
Validation of biological models with Temporal Logic and Timed Hybrid
Petri Nets

Sylvie Troncale, Jean-Paul Comet and Gilles Bernot

Abstract— The Hybrid Functional Petri Nets (HFPN) for-
malism has shown its convenience for modelling biological
systems. This class of models has been fruitfully applied in
biology but the remarkable expressiveness of HFPN often leads
to incomplete validations. In this paper, we propose a logical
framework for Timed Hybrid Petri Nets (THPN), a sub-class of
HFPN. We propose an extension of Event Clock Logic dedicated
to THPN and a procedure to convert a THPN into a real-time
automaton. A small biological model shows that our framework
allows us to formally prove properties by a well suited model-
checking procedure.

I. INTRODUCTION

Systems biology is aiming to a system-level understanding
of the functioning of a biological system like the cell,
taking into account not only molecular phenomena but
also structuration of the cells, communication channels and
exchanges with the outside space. This global aim is now
conceivable thanks to the recent developments of genomic
and postgenomic which enable identification of numerous
genes and proteins. Nevertheless, the precise role of each
actor remains hard to determine experimentally. Then, math-
ematical modelling and abstraction methods are essential
approaches to bridge the gap of incomplete knowledge and
to study complex biological processes. There exist numerous
modelling formalisms which allow different validation tech-
niquesw.r.t biological knowledge: simulation, proof, etc. The
Hybrid Functional Petri Nets (HFPN) [1] formalism offers
a maximum of flexibility such as modelling of discrete and
continuous processes, or definition of consumed or produced
quantities as functions of marking and this explains why
HFPN are well suited for simulation in biology. Nevertheless,
simulations are not sufficient to formally validate or refute a
model, that is, to confront the model with known behavioural
properties. Such a step of “model checking” (i.e. checking if
a model satisfies a property) enables one to select only Petri
net models satisfying a set of known biological properties.
Nevertheless, “model checking” is impossible to perform in
a computer aided manner on a so expressive formalism. One
of the obvious reasons is that functions of HFPN induce
someimplicit use of the system states.

Since usual validation methods turned out to be intractable
on HFPN, we propose an original procedure based on works
of David and Alla [2] (Petri nets) and of Raskin and
Schobbens [3] (satisfaction of temporal logic formulas). To
tackle a powerful validation ability, we need to reduce the
expressiveness of HFPN, we focus on a sub-class of HFPN:
the Timed Hybrid Petri Nets (THPN) [2]. THPN enable the
construction of models of a large range of complex biological
systems [4].

In this paper, we describe continuous traces of THPN
as a particular automaton, an Event Clock automaton [5],
based on a real time logic, the Event Clock logic [3]. This
step requires to define precisely the continuous models and
the extended Event Clock logic. THPN models can then be
transcribed via the evolution graph and some manipulations
and formulas in terms of Event Clock automata. We then
show how the introduction of a real time logic can be helpful
in the context of biological modelling. We study a simplified
model of amphibian metamorphosis regulation [6]. After
having constructed the associated Event Clock automaton,
we show that classical approaches of verification of Event
Clock logic formulas can be applied to prove that the THPN
model satisfies a particular temporal property.

This paper is organised as follows: Section II presents
syntax and semantics of our logic. Definitions of a THPN and
an evolution graph are reminded in Section III. In Section IV,
we describe our conversion algorithms of an evolution graph
into an Event Clock automaton. Finally, Section V sketches
out a biological example before we discuss our results in
Section VI.

II. CONTINUOUS TIME LOGIC

In this section, we briefly recall the way we have extended
the classical Event Clock Logic [3]. More detailed definitions
can be found in [7].

A. Syntax and semantics

We define a slightly extended syntax and semantics of
Event Clock logic [3], where atoms are extended to handle
continuous and discrete time executions. We call it Contin-
uous Time Evolution Logic, CTEL for short. We first define
signatures which specify variables and observable events
abstracted by predicates.

Definition 1 A signature for CTEL is a coupleΣ = (V, Pr)
whereV andPr are respectively a set of variables and a set
of predicates. A continuous-time modelM is then defined by
a setπ ⊂ Pr × R

+ and a functionµ : (V ∐ R) × R
+ → R

(where∐ stands for the disjoint union) such that for any real
number valuev ∈ R, and for anyt ∈ R

+, µ(v, t) = v.

We distinguish two kinds of atoms: instantaneous atoms
(Definition 2) and general atoms (Definition 4).

Definition 2 An instantaneous atomα is an expression of
one of the two following forms:

• a predicatep ∈ Pr, in which case a modelM satisfies
α at a timet iff (p, t) ∈ π,

• an inequalityv ≥ v′, wherev, v′ ∈ (V ∐ R) in which
caseM satisfiesα at a timet iff µ(v, t) ≥ µ(v′, t).

Lastly, a modelM satisfies¬α at a time t iff it does not
satisfyα at this time.

An instantaneous atomα can be “timed” thanks to the use
of two clocks, the history clockxα and the prophecy clock
yα [5]. The value of a history clockxα is the time elapsed
since the last occurrence ofα. The value of a prophecy
clock yα is the time to wait for the next occurrence ofα.
Introduction of the clocksxα andyα allows us to define the
set of terms on the signatureΣ, notedTΣ, which in turn
allows us to define the set of general atoms.

Definition 3 A term on a signatureΣ is either a variable
(resp. a constant value)v belonging toV ∐R or an expres-
sion of the formxα (resp.yα) whereα is an instantaneous
atom.

Definition 4 Given a signatureΣ = (V, Pr), an atom is an
expression of the formr ≥ r′, p or their negations, where
r, r′ ∈ TΣ andp ∈ Pr, such that ifr (resp.r′) is of the form
xα or yα, the other termr′ (resp.r) is an integer.

Definition 5 Following [3], a well formed formula is com-
posed of atoms, connectives¬, ∨, ∧, ⇒, temporal operators
Next (#), Previous (⊖), Until (U) and Since (S) and of real-
time operators: predicting and history operators (�, �):

ϕ ::= a|¬ϕ|#ϕ| ⊖ ϕ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|ϕ1 ⇒ ϕ2|
ϕ1Uϕ2|ϕ1Sϕ2| �∼n α| �∼n α,

where a is an atom,∼ is a comparison belonging to{=
, <,>,≤,≥}, ϕ, ϕ1, ϕ2 are formulas andn is a natural
number.

For example, assume that we study the cell cycle then
G1, G2, S andMitosis would be predicates ofPr in the
signature. So, the formula “G1 ⇒ (�=y¬G1

G2 ∧ �≤12G2)”
is an example of well formed formula. It means that“if the
cell is in theG1 phase, then the phase which comes at the
end ofG1 is G2 andG2 comes before 12 hours.”

We have chosen the logic introduced by Raskin and
Schobbens due to its remarkable expression power. Let
us remark that it includes in particular classical temporal
operators such as always(2) and eventually(⋄) (see [3]).

Properties observed during the execution of a continuous
time model are observed at a given top of horloge. They
concern the current state of the system at this time, thus they
cannot involve past or future events. Consequently, they can
be expressed by the subset of well formed formulas defined
below.

Definition 6 An observation on the signatureΣ is a formula
of the form:

ϕ ::= a|¬ϕ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|ϕ1 ⇒ ϕ2

where a is an instantaneous atom,ϕ, ϕ1 and ϕ2 are
observations.

For example, the previous cell cycle formula is not an
observation as� and y appear in the formula. On the
contrary, ′′G1 ⇒ ¬G2 ∧ ¬S ∧ ¬Mitosis′′ means that the
phaseG1 excludes any other phases and is an observation at
any given top of horloge.

During a continuous time model execution, observations
are made at different tops of horloge which define a time
sequence.

Definition 7 A time sequenceh is an infinite succession
of timesti, where i ∈ N, which is strictly increasing and
divergent.

To consider a given time sequenceh allows us to actually
computethe value of any term inTΣ. This value is defined
via the eval function.

Definition 8 Given aΣ-modelM , a time sequenceh and a
time ti belonging toh, the evaluation of a termr is defined
as follows:

• If r is reduced to a symbolv ∈ (V ∐ R), then
evalhM (v, ti) = µ(v, ti).

• If r is of the formxα, then the evaluation fails with
a conventional value⊥ if α has never been satisfied
beforeti in the modelM , otherwise it is equal to the
time elapsed since the last occurrence ofα.

• Similarly, if r is of the formyα, then the evaluation fails
with a conventional value⊥ if α will never be satisfied
after ti in the modelM , otherwise it is equal to the
time to wait for the next occurrence ofα.

Evaluation of terms being defined, it becomes straightfor-
ward to verify whether a formula is satisfied in a modelM

at a timeti of a time sequenceh, simply by applying the
truth tables of the connectors.

B. Discrete timed traces

A typical wet experiment consists in putting a biological
system into an imposed initial state and observing it at some
well chosen intervals of time. Consequently, it seems natural
to validate a model or a property (formula) with respect to
the experimental observations made at the chosen tops of
horloge. The notion of timed traces is precisely designed
to input those experimental observations into our technical
stuff.

Definition 9 A timed trace is defined byτ = {(ϕi, ti)}i∈N,
where theϕi are observations andhτ = (ti)i∈N is a time
sequence. A modelM satisfies a traceτ if for any natural
numberi, the observationϕi is satisfied according tohτ at
time ti.

Assume that some modelM0 has been defined to model a
given biological system and assume thatτ accumulates the

successive observations during a wet experiment. Ifτ is not
satisfied byM0 then we can say that the modelM0 has been
refuted experimentally.

Biologists can also perform experiments in order to check
an hypothesis. Then, assuming that the hypothesis has been
expressed through a CTEL formulaφ, we have to check
whetherτ is compatible with this formula, denoted byτ〈∼ φ.

Definition 10 Let us consider a timed traceτ , a natural
numberi and a CTEL formulaφ. A trace τ is compatible
with φ at the positioni, noted(τ, i)〈∼ φ if and only if there
exists a modelM which satisfies the traceτ and such that
M satisfies the formulaφi at the timeti according to the
time sequencehτ .

III. REMINDER OF THE THPN DEFINITION

Following the work of David and Alla [2]:

Definition 11 A Timed Hybrid Petri Net is a 7-tuple
(P , T , ζ, P re, Post,m0, T empo) where:

• P and T are disjoint sets of places and transitions,
• ζ : P∪T → {D,C} called “hybrid function,” indicates

for every node whether it is a discrete node or a
continuous one.
Let TD (resp.PD) and TC (resp.PC) be the sets of
discrete and continuous transitions (resp. places),

• Pre : P × T → R
+ ∪ N is the input incidence

application. If T ∈ TD then Pre(P, T) ∈ N else
Pre(P, T) ∈ R

+.
• Post : T × P → R

+ ∪ N is the output incidence
application. If T ∈ TD then Post(T, P) ∈ N else
Post(T, P) ∈ R

+.
• m0 : P → R

+ ∪ N is the initial marking. IfP ∈ PD

thenm0(P) ∈ N elsem0(P) ∈ R
+,

• Tempo is a function from the setT to the set of
positive rational numbers. IfT ∈ TD, Tempo(T) is
a timing associated withT . It is noted delay(T). If
T ∈ TC , 1

Tempo(T) represents the maximal firing speed
associated withT . In the sequel, it is notedV (T).

We note◦T (resp.◦P) the set of places (resp. transitions)
preceding the transitionT (resp. the placeP) and we note
T ◦ (resp.P ◦) the set of transitions (resp. places) succeeding
to the transitionT (resp. to the placeP).

A. Semantic intuition

A discrete transitionT is enabledif each placePi ∈◦T

satisfiesm(Pi) ≥ Pre(Pi, T). If the transition T stays
enabled during the timedelay(T), it will be fired at the
end of this delay.Pre(Pi, T) tokens are then removed from
each placePi ∈ ◦T and Post(T, Pj) tokens are added to
each transitionPj ∈ T ◦. The marking can be sufficient to
allow fewer simultaneous firings. The number of possible
successive firing allowed by a given marking is theenabling
degree. By definition, T ∈ TD is enabled if its enabling
degree is not null.

A continuous transitionT is enabledif each placePi ∈◦T

satisfies eitherm(Pi) ≥ Pre(Pi, T) if Pi is a discrete place,
or m(Pi) > 0 if Pi is a continuous place. A continuous
transition is fired to itsinstantaneous firing speedv(T) such
that 0 ≤ v(T) ≤ V (T). v(T) corresponds to the maximal
speed a transition can fire according to the current marking.
By definition,T ∈ TC is active if its instantaneous speed
is not null. A flow ofPre(Pi, T)×v(T) tokens are removed
from each placePi ∈ ◦T and a flow ofPost(T, Pj)× v(T)
tokens are added to each transitionPj ∈ T ◦.

B. Evolution graph

The behavior of a THPN can be represented by an
evolution graph, which is a classical Petri net [2]. Each
place corresponds to an IB-state (invariant behavior state)
and each transition is associated with an event (change of
marking) whose occurrence produces a change from one
IB-state to another. Such a transition can only occur if an
event belonging to one of the following types takes place:
the marking of a continuous place becomes zero (C1-event),
a discrete transition fires (D1-event) or the enabling degree
of a discrete transition changes because of the marking of a
continuous place (D2-event).

Intuitively, the ith transition of the evolution graph, de-
notedTGEi is labelled with the setEvt(TGEi) of occurred
events, with time of the event occurrence and with marking
of all continuous places. IB-states are annotated by marking
of all discrete transitions, by the vector of enabling degrees
and by the vector of instantaneous speed.

For constructing such an evolution graph, two restrictions
are imposed to THPN. First, the marking of each placeP

must be bounded. This restriction guarantees the algorithm
to end. Secondly, since the evolution graph represents a
deterministic behavior, one has to solve conflicts which occur
when the marking of a place is not sufficient to allow the
different transitions to fire simultaneously. Generally, there
are two ways for solving conflicts.Sharingproposes to share
resources between transitions according to a given schema
(general case: stoichiometric constants are then helpful for
determining sharing schema). Andpriority ranks transitions
and gives limited resources according to the ranks (e.g.
catalytic phenomena).

C. Signature

For constructing the Event Clock automaton deduced from
a THPN, let us first define the signaturesign = (V, Pr) of
a given THPN:

V is the following set of variables:

• for every P ∈ P , we need a variable which denotes
the marking ofP . Conventionally, this variable will be
denotedm(P),

• for every T ∈ TC , the variablev(T) denotes the
instantaneous speed ofT ∈ TC ,

• for every T ∈ TD, the variabledg(T) denotes the
enabling degree ofT ∈ TD.

Pr is the following set of predicates:
• Enable(T), Act(T): unary predicates associated with

respectively enabling ofT ∈ TD and activation of
T ∈ TC ,

• Fire(T), NulMark(P): unary predicates associated
with respectively a D1-event and a C1-event,

• Th(P, x): binary predicate associated with a D2-event,
(Threshold)

• NoEvt: predicate associated with the first transition of
the evolution graph when no event occurs.

IV. ASSOCIATED EVENT CLOCK AUTOMATON

Owing to the extension of Event Clock Logic proposed in
Section II, we can extract an Event Clock automaton from
a THPN model. This will allow us to prove properties on
THPN. Let us first recall the definition of an Event Clock
automaton [5].

Definition 12 An Event Clock automaton on the signature
sign is a 6-tupleA = (L,L0, At, C, E,F) where :

• L is a finite set of locations andL0 ⊆ L is the subset
of start locations,

• At is a set of atoms,
• C is a set of history or prophecy clocks,
• E is a finite set of edges. An edge is a triplet(l1, ψ, l2)

wherel1 ∈ L is the source location,l2 ∈ L is the target
location, andψ ∈ Obs(sign) describes the state of the
THPN,

• F = {F1, ..., Fn} whereFi ⊆ L is a set of sets of
accepting locations

Definition 13 A trace τ = {(ϕi, ti)}i∈N is recognized
by an Event Clock automatonA = (L,L0, At, C, E,F)
if there exists an infinite accepted computationγ =

l0
ψ0
→ l1

ψ1
→ ...ln

ψn
→ ... where:

• eachli ∈ L and l0 ∈ L0,
• (li, ψi, li+1) ∈ E with (τ, i)〈∼ ψi
• for everyFi ∈ F , there exists infinitely many positions
j such thatlj ∈ Fi.

Definition 14 The timed language of an Event Clock au-
tomatonA, denotedL(A), is the set of timed traces recog-
nized byA.

We now introduce a procedure to transform an evolution
graph (deduced from a THPN) into an Event Clock
automaton. This procedure is composed of four steps. The
first and the second one construct the set of locations, the
third one determines the initial and accepting locations and
the fourth one constructs edges.

1- From IB-states to locations:Each IB-state of the evo-
lution graph gives a location of the Event Clock automaton.
With each of these locations we associate an observation
φ1(IBi) describing the THPN state all along time the IB-
state numberedi is true.φ1(IBi) has the following form,
where val associates with a variable its current value and

where I(TGE)i+1
i corresponds to the interval bounded by

the values of the continuous marking at the transitionsTGEi
andTGEi+1 .

φ1(IBi) ≡ ∧

























∧

P∈PD

(m(P) = val(m(P)))

∧

T∈TC

(v(T) = val(v(T)))

∧

T∈TD

(dg(T) = val(dg(T))

∧

P∈PC

(m(P) ∈ I(TGE)i+1
i)

























2- From transitions to locations: Each transition of the
evolution graph also gives a location of the Event Clock
automaton. With each of these locations we associate an
observationφ2(T

GE
i) describing the THPN state when en-

tering into the IB-state numberedi. φ2(T
GE
i) has then the

following form. Note thatxle represents the time elapsed
since the last event occurs. This last event can be either
NoEvt, Fire(T), NulMark(P) or Th(P, x) and∆t is the
timing associated with the transitionTGEi .

φ2(T
GE
i) ≡ ∧





























∧

IBi∈◦TGE
i

φ1(IBi)

∧

e∈Evt(T)

e

∧

P∈PC

(m(P) = val(m(P)))

∆t=evt time
∧

le∈Evt(◦◦T)

(xle = ∆t)





























3- Start and accepting locations:The start location is
the location corresponding to the first transitionTGE0 . The
accepting locations are the ones such that the evolution
graph ends. In case of deadlock, the accepting location
is the location corresponding to the last IB-state. In case
of loopback (cycle), each location which corresponds to a
transition (TGE) or to an IB-state involved in the loopback
is an accepting location.

4- Edges:There is an edge between two locations if there is
an arc between the corresponding IB-states or transitions in
the evolution graph. Moreover, each location obtained from
an IB-state loops to represent the time of the IB-state. Finally,
an edge outgoing from a locationl is labelled by the formula
of the locationl.

V. BIOLOGICAL ILLUSTRATION

Most amphibians undergo numerous morphological
changes at the tadpole stage, a biological process called
metamorphosis. Amphibian metamorphosis can be divided
into three periods. During premetamorphosis the feeding
tadpole grows. During prometamorphosis hindlimbs grow
and differentiate. Finally, tail resorption characterizes meta-
morphic climax. All these modifications are under control of
thyroid hormone, denoted TH [8]. It is relevant to distinguish
two molecular forms of TH [9]. Thyroxine (tetraiodothyro-
nine, T4) corresponds to the major form secreted by the thy-
roid gland, it is an “inactive” form of TH and is considered

1

: continuous place : discrete place

9.0 4.0

0.0 T3

6

2

C

T4 D2

t=0

0.0

1 (1)

1 (0)

2 (0)

m(T3)=6

3.0

3.0

m(T4)=0.0

THPN Evolution graph

: discrete transition : continuous transition

v(T2) = 3.0

T2

T1

(0.0; 4.0; 3.0)

(3.0; 4.0; 6.0)

(9.0; 4.0; 0.0)

∆t = 2

∆t = 1

T1

v(T2)

m(T4, D2, T3)
m(C)

dg(T1)

Fig. 1. The THPN of cellular cycle activation in amphibian metamorphosis
and its evolution graph.

as a pro-hormone. Triiodothyronine (T3) is the biologically
active form but it is secreted in smaller quantity [6].

Among all the changes related to metamorphosis, we
were particularly interested in the regulatory mechanisms
responsible for hindlimb growth.

Hindlinb growth is induced when the concentration of
plasmatic TH is minimal [8]. This morphological modifi-
cation is nevertheless triggered thanks to the type 2 iodothy-
ronine deiodinase, denoted D2 [10] which transforms the
inactive form T4 into the active form T3:D2 + T 4 →
T 3 + D2. The enzymatic action enables the limb cells to
reach the T3 concentration necessary to activate the cell
cycle. Growth of hindlimbs are observed.

A. THPN model and evolution graph

Each thyroid hormone (T3 and T4) as well as the enzyme
D2 are modelled by a continuous place representing their
molecular concentrations (left part of Figure 1). Since the
enzymatic reaction is a continuous phenomenon, the reac-
tion allowing D2 to transform T4 into T3 is modelled by
the continuous transitionT2. Since this reaction does not
consume D2, a test arc (dotted arc) is used. Parameters are
estimated from known kinetics of T3, T4 [8] and D2 [10].

The hindlimb growth is abstracted by the number of cells,
which is represented by a discrete place (C). Initially, there
is a unique cell. The discrete transitionT1 simulates cellular
proliferation which occurs after mitosis time (delay1 onT1).

The dynamic of the previous THPN model can be ex-
tracted by constructing the evolution graph (right part of
Figure 1). Only two sets of events occur: at the timet = 2
(∆t = 2) of the THPN execution, the continuous place T3
reaches the threshold6.0, enabling the discrete transition
T1 to fire and one time unit later (∆t = 1), two events
simultaneously occur: the discrete transitionT1 fires and the
continuous place T4 becomes empty, leading to a deadlock
of the system waiting for the external blood flow to fill T4.

B. Automaton construction

The Event Clock automatonAM is presented in Figure 2.
Traces ofAM correspond to the execution of the THPN.

l0 l1 l2

l5 l4 l3
xT h(T3,6) = 1∧

dg(T1) = 0∧

v(T2) = 0

dg(T1) = 1∧

v(T2) = 3∧

m(C) = 1

∧F ire(T1)∧

ϕ3 ∧ NulMark(T4)

m(C) = 2∧

v(T2) = 0 ∧ dg(T1) = 0

m(C) = 1∧

v(T2) = 3∧

dg(T1) = 0

ϕ2 ∧ T h(T 3, 6)∧

∧dg(T1) = 1

dg(T1) = 0

v(T2) = 3∧

ϕ1 ∧ NoEvt∧

xNoEvt = 2 ∧ v(T2) = 3

Fig. 2. Event Clock automaton of the THPN model, denotedAM . ϕ1 ≡

(m(C) = 1)∧(m(T4) = 9)∧(m(D2) = 4)∧(m(T3) = 0), ϕ2 ≡

(m(C) = 1)∧ (m(T4) = 3)∧ (m(D2) = 4)∧ (m(T3) = 6) and
ϕ3 ≡ (m(C) = 2)∧(m(T4) = 0)∧(m(D2) = 4)∧(m(T3) = 3)

C. Proof of a property

Among different kinds of properties, we focus here on
dynamics of the cellular cycle. In this section, we consider
the following property: at a moment, a minimum of three
time units is necessary before the enzymatic reaction stops.
This biological property enables biologists to estimate time
of the metamorphosis end. It can be translated into a CTEL
formulaφ: ⋄ �≥3 (v(T2) = 0)
or equivalently: ¬2¬ �≥3 (v(T2) = 0)

where ⋄ means eventually and2 means always. The first
formula means that at a given instant a minimum of three
time units will be required to the enzymatic reaction stops
(v(T2) = 0) . The second formula (formally equivalent to the
first one) means that the following property is wrong: “the
end of the enzymatic reaction is globally observed before
three time units elapsed”.

The Event Clock automaton associated with the negation
of the studied property,A¬φ, is then constructed by using
the procedure defined by Raskin and Schobbens in [3], see
Figure 3. Traces ofA¬φ represent the set of timed traces
which satisfy¬φ.

The product automatonAp = AM × A¬φ is drawn in
Figure 4 where only accepted computations and relevant
labels are indicated on edges.

The language of the product automatonAp can be proved
to be empty by constructing its region automaton as in [3],
[11]. Since traces ofA¬φ guarantee the end of the enzymatic
reaction(v(T2) = 0) always occurs before three time units
elapsed, the language of the product automaton is then
intuitively empty if one of its traces passes through an edge
labelled by(v(T2) = 0) after three time units

The history clocksxNoEvt andxTh(T3,6) (dashed box on
Figure 4) count elapsed time. The time constraints related
to these clocks indicate that three time units elapse when
the edge label(v(T2) = 0) is recognized by the automaton.
It proves that theAp language is empty. The Petri net then
satisfies the propertyφ, i.e. at a moment of the biological
process, more than three time units will be required to
observe the end of the enzymatic reaction.

VI. DISCUSSION

Hybrid Functional Petri Nets [1] constitute a powerful
framework to define computable models of complex biolog-
ical systems. Many rather large and complex systems have
already been modelled using HFPN [12]. Reasoning about
those models, in a computer aided manner, is consequently
of first interest. Unfortunately,functions(the “F” of HFPN)
offer such an expressive power that they are the main obstacle
to perform proofs on models defined using HFPN. Other
more restricted logical frameworks without functions and
generally without explicit quantitative time [13] are dedicated
to precise aspects of biological systems such as genetic
regulatory networks. This kind of formalism offers auto-
mated proof procedures [14]. Unfortunately, when defining
formal models of biological systems, we often need explicit
quantitative time and some functions in order to fully address
the biological problem and express the biological questions
in logical formulas.

Our (long term) motivation is consequently to offer au-
tomated proof procedures for a significant sub-framework
of HFPN. Transitions and functions in HFPN being often
continuous and quantitative, the model checking procedure
of [3] based on Event Clock Logic and products of automata
is promisingw.r.t our motivation. So, the work described in
this article is a first step toward our aim: it introduces a small
extension of Event Clock Logic and a compatible translation
of THPN models into automata, which makes it possible to
perform automated reasonings on THPN models.

Future works in this vein include the development of a
complete model checking procedure, extended and exhaus-
tive definition of the set of biologically sensible strategies
to translate a THPN into an automaton, and introduction of
functions. For each of these three points, the main difficulties
are the following.

To develop a complete model checking procedure compat-
ible with our extension of Event Clock logic, it is necessary
to accept product transitions labeled by different formulas
provided that the intersection of their domain is not empty.

The construction of evolution graph depends on the reso-
lution of conflicts as mentioned in section 3. Theoretically,
this could lead to an infinite set of deduced automata, but
fortunately in biology, when a particular conflict is solved
using a given rule, this rule is deduced from biochemical
knowledge and has to be reused at each occurrence of this
conflict.

Introduction of functions is the truly and intrinsically hard
question. First of all, functions may hide interactions which
are not shown in the graph, and this should deeply influence
the construction of the automaton. Moreover, HFPN allow
any form of mathematical functions and obviously, to main-
tain formal validation capabilities, the form of mathematical
functions has to be carefully restricted.

Our approach based on Event Clock logic gives an in-
teresting alternative to hybrid extension of classical model-
checking [15], [16]. We are convinced that Event Clock logic
is well suited to add to THPN more and more sophisticated
functions.

REFERENCES

[1] A. Doi, S. Fujita, H. Matsuno, M. Nagasaki, and S. Miyano.Con-
structing biological pathway models with hybrid functional Petri nets.
In Silico Biology, 4:271–291, 2004.

[2] R. David and H. Alla. Discrete, Continuous, and Hybrid Petri Nets.
Springer, 2005.

[3] J-F. Raskin and P-Y. Schobbens. The logic of event clocks. JALC,
1999.

[4] H. Matsuno, A. Doi, M. Nagasaki, and S. Miyano. Hybrid Petri net
representation of gene regulatory network. InPacific Symposium of
Biocomputing, volume 5, pages 338–349, 2000.

[5] R. Alur, L. Fix, and Henzinger T. Event-clock automata: Adeter-
minizable class of timed automata.Theoretical Computer Science,
1999.

[6] J.D. Furlow and E.S. Neff. A developmental switch induced by thyroid
hormone. TRENDS in Endocrinology and Metabolism, 17:40–47,
2006.

[7] S. Troncale, J.-P. Comet, and G. Bernot. Verification of Timed Hybrid
Petri Nets with temporal logic. Technical report, IBISC, 2007.

[8] J. Leloup and M. Buscaglia. Triiodothyronine, hormone of amphibian
metamorphosis.C.R. Acad. Sci., pages 2261–2263, 1977.

[9] C. Rose. Integrating ecology and developmental biologyto explain
the timing of frog metamorphosis.TRENDS in Ecolgy and Evolution,
20:129–135, 2005.

[10] L. Cai and D. Brown. Expression of type 2 iodothyronine deiodinase
marks the time that a tissue responds to thyroid hormone-induced
metamorphosis in xenopus laevis.Developmental Biology, 266:87–
95, 2003.

[11] R. Alur and D. Dill. A theory of timed automata.Theoretical
Computer Science, 1994.

[12] S. Troncale, D. Campard, F. Tahi, J. Guespin, and JP. Vannier.
Modeling and simulation with hybrid functional petri nets of the role
of interleukin-6 in haematopoiesis. InPSB, 2006.

[13] R. Thomas and R. d’Ari. Biological feedback.CRC Press, 1990.
[14] G. Bernot, J.-P. Comet, A. Richard, and J. Guespin. Application

of formal methods to biological regulatory networks: Extending
thomas’asynchronous logical apporoach with temporal logic. J.T.B,
2004.

[15] T. Henzinger. The theory of hybrid automata. InIIIE Commputer
Society Press, 1996.

[16] M. Gribaudo, A. Horvath, E. Tronci, E. Ciancamerla, and
M. Minichino. Model-checking based on fluid Petri nets. InComputer
Safety, Reliability and Security, 2002.

¬(v(T2) = 0)∧
¬(yv(T2)=0 ≥ 3)

v(T2) = 0∧
¬(yv(T2)=0 ≥ 3)
¬(v(T2) = 0)∧

l′0

¬(yv(T2)=0 ≥ 3)
v(T2) = 0∧

l′1

¬(yv(T2)=0 ≥ 3)

Fig. 3. Event Clock automatonA¬φ reduced to accessible locations

(l′1, l0)
(l′1, l1) (l′1, l2)

(l′0, l5)

(v(T2) = 3)∧

ϕ∧

NoEvt

ϕ∧

(v(T2) = 3)

(l′0, l4)

(v(T2) = 3)

(l′1, l3)

ϕ ∧ (v(T2) = 0)

xNoEvt = 2

(v(T2) = 3)∧

xT h(T3,6) = 1

(v(T2) = 0)∧ ϕ∧

ϕ∧

ϕ ∧ Th(T3, 6)∧

Fig. 4. Event Clock automatonAM × A¬φ. ϕ ≡ ¬(yv(T2)=0 ≥ 3)

