℄.Formal Methods. Formal methods have been used for a de
ade or morein the area of veri�
ation of safety 
riti
al systems. The te
hniques andtools that have emerged from this �eld to analyze the behaviors of su
hsystems, makes it possible to model and verify 
omplex 
on
urrent systems(huge number of states) even with 
ontinuous information (dense time) orparameters. It is then natural to try and use su
h te
hniques to model andanalyze biologi
al systems espe
ially when one wants to �nd properties abouttheir behaviors.Biologi
al Regulatory Networks. Biologi
al Regulatory Networks (inthe sequel BRN) modelize intera
tions between biologi
al entities (RNA orProteins). Their regulations involve a lot of 
omplex pro
esses, but it is 
om-mon to simplify the 
omplexity of the regulations by taking into a

ount onlytwo a
tions: a
tivation and inhibition. BRNs are stati
ally represented bygraphs: verti
es abstra
t genes and edges represent their intera
tions (a
tiva-tion or inhibition). Moreover at a given time, a numeri
al value is asso
iatedto ea
h vertex to des
ribe the 
on
entration level of the 
orresponding entity.The René Thomas' boolean approa
h has been justi�ed as a dis
retiza-tion of the 
ontinuous di�erential equation system[Sno89℄, it has been 
on-fronted to the more 
lassi
al analysis in terms of di�erential equations[KT87℄.Then Thomas and Snoussi showed that all steady states 
an be found viathe dis
rete approa
h[ST93℄. More re
ently Thomas and Kaufman haveshown that the dis
rete des
ription provides a qualitative �t of the di�er-ential equations with a small number of possible 
ombinations of values forthe parameters[TK01℄.Works of René Thomas and 
o-workers provide the basis to develop aformal 
omputational framework for gene regulation.Our Contribution. In this paper we propose a semanti
s for an extendedgene regulatory model of R. Thomas' theory. In our extended model a gene
an be a
tivator at a 
ertain level and inhibitor at another. This is to ourknowledge the �rst time a formal semanti
s is proposed for BRN. This enablesus to derive automati
ally a behavioral model of a BRN and use existing toolsfor analyzing �nite state models (e.g. model-
he
king tools).2



Outline of the Paper. The paper is organized as follows: se
tion 2 givesthe basi
s of BRN. The 
ore of the paper is in se
tion 3 where we give aformal semanti
s for BRN. In se
tion 4 we show on a small example how touse the tool HyTe
h [HHWT97℄ to analyze a BRN.2 Biologi
al Regulatory NetworksNotations Given a �nite set E, jEj denotes the 
ardinality of E. Wedenote 2E the set of subsets of E. If � is a formula of propositional logi
over a set X, [[�℄℄ denotes the set of values of the variables satisfying �. By
onvention, if U = ;, �(x) are propositional formulas, Vx2U �(x) = true.Biologi
al examples often rely on intervals: an integer interval [a; b℄ standsfor the set of values fx 2 N ; a � x � bg, and we denote [℄ the empty interval.The original model of Biologi
al Regulatory Networks [KT87℄ makes theassumption that the a
tual 
on
entration of the produ
ts of the genes 
anbe approximated by integer levels: the 
ontinuous 
on
entration fun
tion isapproximated by a pie
ewise 
onstant fun
tion. Those 
onstant levels givethe expression levels of the genes. In our formal des
ription of a Biologi
alRegulatory Network, a set V of �variables� stands for the genes of the net-work. An oriented edge from a variable x to y indi
ates that x is a regulator(a
tivator, inhibitor) of y.De�nition 1 (Biologi
al Regulatory Networks.) A Biologi
al Regula-tory Network (BRN) is a 3-uple R = (V;E; �) where:� V is a �nite set of verti
es,� E � V � V is a �nite set of edges,� � = (�+; ��) with � : E 7! 2N � 2N are respe
tively the a
tivation andinhibition fun
tions asso
iated to an edge e 2 E. Moreover, we assume:� �+(e) [ ��(e) 6= [℄� 8e 2 E; �+(e)\��(e) = [℄: for a given level, a gene 
annot be botha
tivator and inhibitor. �Remark 1 For v 2 V we will use v as well to denote the expression levelof the gene v. �+(x; y) (resp. ��(x; y)) gives the interval inside whi
h xa
tivates (resp. inhibits) y. Note that �+(x; y) = [℄ (resp. ��(x; y) = [℄),means that x never a
tivates (resp. inhibits) y. Note also that Def. 1 rulesout edges (x; y) for whi
h �+(x; y) = ��(x; y) = [℄ whi
h would have noobservable e�e
t in the network. 3
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Figure 1: Examples of BRNsExample 1 Figure 1 gives two examples of BRN. In the �rst example, V =fx; y; zg and �(x; y) = ([1; 1℄; [℄): x a
tivates y when x has the level 1;�(y; x) = ([℄; [1; 1℄): y inhibits x when y has the level 1; �(z; y) = ([1; 1℄; [℄):z a
tivates y when z has the level 1. The meaning of the se
ond example isde�ned a

ordingly.De�nition 2 (A
tivators and Inhibitors.) Let R = (V;E; �) be a Bio-logi
al Regulatory Network, we de�ne the following sets:1. 8x 2 V;R+(x) = fy 2 V; �+(y; x) 6= [℄g is the set of a
tivators of x,2. 8x 2 V;R�(x) = fy 2 V; ��(y; x) 6= [℄g is the set of inhibitors of x. �Example 2 For example 1 of Figure 1, R+(x) = ;, R�(x) = fyg, R+(y) =fz; xg, R�(y) = ; and R+(z) = ;, R�(z) = ;. In example 2 R+(x) = ;,R�(x) = fyg and R+(y) = fxg, R�(y) = fxg.3 Formal Semanti
s of Biologi
al RegulatoryNetworksIn René Thomas' theory, the evolution of the expression levels of the genesis des
ribed by an original notion of �attra
tor�. Informally, it represents anupper or a lower bound whi
h is attained if no 
hange o

urs in the rest ofthe BRN. Hen
e, the 
omputation of the evolution of 
on
entrations is based4



on the attra
tors. They are de�ned by a set of parameters. The evolution ofthe BRN highly depends on the 
hoi
e of those parameters.In this se
tion, we formalize the evolution of the states of a BRN by atransition system. This semanti
s also involves some evolution parameters asde�ned in [KT87℄.3.1 State Spa
e of a BRNDe�nition 3 (State Spa
e of a BRN.) LetR = (V;E; �) be a BRN. Thestate spa
e Sx of a variable x 2 V is de�ned by Sx = [0;maxy2V �+(x; y) [��(x; y) ℄. The state spa
e of R is de�ned by S(R) = �x2V Sx. A state ofthe network R is a mapping � : V ! N su
h that 8x 2 V; �(x) 2 Sx. �The previous de�nition of the set Sx requires that 0 belong to the statespa
e.Example 3 For the example 2 of Figure 1, Sx = [0; 2℄; Sy = [0; 1℄.3.2 Parameters of a BRNAs already mentioned in the beginning of this se
tion, the behavior of a BRNdepends on some parameters. Those parameters play the role of attra
torsand give the expression levels towards whi
h a gene is attra
ted, dependingon whi
h genes a
tivate or inhibit it.De�nition 4 (Parameters of a BRN.) Let R = (V;E; �) be a BRN. Theset Para(R) of parameters of R is de�ned byPara(R) = fKx;A;BjA � R+(x); B � R�(x)gA valuation of the parameters Para(R) is a mapping � : Para(R)! N su
hthat 8x 2 V;A � R+(x); B � R�(x); �(Kx;A;B) 2 Sx. In the sequel we useKx;U;V instead of �(Kx;U;V ) when the meaning is 
lear from the 
ontext. �De�nition 5 (A
tivity Assumption.) Let R = (V;E; �) be a BRN and� a valuation for Para(R). � satis�es the a
tivity assumption i� 8x 2 V :8y 2 R+(x); 9X+ � R+(x); 9X� � R�(x); �(Kx;X+[fyg;X�) > �(Kx;X+;X�)8y 2 R�(x); 9X+ � R+(x); 9X� � R�(x); �(Kx;X+;X�[fyg) < �(Kx;X+;X�)�5



De�nition 6 (Monotoni
ity Assumption.) Let R = (V;E; �) be a BRNand � be a valuation for Para(R). � satis�es the monotoni
ity assumptioni�: 8X+ � R+(x), 8X� � R�(x), 8X 0+ � R+(x), 8X 0� � R�(x), X+ �X 0+; X 0� � X� ) �(Kx;X+;X�) � �(Kx;X0+;X0�). �The a
tivity assumption stands for the observability of the a
tion of agene on another. Without this assumption it is possible that any 
ombina-tion of a
tivators of a gene does not have any observable e�e
t on the targetgene be
ause its level of expression would remain the same. It seems thenquite obvious that any valuation of the parameters should satisfy this prop-erty. The monotoni
ity property is is a biologi
al experimental fa
t, alreadypointed out by René Thomas. Anyway our framework does not rely on theseassumptions motivated by biology.Example 4 In the example 2 of Figure 1, a possible valuation of the param-eters is: Kx;;;; = 0; Kx;;;y = 1 and Ky;;;; = 0; Ky;x;; = 0; Ky;z;; = 0; Ky;xz;; =1 and Kz;;;; = 0. Noti
e that this valuation does not satisfy the a
tivityproperty as Kx;;;; � Kx;;;y. If we take Kx;;;; = 1; Kx;;;y = 0 this property issatis�ed.3.3 Transition System of a BRNLet us 
onsider a BRN R = (V;E; �). Following [TGL76, Tho78℄ the evo-lution of the state of the network depends (i) on the expression level of thegenes (ii) on a set of parameters (see Def. 4). The expression level of a genex may either de
rease or in
rease a

ording to whi
h other genes of the net-work a
tivate or inhibit it. If X+ and X� are respe
tively the set of genesthat 
urrently a
tivate x and the set that 
urrently inhibit x, then the valueof x evolves towards the value de�ned by the parameter Kx;X+;X�. Whi
hgenes are 
urrently a
tivating or inhibiting x is de�ned a

ording to the lev-els given in the network (e.g. for example 2 of Figure 1, x a
tivates y whenits expression level is 1, inhibits y when its expression level is 2, and has noe�e
t on y when it is 0.) We formally de�ne the di�erent 
on�gurations of anetwork a

ording to the a
tivators and inhibitors of a gene x in Def. 7.De�nition 7 (State 
onstraints of a BRN.) For x 2 V , X+ � R+(x),X� � R�(x), we de�ne Ax;X+, Ix;X� and Cx;X+;X� by:� Ax;X+ = �Vy2X+(y 2 �+(y; x))� ^ �Vy2R+(x)nX+(y =2 �+(y; x))�� Ix;X� = �Vy2X�(y 2 ��(y; x))� ^ �Vy2R�(x)nX�(y =2 ��(y; x))�6



� Cx;X+;X� = Ax;X+ ^ Ix;X� �Cx;X+;X� is true i� the values of the genes in X+ are in the intervals inwhi
h they a
tivate x and the values of the genes in X� are in the intervalsin whi
h they inhibit x.Example 5 For example 2 of Fig. 1 the a
tivation and inhibition fun
tionsare: �+(x; y) = [1; 1℄; ��(x; y) = [2; 2℄ and �+(y; x) = ;; ��(y; x) = [1; 1℄.The a
tivators and inhibitors sets are given by R+(y) = x;R�(y) = x andR+(y) = ;; R�(x) = y. The set of 
onstraints are given by: Cx;;;; = y =2 [1; 1℄,Cy;x;; = x 2 [1; 1℄ ^ x =2 [2; 2℄ and Cy;;;x = x =2 [1; 1℄ ^ x 2 [2; 2℄.Another feature of the evolution of the state of a network is that theexpression level of a gene x evolves step-by-step i.e. it 
annot go from 1 to 3in a single step, it must evolve by one unit from 1 to 2 and if some 
onditionsare met1 will go from 2 to 3. This is 
aptured in the de�nition of an evolutionoperator :De�nition 8 (Evolution Operator �) Let x 2 N and k 2 N. The evolu-tion operator � is de�ned by:x � k = 8<: x� 1 i� x > kx + 1 i� x < kx otherwise �Noti
e that in the 
ase x = k the next value of x will remain equal to k.We 
an now de�ne a transition system giving the semanti
s of a BRN.De�nition 9 (Transition System of a BRN.) Let R = (V;E; �) be aBRN and � a valuation of the parameters in Para(R). The semanti
s ofR with valuation � is the labeled transition system SR(�) = (S(R); V;!)with !� S(R)� V � S(R) su
h that:� x! � 0 () 8>><>>: 9A � R+(x); 9B � R�(x); � 2 [[Cx;A;B℄℄^ �(x) 6= Kx;A;B^ � 0(x) = x � Kx;A;B^ 8y 6= x; � 0(y) = �(y) �1it 
ould be that from level 2 it is impossible to rea
h level 3.7



Remark 2 Note that a

ording to Def. 7, there is a unique � 0 su
h that� x! � 0. The transition system SR(�) is (partially) deterministi
 in the senseit is deterministi
 for ea
h x-transition.Nevertheless, there may be another y-transition from the state � and thusSR(�) is not deterministi
. The nondeterminism models the fa
t that theexpression levels of the genes evolve asyn
hronously. Note also that there isan x-transition only when x has not rea
hed the value it tends to get 
loserto (i.e. Kx;A;B for the right A and B). This will enable us to de�ne thestable states of a network as those states that have no outgoing transitions(the deadlo
k states).De�nition 10 (Stable State of a BRN.) Let R = (V;E; �) be a BRNand � a valuation of the parameters in Para(R) and SR(�) = (S(R); V;!)its semanti
s. A state � 2 S(R) is non stable i� 9� 0 2 S(R); x 2 V su
hthat � x! � 0. A state � is a stable state if it is not a non stable state (i.e. astable state is a deadlo
k state). �4 Simple Case-StudyWe 
onsider in this se
tion the example 1 of Fig. 1. We use the veri�
ationtool Hyte
h [HHWT97℄ to automati
ally 
ompute the results. Of 
oursewe 
ould have 
hosen any model-
he
ker to analyze our models but Hyte
henables us to 
ompute some 
onstraints on the parameters su
h that 
ertainproperties are satis�ed (we will not 
over this in this paper.) The Hyte
hinput �les and results are given in appendix A.3.The set of a
tivators and inhibitors are given in Example 2, page 4. Thestate spa
e is Sx = [0; 1℄, Sy = [0; 1℄ and Sz = [0; 1℄. The parameters areKx;;;;, Kx;;;y (for x); Ky;;;;, Ky;x;;, Ky;z;;, Ky;f x;zg;; (for y) and Kz;;;; (for z).4.1 Example with Regular StabilizationLet us �x the following values for the parameters:Kx;;;; = 1Kx;;;y = 0 Ky;;;; = 0Ky;x;; = 0Ky;z;; = 0Ky;fx;zg;; = 1 Kz;;;; = 0The monotoni
ity and a
tivity assumptions are satis�ed by these parameters.For this example we obtain the transition system given in Fig. 2 in theappendix A.1. The Hyte
h input �le is given in appendix A.3. We 
an8



easily 
ompute the set of stable states and non stable states as given in theoutput �le Figure 5, appendix A.3, 15. Note that the 
y
le reveals indeed anequilibrium state whi
h is not stable.4.2 Example without Regular StabilizationLet us now �x the parameters to:Kx;;;; = 1Kx;;;y = 0 Ky;;;; = 0Ky;x;; = 1Ky;z;; = 1Ky;xz;; = 1 Kz;;;; = 0The transition system obtained in this 
ase is given in Fig. 3, appendix A.2.Again the results (Figure 6, appendix A.3, page 16) obtained with Hyte
hshow that there is no regular stable state in this 
ase. Note that the 
y
le isindeed a stable state, whi
h is 
alled singular in the R.Thomas'approa
h.5 Con
lusion and Future WorkIn this paper we have given a formal semanti
s for Biologi
al RegulatoryNetwork. The main advantages of this work are (i) the formal semanti
senables us to build automati
ally a (behavioral) model of a network (ii) thismodel 
an then be analyzed by veri�
ation tools exa
tly as safety 
riti
alprograms 
an be (e.g. the formal semanti
s 
hara
terizes the stable and nonstable states).Our future work will 
onsist in adding timing 
onstraints in the networkto build a more a

urate model. Our semanti
s is ready to be extended withtiming 
onstraints: in this 
ase we will derive a timed or hybrid automatamodel and use tools for analyzing this types of models to prove properties ofthe network.A
knowledgementsThe authors thank genopole r
-resear
h in Evry (H. Pollard and P. Tambourin)for 
onstant supports. Comments from an anonymous referee have been very
onstru
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A AppendixA.1 Transition System of the Example with RegularStabilization
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Figure 2: Transition system of the BRN of the example 1 of Fig. 1We 
an noti
e (Fig. 2) that state (1,0,0) is stable. Moreover, we 
anobserve a 
y
le (0,0,1) (1,0,1) (1,1,1) (0,1,1).A.2 Transition system of the Example without RegularStabilizationWe 
an noti
e (Fig. 3) that there is no regular stable state, but an attra
tile
y
le: (0; 0; 0) x! (1; 0; 0) y! (1; 1; 0) x! (0; 1; 0) y! (0; 0; 0) whi
h 
an be
onsidered as a singular stable state.11
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Figure 3: State graph of BRN of example 1
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A.3 Hyte
h FilesFor the example of se
tion 4, we use the input �le of Fig. 4 to model ournetwork.The results obtained with the input �le of Figure 4 is given in Figure 5.
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-- hyte
h input filevar k_x_O_O,k_x_O_y,k_y_O_O,k_y_x_O,k_y_z_O,k_y_xz_0,k_z_O_O: parameter ; -- parametersx,y,z: dis
rete ;k: dis
rete ; -- k 
hanges on every dis
rete transitionk1,k2,k3: parameter ; -- used for dete
ting 
y
lesautomaton rrbsyn
labs: ;initially Start ;lo
 Start:while x>=0 & y>=0 & z>=0 & x<=1 & y<=1 & z<=1 wait {}-- C_x,O,O -> K_x_O_Owhen y < 1 & x > k_x_O_O do {x'=x-1,k'=1-k} goto Start;when y < 1 & x < k_x_O_O do {x'=x+1,k'=1-k} goto Start;-- C_x,O,ywhen y >= 1 & x < k_x_O_y do {x'=x+1,k'=1-k} goto Start;when y >= 1 & x > k_x_O_y do {x'=x-1,k'=1-k} goto Start;-- C_y,O,O -> k_y_O_Owhen x<1 & z<1 & y < k_y_O_O do {y'=y+1,k'=1-k} goto Start;when x<1 & z<1 & y > k_y_O_O do {y'=y-1,k'=1-k} goto Start;-- C_y,x,O -> k_y_x_O_0when x>=1 & z<1 & y < k_y_x_O do {y'=y+1,k'=1-k} goto Start;when x>=1 & z<1 & y > k_y_x_O do {y'=y-1,k'=1-k} goto Start;-- C_y,z,Owhen x<1 & z>=1 & y < k_y_z_O do {y'=y+1,k'=1-k} goto Start;when x<1 & z>=1 & y > k_y_z_O do {y'=y-1,k'=1-k} goto Start;-- C_y,xz,Owhen x>=1 & z>=1 & y < k_y_xz_0 do {y'=y+1,k'=1-k} goto Start;when x>=1 & z>=1 & y > k_y_xz_0 do {y'=y-1,k'=1-k} goto Start;-- C_z,O_Owhen z < k_z_O_O do {z'=z+1,k'=1-k} goto Start;when z > k_z_O_O do {z'=z-1,k'=1-k} goto Start;endvar init_reg, f_rea
hable, stable_states, non_stable_states,xy_f_rea
hable, 
y
le_states : region;init_reg := lo
[rrb℄=Start & x>=0 & y>=0 & z>=0 & x<=1 & y<=1 & z<=1 &k_x_O_O=1 & k_x_O_y=0 & k_y_O_O=0 & k_y_x_O=1 & k_y_z_O=1 &k_y_xz_0=1 & k_z_O_O=0;prints "initial values for the K_ parameters and x,y,z:" ;print omit rrb lo
ations hide k,k1,k2,k3 in init_reg endhide ;-- 
ompute the rea
hable set of states ... must be finite-- even if there is a 
y
lef_rea
hable := rea
h forward from init_reg endrea
h;if empty(f_rea
hable)then prints "No rea
hable states ...";else

prints "The rea
hable states are:";print hide k_x_O_O,k_x_O_y,k_y_O_O,k_y_x_O,k_y_z_O,k_y_xz_0,k_z_O_O,k in f_rea
hable endhide;endif ;-- 
ompute the proje
tion on x,y of f_rea
hablexy_f_rea
hable := hide k_x_O_O,k_x_O_y,k_y_O_O,k_y_x_O,k_y_z_O,k_y_xz_0,k_z_O_O,k in f_rea
hable endhide;-- 
ompute the set of non stable states i.e. rea
hable states-- with a su

essor-- define the stri
t prede
essor operator-- here is a tri
k to do this with Hyte
h (otherwise Hyte
h 
omputes-- the set of prede
essor of a set in
luding the set itself)-- hide k in pre(A & k=0) & k=1 endhide gives the stri
t prede
essor-- of Anon_stable_states := f_rea
hable &hide k in (pre(f_rea
hable & k=0) & k=1) endhide;-- print the resultif empty(non_stable_states) thenprints "No non stable states";elseprints "the rea
hable non stable states are:";print hide k_x_O_O,k_x_O_y,k_y_O_O,k_y_x_O,k_y_z_O,k_y_xz_0,k_z_O_O,k in non_stable_states endhide;endif ;stable_states := f_rea
hable & ~non_stable_states ;if empty(stable_states)then prints "No stable states ... !!!";elseprints "The rea
hable stable states are:";print hide k_x_O_O,k_x_O_y,k_y_O_O,k_y_x_O,k_y_z_O,k_y_xz_0,k_z_O_O,k in stable_states endhide;endif ;-- now look for 
y
les ... easy in hyte
h with hide-- (existential quantifi
ation)-- first we define the stri
t su
essor fun
tion-- it is a post where k 
hanges followed by a rea
h
y
le_states := x=k1 & y=k2 & z=k3 & f_rea
hable &rea
h forward from hide k_x_O_O,k_x_O_y,k_y_O_O,k_y_x_O,k_y_z_O,k_y_xz_0,k_z_O_O,k in(post(x=k1 & y=k2 & z=k3 & f_rea
hable & k=0) & k=1)endhide endrea
h;-- print the resultif empty(
y
le_states)then prints "No infinite path in the system";else prints "There is a 
y
le in the system ! ...from any of these states:";print hide k_x_O_O,k_x_O_y,k_y_O_O,k_y_x_O,k_y_z_O,k_y_xz_0,k_z_O_O,k,k1,k2,k3 in 
y
le_states endhide;endif ;Figure 4: Hyte
h Spe
i�
ation of the BRN of Example 1 Figure 1.
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initial values for the K_ parameters and x,y,z:k_x_O_O = 1 & k_x_O_y = 0 & k_y_O_O = 0& k_y_x_O = 0 & k_y_z_O = 0 & k_y_xz_0 = 1& k_z_O_O = 0 & x <= 1 & y <= 1 & z >= 0& x >= 0 & y >= 0 & z <= 1.Number of iterations required for rea
hability: 1The rea
hable states are:Lo
ation: Startx <= 1 & y >= 0 & z <= 1& x >= 0 & y <= 1 & z >= 0the rea
hable non stable states are:Lo
ation: Startx = 0 & y < 1 & z >= 0 & y >= 0 & z <= 1| y = 1 & x = 1 & z <= 1 & z >= 0| y = 1 & z < 1 & x < 1 & z >= 0 & x >= 0| z = 1 & y >= 0 & x <= 1 & x >= 0 & y <= 1The rea
hable stable states are:Lo
ation: Starty < 1 & 0 < x & z < 1 & y >= 0& x <= 1 & z >= 0.......Number of iterations required for rea
hability: 7There is a 
y
le in the system ! ... from any of these states:Lo
ation: Startz = 1 & y = 0 & x = 1| z = 1 & y = 1 & x = 0| z = 1 & y = 1 & x = 1| z = 1 & y = 0 & x = 0=================================================================Max memory used = 0 pages = 0 bytes = 0.00 MBTime spent = 57.24u + 6.24s = 63.48 se
 total=================================================================Figure 5: Hyte
h results for example of Fig. 4 (with Stabilization)15



initial values for the K_ parameters and x,y,z:k_x_O_O = 1 & k_x_O_y = 0 & k_y_O_O = 0 &k_y_x_O = 1 & k_y_z_O = 1 & k_y_xz_0 = 1 &k_z_O_O = 0 & x <= 1 & y <= 1 & z >= 0 &x >= 0 & y >= 0 & z <= 1.Number of iterations required for rea
hability: 1The rea
hable states are:Lo
ation: Startx <= 1 & y >= 0 & z <= 1 & x >= 0& y <= 1 & z >= 0the rea
hable non stable states are:Lo
ation: Startx = 0 & y < 1 & z >= 0 & y >= 0 & z <= 1| y = 1 & x = 1 & z <= 1 & z >= 0| y = 1 & z < 1 & x < 1 & z >= 0 & x >= 0| y = 0 & x = 1 & z < 1 & z >= 0| z = 1 & y >= 0 & x <= 1 & x >= 0 & y <= 1The rea
hable stable states are:Lo
ation: Start0 < y & z < 1 & x <= 1 & 0 < x & z >= 0 & y < 1| y >= 0 & z < 1 & 0 < x & x < 1 & z >= 0 & y < 1.......Number of iterations required for rea
hability: 7There is a 
y
le in the system ! ... from any of these states:Lo
ation: Startx = 1 & y = 0 & z >= 0 & z < 1| x = 0 & y = 1 & z >= 0 & z < 1| x = 1 & y = 1 & z >= 0 & z < 1| x = 0 & y = 0 & z >= 0 & z < 1=================================================================Max memory used = 0 pages = 0 bytes = 0.00 MBTime spent = 73.04u + 8.10s = 81.14 se
 total=================================================================Figure 6: Hyte
h results for example of Fig. 4 (with no stabilization)16


