
 1

Towards a Mediation System Framework
for Transparent Access to Largely Distributed Sources

The MediaGrid project1

Christine Collet*, Khalid Belhajjame, Gilles Bernot, Christophe Bobineau,
Gennaro Bruno, Beatrice Finance, Fabrice Jouanot, Zoubida Kedad, David Laurent,

Fariza Tahi, Genoveva Vargas-Solar, Tuyet-Trinh Vu, Xiaohui Xue

*LSR-IMAG Lab., Institut National Polytechnique de Grenoble
BP 72, 38402 Saint-Martin d’Hères, France

 Christine.Collet@imag.fr

Abstract. This paper presents the MediaGrid project whose goal is the defini-
tion of a mediation framework for transparent access to largely distributed
sources. Frameworks are reusable pieces of design being expressed as a set
of interfaces and components together with the description of their collabora-
tion. Research topics addressed by the MediaGrid project include meta-data
design, generation of mediation queries and adaptive and interactive query
evaluation.

1 Introduction

The increasing use of computers and the development of communication
infrastructures have led to a wide range of information sources being available
through networks. Data integration systems or mediation systems have been
proposed as a solution to provide a transparent and efficient access to multiple
heterogeneous, distributed and autonomous sources [DD99,Wie92]. These systems
handle underlying data source managers, operating systems and networks
heterogeneity thereby giving users and applications the illusion that they deal with a
unique data source.

The complexity of mediation systems increases with respect to the number, the
types and the capacities of data sources. Moreover, huge amounts of knowledge
(source descriptions, schemas, semantic relations between schemas) have to be
maintained. This increases the difficulty to design assertions between sources.
Future mediation systems would be highly dynamical: hence they will have to
manage data sources evolution and the adding or removal of sources. Source
availability should be considered by the query processing, where queries may need to

1 This work is supported by the French Ministry of Research through the ACI-GRID program. Participants of

the project are from: the LSR-IMAG Laboratory – Grenoble University, the PRiSM Laboratory – Versailles
University and the LaMI Laboratory – University of Evry-Val-d'Essone.

 2

dynamically change their execution plan, produce partial results or materialize
results. Finally, users and applications want to control the query processing.

 3

The MediaGrid project (http://www-lsr.imag.fr/mediagrid) takes up these
challenges. The objective is to propose a mediation framework, i.e. a reusable design
(of a mediation system) expressed as a set of interfaces (or components) and the way
their instances collaborate. MediaGrid mediation systems built from the framework
are able to (i) support more and more available sources, (ii) consider sources
containing weakly structured data, (iii) authorize partial results for queries in case of
data sources unavailability and/or satisfy user interests, (iv) support a query evaluator
which is able to dynamically adapt itself to the execution environment and which
accepts user interaction during query execution.

Fig. 1 – General architecture of MediaGrid mediation system

The general architecture of a MediaGrid system is given in Figure 1. It follows the
classical three-layer architecture. Users or applications access data contained in local
sources through the mediation layer. Queries are formulated over a mediation
schema (global schema) and are rewritten in terms of exported schemas. Both kinds
of schemas are defined using a XML syntax. The mediation (or global) schema de-
scribes integrated data manipulated at the mediation level. The exported schemas
result from the subscription of sources to the system. During this process, sources are
wrapped and data descriptions (schemas, DTD, types, etc.) are translated as exported
schemas. Advanced information such as source capabilities and some statistics on
sources are also extracted.

Operational mappings between the exported schemas and the mediation one are
specified using mediation queries. Such queries are often supposed to be generated
manually, which is generally a very complex process considering the amount of
knowledge to take into account. Indeed, besides knowing the content of all the
sources, the designer has to know semantic links between the sources and the media-
tion schema (e.g., functional dependencies, referential constraints and value con-
straints, domains compatibility, semantic equivalence between attributes and in-
stances of key attributes, etc.).

 4

The complexity of this task increases with the number of data sources. A first an-
swer has been proposed in [KBo99], followed by a valuable result from the Clio
project [YMH+01]. The Mediation Queries generator automates this process.

Meta-information also plays a very important role in query processing. When que-
rying data, mediation queries are used as input of the (unfolding) algorithm to re-
write user queries into sub-queries executed at local sources. Mediation queries have
therefore to be considered as meta-data. Queries are rewritten in terms of exported
schemas and evaluated by the Evaluator component. It is important that this compo-
nent takes into account sources capabilities to avoid a huge data transfer over the
network by delegating some tasks to the sources. Returned results from sources are
then combined and sent back to applications or users.

Query evaluators may use complicated techniques resolving problems related to
network delays, lack of memory, etc. Moreover, applications (or users) may have
different requirements for processing data such as source preference, time limit for
query evaluation, number of results being handled by an application, economic cost
limit for accessing data in case of paying sources, etc. Some of them can wish to get
results in brief delay even if they are not complete while others need complete and
exact results. Different mechanisms [SAC+79,GM93,KD98,BFMV00,UF00,AH00]
have been proposed to respond to one or several of these requirements. However,
such mechanisms have been designed and implemented for systems having specific
characteristics. It is difficult to have them working together in an efficient manner
within a mediation layer. Therefore, we propose to give programmers of a Media-
Grid system some tools to build an evaluator providing the « exact » querying capa-
bilities for the applications requirements. The evaluator is built from a Query Broker
Framework (QBF) integrating several mechanisms proposed in distributed and paral-
lel database management systems and coming from adaptive and interactive query
processing techniques [HFC+00]. This innovative approach offers different adapta-
tion techniques which can be used over different data models (relational, semi-
structured or object), in an uniform way, to reach application (or user) requirements,
even if these techniques have not been originally designed for those data models.

To illustrate these aspects we consider a mediation system that allows biologists
with a means to correlate expression levels of a gene -- whose data are stored within
the three data sources GOLD [BEK01], SMD [SHK+01] and SGD [BDD+00]
sources -- and to observe their evolution. An example of a query defined at the appli-
cation level is “looks for the organisms completely published and eukaryote”.

Outline of the Paper - The remaining of this paper focuses on the main contribu-
tions of the project. Section 2 discusses the meta-data supported by MediaGrid sys-
tems. Section 3 introduces the main steps of its query generation process and Section
4 describes the QBF approach to provide adaptive and interactive query evaluators.
Finally, Section 5 concludes and gives some information on the current status of the
project and the way we validate our approach.

 5

2. Metadata management

Meta-data are defined to support the generation of mediation queries and the evalua-
tion of global queries. They describe mediation and exported schemas, mediation
queries, semantic correspondences, source capabilities and statistics.

2.1 Schema representation

Mediation and exported schemas in MediaGrid are represented using the XML
model. The meta-representation of a XML schema is based on a graph modeled as a
set of nodes. Thus, using meta-representation concepts a Schema is modeled as a
collection of Node classes that can be linked by a relationship of type path. The Node
class can be specialized into ExportedNode that represents an exported schema node,
and MediationNode that represents a mediation schema node. Each of them has the
Node structure presented in Figure 2.
Title: /home/gbruno/Desktop/Metabase Images/xmlschema.dia Creator: Dia v0.88.1 Preview: This EPS picture was not saved with a preview (TIFF or PICT) included in it Comment: This EPS picture will print to a postscript printer but not to other types of printers

Fig. 2 – XML Schema Node representation

A Node in a Schema has an identifier (id) and a name type (see Figure 2). A node
is of type TextNode or NonTextNode. The TextNode class describes text nodes (i.e.
integer, string) and it can be specialized into Attribute and TextElement. Constraints
such as primary and foreign keys are also represented. The class Key represents pri-
mary keys. A key has an identifier (id), a type and a name2. It can be of type ID, Key
or Unique. A foreign key is characterized by an identifier, a name and a type (IDREF
or KeyRef). Relationships isKeyNode and isKeyRefNode represent the association of
a key to the set of nodes that compose it. A primary key can be used either for identi-
fying a NonTextNode or a TextElement. The relationship identifies is used for repre-

2 This name represents the name of the primary key constraint and does not correspond to the name of the node

playing the role of primary key.

 6

senting this situation. Finally, in a XML schema, the key scope may be limited to a
part of a XML document. The relationship scope links a key to the NonTextNode
representing its scope.

2.2 Semantic correspondences

Exported schema nodes are semantically linked with mediation schema nodes
through semantic correspondences. Figure 3 illustrates the meta-representation of
this type of correspondences (see for example the association between ExportedNon-
TextNode and MediationNonTextNode classes and ExportedTextNode and Mediation-
TextNode ones). For the time being only one-to-one correspondences and no trans-
formation functions are represented.
Title: /home/gbruno/Desktop/Metabase Images/semcorr.dia Creator: Dia v0.88.1 Preview: This EPS picture was not saved with a preview (TIFF or PICT) included in it Comment: This EPS picture will print to a postscript printer but not to other types of printers

Fig. 3 – Semantic correspondences

2.3 Mediation query representation

A mediation query represents a strategy that can be used for populating a mediation
schema by integrating instances of the exported schemas from the sources. A media-
tion query (MediationQuery class) is described by an identifier (id) and a query defi-
nition (see Figure 4). A mediation schema can have several associated mediation
queries. On the other hand, a mediation query can be associated to one and only one
mediation schema. This relationship is represented by the association between the
classes Schema and MediationQuery.

Title: /home/gbruno/Desktop/reqmed.dia Creator: Dia v0.88.1 Preview: This EPS picture was not saved with a preview (TIFF or PICT) included in it Comment: This EPS picture will print to a postscript printer but not to other types of printers

Fig. 4 – Mediation Query

 7

2.4 Source capabilities

Figure 5 (non-grayed zone) shows the UML diagram modeling local sources capa-
bilities. A source (DataSource class) is hosted by an access provider (Provider class)
and exports one or more native interfaces (NativeInterface class). A NativeInterface
class can be mapped to one or more wrapper interfaces (WrapperInterface class).
Each wrapper manages only one schema and one schema definition can be shared by
different wrappers. Concerning computation capabilities, the queryOperator class
models all possible operators that can be applied to the nodes of an exported schema.
An operator has an input (hasInput relationship) and one or two operands, according
to the kind of operation. One operator is associated to one or more predicates. Each
predicate is applied over a non-finite set of nodes.
Title: /home/gbruno/Desktop/Metabase Images/capabilities1.dia Creator: Dia v0.88.1 Preview: This EPS picture was not saved with a preview (TIFF or PICT) included in it Comment: This EPS picture will print to a postscript printer but not to other types of printers

Fig. 5 – Source capabilities

2.5 Statistics

Statistics play a very important role in query evaluation. They can be obtained from
data sources when they registered to a mediation system or they can be derived at
execution time. We propose a meta-representation for two kinds of statistics (see
Figure 6): (i) the Datastatistics class linked to the Node class represents data-
oriented statistics -- characterized by the node cardinality, its min value and its max
value ; (ii) the SystemStatistics class represents information about communication
between mediators and wrappers such as data network rate.
Title: /home/gbruno/Desktop/statistics.dia Creator: Dia v0.88.1 Preview: This EPS picture was not saved with a preview (TIFF or PICT) included in it Comment: This EPS picture will print to a postscript printer but not to other types of printers

Fig. 6 – Statistics UML Diagram

 8

3. Mediation queries generation

In a mediation system, given the descriptions of the mediation schema and the ex-
ported schemas, mediation queries are defined in order to express how instances of
the mediation schema are derived from the exported schemas. These mediation que-
ries represent mappings between the mediation schema and the exported schemas.
Mappings are used for: (i) translating queries expressed on the mediation schema to
sub-queries on exported schemas, and (ii) translating and integrating sub-queries
results to produce a global result.

The goal of the mediation queries generation process is to discover candidate me-
diation queries given the descriptions of the mediation and exported schemas, which
are given using XML schema[Fal01]. Generated mediation queries are XQuery ones
[CCD+01].

Our approach comprises three main steps: (i) identifying the relevant portions of
each data source considering the mediation schema, (ii) identifying the candidate
operations between the relevant portions of data sources and (iii) generating media-
tion queries from candidate operations.

3.1 Identifying relevant portions of data sources

For each exported schema, the first step identifies the relevant portion, called a rele-
vant schema, with respect to the mediation schema. To produce such a schema, we
consider that some metadata is available, consisting mainly in a set of semantic cor-
respondences defined between elements of the exported schemas and the mediation
schema. A relevant schema is composed of elements of the exported schema involved
in semantic correspondences and the keys and the references defined in the exported
schema. The result of this step gives, for each exported schema, a relevant schema
and a query allowing deriving this schema from the corresponding source. Figure 7
shows an example of relevant schema for the exported schema of the GOLD
source[BEK01].

expression_matrix +

row +
organism

statusname

condition

domain

source

…

source

Organism +

name
status

annotation
domain

Mediation schema

Exported schema
GOLD

source

Organism +

name statusdomain

Relevant schema
GOLD

expression_matrix +

row +
organism

statusname

condition

domain

source

…

expression_matrix +

row +
organism

statusname

condition

domain

source

…

source

Organism +

name
status

annotation
domain

Mediation schema

Exported schema
GOLD

source

Organism +

name statusdomain

source

Organism +

name statusdomain

Relevant schema
GOLD

Fig. 7 – Identify the relevant portion of the GOLD data source

 9

3.2 Identifying candidate operations

Once all relevant schemas are defined, the next step consists in searching for some
candidate operations between them. In our work we have considered the join opera-
tor.

Using the semantic correspondences, the keys and references defined in the rele-
vant schemas, candidate join operators are derived. A join operator can either be
defined in the same relevant schema or between two relevant schemas. Each pair of
relevant schemas can be combined with one or several candidate joins.

Figure 8 shows an example where we have the generated relevant schema of the
GOLD data source (see Fig. 7) and another relevant schema corresponding to the
biological data source SMD [SHK+01]. The only candidate operation between these
two relevant schemas is a join in which the path “GOLD/source/organism/name”
must correspond to the path “SMD/source/expression_data/org”.

source

Organism +

name statusdomain

Relevant schema
GOLD

expression_data +

mesure +expid
org cat

locus gname
log_rat2n_mean

source

join(name=org)

Relevant schema
SMD

source

Organism +

name statusdomain

Relevant schema
GOLD

expression_data +

mesure +expid
org cat

locus gname
log_rat2n_mean

source

join(name=org)

Relevant schema
SMD

Fig. 8 – Identifying candidate operations between two relevant schemas

3.3 Generating mediation queries

Given the set of relevant schemas and the candidate operations between them, we
consider different parts in the mediation schema; each part is a sub-tree in the
mediation schema such that the root n of the sub-tree is either a multi-valued node or
the root of the mediation schema, and the nodes of the sub-tree are all the mono-
valued children of n. For each part of the mediation schema, we define a set of
partial mappings, each of them corresponding to a way of populating the considered
part from the exported schemas. A mediation query is defined as a combination of
partial mappings such that there is one partial mapping for each part of the
mediation schema. All the combinations of partial mappings are considered, some of
them will lead to mediation queries. The result of our approach is a set of mediation
queries having different semantics. The union of a sub-set of the derived mediation
queries is also a mediation query.

4 Query evaluation

Mediation queries are used as input of the (unfolding) process to rewrite a global

 10

query into expressions upon local sources. These expressions are then evaluated by
an evaluator, so-called a Query Broker built from QBF, a Query Broker Framework.

QBF is an innovative reusable design represented by a set of component interfaces
and the way they collaborate. Its implementation provides the basic functionalities
for flexibly evaluating queries. Building query brokers from QBF means creating
new subclasses and instances and configuring these instances together according to
application requirements. Query Brokers can also adapt themselves to changes of the
execution environment and/or of user and application requirements during query
evaluation.

The following concentrates on queries representation within a broker, its general
architecture, and the way its components interact to provide an adaptive query
evaluation and to authorize interaction during query evaluation. More details are
given in [CV04,VC04].

4.1 Query representation

The internal representation of a query is a standardized, canonical query tree so-
called query plan. Query plan nodes, represented by the OperNode interface, are
operators such as Select, Project, Join, Union, etc. Each operator can have one or
several useable algorithms (Algorithm interface). These algorithms consume and
produce sequences of items (tuples, entities or objects). More precisely, operator
algorithms are implemented in the iterator model and provide the open, next
and close operations.

Also, operator nodes are annotated by their properties such as the estimated size
of the result, or the cost of operator execution. These properties are represented by
the Property interface and are regrouped by an instance providing the Annotation
interface.

A query also has a Context that determines constraints to be checked during query
processing. Some examples of constraints are number of results handled by client,
time limit or source preferences. A context is represented as a list of parameters, i.e.
couples of (name, value).

Figure 9 represents a query plan for the example: ''looks for the organisms com-
pletely published and eukaryote''. This plan requires an evaluation on all the three
biological sources (GOLD, SMD and SGD). Join nodes are used to combine data
from the sources.

 11

Title: fig_ex_query.fig
Creator: fig2dev Version 3.2 Patchlevel 4
Preview: This EPS picture was not saved with a preview (TIFF or PICT) included in it
Comment: This EPS picture will print to a postscript printer but not to other types of
printers

Fig. 9 – Example of query

4.1 Query broker components

Figure 10 shows the components of any query broker: each of them is designed to
cope with a well-identified query evaluation concern. The separation of concerns of
query execution and optimization is based on our analyses of existing query systems
and optimization techniques such as in [SAC+79,SWA89,KD98,GD87,GM93]. The
QueryManager component provides the interface of a query evaluator. It coordi-
nates other components to evaluate queries. The PlanManager and the Con-
textManager components provide tools for managing query plan and query context
parts, respectively. The BufferManager component provides storage capability for
processing queries. These base components are required for building any query
evaluator.

Title: fig_QBF.fig
Creator: fig2dev Version 3.2 Patchlevel 4
Preview: This EPS picture was not saved with a preview (TIFF or PICT) included in it
Comment: This EPS picture will print to a postscript printer but not to other types of printers

Fig. 10 – Query broker components

 12

Title: C:\these\mediagrid\Evaluation_SpecV1\Fig\fig_PlanManagerCmp.dia Creator: Dia v0.92-pre1 Preview: This EPS picture was not saved with a preview (TIFF or PICT) included in it Comment: This EPS picture will print to a postscript printer but not to other types of printers

Fig. 11 – Plan manager components

Building an adaptive query evaluator needs use of the Monitor and the RuleMan-

ager components. These two components enable the observation of the query execu-
tion (Monitor) and define the way in which query evaluator reacts according to
changes of the environment during query execution (RuleManager).

The PlanManager defines operations for manipulating query plans. This
component covers all aspects of query optimization, i.e. search space, cost estimation
and search strategy. It is composed of the Planner (providing the search strategy) that
coordinates the activities of some sub-components dedicated to query plan
optimization such as the Annotator, the Transformer and the Translator (see Fig. 11).
The Annotator allows calculating properties of query nodes including the cost of
query operations. The Transformer and the Translator provide possible query plan
manipulations (logical and physical, respectively) which define the search space of a
query plan.

The interaction between sub-components of the PlanManager is given by the

sequence diagram in Figure 12. It is important to note that the number and the order
of method calls from the Planner to the Annotator, to the Transformer and to the
Translator are not fixed. This depends on the search strategy supported by the
Planner.

Title: fig_PlanMgrSeq.fig
Creator: fig2dev Version 3.2 Patchlevel 4
Preview: This EPS picture was not saved with a preview (TIFF or PICT) included in it
Comment: This EPS picture will print to a postscript printer but not to other types of printers

Fig. 12 – Sequence diagram for query optimization

The Monitor is responsible for detecting unexpected conditions in the execution

 13

environment (such as network delays, use of resources or query context). It manages
a list of observation elements which can be accessed through the PropertyMonitor
interface. Each element has a check method defining how to detect unexpected con-
dition, and a notify method being responsible of throwing events to the RuleManager.
Sub-classes of the PropertyMonitor have been defined to monitor specific properties,
like the arrival data rate (RateMonitor), the number of data processed (SizeMonitor)
and the execution time (TimeMonitor).

The RuleManager receives events and launches one or more of the set of corre-
sponding Event-Condition-Action (ECA) rule(s) to adapt the query execution (to
changes in the execution environment) according to a pre-defined strategy (Strategy
interface).

The RuleManager component can also support a complicated rule model com-
posed of an event model and a reaction model. A detailed description of the rule
manager is out of the scope of this work but can be found in [CVG00,VC02].

 14

4.2 Adaptive evaluation

Different techniques for adaptive evaluation such as the ones in [KD98, AFT+96,
HFC+00, AH00] have been integrated in a uniform way. Besides, an adaptive
evaluation can also be ensured by using adaptive operators such as XJoin [UF00],
ripple-join [HH99], etc. We can integrate all of these techniques in query brokers by
implementing the corresponding rules and operators. For example, to provide the
query scrambling technique initially proposed in [UFA98], we consider that network
delays are detected by instances of the RateMonitor class. Query scrambling reacts to
such delays in two ways: rescheduling and operator synthesis through the following
two rules:

(1) When timeout
If schedulable
Do materialize(op)

(2) When timeout
Do reoptimize(root,join-related)

The first rule (1) aims at rescheduling query plan when a delay is detected. The
condition is a method to verify if another operator can be executed during the de-
tected delay. In such case, a Buffer operator is inserted into the query plan so as to
materialize results of the op operator, i.e. op will be executed during previously de-
tected delay (call of materialize method) in order to delay the access to the missing
data source.

The second rule (2) corresponds to operator synthesis aiming at reordering join
operators so as to be able to evaluate a sub-plan during detected delay. The
corresponding method is called to reoptimize the query with a particular strategy.
Please note that a simple rule execution strategy should be defined over these two
rules: rule (2) is executed when rule (1) cannot be executed anymore.

An adaptation in the case of unavailable data could be the generation of partial
results. This allows better responding to user requirements and enables user
interactions during query processing. Partial results are returned using techniques for
directing and/or redirecting data flows between query operators. The same approach
is adopted to authorize partial results, i.e. considering specific operators such as
switch, dummy and specific adaptation rules [VC03].

4.3 Interactive evaluation

Looking at the first (incomplete) results, users can refine their long running queries
as in [RRH99]. They can also modify their ongoing query (both the query context, as
in [RH02], and the query plan) or request partial results.

User interaction is handled in two phases. The first one aims at preparing query
evaluation for this change. It detects modifications needed at query operators and
monitoring property parameters. No new input data is accessed but the system can
continue to return results with data in process. This phase aims also at maintaining
the coherence of data processing. The second phase directs and/or redirects data

 15

flows between query operators in order to minimize query plan updates.
For enabling user interactions, we implement the UserInteractionMonitor class

specializing the PropertyMonitor one. This class defines all possible user interactions
for modifying query context, adding new selection condition, removing an existing
selection condition, etc. as events. Examples of user interaction events are addOpera-
tor, setupContextParameter or requestResult. Rules for handling these events are
defined and managed by the RuleManager component. These rules define system
behaviors toward user interaction. The following rule is implemented to enable
building partial results according to user requests:

When requestResult do returnResult

When the rule is launched, the system produces partial results using one of the
available computing partial result strategies. For example, the simplest strategy is
that each unavailable data source is replaced by a dummy operator, producing any
item which can match with any item.

5. Conclusion

This paper presents results of the MediaGrid project whose objective is to contribute
to the definition of an open mediation framework for accessing heterogeneous and
largely distributed sources. This paper puts emphasis on the metadata management,
the generation of mediation queries, and the adaptive and interactive evaluation of
user queries.

Implantation of instances of the framework needed to build the specific mediation
system providing a transparent access to the biological GOLD, SMD and SGD
sources is in progress [Col03]. XML is used at the mediation level for meta-data and
XQuery is used to formulate queries. Another on-going work concerns the architec-
ture aspect of the framework and some tools to facilitate the construction of a media-
tion system itself and its deployment [BVC03].

The next step is to validate our approach considering: complexity of components,
scalability, and performances (caching, context-aware operators, etc.).

References

[AH00] Avnur, R., Hellerstein, J.M.: Eddies: Continuously adaptive query processing. In Proc.
of International Conference on Management Data (SIGMOD). (2000)

[AFT+96] Amsaleg, L., Franklin, M-J., Tomasic, A., Urhan, T. : Scrambling query plans to
cope with unexpected delays. In: Proc. of Conference on Parallel and Distributed Informa-
tion Systems (PDIS). (1996)

[BDD+00] Ball, C-A., Dolinski, K., Dwight, S-S., Harris, M-A., Issel-Tarver, L., Kasarskis,
A., Scafe, C-R., Sherlock, G., Binkley, G., Jin, H., Kaloper, M., Orr, S-D., Shroeder, M.,
Weng, S., Zhu, Y., Botstein, D., Cherry, J-M. : Integrating functional genomic information
into the Saccharomyces Genome Database. In: Nucleic Acid Res. (2000)

[BEK01] Bernal, A., Ear, U., Kyrpides N. : Genomes OnLine Database (GOLD) : a monitor of
genome projects world-wide. In: Nucleic Acid Res. (2001)

[BFMV00] Bouganim, L., Fabret, F., Mohan, C., Valduriez, P.: Dynamic query scheduling in

 16

data integration systems. In: Proc. of Inter. Conference on Data Engineering.(2000)
[BVC03] Bruno, G., Vargas-Solar , G., Collet, Ch.: ADEMS, an Adaptable and Extensible

Mediation Framework: application to biological sources. In Proceedings of the Workshop
on Advances in Databases and Information Retrieval , ISBN 970-36-0070-0, Tlaxcala,
Mexico, Septembre 2003.

[CCD+01] Chamberlin, D., Clark, J., Robie, J., Florescu, D., Siméon, J., Stefanescu. M.:
XQuery 1.0: An XML Query Language. W3C Working Draft, June 2001.
http://www.w3.org/TR/xquery/.

[Col03] Collet, C. and the Mediagrid Project team, A Mediation Framework for a Transparent
Access to Biological Data Sources, In Proceedings of the ECCB 2003 Conference Poster
Session, Paris, novembre 2003. Long version presented at the 2003 Entity Relationship,
published in the EMISA FORUM proceedings.

[CV04] Collet, C, Vu,T-T.: QBF: a Query Broker Framework for Adaptable Query Evalua-
tion. In Proc. of the Sixth International Conference on Flexible Query Answering Systems
(FQAS), June 24-26, Lyon, France.(2004)

[CVG00] Collet, C., Vargas-Solar, G., Grazziotin-Ribeiro, H.: Open active services for data
intensive distributed applications. In: Proc. of International Database Engineering and Ap-
plication Symposium (IDEAS). (2000)

[DD99] Domenig, R., Dittrich, K.R.: An Overview and Classification of Mediated Query
Systems. In Sigmod Record.(1999)

[Fal01] Fallside. D.C. : XML Schema Part 0: Primer. W3C Recommendation. Mai 2001.
http://www.w3.org/TR/xmlschema-0/.

[GD87] Graefe, G., DeWitt, D.J.: The exodus optimizer generator. In: Proc. of International
Conference on Management Data (SIGMOD). (1987)

[GM93] Graefe, G., McKenna, W.J.: The volcano optimizer generator: Extensibility and
effcient search. In: Proc. of International Conference on Data Engineering.(1993)

[KBo99]Kedad, Z., Bouzeghoub, M.,: Discovering View Expressions from a Multi-Source
Information System, in Proc. of the Fourth IFCIS International Conference on Cooperative
Information Systems (CoopIS), Edinburgh, Scotland, pp. 57-68.(1999)

[KD98] Kabra, N., DeWitt, D.J.: Effcient mid-query re-optimization of sub-optimal query
execution plans. In: Proc. of International Conference on Management Data
(SIGMOD).(1998)

[HFC+00] Hellerstein, J.M., Franklin, M.J., Chandrasekaran, S., Deshpande, A., Hildrum, K.,
Madden, S., Raman, V., Shah, M.A.: Adaptive query processing: Technology in evolution.
IEEE Data Engineering Bulletin.(2000)

[HH99] Haas, P.J., Hellerstein J.M.: Ripple Joins for Online Aggregation. Proc. of
SIGMOD.(1999)

[RRH99] Raman, V., Raman, B., Hellerstein, J-M.: Online dynamic reordering for interactive
data processing. In: Proc. of International Conference on Very Large Data Bases (VLDB).
(1999)

[RH02] Raman, V., Hellerstein, J-M.: Partial results for online query processing. In Proc. of
ACM SIGMOD.(2002)

[SAC+79] Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Ac-
cess path selection in a relational database management system. In: Proc. of International
Conference on Management Data (SIGMOD). (1979)

[SHK+01] Sherlock, G., Hernandez-Boussard, T., Kasarskis, A., Binkley, G., Matese, J-C.,
Dwight, S-S., Kaloper, M., Weng, S., Jin, H., Ball, C-A., Eisen, M-B., Spellman, P-T.,
Brown, P-O., Botstein, D., Cherry, J-M. : The Stanford Microarray Database. In: Nucleic
Acid Res. (2001)

[SWA89] Swami, A.: Optimization of large join queries: Combining heuristics and combinato-
rial techniques. In: Proc. of Int.. Conference on Management Data. (1989)

 17

[UF00] Urhan, T., Franklin, M.J.: Xjoin: A reactively-scheduled pipelined join operator. IEEE
Data Engineering Bulletin 23.(2000)

[UFA98] Urhan, T., Franklin, M.J., Amsaleg, L Cost based query scrambling for initial de-
lays. In: Proc. of International Conference on Management Data (SIGMOD). (1998)

[VC02] Vargas-Solar, G., Collet, C.: Adees: An adaptable and extensible event based
infrastructure. In: Proc. of Database and Expert Systems Applications.(2002)

[VC03] Vu,T-T., Collet, C.: Query Brokers for Distributed and Flexible Query Evaluation. In
Proc. of the Conference RIVF, Hanoi, Vietnam.(2003)

[VC04] Vu,T-T., Collet, C.: A Framework for Building Adaptable and Interactive Query
Evaluators. In Proc. of the IDEAS Conf. (2004)

[Wie92] Wiederhold G.: Mediator in the Achitecture of Future Information Systems. The
IEEE Computer Magazine, 25(3):38—49.(2002)

[YMH+01] Yan, L.L., Miller, R.J., Haas, L.M., Fagin, R.: Data-Driven Understanding and
Refinement of Schema Mappings. SIGMOD Conference. (2001)

