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Abstract

Based on the discrete definition of biological regulatory networks developed by René Thomas, we provide a computer science

formal approach to treat temporal properties of biological regulatory networks, expressed in computational tree logic. It is then

possible to build all the models satisfying a set of given temporal properties. Our approach is illustrated with the mucus production

in Pseudomonas aeruginosa. This application of formal methods from computer science to biological regulatory networks should

open the way to many other fruitful applications.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

To elucidate the principles that govern biological
complexity, computer modeling has to overcome ad hoc
explanations in order to make emerge novel and
abstract concepts (Huang, 2001). Computational sys-

tems biology (Wolkenhauer, 2001) tries to establish
methods and techniques that enable us to understand
biological systems as architectural systems, including
their robustness, design and manipulation (Kitano,
2002a; Hasty et al., 2002). It means to understand: the
structure of the systems (e.g. gene, metabolic or signal
transduction networks), the dynamics of such systems,
methods to control them, design and modify systems in
order to cope with desired properties (Kitano, 2002b).
The abstraction offered by biological regulatory

networks place the discussion at a biological level
instead of a biochemical level only, that allows one to
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cover behaviors at an upper level. Biological regulatory
networks modelize interactions between biological
entities (mostly genes and proteins). One can refer to
de Jong (2002) to have an overview of different
approaches for genetic networks (notice that the
following additional references of Demongeot et al.
(1995, 2000, 2003) are relevant too). The static part of
these models can be represented by a graph: vertices
abstract the biological entities, and edges abstract their
interactions. An inhibition is labeled by ‘‘–’’ (negative
action) and an activation is labeled by ‘‘+’’ (positive
action), see Fig. 4. More importantly it is then possible
to study dynamic aspects by associating at a given time
to each vertex a numerical value which describes the
concentration of the corresponding entity. Temporal
evolutions of these values define the dynamics of the
system. The first approaches used differential equation
systems to represent the dynamics, and to face the
combinatorial explosure of the parameters, Thomas
introduced at the end of the 1970s a boolean approach
for regulatory networks (the expression of an entity is on
or off) to capture the qualitative nature of the dynamics.
He proved its usefulness in the context of immunity in
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Fig. 1. Main regulatory genes of mucus production in Pseudomonas

aeruginosa.
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bacteriophages (Thomas et al., 1976; Thomas, 1978).
Later on, he generalized it to multivalued levels of
concentration (the so called multivalued logic or
‘‘generalized logical approach’’ (Thomas et al., 1995)).
Moreover, the vertices of Thomas’ regulatory networks
are abstracted into ‘‘variables’’ allowing the cohabita-
tion of heterogeneous informations (e.g. adding envir-
onmental variables to genetic ones). He also introduced
so called ‘‘logical’’ parameters which describe the weight
of the interactions. Kaufman and co-workers (1985) also
introduced a modeling with time delays for taking into
account the time between the order to begin the
synthesis (gene passes a threshold) and its execution
(gene product has evolved) and similarly for the
degradation. A more recent reference on this subject is
that of Thomas and Kaufman (2001a) where the authors
show how time delays can be viewed as a refinement of
the model.
Let us remark as it will become evident in the sequel

of the article that the first key idea of Thomas is the
asynchronous updating technique defining the dy-
namics, which makes the difference with more classical
approaches from computer science such as Petri nets.
This key idea allows one to capture the essence of a
continuous dynamics with a discrete approach.

Discrete and differential modelings are coherent: The
Thomas discrete multivalued approach has been built as
a discretization of continuous differential equation
systems (Snoussi, 1989), and has been confronted to
the more classical analysis in terms of differential
equations (Kaufman et al., 1985; Kaufman and Tho-
mas, 1987). Taking into account ‘‘singular states’’,
Thomas and Snoussi showed that all steady states can
be found via the discrete approach (Snoussi and
Thomas, 1993). More recently, Thomas and Kaufman
have shown that the discrete description provides a
qualitative fit of the differential equations with a small
number of possible combinations of values for the
parameters (Thomas and Kaufman, 2001b). The dis-
crete approach is not required to study regulatory
networks, however it is often convenient at least because
biological data are rarely quantitative.

Circuits in the graph are indeed the key concepts: A
direct or indirect influence of a gene on itself corre-
sponds to a closed oriented path which constitutes a
feedback circuit. If the gene tends to favor (resp.
decrease) its own production via this circuit, the
feedback circuit is said positive (resp. negative). A
feedback circuit is positive (resp. negative) iff its number
of negative arrows is even (resp. odd). Feedback circuits
are fundamental because they decide the existence of
steady states of the dynamics. It has been noticed
(Thomas, 1980; Thomas et al., 1995; Demongeot et al.,
2000; Cinquin and Demongeot, 2002) that at least one
positive regulatory circuit is necessary to generate
multistationarity whereas at least one negative circuit
is necessary to obtain a homeostasy or a stable
oscillatory behavior.
Some formal methods have been already introduced

to revisit the discrete asynchronous approach of
Thomas. In Devloo et al. (2003), constraint program-
ming has been used to detect all steady states in large
regulatory networks. In Pér"es and Comet (2003), we
described a very preliminary work on the application of
model checking to biological regulatory networks.
In this article we run the machinery of formal

methods from computer science to revisit Thomas’
discrete multivalued approach. Formal methods impose
detailed definitions which are introduced in the follow-
ing sections. Section 2 defines biological regulatory
graphs which describe the interactions between biologi-
cal entities. Section 3 introduces the parameters which
pilot the behaviors of the system. Section 4 defines the
dynamics. Being in the domain of formal methods, we
inherit from computer science the whole collection of
validation and verification tools. Model checking tools
are particularly suited as described in Section 5.
We take as concrete running example the mucus

production in Pseudomonas aeruginosa (Guespin-Michel
and Kaufman, 2001). These bacteria are commonly
present in the environment and secrete mucus only in
lungs affected by cystic fibrosis. As it increases the
respiratory deficiency of the patient, it is the major cause
of mortality. Bacteria isolated from cystic fibrosis’ lungs
continue to grow in laboratory as mucous colonies for
numerous generations (mucoid phenotype). A majority
of these bacteria present a mutation:

* Does it mean that the mutation is the cause of the

passage to the mucoid state?

A majority of biologists tend to follow this hypothesis.
However, the regulatory network which controls the
mucus production has been elucidated (Fig. 1) and
contains a positive feedback circuit. This makes possible
a dynamic with two stationary states which would allow,
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from a biological point of view, an epigenetic change
(stable change of phenotype without mutation) from the
non-mucoid state to the mucoid one.

* Could the mucoidy be induced by an epigenetic

phenomenon?
In this case the observed mutation (elimination of

the anti-AlgU) could be favored later on because an
inhibitor complex is produced, which is toxic for the
bacteria.

Modeling can answer this last question which formally
becomes: is it possible to find at least one model of the

wild bacteria, which is compatible with the known

biological results and which has a multi-stationarity where

one stable state regularly produces mucus and the other

one does not? In Section 5 model checking gives a
positive answer. This epigenetic question has not only
an academic interest because if this prediction is
validated in vivo, it could lead to new therapeutic
strategies.
We started from the following biological results. The

main regulator of mucus production is the gene algU. It
codes for the protein AlgU which positively regulates
both an operon and all genes involved in the mucus
Fig. 2. Definition of the abstract concentration levels.

Fig. 3. Successors of u in the graph
synthesis. The operon is made up of 4 genes among
which algU itself (positive autoregulation) and genes
which code for an inhibitor complex (anti-AlgU) of the
protein AlgU. This sketch of model (Fig. 1) is rather
simple but it is sufficient to illustrate each definition
introduced in the sequel and to show the interest of
formal methods for biological systems.
2. Biological regulatory graphs

Fig. 2 assumes that u is a variable (for example a gene
product) which acts positively on v and negatively
on v0; each curve being the concentration of v

(resp. v0) with respect to the concentration of u; after a
sufficient delay for u to act on v (resp. v0). Obviously,
three regions are relevant in the different levels of
concentration of u:

* In the first region u acts neither on v nor on v0:
* In the second region, u acts on v but it still does not

act on v0:
* In the last region, u acts both on v and v0:

The sigmoid nature of the interactions shown in Fig. 2 is
almost always verified and justifies this discretization of
the concentration of u: three abstract levels (0, 1 and 2)
emerge corresponding to the three previous regions and
constitute the only relevant information from a quali-
tative point of view. More generally as shown in Fig. 3,
if a variable acts on n variables, at most n þ 1 abstract
regions are considered (from 0 to n; possibly less because
two thresholds for two different target variables can be
equal).
Now, to formally define a biological regulatory

network we use a labeled directed graph. A vertex
represents a variable (which can abstract a gene and its
protein for instance) and has a boundary which is the
maximal value of its discrete concentration level. A
directed edge ðu-vÞ is labeled with a threshold and a
sign þ (resp. �) if u activates (resp. inhibits) v:
determine the abstract levels.
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Fig. 4. Two possible regulatory graphs for mucus production in Pseudomonas aeruginosa.
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Definition 1. A biological regulatory graph is a labeled
directed graph G ¼ ðV ;EÞ where:

* each vertex v of V ; called variable, is provided with a
boundary bvAN� less or equal to the out-degree of v

in G; except when the out-degree is 0 where bv ¼ 1;
* each edge ðu-vÞ of E is labeled with a couple ðt; EÞ

where t; called threshold, is an integer between 1 and
bu and eAf�;þg:
The biological regulatory graph of Fig. 4, deduced
from Fig. 1, contains two ‘‘classical’’ vertices x (which
abstracts the gene algU and the protein AlgU) and y

(which abstracts the gene mucB and the anti-AlgU) and
an abstract ‘‘mucus’’ variable. The edges depict:

* x-x: action of AlgU on its own promotor (auto
induction),

* y-x: inhibitor effect on AlgU,
* x-y: positive influence of AlgU on its own inhibitors

via the operon.

Since y acts on one variable, by ¼ 1 and the threshold of
edge y-x can only be 1. A question is to determine the
thresholds of the other edges. It has been shown
(Guespin-Michel and Kaufman, 2001) that mucus
production occurs when x is over its second and last
threshold ðx ¼ 2Þ; but we do not know if x acts on y at a
lower threshold than it acts on x or conversely. In other
words, bx ¼ 2 and there are two possible biological
regulatory graphs (Figs. 4(a) and (b)).
In Fig. 4, x belongs to a positive circuit: x-x: It also

belongs to a negative circuit via x-y-x; as well as y

for the same reason. These two circuits compete on x

(multi-stationarity against homeostasy).

3. Biological regulatory networks

In Figs. 2 and 3 we introduced the abstract
concentration levels on the ‘‘horizontal’’ u axis. It
remains to consider the ‘‘vertical’’ v axes: assuming that
u1?un have an influence on v (entering arrows ui-v),
toward which concentration level is v attracted? the set
of all possible regulators of a variable being simply the
set of its predecessors in the graph.

Notation. Let G be a biological regulatory graph
and v be a variable, G�1ðvÞ is the set of all predecessors
of v; i.e. the set of variables u such that ðu-vÞ is an edge
of G:

But regulatory variables are not always active. At a
given time, only some of them pass the threshold. Thus a
variable v can be regulated by different subsets o of its
inhibitors/activators and we denote by kv;o the concen-
tration level toward which v is attracted (Fig. 5).
Biological regulatory networks are biological regulatory
graph (Definition 1) together with those parameters kv;o:

Definition 2. A biological regulatory network is a couple
R ¼ ðG;KÞ where G ¼ ðV ;EÞ is a biological regulatory
graph and K ¼ fkv;og is a family of positive integers
indexed by the set of couples ðv;oÞ such that

* v belongs to V ;
* o is a subset of G�1ðvÞ and will be called a set of

resources of v;
* kv;opbv:

For example to turn the biological regulatory graphs
of Fig. 4 into regulatory networks, six parameters have
to be given K ¼ fkx;fg; kx;fyg; kx;fxg; kx;fx;yg; ky;fg; ky;fxgg:
Because bx ¼ 2 and by ¼ 1; each kx;y can take the value
0, 1 or 2 and each ky;y the value 0 or 1. So 34 	 22

different networks can be a priori associated with each
graph of Fig. 4, which makes 648 different possible
models. (Notice that by construction kmucus;fg is necessa-
rily equal to 0 and kmucus;fxg ¼ 1:)
Unfortunately in general the parameters of K are not

measurable in vivo. Consequently, additional properties
deduced from biological experiments are needed to
eliminate the models which do not satisfy them. This
requires to study the dynamic behaviors of models.
4. Dynamics of biological regulatory networks

At a given time, each variable of a regulatory network
has a unique concentration level. The knowledge of this
concentration level for each variable is the state of the
system.

Definition 3. A state of a biological regulatory network
is a tuple ðnv1 ;y; nvp

Þ where p is the number of variables,
such that for each variable vi; nvi

AN and nvi
pbvi

:
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Fig. 5. Dashed arrows do not pass their threshold.

Fig. 6. Dashed arrows do not pass their threshold.

Table 1

State tables deduced from Figs. 4(a) and (b), respectively

State Next state State Next state

x y x y x y x y

0 0 ka
x;fyg ka

y;fg 0 0 kb
x;fyg kb

y;fg

0 1 ka
x;fg ka

y;fg 0 1 kb
x;fg kb

y;fg

1 0 ka
x;fyg ka

y;fxg 1 0 kb
x;fx;yg kb

y;fg

1 1 ka
x;fg ka

y;fxg 1 1 kb
x;fxg kb

y;fg

2 0 ka
x;fx;yg ka

y;fxg 2 0 kb
x;fx;yg kb

y;fxg

2 1 ka
x;fxg ka

y;fxg 2 1 kb
x;fxg kb

y;fxg
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From a given state, the set of resources of a variable is
deduced from the threshold of each edge.

Definition 4. Given a biological regulatory network, a
state ðnv1 ;y; nvp

Þ and an edge ðvi-vjÞ labeled with ðt; eÞ;
the variable vi is a resource of vj iff:

* nvi
Xt when e ¼ þ;

* nvi
ot when e ¼ �:

This defines the set of resources o of a variable v with
respect to a state, as a subset of G�1ðvÞ:

Note the algebraic trick: a resource is either the
presence of an activator or the absence of an inhibitor
(whose concentration level does not reach the threshold,
Fig. 6).
The parameters of K define in a simple way an

automaton, called synchronous, which is an intermedi-
ate technical step to define the dynamics.

Definition 5. Let R ¼ ððV ;EÞ;KÞ be a regulatory net-
work, its synchronous state graph S ¼ ðS;TÞ is defined
as follow:

* the set of vertices S contains all possible states, i.e.Q
vAV ½0; bv�:

* T is the set of edges of the form:
ðnv1 ;y; nvp

Þ-ðkv1;o1
;y; kvp;op

Þ where for all i; oi is
the set of resources of vi for the state ðnv1 ;y; nvp

Þ:
The out-degree of each vertex is exactly one in the
synchronous state graph, thus it can be represented by a
table which gives for each state the next state. Table 1
characterizes the synchronous state graphs, respectively,
associated to Figs. 4(a) and (b). The indices of the
parameters kv;o are uniquely determined by the column
of the table for v; and by the thresholds of the
underlying regulatory graph for o (according to
Definition 4). Each instantiation of the parameters
in K defines an a priori different synchronous state
graph.
An instantiation of K being given we can draw the

synchronous state graph in a grid of dimension p: in
Fig. 7 the mucus node has been ignored in order to get a
2-D grid.

Terminology: One calls transition an edge between two
states of a state graph.
We build the dynamics of a regulatory network from

the synchronous state graph according to two main
ideas (Thomas and Kaufman, 2001b):

* A diagonal arrow in the synchronous state graph is a
transition that changes simultaneously the concentra-
tion level of two or more variables. The probability
that both variables pass through their respective
thresholds at the same time is negligible in vivo, but
we do not know which one will be passed first.
Accordingly we replace any diagonal transition by
the collection of the transitions which modify
only one of the involved variables at a time. For
example, ð1; 0Þ-ð2; 1Þ is replaced by the transitions
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Fig. 7. Deducing dynamics from parameter values.
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ð1; 0Þ-ð2; 0Þ and ð1; 0Þ-ð1; 1Þ in the asynchronous
dynamics of Fig. 7 (bold arrows).

* An arrow of length greater or equal to 2 implies a
variable which increases its concentration level
abruptly and jumps several thresholds. Notice that
the concentrations vary continuously in time, inde-
pendently of whether they vary rapidly or not. The
target of the synchronous transition is indeed only an
attractor and real transitions should only address
neighbor states. For example in Fig. 7, ð0; 0Þ-ð2; 1Þ
gives rise to ð0; 0Þ-ð1; 0Þ instead of ð0; 0Þ-ð2; 0Þ:

Definition 6. Let t a transition ðnv1 ;y; nvp
Þ-

ðn0
v1
;y; n0

vp
Þ: A desynchronization of t is a transition of

the form

ðnv1 ;y; nvi�1 ; nvi
; nviþ1 ;y; nvp

Þ

-ðnv1 ;y; nvi�1 ; nvi
þ d; nviþ1 ;y; nvp

Þ;

where:

* i is such that nvi
an0

vi
;

* d ¼ 1 if nvi
on0

vi
; else d ¼ �1:

The dynamics of a regulatory network is defined by
desynchronizing the synchronous state graph.

Definition 7. Let R be a regulatory network, its
asynchronous state graph is defined as follows:

* the set of vertices is the set of states
Q

vAV ½0; bv�;
* the set of transitions is the set of all desynchroniza-

tions of all transitions of the synchronous state graph
of R:

When several transitions start from the same state,
they are concurrent and any of them can be randomly
chosen. The attractors of the synchronous state graph
remain the attractors of the asynchronous one, but the
paths to them differ and can change the behavior
from a given initial state. For example in Fig. 7, ð0; 0Þ
can reach ð0; 1Þ:
5. Computational tree logic and model checking

Parameters ofK play a major role on the dynamics of
the model. Unfortunately, most often they are not
experimentally measurable. Indeed finding suitable
classes of those parameters constitutes a major issue of
the modeling activity. A particular class of continuous
differential equation systems leads to some constraints
on parameters (Snoussi and Thomas, 1993). More
precisely if Thomas’ approach is seen as a discretization
of such a class of continuous differential equation
systems, then parameters kv;o reflect a discretization of
sums of ratios of positive constants (Snoussi and
Thomas, 1993). In such a case, K has to verify the
following constraints:

kv;| ¼ 0 and oDo0 ) kv;opkv;o0 :

Nevertheless, it is possible to slacken these previous
constraints to enlarge the set of models which can be
described by this discrete formalism. For example,
constitutive genes can have an expression different to
the abstract level 0 (first constraint) depending of
experimental conditions. Since these constraints are
not required to have a coherent discrete description,
they are often relaxed.
For the Pseudomonas aeruginosa example, it seems

reasonable to take into account the previous constraints.
Then 56 of the 648 initial parameter sets (28 for each
regulatory graph of Fig. 4) satisfy them. They lead to 38
different asynchronous state graphs (16 for the first
regulatory graph and 22 for the second).
To go further, biological knowledge or hypotheses

about the behavior have to be used as indirect criteria to
constrain K: For example homeostasy (resp. multi-
stationarity) is experimentally observable and, as men-
tioned in Section 1, it indicates that a negative (resp.
positive) circuit is functional. Some necessary conditions
for functionality of a circuit can constrain K (notion of
characteristic states in Thomas et al. (1995)). For the
running example, if the mucoidy could be explained by
an epigenetic phenomenon then a multi-stationarity is
necessary, and this leads to the functionality of the
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unique positive circuit x-x: Among the 56 previously
mentioned sets of parameters, 19 satisfy this biological
hypothesis (9 for the first regulatory graph and 10 for
the second one). They lead to 7þ 10 different asyn-
chronous state graphs (for example, the one of Fig. 8).
To still go further, such static conditions must be

reinforced by temporal properties formalizing biological
knowledge or hypotheses. Since numerous models
(families of parameters K) have to be checked against
those properties, a formal language (temporal logic
(Emerson, 1990)) is needed to perform the checkings by
computer. The temporal logic chosen here is CTL
(Computation Tree Logic) because, according to the
asynchronous state graphs of Definition 7, time has a
tree structure.

Definition 8. A CTL formula on a regulatory networkR
is inductively defined by:

* atomic formulae are ?; > or of the form ðv ¼ nÞ
where v is a variable of R and nA½0; bv�;

* if f and c are formulae, then ð:fÞ; ðf4cÞ; ðf3cÞ;
ðf ) cÞ; AXf; EXf; A½fUc�; E½fUc�; AGf; EGf;
AFf; EFf are formulae.

? is the always true formula; > is the always false
formula; ðv ¼ nÞ is true iff the concentration level of the
variable v is equal to n in the current state; :;4;3;) are
the usual connectives (respectively not, and, or, implica-

tion). All the temporal connectives are pairs of symbols:
the first element of the pair is A or E followed by X, F, G
or U whose meanings are given in the next table.

For example AX ðy ¼ 1Þ means that in all next states
accessible from the current state in the asynchronous
state graph, the concentration level of y is 1. Note that
this last formula is false in the asynchronous state graph
of Fig. 7 if the initial state is ð0; 0Þ or ð1; 0Þ and it is true
for all other initial states. EGðx ¼ 0Þ means that there
exists at least one path starting from the current state
where the concentration level of x is constantly equal to
0. In Fig. 7 only states ð0; 0Þ and ð0; 1Þ satisfy the
formula. A½ðx ¼ 0ÞUðx � 1Þ� means that for any possible
path from the current state there exists a time where
x ¼ 1 and in between x remains equal to 0; this last
formula is false in the asynchronous state graph of Fig. 7
if the current state is ð0; 0Þ because the transition
ð0; 0Þ-ð0; 1Þ leads to a path where x never reaches 1.
And so on for other temporal connectives.
To test the epigenetic hypothesis described in Section

1 ‘‘to find a model of the wild bacteria, which has a multi-

stationarity where one stable state produces mucus and

the other one does not’’, we have proved first that for any
model ‘‘regularly produces mucus’’ is equivalent to the
fact that the concentration level of x is repeatedly equal
to 2. Thus recurrence of mucus production can be
expressed as follows:

ðx ¼ 2Þ ) AX AF ðx ¼ 2Þ; ð1Þ

where AX AF ðfÞ means that for all possible futures
(excluding the present) f will be satisfied at a given time.
Moreover we know that the wild bacteria never produce
mucus by themselves when starting from a basal state
(second stable state):

ðx ¼ 0Þ ) AGð:ðx ¼ 2ÞÞ: ð2Þ

With respect to mucus production, x ¼ 2 induces the
mucus production (and x ¼ 0 is the basal state).
Consequently the AG statement says that mucus is
never produced.
On the one hand, proposing a method independent of

the example to formally express a biological hypothesis
remains a difficult open problem. Here the major key to
overcome the problem is our lemma about the relation-
ship between x ¼ 2 and the mucus production. On the
other hand, the CTL formulae being given, one can
automatically extract the compatible models, i.e. the
compatible families of parameters K: For each state
graph, model checking very efficiently computes all the
states which satisfy a set of formulae (Huth and Ryan,
2000). If all the states satisfy the formulae, one says that
the model satisfies them.
We have designed a software, SMBioNet (Selection of

Models of Biological Networks), which allows one to
select models of given regulatory graphs according to
their temporal properties. The software takes as input
biological regulatory graphs (with a graphical interface),
CTL formulae and a set of functional loops. It gives as
output all the models from the regulatory graphs which
satisfy the formulae and make functional the given
loops. Technically, SMBioNet:

* generates, from the graphs, all the biological regula-
tory networks;
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* selects all models whose characteristic states of the
specified loops cope with the constraints mentioned
before;

* finally returns the models and associated asynchro-
nous state graphs which satisfy the CTL formulae
(using the SMV model checker (McMillan, 1993)).

Applied to the Pseudomonas aeruginosa problem,
SMBioNet firstly automatically extracted the 19 models
mentioned before out of the 648 possibilities, then using
the two previous formulae, it finally selected 4 models
leading to 4 different asynchronous state graphs for each
regulatory graph (Fig. 4(a) and (b)). Consequently,
SMBioNet gave us a positive answer to the epigenetic
question: the set of remaining models is non-empty.
If Pseudomonas aeruginosa is actually compatible with

one of these remaining models (whichever the ‘‘exact’’
model is, because they are observationally equivalent), it
could open new therapeutics in prospects. We know that
Pseudomonas aeruginosa satisfies Formula 2 (non-
mucoid stationary state). Formula 1 constitutes the
corner stone of the problem. Its logical structure
suggests an experiment plan: pulse x up to saturation
by an external signal, and after the transitory phase due
to the pulse, check if the mucus production persists
(Guespin-Michel and Kaufman, 2001). By the way,
automatic tools dedicated to software testing can
generate this experiment plan (the initial pulse comes
from the left-hand side atomic formula ðx ¼ 2Þ; and so
on). We have also rigorously proved that the success of
this experiment plan (prepared at LMDF in Rouen) is
sufficient to validate the epigenetic hypothesis.
Assuming that the experiments are successful, it

would give us another information on ‘‘satisfactory’’
models: the ability to switch from the normal to the
mucoid state under a change of conditions. This
knowledge can in general be expressed in a logical
manner with CTL formulae which in turn can be used to
reduce the number of remaining possible models. Here,
the change of conditions (pulse of x) simply modifies the
initial state to get x ¼ 2: Thus formula 1 has already
captured the knowledge that the new stationary state is
mucoid and the experiment does not contribute to
reduce the number of potential models. This comes from
the simplicity of our example. In general every new
experiment reveals new temporal properties which can
be used to focus on a smaller set of satisfactory models,
via model checking.
6. Conclusion and perspectives

We have defined a formal description of biological
regulatory networks which allows a computer aided
manipulation of the semantics of the discrete modeling
of Thomas, this manipulation being proved correct by
construction owing to the formalism. Our approach
allows biology to take advantage of the whole corpus of
formal methods from computer science. In particular
temporal properties can be checked against models
using CTL and model checking. Model checking is a
first powerful tool offered by the formalization of
biological regulatory networks. The cooperation of
molecular biology and formal methods from computer
science opens a large horizon of research perspectives.
Let us mention for instance,

* To extract the specificities of the biological applica-
tion domain in order to provide a user friendly syntax
for temporal logics (patterns of formulae to express
functionality, etc).

* Automatic generation of experiment plans.
* Preservation of properties when a regulatory network

is embedded into another one, including the systema-
tic treatment of knock-out mutants, identification of
functional patterns (Shen-Orr et al., 2002) as well as
the structuration of huge regulatory networks.

* Useful extensions of the Thomas’ framework such as
allowing variables which are both activator and
inhibitor of the same target, taking into account time
delays (Thomas and Kaufman, 2001b) between the
beginning of the activation order on a variable and
the synthesis of the product and conversely for
the turn-off delays, offering a language to control
transitions, taking into account populations of
networks whose states are not synchronized, etc.

These constitute ongoing or future works of our
genopoles research groups. Our aim is to link
modelization and experiments together, by furnishing
to biologists model structuration methods and model
validation tools from current researches in theoretical
computer science. The resulting formal models are not
only a posteriori explanations of biological results, they
are guides for biological experiments whose success will
be in fine the discriminent criterion.
Acknowledgements

The authors thank genopoles-research in Evry
(H. Pollard and P. Tambourin) for constant supports.
We gratefully acknowledge the members of the gen-

opoles working groups observability and G3 for
stimulating interactions. Comments of D. Thieffry at
the beginning of this work have been very constructive.
We also thank V. Bassano and S. Pér"es for the
prototypes they have developed and for helpful discus-
sions. We are very grateful to the anonymous referee for
very deep comments which have considerably improved
the quality of this article. Let us finally mention that the
biological experiments are made in Rouen in coopera-
tion with a team of the university hospital center of



ARTICLE IN PRESS
G. Bernot et al. / Journal of Theoretical Biology 229 (2004) 339–347 347
Grenoble in France, funded by the ‘‘Association: vaincre

la mucoviscidose’’.
References

Cinquin, O., Demongeot, J., 2002. Positive and negative feedback:

striking a balance between necessary antagonists. J. Theor. Biol.

216 (2), 229–241.

de Jong, H., 2002. Modeling and simulation of genetic regulatory

systems: a literature review. J. Comput. Biol. 9 (1), 67–103.

Demongeot, J., Benaouda, D., Jezequel, C., 1995. Dynamical confine-

ment in neural networks and cell cycle. Chaos 5 (1), 167–173.

Demongeot, J., Kaufman, M., Thomas, R., 2000. Positive feedback

circuits and memory. C.R. Acad. Sci. III 323 (1), 69–79.

Demongeot, J., Aracena, J., Thuderoz, F., Baum, T., Cohen, O., 2003.

Genetic regulation networks: circuits, regulons and attractors.

C. R. Biol. 326 (2), 171–188.
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