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Abstract— The Hybrid Functional Petri Nets (HFPN) for- In this paper, we describe continuous traces of THPN
malism has shown its convenience for modelling biological as a particular automaton, an Event Clock automaton [5],
systems. This class of models ha}s been fruitfully applied in based on a real time logic, the Event Clock logic [3]. This
biology but the remarkable expressiveness of HFPN often leis . . . .
to incomplete validations. In this paper, we propose a logi step requires to define preusgly the continuous models and
framework for Timed Hybrid Petri Nets (THPN), a sub-class of ~ the extended Event Clock logic. THPN models can then be
HFPN. We propose an extension of Event Clock Logic dedicated transcribed via the evolution graph and some manipulations
to THPN and a procedure to convert a THPN into a real-time  and formulas in terms of Event Clock automata. We then
automaton. A small biological model shows that our framewok - gy how the introduction of a real time logic can be helpful
allows us to formally prove properties by a well suited model . . - . . o
checking procedure. in the context of_b!ologlcal modelhng.. We study a simplified

model of amphibian metamorphosis regulation [6]. After
|. INTRODUCTION having constructed the associated Event Clock automaton,

Systems biology is aiming to a system-level understandinge show that classical approaches of verification of Event
of the functioning of a biological system like the cell,Clock logic formulas can be applied to prove that the THPN
taking into account not only molecular phenomena butnodel satisfies a particular temporal property.
also structuration of the cells, communication channets an
exchanges with the outside space. This global aim is now This paper is organised as follows: Section Il presents
conceivable thanks to the recent developments of genonsgntax and semantics of our logic. Definitions of a THPN and
and postgenomic which enable identification of numerouan evolution graph are reminded in Section Ill. In Section IV
genes and proteins. Nevertheless, the precise role of eagh describe our conversion algorithms of an evolution graph
actor remains hard to determine experimentally. Then, matmto an Event Clock automaton. Finally, Section V sketches
ematical modelling and abstraction methods are essent@it a biological example before we discuss our results in
approaches to bridge the gap of incomplete knowledge ai@&ction VI.
to study complex biological processes. There exist nungerou
modelling formalisms which allow different validation tec Il. CONTINUOUS TIME LOGIC
niquesw.r.t biological knowledge: simulation, proof, etc. The In this section, we briefly recall the way we have extended
Hybrid Functional Petri Nets (HFPN) [1] formalism offersthe classical Event Clock Logic [3]. More detailed defiriiso
a maximum of flexibility such as modelling of discrete andcan be found in [7].
continuous processes, or definition of consumed or produced ]
quantities as functions of marking and this explains wh{*- Syntax and semantics
HFPN are well suited for simulation in biology. Neverthesles ~ We define a slightly extended syntax and semantics of
simulations are not sufficient to formally validate or ref@ Event Clock logic [3], where atoms are extended to handle
model, that is, to confront the model with known behaviouratontinuous and discrete time executions. We call it Contin-
properties. Such a step of “model checkingé(checking if uous Time Evolution Logic, CTEL for short. We first define
a model satisfies a property) enables one to select only Pedignatures which specify variables and observable events
net models satisfying a set of known biological propertiesabstracted by predicates.

Nevertheless, “model checking” is impossible to perform in

a computer aided manner on a so expressive formalism. Opefinition 1 A signature for CTEL is a couplg = (V, Pr)

of the obvious reasons is that functions of HFPN inducghereV and Pr are respectively a set of variables and a set
someimplicit use of the system states. of predicates. A continuous-time modél is then defined by

Since usual validation methods turned out to be intractablesetr ¢ Pr x R+ and a functiony : (VIIR) x Rt — R
on HFPN, we propose an original procedure based on workgherell stands for the disjoint union) such that for any real
of David and Alla [2] (Petri nets) and of Raskin andnumber valuev € R, and for anyt € RY, w(v,t) = v.
Schobbens [3] (satisfaction of temporal logic formulag). T
tackle a powerful validation ability, we need to reduce thdVe distinguish two kinds of atoms: instantaneous atoms
expressiveness of HFPN, we focus on a sub-class of HFP{Refinition 2) and general atoms (Definition 4).
the Timed Hybrid Petri Nets (THPN) [2]. THPN enable the
construction of models of a large range of complex biologicaDefinition 2 An instantaneous atory is an expression of
systems [4]. one of the two following forms:



« a predicatep € Pr, in which case a model/ satisfies © == a|lmplpr A waler V palpr = pa
o at a timet iff (p,t) €,
« an inequalityv > v, wherev,v’ € (V IIR) in which
caseM satisfiesa at a timet iff u(v,t) > p(v',t).
Lastly, a modelM satisfies—a at a time¢ iff it does not For example, the previous cell cycle formula is not an
satisfy« at this time. observation as> and y appear in the formula. On the
contrary,” Gy = -G A =S A =Mitosis” means that the
An instantaneous atom can be “timed" thanks to the use phasei, excludes any other phases and is an observation at
of two clocks, the history clock, and the prophecy clock any given top of horloge.
Ya [5]. The value of a history clock:, is the time elapsed  pyring a continuous time model execution, observations

since the last occurrence of. The value of a prophecy are made at different tops of horloge which define a time
clock y, is the time to wait for the next occurrence af  gequence.

Introduction of the clocks:,, andy, allows us to define the

set of terms on the signatute, noted 7%, which in tum  pefinition 7 A time sequencé is an infinite succession

allows us to define the set of general atoms. of timest;, wherei € N, which is strictly increasing and
divergent.

where a¢ is an instantaneous atomp, ¢; and po are
observations.

Definition 3 A term on a signature is either a variable _ . .
(resp. a constant Va'ue) be'onging toVIIR or an expres- To consider a given time Sequenh:@HOWS us to aCtually

sion of the formz,, (resp.y.) wherea is an instantaneous Computethe value of any term if’s. This value is defined
atom. via the eval function.

Definition 4 Given a signature& = (V, Pr), an atom is an Definition 8 Given aX-model}/, a time sequenck and a

expression of the form > +/, p or their negations, where time¢; belonging toh, the evaluation of a term is defined

r,7’ € Ty andp € Pr, such that ifr (resp.r’) is of the form @S fOHOWS_:

Ta OF Yo, the other term’ (resp.r) is an integer. o If r is reduced to a symbob € (V LI R), then
evall, (v, t;) = p(v, t;).

Definition 5 Following [3], a well formed formula is com- If r is of the formz,, then the evaluation fails with

posed of atomS, Connectives\/7 /\7 =, tempora' Operators a conventional valuel if o has never been satisfied
Next (), Previous ©), Until () and Since §) and of real- beforet; in the model)M, otherwise it is equal to the
time operators: predicting and history operators ,(<): time elapsed since the last occurrencenof
« Similarly, ifr is of the formy,,, then the evaluation fails
@ 1= a|=p|Op| © plp1 A 2|1 V p2lor = ¢ with a conventional value_ if o will never be satisfied
P1Upa|p18pa| < af B a, after ¢; in the modelM, otherwise it is equal to the
where ¢ is an atom,~ is a comparison belonging t¢= time to wait for the next occurrence of
<>, <, >), @, 1, o are formulas andn is a natural

Evaluation of terms being defined, it becomes straightfor-
ward to verify whether a formula is satisfied in a modél
&l a timet; of a time sequencé, simply by applying the
truth tables of the connectors.

number.

For example, assume that we study the cell cycle th
G1,Go, S and Mitosis would be predicates ofr in the
signature. So, the formuleGy = (>=, o, G2 A><12G2)" B, Discrete timed traces

is an example of well formed formula. It means tHidtthe . . C . : .
cell is in the G, phase, then the phase which comes at the A typical wet experiment consists in putting a biological

. System into an imposed initial state and observing it at some
end ofG; is G, and G, comes before 12 hours. Y - P . . 9
We have chosen the logic introduced by Raskin an ell chosen intervals of time. Consequently, it seems aatur
v . gic | u y ! validate a model or a property (formula) with respect to
Schobbens due to its remarkable expression power. Let . .
- . ) . e experimental observations made at the chosen tops of
us remark that it includes in particular classical tempor

ahorloge. The notion of timed traces is precisely designed
operators such as always)) and eventually(o) (see [3]). to input those experimental observations into our technica

. . . . stuff
Properties observed during the execution of a continuous
time model are observed at a given top of hprloge. The%efinition 9 A timed trace is defined by = { (¢4, £:) hsen,
concern the current state of the system at this time, thys thﬁ/here they; are observations and, — (t;)icy is a time
cannot involve past or future events. Consequently, they ca quence. A modell satisfies a tra::er i foieaNny natural

be expressed by the subset of well formed formulas definq,] mberi, the observationy; is satisfied according ta., at
below. - ’ ! T
time t;.

Definition 6 An observation on the signatukeis a formula Assume that some modéf, has been defined to model a
of the form: given biological system and assume thaaccumulates the



successive observations during a wet experiment.iff not
satisfied byM, then we can say that the mod#l, has been
refuted experimentally.

A continuous transitiofI” is enabledif each placeP; €°T
satisfies eithem(P;) > Pre(P;,T) if P; is a discrete place,
or m(P;) > 0 if P, is a continuous place. A continuous

Biologists can also perform experiments in order to checkansition is fired to itdnstantaneous firing speedT") such
an hypothesis. Then, assuming that the hypothesis has békat 0 < v(T) < V(T). v(T') corresponds to the maximal

expressed through a CTEL formulg we have to check
whetherr is compatible with this formula, denoted by ¢.

Definition 10 Let us consider a timed trace, a natural
numberi and a CTEL formulap. A trace r is compatible
with ¢ at the positioni, noted(r, )& ¢ if and only if there
exists a model\/ which satisfies the trace and such that
M satisfies the formula; at the timet; according to the
time sequenceé...

I1l. REMINDER OF THE THPN DEFINITION
Following the work of David and Alla [2]:

Definition 11 A Timed Hybrid Petri Net is a 7-tuple
(P,T,¢, Pre, Post,mg, Tempo) where:

« P and7 are disjoint sets of places and transitions,
e (:PUT — {D,C} called “hybrid function,” indicates

speed a transition can fire according to the current marking.
By definition,7 € T¢ is active if its instantaneous speed
is not null. A flow of Pre(P;,T) x v(T') tokens are removed
from each place; € °T' and a flow ofPost(T, P;) x v(T)
tokens are added to each transitiBhe 7°.

B. Evolution graph

The behavior of a THPN can be represented by an
evolution graph, which is a classical Petri net [2]. Each
place corresponds to an IB-state (invariant behavior Jstate
and each transition is associated with an event (change of
marking) whose occurrence produces a change from one
IB-state to another. Such a transition can only occur if an
event belonging to one of the following types takes place:
the marking of a continuous place becomes zero (C1l-event),
a discrete transition fires (D1-event) or the enabling degre
of a discrete transition changes because of the marking of a
continuous place (D2-event).

for every node whether it is a discrete node or a Intuitively, the i*" transition of the evolution graph, de-

continuous one.
Let TP (resp. PP) and T¢ (resp. P¢) be the sets of
discrete and continuous transitions (resp. places),

e« Pre : P x7 — RT™ UN is the input incidence
application. If T € TP then Pre(P,T) € N else
Pre(P,T) € RT.

e Post : T x P — RT UN is the output incidence
application. If T € TP then Post(T,P) € N else
Post(T, P) € RT.

e mg : P — RT UN is the initial marking. If P € PP
thenmg(P) € N elsemy(P) € RT,

e Tempo is a function from the se” to the set of
positive rational numbers. I € TP, Tempo(T) is
a timing associated withl". It is noted delay(T). If

notedTEF is labelled with the sefvt(TSF) of occurred
events, with time of the event occurrence and with marking
of all continuous places. IB-states are annotated by magrkin
of all discrete transitions, by the vector of enabling degre
and by the vector of instantaneous speed.

For constructing such an evolution graph, two restrictions
are imposed to THPN. First, the marking of each plate
must be bounded. This restriction guarantees the algorithm
to end. Secondly, since the evolution graph represents a
deterministic behavior, one has to solve conflicts whictuocc
when the marking of a place is not sufficient to allow the
different transitions to fire simultaneously. Generalhere
are two ways for solving conflict&haringproposes to share
resources between transitions according to a given schema

TeT® % represents the maximal firing speed(general case: stoichiometric constants are then helpful f

! Tempo(T o
associated witil". In the sequel, it is note®f (T').

determining sharing schema). Ampdiority ranks transitions
and gives limited resources according to the ran&g.(

We note°T' (resp.® P) the set of places (resp. transitions)catalytic phenomena).

preceding the transitioff’ (resp. the place”?) and we note

T° (resp.P°) the set of transitions (resp. places) succeeding: Signature

to the transitionl” (resp. to the placé).

A. Semantic intuition

A discrete transitioril’ is enabledif each placeP; €°T
satisfiesm(P;) > Pre(P;,T). If the transitionT stays
enabled during the timédelay(T), it will be fired at the
end of this delayPre(P;,T) tokens are then removed from
each placeP; € °T and Post(T, P;) tokens are added to
each transitionP; € 7°. The marking can be sufficient to

For constructing the Event Clock automaton deduced from
a THPN, let us first define the signatusggn = (V, Pr) of
a given THPN:

V is the following set of variables:

. for every P € P, we need a variable which denotes
the marking ofP. Conventionally, this variable will be
denotedm(P),

. for everyT € T, the variablev(T) denotes the

allow fewer simultaneous firings. The number of possible instantaneous speed &f ¢ T,

successive firing allowed by a given marking is treabling
degree By definition, T € TP is enabled if its enabling
degree is not null.

. for everyT € TP, the variabledg(T) denotes the
enabling degree of € TP.



Pr is the following set of predicates:

respectively enabling off € TP and activation of
T € T°,

with respectively a D1-event and a Cl-event,
(Threshold)

the evolution graph when no event occurs.

IV. ASSOCIATED EVENT CLOCK AUTOMATON

Fire(T), NulMark(P): unary predicates associated
Th(P,x): binary predicate associated with a D2-event,

NoFEwt: predicate associated with the first transition of

where I(T%F)i*1 corresponds to the interval bounded by

Enable(T), Act(T): unary predicates associated withthe values of the continuous marking at the transitiofrs’

andT5Y.
/\ (m(P) = val(m(P)))
PepP
N (0(T) = val(v(T)))
IB;) = TeTC
p1(IB;) = A /\ (dg(T) = val(dg(T))
TeTP
A\ (m(P) € I(TEF)i)
pPepC

2- From transitions to locations: Each transition of the

Owing to the extension of Event Clock Logic proposed irevolution graph also gives a location of the Event Clock
Section Il, we can extract an Event Clock automaton fromautomaton. With each of these locations we associate an
a THPN model. This will allow us to prove properties onobservatiorkbz(ﬂGE) describing the THPN state when en-
THPN. Let us first recall the definition of an Event Clocktering into the IB-state numbered ¢>2(TZGE) has then the

automaton [5].

following form. Note thatx;. represents the time elapsed
since the last event occurs. This last event can be either

Definition 12 An Event Clock automaton on the signatureNoEvt, Fire(T), NulMark(P) or Th(P,z) and At is the

sign is a 6-tupledA = (L, Ly, At,C, E, F) where :

o L is a finite set of locations andly C L is the subset
of start locations,
At is a set of atoms,
C is a set of history or prophecy clocks,
E is a finite set of edges. An edge is a tripl&t, ¢, l2)
wherel; € L is the source locatiorly € L is the target
location, andiy € Obs(sign) describes the state of the
THPN,
F ={F,..,F,} whereF; C L is a set of sets of
accepting locations

Definition 13 A trace 7 = {(¢i,ti)}ien IS recognized
by an Event Clock automatod = (L, Lo, At,C,E,F)
if there exists an infinite accepted computation =

loﬂlll ﬂlnﬁ where:
e €achl; € L andly € Ly,
o (li i, liv1) € E with (7,4)¢ s

« for everyF; € F, there exists infinitely many positions

Jj such thatl; € F;.

timing associated with the transitiGh®~.
N\ aUB)
IB;€°TEE
ecEvt(T)
N (m(P) = val(m(P)))

PepPC
At=evt time

A\

leeBvt(°°T) . .
3- Start and accepting locations:The start location is

the location corresponding to the first transitidf”. The
accepting locations are the ones such that the evolution
graph ends. In case of deadlock, the accepting location
is the location corresponding to the last IB-state. In case
of loopback (cycle), each location which corresponds to a
transition ("“F) or to an IB-state involved in the loopback
is an accepting location.

e

¢2 (TlGE) =A

(Ile = At)

4- Edges:There is an edge between two locations if there is
an arc between the corresponding IB-states or transitions i

Definition 14 The timed language of an Event Clock aylthe evolution graph. Moreover, each location obtained from
tomatonA, denotedZ(A), is the set of timed traces recog- &N IB-state loops to represent the time of the IB-state.llyina

nized byA.

an edge outgoing from a locatidns labelled by the formula
of the locationi.

We now introduce a procedure to transform an evolution

V. BIOLOGICAL ILLUSTRATION

graph (deduced from a THPN) into an Event Clock
automaton. This procedure is composed of four steps. TheMost amphibians undergo numerous morphological
first and the second one construct the set of locations, tlekanges at the tadpole stage, a biological process called
third one determines the initial and accepting locationd armetamorphosis. Amphibian metamorphosis can be divided
the fourth one constructs edges. into three periods. During premetamorphosis the feeding
tadpole grows. During prometamorphosis hindlimbs grow
1- From IB-states to locations:Each IB-state of the evo- and differentiate. Finally, tail resorption charactesizeeta-
lution graph gives a location of the Event Clock automatormorphic climax. All these modifications are under control of
With each of these locations we associate an observatitinyroid hormone, denoted TH [8]. It is relevant to distingjui
¢1(IB;) describing the THPN state all along time the IB-two molecular forms of TH [9]. Thyroxine (tetraiodothyro-
state numbered is true. ¢, (IB;) has the following form, nine, T4) corresponds to the major form secreted by the thy-
where val associates with a variable its current value andoid gland, it is an “inactive” form of TH and is considered



B t=0 NN (9.0;4.0;0.0) ©1 A NoEvtA m(C) = 1A

. U(Tz):f. ~ v(Tg) = 3A Qv(m) = 3A

@ Ty @ m(C) 1 30| ™(T4 D2, T3) @dgm) =0 oty =0 /"
e

T4 D2 h
3 At_: 2 E (3.0;4.0;6.0) U
m(T3)=6 2 A Th(T3,6)A
16 /@Ekuwz) TNoEvt = 2 /A v(T2) =3
T dg(T1) Ndg(Ty) =1

2 Lo
At =1 gy (0.0;4.0;3.0) #3 A NulMark(T4)
c T m(T4)=0.0 AFire(Ty)A
@ 00 Trp(T3,6) = 1N

THPN Evolution graph v(Ty) =0

m(C) = 2A
: continuous place Q : discrete place v(T2) =0Adg(T1) =0

Il discrete transition

. 2. Event Clock automaton of the THPN model, denateg. 1 =
C) = DA(m(T4) = 9)A(m(D2) = HA(m(T3) = 0), 2 =
C) = 1) A (m(T4) = 3) A (m(D2) = 4) A (m(T3) = 6) and
w3 = (Mm(C) =2)A(m(T4) = 0)A(m(D2) = 4)A(m(T3) = 3)

Fig. 1. The THPN of cellular cycle activation in amphibiantamaorphosis
and its evolution graph.

as a pro-hormone. Triiodothyronine (T3) is the biologigall
active form but it is secreted in smaller quantity [6]. C. Proof of a property
Among all the changes related to metamorphosis, we

. . . ! Among different kinds of properties, we focus here on
were particularly interested in the regulatory mechanism . . : .
. - ynamics of the cellular cycle. In this section, we consider
responsible for hindlimb growth.

o o . he following property: at a moment, a minimum of three
Hmdlmb groyvth 'S induced when the congentrauon_ .Of:ime units is necessary before the enzymatic reaction stops
plasmatic TH is minimal [8]. This morphological modifi-

o . : This biological property enables biologists to estimateeti
cation is nevertheless triggered thanks to the type 2 igdoth : .
ronine deiodinase, denoted D2 [10] which transforms thOf the metamorphosis end. It can be translated into a CTEL

inactive form T4 into the active form T3D2 4+ T4 — Formulf_;lgb: <>.>23 (0(T2) = 0)
or equivalently:  —0->>3 (v(T:) = 0)

T3 + D2. The enzymatic action enables the limb cells to )
|1ere<> means eventually anti means always. The first

reach the T3 concentration necessary to activate the c%f . . 2
ormula means that at a given instant a minimum of three

cycle. Growth of hindlimbs are observed. ) . . . . .
time units will be required to the enzymatic reaction stops
A. THPN model and evolution graph (v(Tz) = 0) . The second formula (formally equivalent to the

Each thyroid hormone (T3 and T4) as well as the enzymférSt one) means tha_t the fo_llow!ng property is wrong: "the
d of the enzymatic reaction is globally observed before

D2 are modelled by a continuous place representing the ¥

molecular concentrations (left part of Figure 1). Since th ree time units elapsed”. _ ) )
enzymatic reaction is a continuous phenomenon, the reac-The Event Clock automaton associated with the negation

tion allowing D2 to transform T4 into T3 is modelled by ©f the studied propertyd_, is then constructed by using
the continuous transitiofls. Since this reaction does not the procedure defined by Raskin and Schobbens in [3], see
consume D2, a test arc (dotted arc) is used. Parameters §i@ure 3. Traces ofd-; represent the set of timed traces
estimated from known kinetics of T3, T4 [8] and D2 [10]. Which satisfy—¢.

The hindlimb growth is abstracted by the number of cells, The product automatonl, = Ay x A4 is drawn in
which is represented by a discrete place (C). Initiallyréhe Figure 4 where only accepted computations and relevant
is a unique cell. The discrete transitiéih simulates cellular labels are indicated on edges.
proliferation which occurs after mitosis time (delayn 7). The language of the product automatdp can be proved

to be empty by constructing its region automaton as in [3],

The dynamic of the previous THPN model can be exFl1]. Since traces ofi-4 guarantee the end of the enzymatic
tracted by constructing the evolution graph (right part ofeaction(v(7:) = 0) always occurs before three time units
Figure 1). Only two sets of events occur: at the time 2  elapsed, the language of the product automaton is then
(At = 2) of the THPN execution, the continuous place T3ntuitively empty if one of its traces passes through an edge
reaches the threshol6l.0, enabling the discrete transition labelled by(v(7%) = 0) after three time units
T, to fire and one time unit laterA¢t = 1), two events The history clocksenorvt andzpy,(rs,e) (dashed box on
simultaneously occur: the discrete transitibnfires and the Figure 4) count elapsed time. The time constraints related
continuous place T4 becomes empty, leading to a deadlotk these clocks indicate that three time units elapse when
of the system waiting for the external blood flow to fill T4.the edge labe{v(7:) = 0) is recognized by the automaton.

. It proves that thed, language is empty. The Petri net then
B. Automaton construction satisfies the property, i.e. at a moment of the biological

The Event Clock automaton,, is presented in Figure 2. process, more than three time units will be required to

Traces ofA,; correspond to the execution of the THPN. observe the end of the enzymatic reaction.



VI. DISCUSSION

Hybrid Functional Petri Nets [1] constitute a powerful [1]
framework to define computable models of complex biolog-
ical systems. Many rather large and complex systems han]
already been modelled using HFPN [12]. Reasoning about
those models, in a computer aided manner, is consequenti§l
of first interest. Unfortunatelyfunctions(the “F” of HFPN) 4]
offer such an expressive power that they are the main obstac[
to perform proofs on models defined using HFPN. Other
more restricted logical frameworks without functions and[s]
generally without explicit quantitative time [13] are dedtied
to precise aspects of biological systems such as geneti€l
regulatory networks. This kind of formalism offers auto-
mated proof procedures [14]. Unfortunately, when defining[7]
formal models of biological systems, we often need explicit
guantitative time and some functions in order to fully addre (8]
the biological problem and express the biological question|[9]
in logical formulas.

Our (long term) motivation is consequently to offer auyq
tomated proof procedures for a significant sub-framewor
of HFPN. Transitions and functions in HFPN being often
continuous and quantitative, the model checking procedeﬁ]
of [3] based on Event Clock Logic and products of automata
is promisingw.r.t our motivation. So, the work described in[12]
this article is a first step toward our aim: it introduces akma
extension of Event Clock Logic and a compatible translatiop 3]
of THPN models into automata, which makes it possible t&4l
perform automated reasonings on THPN models.

Future works in this vein include the development of a
complete model checking procedure, extended and exhalik?
tive definition of the set of biologically sensible straegi
to translate a THPN into an automaton, and introduction of
functions. For each of these three points, the main difiesilt
are the following.

To develop a complete model checking procedure compat-
ible with our extension of Event Clock logic, it is necessary
to accept product transitions labeled by different forrsula
provided that the intersection of their domain is not empty.

The construction of evolution graph depends on the reso-
lution of conflicts as mentioned in section 3. Theoretigally
this could lead to an infinite set of deduced automata, but
fortunately in biology, when a particular conflict is solved

16] M. Gribaudo, A. Horvath, E. Tronci,

REFERENCES

A. Doi, S. Fujita, H. Matsuno, M. Nagasaki, and S. MiyanGon-
structing biological pathway models with hybrid functibfetri nets.
In Silico Biology 4:271-291, 2004.

R. David and H. Alla. Discrete, Continuous, and Hybrid Petri Nets.
Springer, 2005.

J-F. Raskin and P-Y. Schobbens. The logic of event clockLC,
1999.

H. Matsuno, A. Doi, M. Nagasaki, and S. Miyano. Hybrid Petet
representation of gene regulatory network. Racific Symposium of
Biocomputing volume 5, pages 338-349, 2000.

R. Alur, L. Fix, and Henzinger T. Event-clock automata: deter-
minizable class of timed automatarheoretical Computer Science
1999.

J.D. Furlow and E.S. Neff. A developmental switch inddid®y thyroid
hormone. TRENDS in Endocrinology and Metabolisrh7:40-47,
2006.

S. Troncale, J.-P. Comet, and G. Bernot. Verification mh@d Hybrid
Petri Nets with temporal logic. Technical report, IBISC,0Z0

J. Leloup and M. Buscaglia. Triiodothyronine, hormorfeamphibian
metamorphosisC.R. Acad. Sci.pages 2261-2263, 1977.

C. Rose. Integrating ecology and developmental bioltgyexplain
the timing of frog metamorphosiS.RENDS in Ecolgy and Evolutipn
20:129-135, 2005.

] L. Cai and D. Brown. Expression of type 2 iodothyronineiadlinase

marks the time that a tissue responds to thyroid hormonecex
metamorphosis in xenopus laevi©evelopmental Biology266:87—
95, 2003.

R. Alur and D. Dill. A theory of timed automata. Theoretical
Computer Sciengel994.

S. Troncale, D. Campard, F. Tahi, J. Guespin, and JPni¥an
Modeling and simulation with hybrid functional petri netbthe role
of interleukin-6 in haematopoiesis. PSB 2006.

R. Thomas and R. d'Ari. Biological feedbaclkCRC Press1990.

G. Bernot, J.-P. Comet, A. Richard, and J. Guespin. ippbn
of formal methods to biological regulatory networks: Extieg
thomas’asynchronous logical apporoach with temporalclogi.T.B
2004.

T. Henzinger. The theory of hybrid automata. IIfE Commputer
Society Press1996.

E. Ciancamerla, and
M. Minichino. Model-checking based on fluid Petri nets.Qomputer
Safety, Reliability and Securjt002.
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using a given rule, this rule is deduced from biochemical Fig. 3. Event Clock automatod _; reduced to accessible locations

knowledge and has to be reused at each occurrence of this
conflict.

Introduction of functions is the truly and intrinsically taa
guestion. First of all, functions may hide interactions evhi
are not shown in the graph, and this should deeply influence
the construction of the automaton. Moreover, HFPN allow
any form of mathematical functions and obviously, to main-
tain formal validation capabilities, the form of mathemati
functions has to be carefully restricted.

Our approach based on Event Clock logic gives an in-
teresting alternative to hybrid extension of classical etod
checking [15], [16]. We are convinced that Event Clock logic
is well suited to add to THPN more and more sophisticated
functions.
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