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omet,bernotg�lami.univ-evry.frAbstra
t. In the �eld of biologi
al regulation, models extra
ted fromexperimental works are usually 
omplex networks 
omprising intertwinedfeedba
k 
ir
uits. R. Thomas and 
oworkers introdu
ed a qualitative de-s
ription of the dynami
s of su
h regulatory networks, 
alled the gen-eralized logi
al analysis, and used the 
on
ept of 
ir
uit-
hara
teristi
states to identify all steady states and fun
tional 
ir
uits. These 
hara
-teristi
 states play an essential role on the dynami
s of the system, butthey are not represented in the state graph. In this paper we present anextension of this formalism in whi
h all singular states in
luding 
hara
-teristi
 ones are represented. Consequently, the state graph 
ontains allsteady states. Model 
he
king is then able to verify temporal properties
on
erning singular states. Finally, we prove that this new modeling is
oherent with R. Thomas' modeling sin
e all paths of R. Thomas' dy-nami
s are represented in the new state graph, whi
h in addition showsthe in
uen
e of singular states on the dynami
s.1 Introdu
tionBiologi
al regulatory systems are often 
omplex networks 
omprising severalintertwined feedba
k 
ir
uits. The behavior of su
h systems is extremely anti-intuitive and 
annot be solved without adequate formalization. They 
an be a
-
urately des
ribed by non-linear ordinary di�erential equations [1,2,3,4℄ whi
h,however, 
annot be solved analyti
ally and use kineti
 parameters whi
h aremost often unknown. The generalized logi
al analysis developed by R. Thomasand 
oworkers [5,6,7,8℄ to des
ribe biologi
al regulatory networks extra
ts theessential qualitative features of the dynami
s of su
h systems by logi
al parame-ters [9,5℄ whi
h 
an take a �nite number of values. But some states, the singularstates, are not expli
itly represented in the state graph obtained with this for-malism whereas they 
an be steady. Even if the steady singular states 
an bedete
ted with the 
on
ept of 
ir
uit-
hara
teristi
 states [10,11℄, it is not possi-ble to use model 
he
king for verifying temporal properties 
on
erning singularstates. This paper provides, in se
tion 2, our extension of R. Thomas' modeling.This new formalism 
onsiders the singular states and 
onsequently represents allthe steady states of a 
lassi
 
ontinuous des
ription of regulatory networks. This
ontinuous des
ription is also the ground of the work of R. Thomas. Se
tion 3



presents this des
ription and shows, by the introdu
tion of a dis
retisation map,why our qualitative modeling extra
ts similarly its essential qualitative features.Then we study in se
tion 4 how the introdu
tion of singular states gives a newlight on the properties of 
hara
teristi
 states of feedba
k 
ir
uits. Finally 
on-
lusions and perspe
tives are presented.2 Qualitative dynami
s of regulatory networksIn our qualitative approa
h, the entities of a biologi
al regulatory network, oftenma
romole
ules or genes, have dis
rete expression levels de�ned as qualitativevalues.De�nition 1 (Qualitative Values). A qualitative value, denoted by ja; bj,is a 
ouple of integers (ja; bj 2 IN2) where a � b. The relations =,<,>,� arede�ned for two qualitative values ja; bj and j
; dj by:{ ja; bj = j
; dj if a = 
 and b = d.{ ja; bj < j
; dj if (b < 
) or (b = 
 and (a < b or 
 < d)){ ja; bj > j
; dj if j
; dj < ja; bj{ ja; bj � j
; dj if (ja; bj = j
; dj) or (a = b and 
 < a and b < d) or (a < b and
 � a and b � d).Intuitively, if a < b then ja; bj is said singular and represents the open interval℄a; b[. Otherwise, if a = b then ja; bj is said regular and represents the 
losedinterval [a; b℄ whi
h only 
ontains the integer a. Then two qualitative values are
omparable if the 
orresponding intervals are not overlapping and the relation �is simply the in
lusion relation between these intervals. To shorten the notationof the qualitative values we denote by jaj the regular qualitative value ja; aj.Intera
tions between biologi
al entities are 
lassi
ally represented by dire
tedgraphs, where verti
es abstra
ts biologi
al entities and edges their intera
tions.In the sequel we denote by #S the 
ardinal of a set S and by G�(v) (resp.G+(v)) the set of prede
essors (resp. su

essors) of a vertex v in a graph G.De�nition 2 (QRN). A qualitative regulatory network (QRN for short) is alabelled dire
ted graph N = (V;E) where:{ ea
h vertex v 2 V , 
alled variable, represents a biologi
al entity. The setQv of all possible qualitative expression levels of v is de�ned as Qv =fj0j; j0; 1j; j1j; :::; jq� 1j; jq � 1; qj; jqj; :::; j#N+(v)jg.{ ea
h edge u ! v 2 E, 
alled intera
tion, is labelled by a 
ouple (�uv ; quv)where �uv is the sign of the intera
tion (�uv = + (resp. �uv = �) ifu ! v is an a
tivation (resp. inhibition)) and where quv is an integer inf1; 2; :::;#N+(u)g su
h that quv 6= quw for all w 2 N+(u) distin
t from v.The threshold tuv of the intera
tion is de�ned as tuv = jquv � 1; quvj.At a given time, the data made of the expression level of ea
h variable is 
alledthe state of the network.



De�nition 3 (States of a QRN). Let N = (V;E) be a QRN . A state x of Nis a ve
tor x = (xv)v2V su
h that xv 2 Qv for all v 2 V . A state is said singularif one of its 
omponent is singular and regular otherwise.As a majority of biologi
al intera
tions behave in a 
ooperative way and havea sigmoid nature, they are in a QRN labelled by thresholds and they modelswit
h-like rea
tions: at a given state x, an intera
tion u ! v is said e�e
tivewhen xu > tuv , not e�e
tive when xu < tuv and un
ertain when xu = tuv .Thus xu = jqj means that u is an e�e
tive regulator for q of its su

essors andxu = jq; q + 1j means that u is an e�e
tive regulator for the same q su

essorsand it is an un
ertain regulator for the su

essor v su
h that tuv = xu (v existsinevitably).De�nition 4 (Resour
es). Let N = (V;E) be a QRN , v be a variable of Nand x be a state of N . The sets of regular resour
es Rv(x) and singular resour
esSv(x) of v at the state x are given by:{ Rv(x) = fu 2 N�(v) j (xu > tuv and �uv = +) or (xu < tuv and �uv = �)g{ Sv(x) = fu 2 N�(v) j xu = tuvgA regular resour
e of v is a variable whi
h a
ts positively on v, that is to say ane�e
tive a
tivator or a non e�e
tive inhibitor of v. A singular resour
e is just anun
ertain regulator.De�nition 5 (Qualitative model). A qualitative model M of a QRN N =(V;E) is a 
ouple M = (N;K) where K = fKv;! j v 2 V and ! � N�(v)g is aset of integers, 
alled qualitative parameters, su
h that :{ if ! = ; then Kv;! = 0 and Kv;! 2 f0; 1; :::;#N+(v)g otherwise.{ if ! � !0 then Kv;! � Kv;!0 .At a given state x, the expression level of a variable v evolves toward a qualitativevalue a

ording to its regular and singular resour
es. This qualitative value,
alled attra
tor and noted Av(x), is de�ned with two parameters indexed by theregular and singular resour
es of v:De�nition 6 (Attra
tors). Let M = (N;K) be a qualitative model and x bea state of N . The attra
tor Av(x) of v 2 V at the state x is :Av(x) = ���Kv;Rv(x);Kv;Rv(x)[Sv(x)���At a given state x, if v does not have singular resour
es (Sv(x) = ;) then itevolves toward the qualitative value jKv;Rv(x)j. Otherwise (Sv(x) 6= ;) v has sin-gular resour
es and evolves toward an expression level greater than jKv;Rv(x)j,i.e. the 
ase where all the singular resour
es are not regarded as regular resour
es,and less than jKv;Rv(x)[Sv(x)j, i.e. the 
ase where all the singular resour
es are re-garded as regular resour
es: jKv;Rv(x)j < jKv;Rv(x);Kv;Rv(x)[Sv(x)j < jKv;Rv(x)[Sv(x)jif jKv;Rv(x)j < jKv;Rv(x)[Sv(x)j. Naturally, if xv < Av(x) then v tends to in
rease,if xv > Av(x) then v tends to de
rease, and otherwise (xv � Av(x)) v is steady.



A steady state is thus a state where all the variables are steady, that is, a statex su
h that for all variable v 2 V :jKv;Rv(x)j = xv = jKv;Rv(x)[Sv(x)j or jKv;Rv(x)j < xv < jKv;Rv(x)[Sv(x)j (1)In se
tion 4, we show how these stati
 
onstraints (in whi
h the dynami
s ofthe system does not matter) 
an be used for the dete
tion of homeostasis andmultistationnarity. It 
an be proved that these 
onstraints are equivalent to thosegiven by E. H. Snoussi and R. Thomas in [10℄.To sum up, we dedu
e from a model the tenden
ies of variables at ea
h state,whi
h is suÆ
ient to de�ne its dynami
s with the following state graph.De�nition 7 (State graph). The state graph of a qualitative model M =(N;K), is a dire
ted graph where the set of verti
es is the set of states of N , andwhere x! y is an edge, 
alled transition, if there is a variable v verifying :for all u 6= v; yu = xu and �yv = �+(xv) if xv < Av(x)yv = ��(xv) if xv > Av(x)with �+ and �� the evolution operators de�ned by:�+(�) = � jq; q + 1j if � = jqjjqj if � = jq � 1; qj and ��(�) = � jq � 1; qj if � = jqjjqj if � = jq; q + 1jIn this de�nition two variables 
annot evolve simultaneously towards their re-spe
tive attra
tors, the state graph is thus asyn
hronous and 
an be dedu
edfrom a syn
hronous one as in [6℄. Indeed, when several variables tend to evolve ata given state, additional information (time delays asso
iated to ea
h transition[8℄) is needed to sele
t whi
h one �rst 
hanges. As this information is most oftenunknown, all possible transitions are 
onsidered. Thus the system is non de-terministi
 and 
an translate the sto
hasti
 
hara
ter of biologi
al intera
tions.Consequently, a state for whi
h n variables tend to evolve has n su

essors. Inparti
ular, if n = 0 then the state is steady and does not have any su

essor.A qualitative model in R. Thomas' approa
h 
an be de�ned in the same waybut the state graph dedu
ed from it just gives transitions between regular states.Indeed, in R.Thomas' state graph of a model M = (N;K) the verti
es are allthe regular states of N and x! y is a transition if there is a variable v verifying:for all u 6= v; yu = xu and �yv = jq + 1j if xv < Av(x)yv = jq � 1j if xv > Av(x) with jqj = xvAs we 
an see in �gure 1, for a given model, R. Thomas' state graph is presentin our state graph: our state graph 
an be viewed as a re�nement of R. Thomas'one formally expressed in theorem 3.We now illustrate our formalism with theQRN N = (V;E) whose representa-tion is given in �gure 1. It represents a small geneti
 network 
ontrolling the mu-
us produ
tion of Pseudomonas aeruginosa [12,13,14℄. We have V = fu; vg and



QRNu v+,1�,1+,2
states x symboli
 attra
tors attra
tors tenden
iesxu xv Au(x) Av(x) Au(x) Av(x) u vj0j j0j jKu;fvgj jKv;;j j2j j0j %  j0j j0; 1j jKu;;;Ku;fvgj jKv;;j j0; 2j j0j % &j0j j1j jKu;;j jKv;;j j0j j0j  &j0; 1j j0j jKu;fvgj jKv;;;Kv;fugj j2j j0; 1j % %j0; 1j j0; 1j jKu;;;Ku;fvgj jKv;;;Kv;fugj j0; 2j j0; 1j   j0; 1j j1j jKu;;j jKv;;;Kv;fugj j0j j0; 1j & &j1j j0j jKu;fvgj jKv;fugj j2j j1j % %j1j j0; 1j jKu;;;Ku;fvgj jKv;fugj j0; 2j j1j  %j1j j1j jKu;;j jKv;fugj j0j j1j &  j1; 2j j0j jKu;fvg;Ku;fu;vgj jKv;fugj j2j j1j % %j1; 2j j0; 1j jKu;;;Ku;fu;vgj jKv;fugj j0; 2j j1j  %j1; 2j j1j jKu;;;Ku;fugj jKv;fugj j0; 2j j1j   j2j j0j jKu;fu;vgj jKv;fugj j2j j1j  %j2j j0; 1j jKu;fug;Ku;fu;vgj jKv;fugj j2j j1j  %j2j j1j jKu;fugj jKv;fugj j2j j1j   R. Thomas' state graph state graphj0j j1j

��

j1j j1joo j2j j1jj0j j0j // j1j j0jOO

// j2j j0jOO
j0j j1j

��

j0; 1j j1joo

��

j1j j1joo j1;2j j1j j2j j1jj0j j0; 1j
��

// j0;1j j0;1j j1j j0; 1jOO j1; 2j j0; 1jOO j2j j0; 1jOOj0j j0j // j0; 1j j0j //

OO j1j j0jOO

// j1; 2j j0jOO

// j2j j0jOOFig. 1. The table gives, all the states of the QRN , the attra
tors of variables at ea
hstate, the values of the attra
tors dedu
ed from the qualitative model where Ku;; = 0,Ku;fvg = 2, Ku;fug = 2, Ku;fu;vg = 2, Kv;; = 0 and Kv;fug = 1, and �nally the
orresponding tenden
ies (% if xu < Au(x), & if xu > Au(x) and  if xu � Au(x)).These tenden
ies allow us to 
onstru
t our state graph and R. Thomas' one.E = fu! u; u! v; v ! ug. Variable u a
tivates v and itself (�uu = �uv = +)when its expression level respe
tively rea
hes the thresholds tuv = j0; 1j andtuu = j1; 2j. In return, variable v inhibits u (�vu = �) when its expressionlevel rea
hes the threshold tvu = j0; 1j. Consequently, the possible expressionlevels of u are Qu = fj0j; tuv; j1j; tuu; j2jg and those of v are Qv = fj0j; tvu; j1jg.Thus 15 states are asso
iated to the network, 6 are regular and 9 are singular(see the table of �gure 1). The qualitative parameters 
orresponding to N areKu;;;Ku;fug;Ku;fvg;Ku;fu;vg 2 f0; 1; 2g and Kv;;;Kv;fug 2 f0; 1g. The attra
-tors expressed with the qualitative parameters are given in the table of �gure 1.For a given model, the values of attra
tors allows us to dedu
e the tenden
ies ofea
h variable at ea
h state and to build, for both formalisms, the 
orrespondingstate graphs. For example, at the state ([1j; j0j) both u and v have an expressionlevel less than their attra
tors (respe
tively equal to j2j and j1j) and thus bothvariables tend to in
rease. Consequently ([1j; j0j) has two su

essors:{ in our state graph we have (j1j; j0j) ! (j1; 2j; j0j) for the in
rease of u and(j1j; j0j)! (j1j; j0; 1j) for the in
rease of v.



{ in R. Thomas' state graph we have (j1j; j0j)! (j2j; j0j) for the in
rease of uand (j1j; j0j)! (j1j; j1j) for the in
rease of v.One 
an noti
e that our state graph 
ontains two more steady states than R.Thomas' one (they are both singular states).3 Dis
retization mapR. Thomas' approa
h has been built as a dis
retization of the 
ontinuous ap-proa
h presented in this se
tion. Our formalism 
an also be viewed as a dis-
retization of this des
ription, whi
h gives the dynami
s of the regulatory net-works de�ned as follow.De�nition 8 (RN). A regulatory network (RN for short) is a labelled dire
tedgraph N = (V;E) where :{ ea
h vertex v of V , 
alled variable, represents a biologi
al entity,{ ea
h edge u ! v of E, 
alled intera
tion, is labelled by a 
ouple (�uv ; �uv)where �uv is the sign of the intera
tion and where �uv 2 IR+ is its threshold.To ea
h variable v of N = (V;E) is asso
iated a 
ontinuous variable xv 2 IR+whi
h represents its expression level. At a given time, ea
h variable xv has aunique expression level and the ve
tor x = (xv)v2V de�nes the state of theRN . The 
ontinuous dynami
s of N 
an be given by the following system ofpie
ewise-linear di�erential equations [9℄:dxvdt = Sv(x)� �vxv 8v 2 V with Sv(x) = Xu2N�(v) I�uv (xu; �uv) (2)where �v > 0 is the degradation 
oeÆ
ient of v, Sv(x) is its synthesis rate andI�uv is a step fun
tion (�gure 2) des
ribing the e�e
t of u on the synthesis rateof v:I+(xu; �uv) = �0 if xu < �uvkuv if xu > �uv I�(xu; �uv) = �kuv if xu < �uv0 if xu > �uvWith su
h a de�nition, I�uv is unde�ned for xu = �uv. A state in whi
h there isat least one variable on a threshold is thus 
alled a singular state. To de�ne thesystem (2) for the singular states E. H. Snoussi and R. Thomas proposed in [10℄to represent the un
ertain in
uen
e of u on v when xu = �uv by an open interval:I�uv (�uv ; �uv) =℄0; kuv[. This interval represents the set of possible e�e
ts of uon v stri
tly in
luded between the 
ase where u a
ts on v (xu > �uv) and the
ase where it does not (xu < �uv). Then the system has to be seen as a systemof di�erential in
lusions [15℄:dxvdt 2 Sv(x)� �vxv 8v 2 V with Sv(x) = Xu2N�(v) I�uv (xu; �uv) (3)



De�nition 9 (Model). A model M is a tuple M = (N ; k; �) where N =(V;E) is a RN , k = fkuvgu!v2E is the set of parameters asso
iated to ea
hintera
tion, and � = f�vgv2V is the set of degradation rates asso
iated to ea
hvariable.De�nition 10 (Dis
retization map). Let N be a RN and u a variable. Thedis
retization map du : 2IR+ n; ! IN2 is de�ned for all non empty open intervalsI =℄�; �[ and for all singletons I = [�; �℄ with � = � by :du(I) = ��� #f� 2 �u j � < �g ; #f� 2 �u j � � �g ���where �u = f�uv j v 2 N+(u)g is the set of out-thresholds of u.Let us highlight some properties of du whi
h are useful in the sequel. The orderrelations <, > and � on non empty open intervals and singletons are de�nedsimilarly to the 
orresponding order relations on qualitative values. Thus, du isan in
reasing fun
tion: if A < B then du(A) � du(B). Then if du([�; �℄) = jajand du([�; �℄) = jbj with � � � we have du(℄�; �[) = ja; bj. Finally du(A) � du(B)i� A � B, in parti
ular du([�; �℄) � du(B) i� � 2 B. In the remainder, for asingleton [�; �℄, du(�) denotes du([�; �℄) by abuse of notation.De�nition 11 (Qualitative form). The qualitative form of a RN N = (V;E)is the QRN N = (V;E) su
h that ea
h intera
tion u ! v has the sign of the
orresponding intera
tion in N and is su
h that tuv = du(�uv).A

ording to the previous de�nition, a RN has a qualitative form i� it hasno variable whi
h a
ts on two su

essors with the same threshold, but it is amarginal 
ase sin
e thresholds are real values a priori di�erent.Let N be a RN and N its qualitative form. The dis
retization du(xu) ofa 
ontinuous expression level xu is a qualitative expression level of u in N :
vu+;�uv 99rrrrrrr�;�uw %%LLLLLLL w xuI+(xu; �uv)00 �uvkuv

xuI�(xu; �uw)00 �uwkuw xuDis
retization: j0j j0; 1j j1j j1; 2j j2jFig. 2. Step fun
tions asso
iated to the intera
tions u! v and u! w with �uv < �uwand dis
retization of the expression levels of u.



du(xu) 2 Qu (�gure 2). Thus ea
h 
ontinuous state of N 
orresponds to onequalitative state of N but a qualitative state of N 
an 
orrespond to an in�nityof 
ontinuous states of N . To link the states of N with those of N we de�neDv : Qv ! 2IR+ and D :Qv2V Qv !Qv2V 2IR+ by:Dv(xv) = fxv 2 IR+ j dv(xv) = xvg and D(x) = (Dv(xv))v2VDv(xv) and D(x) are respe
tively 
alled the domains of xv and x. Let M =(N ; k; �) be a model. The di�erential equation system (3) has one analyti
 solu-tion on ea
h domain D(x) where x is regular. For the initial state of the systemx0 2 D(x), the solution is:xv(t) = Av(x0)� (Av(x0)� x0v)e��vt 8v 2 V with Av(x) = Sv(x)�vThus all 
ontinuous states of the domain D(x) tend to the same 
onstant stateA(x0) = (Av(x0))v2V 
alled the attra
tor of the domain D(x). If A(x0) 2 D(x),all states of D(x) will never go out of the domain D(x) and they will rea
h (in+1) the 
ontinuous steady state A(x0). Otherwise, if A(x0) 62 D(x), then astate x of D(x) will evolve towards Av(x0) until it goes out of the domain D(x).Outside the domain, the solution of the system is not the same and the attra
toris modi�ed. In su
h a 
ase the state Av(x0) 
an never be rea
hed. To sum up,at the state x if xv < Av(x) (resp. xv > Av(x)) then v tends to in
rease (resp.de
rease) and if xv = Av(x) then v is steady.If x 2 D(x) with x a singular state then x is also singular and there is atleast one variable u su
h that xu = �uv with v 2 N+(u). Thus Av(x) is an openinterval and the tenden
ies of v are de�ned in the same way ex
ept that v is
onsidered steady if xv 2 Av(x).De�nition 12 (Qualitative form of a model). The qualitative form of amodel M = (N ; k; �) is the qualitative model M = (N;K) su
h that N isthe qualitative form of N and su
h that for all parameters Kv;! of K we havejKv;!j = dv(Pu2! kuv�v ) .Noti
e thatM has a qualitative form i� (Pu2! kuv�v ) 62 �v for all v and ! whi
h isa reasonable hypothesis. By setting down jKv;!j = dv(Pu2! kuv�v ) we respe
t the
onstraints given in the de�nition of qualitative parameters. Indeed, if ! = ; thenKv;! = 0 and dv(Pu2! kuv�v ) = dv(0) = j0j. Otherwise,Kv;! 2 f0; 1; :::;#N+(v)gand sin
e (Pu2! kuv�v ) 62 �v we have dv(Pu2! kuv�v ) 2 fj0j; j1j; :::; j#N+(v)jg.Then, if ! � !0 we have Pu2! kuv�v � Pu2!0 kuv�v and sin
e dv is an in
reasingmap we have dv(Pu2! kuv�v ) � dv(Pu2!0 kuv�v ), that is Kv;! � Kv;!0 .Theorem 1. Let M be a model and M its qualitative form. For all variable u,for all qualitative state x of M and for all 
ontinuous state x 2 D(x) of M, wehave Au(x) = du(Au(x)).Proof. A

ording to the de�nition of du, we have xu > tuv i� xu > �uv, xu < tuvi� xu < �uv and xu = tuv i� xu = �uv . Thus u 2 Rv(x) i� I�uv (xu; �uv) =



kuv and u 2 Sv(x) i� I�uv (xu; �uv) =℄0; kuv[. Thus, if Sv(x) = ; we haveAv(x) = jKv;Rv(x)j and Av(x) = Pu2Rv(x) kuv�v . Sin
e Pu2Rv(x) kuv�v 62 �v wehaveAu(x) = du(Au(x)). If Sv(x) 6= ; we haveAv(x) = jKv;Rv(x);Kv;Rv(x)[Sv(x)jand Av(x) =Pu2Rv(x) kuv�v +Pu2Sv(x) ℄0;kuv [�v . Thus Av(x) is equal to the openinterval ℄�; �[=℄Pu2Rv(x) kuv�v ;Pu2Rv(x)[Sv(x) kuv�v [. Sin
e � and � are not in �vwe have Au(x) = du(Au(x)).Consequently we have, for all x 2 D(x) and for ea
h variable v, xv < Av(x) i�xv < Av(x) and xv > Av(x) i� xv > Av(x). Thus if v is not steady, it tendsto evolve in the same way at the state x and at the state x 2 D(x). Moreover,xv � Av(x) i� there exists x 2 D(x) su
h that xv = Av(x) or xv 2 Av(x). So ifv is steady at the state x then v 
an be steady in D(x). Thus, a qualitative statex is steady i� there is a 
ontinuous steady state in D(x). We 
an sket
h theseproperties by saying that the dynami
s of M extra
ts the essential qualitativefeatures of the dynami
s of M, and in parti
ular both kinds of dynami
s havethe same number of steady states.In pra
ti
e, the values of the kineti
 parameters k and � are most oftenunknown. If we want to 
arry out a 
ontinuous modeling of a biologi
al system,an in�nity of models has to be 
onsidered 
orresponding to all the possible valuesof real parameters. The qualitative parameters K whi
h de�ne the dynami
s ofa QRN (de�nition 5) are also most often unknown but they 
an take a �nitenumber of qualitative values. Then we 
an use the following fruitful exhaustivestrategy to model a system: to generate all the models with the aim to sele
tthose whi
h give a dynami
s 
oherent with the experimental knowledge of thesystem. We have developed a software, 
alled SMBioNet [16℄, whi
h automati
ally
arries out this generation and sele
tion of models using three approa
hes :feedba
k 
ir
uit fun
tionality, temporal logi
 and model 
he
king. It has beenused su

essfully to model the mu
oidy and the 
ytotoxi
ity of Pseudomonasaeruginosa [13,14℄.4 Cir
uit 
hara
teristi
 statesThe most important generalized logi
al analysis 
on
epts are 
ertainly thoseof positive and negative 
ir
uits, whi
h respe
tively generate multistationar-ity and 
y
le in the state graph, when the 
orresponding 
ir
uit is fun
tional[17,18,19,20,21℄. These 
on
epts are espe
ially important when modeling bio-logi
al systems where di�erentiation and homeostasis need to be represented[13,14℄. A 
ir
uit is said positif (resp. negatif) when it 
ontains an even (resp.odd) number of inhibitions. It is said fun
tionnal when there is a steady 
ir
uit
hara
teristi
 state (whi
h is singular by de�nition) asso
iated to it [10℄. Con-sequently, the steady singular states play an essential role on the dynami
s of asystem. A 
hara
teristi
 state of a 
ir
uit is a singular state in whi
h the set ofun
ertain intera
tions is equal to the set of edges of the 
ir
uit. This notion of
hara
teristi
 state 
an be extended to the union of disjoint 
ir
uits.



De�nition 13 (Chara
teristi
 state). Let N be a QRN and C be a 
ir
uitof N . A state x is a 
hara
teristi
 state of C if C = Sv2V fu! v j u 2 Sv(x)g.Some examples of 
ir
uits with their 
hara
teristi
 states are given in Figure 3.E. H. Snoussi and R. Thomas proved for their formalism that a singular state 
anu1 ::

2
�� v1^^ 2zz

C1 = fu! ug C2 = fv ! vg C3 = fu! v; v ! ug C1 [ C2xu xvj0; 1j j0jj0; 1j j1jj0; 1j j2j xu xvj0j j1; 2jj1j j1; 2jj2j j1; 2j xu xvj1; 2j j0; 1j xu xvj0; 1j j1; 2jFig. 3. Chara
teristi
 states of all the 
ir
uits and unions of disjoint 
ir
uits in a QRN(C1 and C2 have three 
hara
teristi
 states and the others only one). The intera
-tions of are not labelled by any sign sin
e they do not play a role in the de�nition of
hara
teristi
 states.be steady only if it 
hara
terizes a feedba
k 
ir
uit. This property is preservedin our qualitative modeling.Theorem 2. Among singular states, only 
hara
teristi
 ones 
an be steady.Proof. Let N = (V;E) be a QRN and let x a non 
hara
teristi
 singular state.Then there is an edge v ! w su
h that v is a singular resour
e of w and su
hthat all resour
es of v are regular. Then xv is a singular value and the attra
torAv(x) is a regular qualitative value: Av(x) = jKv;Rv(x)j sin
e Sv(x) = ;. Asingular qualitative value 
annot be 
ontained in a regular one, thus xv 6� Av(x)and x 
annot be steady.We now 
ompare the dynami
s of models for whi
h some 
ir
uits are fun
tionalin both modelings with the aim to hightlight how the presen
e of singular statesmakes more expli
it the fun
tionality. Let us start with the example of �gure4. In both formalisms, homeostasis indu
ed by the stationarity of the negative
ir
uit 
hara
teristi
 state is represented. But the steady 
hara
teristi
 state to-wards whi
h tends the softened os
illation, representing the homeostasis, in the
ontinuous des
ription is represented in our state graph while the homeostasis isre
e
ted as an in�nite os
illation in R. Thomas' one. Thus, our state graph ex-tra
ts more pre
isely the qualitative features of the 
ontinuous formalism. Noti
ethat the paths of R. Thomas' state graph do not 
orrespond to paths betweenregular states in our state graph. The presen
e a of steady 
hara
teristi
 state ofa negative loop is the only 
ase where R. Thomas' state graph is not \in
luded"in our state graph (see theorem 3 for formal explanation). In a general way, thesoftening generated by the fun
tionality of negative 
ir
uits is not representedin R. Thomas' modeling. That 
an lead to a 
onfusion about the interpretationof the 
ir
uit fun
tionality. Let us 
onsider the QRN of �gure 1 
ontaining anegative and a positive 
ir
uit. The model presented in the same �gure makes



N R. Thomas' state graph state graphv �;1dd j0j && j1jff j0j // j0; 1j j1jooFig. 4. State graphs, in the two approa
hes, dedu
ed from the modelM = (N; fKv;; =0; Kv;fvg = 1g) whi
h makes fun
tional the negative 
ir
uit N .fun
tional both 
ir
uits, there is two steady singular states (equation 1) whi
hare 
hara
teristi
 of both 
ir
uits, and thus multistationarity and homeostasisare predi
ted. For the homeostasis let us remark that our state graph des
ribes adynami
s in whi
h in�nite and softened os
illations are possible. For the multi-stationnarity, in R. Thomas' state graph there is only one steady state and fromea
h state it is possible to rea
h it. The state graph does not really illustratethe multistationarity. In our state graph, the presen
e of all the steady states(two singular steady states and the previous regular one) makes more expli
itthe multistationarity. In both state graphs, the paths between regular states are
oherent. Indeed, ea
h transition x! z of R. Thomas' state graph 
orresponds,in our state graph, to a path x ! y ! z where y is the singular state adja
entto the regular states x and z. Note that, a

ording to the following theorem, forall models dedu
ed from this network, R. Thomas' state graph is \in
luded" inour one sin
e the network does not 
ontain a negative loop.Theorem 3. Let x ! z be a transition of R. Thomas' state graph dedu
edfrom a qualitative model, and let v be the only variable whi
h evolves during thetransition x! z (xv 6= zv). Let y be the singular state adja
ent to x and z de�nedby : yu = xu = zu for all u 6= v and, setting down xv = jqj, yv = jq; q + 1j ifzv = jq+1j and yv = jq� 1; qj if zv = jq� 1j. Then our state graph 
ontains thepath x ! y ! z if yv 6� Av(y) (yv � Av(y) imposes that y is a 
hara
teristi
state of the negative 
ir
uit v ! v).Proof. As x is a regular state, we have Av(x) = jKv;Rv(x)j. Let us suppose thatxv = jqj < jKu;Ru(x)j. We have yv = jq; q+1j and so x! y is a transition of ourstate graph. Moreover, zv = jq + 1j sin
e x ! z is a transition of R. Thomas'state graph.As yv is the only 
omponent of y whi
h is singular, y is not a 
hara
teristi
state if v does not regulate itself or if it regulates itself with a threshold notequal to yv. In this 
ase, Sv(y) = ; and Av(y) = jKv;Rv(y)j = jKv;Rv(x)j. Thusy ! z is a transition of our state graph sin
e jqj < jKu;Ru(x)j implies thatjq; q + 1j < jKu;Ru(x)j.If y is a 
hara
teristi
 state (v regulates itself and tvv = yv) then Sv(y) = fvg.Thus, if �vv = + then Av(y) = jKv;Rv(y);Kv;Rv(y)[fvgj = jKv;Rv(x);Kv;Rv(x)[fvgj.So yv = jq; q + 1j < jKv;Rv(x);Kv;Rv(x)[fvgj and y ! z is a transition of ourstate graph (if �vv = + then v 
annot be steady at the state y). Otherwise, if�vv = � then Av(y) = jKv;Rv(y);Kv;Rv(y)[fvgj = jKv;Rv(x)nfvg;Kv;Rv(x)j. So, ifv is not steady at the state y we have yv = jq; q + 1j 6� jKv;Rv(x)nfvg;Kv;Rv(x)j



whi
h implies that q < Kv;Rv(x)nfvg equivalent to q + 1 � Kv;Rv(x)nfvg. Thusjq; q + 1j < jKv;Rv(x)nfvg;Kv;Rv(x)j and y! z is a transition of our state graph.In the other 
ase, if xv = jqj > jKu;Ru(x)j, the proof is similar.5 Con
lusions and perspe
tivesIn this paper we present a new qualitative modeling based on the generalizedlogi
al analysis of R. Thomas whi
h allows us to represent the singular statesin the dynami
s. Both modeling are built as a di
retization of a pie
ewise-lineardi�erential equations system but our modeling, taking into a

ount the singularstates, permits us to represent all the steady states of the 
ontinuous dynami
s.In spite of an exponential in
rease in the number of states, there is not an in
reasein the number of models asso
iated to a network. Moreover, the state graphre
e
ts the softening of the negative fun
tional 
ir
uits and it is a re�nement ofthe dynami
s of R. Thomas.The representation of all steady states is essential to 
onfront with pre
isionthe models to biologi
al knowledge. The 
on
epts of 
ir
uit fun
tionality allow usto sele
t models whi
h present homeostasis and/or multistationarity with onlystati
 
onstraints, that is inequality 
onstraints for the steadiness of singularstates.To still go further su
h stati
 
onditions must be reinfor
ed by propertieson the dynami
s. To a
hieve the sele
tion of the a

eptable models (with tem-poral properties 
oherent with all available biologi
al knowledge) we will takeadvantage of the 
orpus of formal methods. We have already implemented auser-friendly software, SMBioNet [13,14,16℄ (Sele
tion of Models of Biologi
alNetworks), whi
h allows one to sele
t models of given regulatory networks a
-
ording to their temporal properties. The software takes as input a QRN (witha graphi
al interfa
e) and some temporal properties expressed as CTL formulaeand a set of fun
tional 
ir
uits. It generates all models asso
iated to the networkwhi
h makes fun
tional the spe
i�ed 
ir
uits and gives as output those whose
orresponding R. Thomas' state graph satisfy the spe
i�ed temporal properties(using the NuSMV model 
he
ker [22℄). Then, the sele
ted models 
an be used tomake and formally test hypotheses or to run simulations. The input of SMBioNetnot 
onsists to a 
omplex �le with several rea
tion-rules or parameters assign-ment as in several other tools using a qualitative approa
h to model biologi
alregulatory networks [23,24,25,26,27℄. Indeed, R. Thomas' formalism 
at
hes thequalitative stru
ture of a system in a simple graphi
al obje
t (a QRN) easilyextra
table from present biologi
al data. Nevertheless, it is diÆ
ult to representwith this approa
h a physi
al 
hange of state of biologi
al entities after an in-tera
tion or the formation/breakage of 
omplexes. However, the e�e
tiveness ofthe generalized logi
al analysis has been demonstrated in the study of a numberof geneti
 regulatory systems [28,29,5,30,31,32,13,14℄.Naturally, a short term perspe
tive is to introdu
e in this software our newformalism. The generation of the models making some 
ir
uits fun
tional willremains the same but the in
rease in the number of states will makes more dif-



�
ult to 
he
k a CTL formula. However, this formula will be able to expresstemporal properties 
on
erning regular and singular states. To struggle againstthis in
rease of states, we 
an already propose to automati
ally remove fromthe state graph some singular states, for example those whose the set of su

es-sors is redu
ed to a single regular state (the states (j1j; j0; 1j), (j1; 2j; j0; 1j) and(j2j; j0; 1j) 
an be removed from the state graph of �gure 1).More generally the formal methods 
an be applied in the �eld of biologi
alregulatory networks in order to expli
it some behaviors or to take into a

ountnot yet modelled biologi
al knowledge. Let us mention for example that theintrodu
tion of transitions in the regulatory graph 
ould help to spe
ify howthe di�erent regulators 
ooperate for indu
ing or repressing their 
ommon tar-get [33℄. One 
an also separate inhibitors from regulators [34℄ to in
rease thereadability of the approa
h, or take into a

ount time delays [8℄ between the be-ginning of the a
tivation order and the synthesis of the produ
t and 
onverselyfor the turn-o� delays. These 
onstitute ongoing or future works of our genopole r
and G3 resear
h groups.A
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-resear
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