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Abstract: A novel topology of regulatory networks abstracted from the budding yeast cell cycle is
studied by constructing a simple nonlinear model. A ternary positive feedback loop with only
positive regulations is constructed with elements that activates the subsequent element in a clock-
wise fashion. A ternary negative feedback loop with only negative regulations is constructed with
the elements that inhibit the subsequent element in an anticlockwise fashion. Positive feedback
loop exhibits bistability, whereas the negative feedback loop exhibits limit cycle oscillations.
The novelty of the topology is that the corresponding elements in these two homogeneous feed-
back loops are linked by the binary positive feedback loops with only positive regulations. This
results in the emergence of mixed feedback loops in the network that displays complex behaviour
like the coexistence of multiple steady states, relaxation oscillations and chaos. Importantly, the
arrangement of the feedback loops brings in the notion of checkpoint in the model. The model
also exhibits domino-like behaviour, where the limit cycle oscillations take place in a stepwise
fashion. As the aforementioned topology is abstracted from the budding yeast cell cycle, the
events that govern the cell cycle are considered for the present study. In budding yeast, the
sequential activation of the transcription factors, cyclins and their inhibitors form mixed feedback
loops. The transcription factors that involve in the positive regulation in a clockwise orientation
generates ternary positive feedback loop, while the cyclins and their inhibitors that involve in the
negative regulation in an anticlockwise orientation generates ternary negative feedback loop. The
mutual regulation between the corresponding elements in the transcription factors and the cyclins
and their inhibitors generates binary positive feedback loops. The bifurcation diagram constructed
for the whole system can be related to the different events of the cell cycle in terms of dynamical
system theory. The checkpoint mechanism that plays an important role in different phases of the
cell cycle are accounted for by silencing appropriate feedback loops in the model.
1 Introduction

Cyclical organisations of biological networks are widely
seen in neurobiology [1], immunology [2] and in the chemi-
cal systems [3]. Theoretical and experimental models such
as ‘circulator’ [4] and ‘repressilator’ [5], respectively, are
constructed to get insight into the organization and func-
tioning of the cyclical biological networks. Another inter-
esting case of a cyclical network is the Hypercycle – a
closed reaction network which connects autocatalytic or
self-replicative units through a cyclic linkage that form a
closed feedback loop [6]. Among the three examples
cited, circulator model has both positive and negative feed-
back loops, whereas repressilator and hypercycles have only
negative and positive feedback loops, respectively. In natu-
rally occurring biological systems, both positive and nega-
tive feedback loops play a vital role that together
contributes to the precise functioning and robustness of a
system [7].
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Before embarking further, the terms that are used in this
article for describing the regulatory networks are defined.
The term feedback loop here is used to denote whenever
the element influences its own production or inhibition
directly or through a path of interactions with several dyna-
mical elements. Positive and negative feedback loops are
distinguished by the parity of negative interactions
among the dynamical elements. If the number of negative
interactions are even (odd), the feedback loop is positive
(negative). For example, in Fig. 1e, ‘Y1’ negatively regu-
lates ‘Y2’, which in turn negatively regulates ‘Y1’
completing the positive feedback loop. Both types of feed-
back loops are observed widely in many regulatory
networks like cell cycle [8, 9] and circadian rhythms
[10]. Negative feedback loops provide homeostasis or
oscillations, positive feedback loops cause multi-
stationarity that may be essential for epigenetic modifi-
cations and inheritance [11]. Positive feedback loops also
cause instability, but are important to prolong and
amplify the response of a weak signal. Various configur-
ations of feedback loops have been studied and some of
the common configurations that have been dealt and ana-
lysed extensively are given in Fig. 1.

In Fig. 1 are shown the one and two element regulatory
positive and negative feedback loops that are the common
building blocks of many interesting complex regulatory net-
works. Analysis of these building blocks or the combination
thereof provides insight into the working and functioning of
the biological systems [5, 12–16]. The feedback loops
IET Syst. Biol., 2007, 1, (6), pp. 326–341



encountered in almost all the biological regulatory
systems consists of both positive and negative feedback
loops, for example, as in Fig. 1c. In this article, a different
class of feedback loop abstracted from the interactions
among the transcription factors, cyclins and their inhibitors
of the budding yeast cell cycle is presented. The feedback
loops are ‘homogeneous’, that is, positive feedback loop
comprises only positive regulations and the negative feed-
back loop comprises only negative regulations. It can be
noticed in Fig. 1e that the homogeneous negative feedback
loops with only negative regulations cannot be realised from
the two element feedback loop. Therefore the negative feed-
back loops with an odd number of elements (three elements)
connected only by inhibitory interactions identical to the
synthetic genetic network, repressilator (Fig. 2a) [5] is
realised in budding yeast cell cycle by considering
interactions among the cyclins and their inhibitors.
Similar arrangement for the positive feedback loop with
only positive regulations is constructed by abstracting the
sequential regulation of the transcription factors from the
chIP–chip data of the budding yeast cell cycle (Fig. 2b).
The homogeneous feedback loops with three elements are
termed ‘ternary’ feedback loops. Further, the corresponding
elements of these homogeneous feedback loops are
linked by the positive feedback loops with only positive
regulations. These are termed ‘binary’ feedback loops.
These interactions result in a ‘non-homogeneous’ or
‘mixed’ feedback loops (Fig. 2c). The orientation of the
ternary homogeneous feedback loops are opposite to each
other; that is, the homogeneous positive feedback loop has
clockwise positive regulations, whereas homogeneous
negative feedback loop has anticlockwise negative
regulations.

1.1 Motivation and aim of the present study

In this section, the motivation behind the construction of
the present network of topology from the experimental
data is provided briefly. The details are given in a later
section of the article. In budding yeast, the transcription
factors regulate each other serially as determined from
the chIP–chip data [17]. Applying redundancy criteria to

Fig. 1 Common feedback loops studied in the biological systems

a and b One element positive and negative feedback loops
c Two element mixed feedback loop
d and e Two element positive and negative feedback loops. Feedback
loops are identified according to the parity of negative interactions
among the elements
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the transcription factors that play a specific role in each
phase of the cell cycle results in the ternary positive feed-
back loop as shown in Fig. 2b. The negative feedback
loop with only negative regulation among the cyclin com-
plexes Cln/Cdc28, Clb/Cdc28 and their inhibitor Sic1 are
constructed from the minimal model of [18], which again
is based on the experimental data (Fig. 2a). Finally, the
interactions between the transcription factors, cyclin–cdk
complexes and their inhibitors are taken mainly from
[17]. Assembling of these interactions results in the
mixed feedback loops (Fig. 2c). Therefore this topology
is an abstraction from the experimental data and not artifi-
cially generated. To reduce the complexity of the model,
finer details from the experiments are not incorporated
in the present study, yet the bifurcation diagram is
complex and exhibits many interesting dynamics. The
positive feedback loop, because of the serial regulation
of the transcription factors and the binary feedback
loops results in a novel topology. This ternary positive
feedback loop has not been considered in the minimal
model of [18] or in the later rigorous models of [19,
20]. The present model can be considered as a subset of
Tyson and Novak’s minimal model to which the new
information, namely the ternary positive feedback loop,
is incorporated in the model.

Since this topology is novel, various dynamics exhibited
by this network is initially presented. In particular, the
influence of binary and ternary positive feedback loops
that generates domino-like oscillations and the checkpoint
mechanism are studied in detail by constructing one and
two parameter bifurcation diagrams. The cell cycle and
checkpoint dynamics of the budding yeast are presented
in the latter part of the article. The article is organised in
the following way. In the second section, the dynamics
of ternary feedback loops linked with and without the
binary positive feedback loops are studied in detail by

Fig. 2 Regulatory networks of homogeneous and mixed feedback
loops

a In the top left panel is shown the homogeneous negative feedback
loop circuit with only negative regulations that regulate the next one
in a serial anti clockwise fashion
b In the right panel is shown the homogeneous positive feedback loop
with only positive activators that regulate the next one in a serial clock-
wise fashion. The homogeneous feedback loops with three elements
are called as ‘ternary’ feedback loops. T1, T2 and T3 are the dynamical
variables of the positive feedback loop denoted by ‘ þ ’. C1, C2 and C3

are the dynamical variables for the negative feedback loop denoted by
‘ 2 ’
c In the bottom panel, the ternary feedback loops linked by binary
positive feedback loop with only positive regulations are shown by
the black arrows
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constructing one and two parameter bifurcation diagrams.
The details of the construction of this novel topology in
a modular form from the experimental data of budding
yeast cell cycle and their dynamics are presented in the
third and fourth sections. The final section contains the dis-
cussion, conclusion and the future direction of research. All
the bifurcation diagrams are generated using the software
XPPAUT [21] and the numerical simulations are carried
out using MATLAB [22] and linear stability analysis
using MATHEMATICA [23]. Since the concentration of
most of the proteins are not known, we have taken the con-
centration of the dynamical variables in nanomolar (nM)
and the time in minutes (min). All the dimension of the
rates of the equations and the kinetic constants is given
in Table 1 and taken to be standard values. For certain
specific simulations the modification of the standard
values are made and these are provided appropriately in
the legend of the figures.

2 Dynamics of ternary homogeneous feedback
loops

2.1 Bistability from the homogeneous positive
feedback loop with only positive regulations

Ternary homogeneous positive feedback loops constructed
with the dynamical variables T1, T2 and T3, are sequentially
regulated; dynamical variable T1 positively regulates T2 and

Table 1: Parameter values used for mixed feedback
loops, unless otherwise stated in the legend of the
figures

Paramerer Value used in

the simulation

j1 0.9 nM min21

j2 0.6 nM min21

j3 0.6 nM min21

yd1
5.0 nM min21

yd2
5.0 nM min21

yd3
5.0 nM min21

kd1
0.9 min21

kd2
0.8 min21

kd3
0.8 min21

kc1
0.15 min21

kc2
0.15 min21

kc3
0.15 min21

km1
5 nM

km2
5 nM

km3
5 nM

y12 15 nM min21

y11 15 nM min21

y10 15 nM min21

k120 10 nM

k110 10 nM

k100 10 nM

kd4
0.16 min21

kd5
0.16 min21

kd6
0.16 min21

n 3.0
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in turn is regulated by T3 as shown in the top-right panel of
Fig. 2b. This regulatory network described by the Hills
equations exhibits both hysteresis and bistability. The
equations are

dT1

dt
¼ j1 þ

yd1
T
n
3

knm1
þ Tn

3

� kd1
T1 (1)

dT2

dt
¼ j2 þ

yd2
Tn

1

knm2
þ Tn

1

� kd2
T2 (2)

dT3

dt
¼ j3 þ

yd3
T
n
2

knm3
þ Tn

2

� kd3
T3 (3)

j1, j2, j3 denote the basal rates, yd1
,yd2

,yd3
the rate of acti-

vation or the positive feedback strength, km1,m2,m3
the

threshold constants, kd1,d2,d3
the degradation constants and

n the Hill’s constant. For the choice of parameters given
in Table 1, bistability and hysteresis (Fig. 3a) are observed
with yd2

as the parameter. Linear stability analysis
performed around the three steady states confirms the occur-
rence of bistability (shown in the Appendix). Robustness to
the parameter variation is determined from the two
parameter bifurcation diagram with j1, kd1

and yd1
as the

dependent parameters and activation rate yd2
as the

independent parameter. All the two parameter bifurcation
diagrams exhibit cusp bifurcation that divides the mono-
stable from the bistable region (Fig. 3b, c, d). The wide
bistable regime indicates the robustness of the bistable
system to the large parameter variations. Even though all
the three parameters exhibits bistability for a wide range,
yd1

operates at a much wider range than the basal and degra-
dation rates. The scale of yd1

is different from the rest of the
parameter plots in Fig. 3d.

2.2 Oscillations from the homogeneous ternary
negative feedback loop with only negative
regulations

The dynamical variables C1, C2 and C3 negatively regulate
each other in an anticlockwise direction to give rise to
homogeneous ternary negative feedback loop. C1 negatively
regulates C3 and itself is negatively regulated by C2 as
shown in Fig. 2a. This topological arrangement of the nega-
tive feedback loop and the model described later are identi-
cal to the classical synthetic gene regulatory network, the
repressilator; except that the present equations have no
basal rate. The equations are

dC1

dt
¼

y12k
n
120

kn120 þ Cn
2

� kd4
C1 (4)

dC2

dt
¼

y11k
n
110

kn110 þ Cn
3

� kd5
C2 (5)

dC3

dt
¼

y10k
n
100

kn100 þ Cn
1

� kd6
C3 (6)

In these equations, y12, y11, y10 are the production rates,
k120, k110, k100 are the threshold constants above which
the inhibition takes place, kd4,d5,d6

the degradation rates
and n the Hill constant.

For appropriate choice of parameters given in Table 1,
linear stability analysis confirms the occurrence of Hopf
bifurcation (HB) (shown in Appendix). The HB is super-
critical in nature where the unstable steady state surrounds
the stable limit cycle (Fig. 4a). Oscillations are possible
for the choice of parameters when the Hill’s coefficient is
IET Syst. Biol., Vol. 1, No. 6, November 2007



Fig. 3 Occurrence of bistability and the two parameter bifurcation diagram for the positive feedback loop

a Bifurcation diagram with yd2
as the bifurcation parameter for (1)–(3). Continuous lines are the stable steady state, whereas the dashed lines are the

unstable steady state. Bistability can also be obtained for yd1
, yd3

, j1, j2, j3 for an appropriate parameter set
b, c and d are the two parameter bifurcation diagrams that generates cusp point. Region of monostabilty (I) and bistability (II) is identified for three
different parameters with respect to the parameter yd2

b is the bifurcation diagram for the basal rate j1, whereas c and d are for yd1
, the feedback strength and kd1

the degradation constant, respectively

Fig. 4 Occurrence of supercritical Hopf bifurcation and the two parameter bifurcation diagram for the negative feedback loop

a Bifurcation diagram for (4)–(6) with y12 as the bifurcation parameter. Continuous lines are stable steady state and filled circles are the stable limit
cycle oscillations. The supercritical Hopf bifurcation denoted by HB surrounds the unstable steady state shown as darked lines. Supercritical Hopf
bifurcation can also be obtained for y11, and y10 for an appropriate parameter set
b and c Twoparameter plane diagram for y11, andkd4

. I and II are the region ofoscillationand the stable steadystate, respectively, separated by the dark lines
IET Syst. Biol., Vol. 1, No. 6, November 2007 329



greater than 2 (shown in Appendix). Two parameter bifur-
cation diagram constructed for the parameters y11 and kd4

with y12 as an independent parameter separates the wide
wide regime of oscillations from the stable steady state
(Figs. 4b, c). This indicates the robustness of the oscillatory
system to a large parameter variations. Similar bifurcation
diagram constructed for the other parameters have also
found to exhibit oscillations to a wide range of values
(bifurcation diagram not shown).

In summary, homogeneous positive feedback loop
exhibits bistability and negative feedback loop exhibits
HB. The dynamics are robust to large parameter variations
and are in the biologically plausible range. These
values are partially modified to understand the general
dynamics of the whole system and that of the budding
yeast cell cycle.

2.3 Dynamics of the ternary positive and negative
feedback loops linked by the binary positive
feedback loops

Ternary homogeneous positive and negative feedback loops
described in the earlier two sub-sections are linked by the
homogeneous binary positive feedback loops with only
positive regulations. This is shown by the black arrows
in the bottom panel of Fig. 2c. By coupling, the
whole egulatory network becomes ‘non-homogeneous’,
that is, the network consists of mixed feedback loops.
Mathematically, the coupling of two homogeneous feed-
back loops can be expressed either by the linear or nonlinear
terms. To generate interesting dynamics, coupling of C’s to
T’s are described by the linear equations, whereas that of
T’s to C’s are described by the nonlinear equations as in
the following

dT1

dt
¼ j1 þ

yd1
Tn

3

knm1
þ Tn

3

þ kc1
C1 � kd1

T1 (7)
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dT2

dt
¼ j2 þ

yd2
Tn

1

knm2
þ Tn

1

þ kc2
C2 � kd2

T2 (8)

dT3

dt
¼ j3 þ

yd3
Tn

2

knm3
þ Tn

2

þ kc3
C3 � kd3

T3 (9)

dC1

dt
¼

y12T
n
1

kn120 þ Tn
1 þ Cn

2

� kd4
C1 (10)

dC2

dt
¼

y11T
n
2

kn110 þ Tn
2 þ Cn

3

� kd5
C2 (11)

dC3

dt
¼

y10T
n
3

kn100 þ Tn
3 þ Cn

1

� kd6
C3 (12)

All the newly added coupling terms in the equations are indi-
cated in the bold. The linear coefficients kc1, kc2, kc3 in the
(7)–(9) denotes the positive influence of C’s on T’s. On
the other hand, the positive influence exerted by T’s on C’s
as in (10)–(12) are highly nonlinear. To determine the
effect of coupling on the dynamics of the system, one par-
ameter bifurcation diagram is constructed for (7)–(12) with
yd2

as the parameter. Four distinct dynamical features are
observed.

1. The mixed feedback loop exhibits both bistability and
supercritical HB (unstable steady state surrounded by a
stable limit cycle) suggesting the influence of both ternary
positive and negative homogeneous positive feedback loop
brought about by the binary positive feedback loops in the
system. The stable limit cycle undergoes secondary Hopf
bifurcation (SB) to give rise to unstable limit cycle that
(inset of Fig. 5b) terminates with infinite period. There is
also an unstable oscillation that emerges from the saddle
and terminates with large amplitude and infinite period indi-
cating saddle-loop (SL) bifurcation. These are homoclinic
bifurcation with period tending to infinity (inset, Fig. 5c).
Fig. 5 Influence of linking the corresponding elements of the homogeneous ternary feedback loops by the binary feedback loops

a One parameter bifurcation diagram with yd2
as the bifurcation parameter is shown. Continuous lines are the stable steady states and the dashed

lines are the unstable steady states. The filled circles are the maximum and minimum amplitude of the limit cycle oscillations. The unfilled black
circle is the unstable limit cycle
The inset b is the enlarged portion of the rectangle V. Stable limit cycle (SLC) oscillations emerge from the supercritical HB IV, which further under-
goes SB to give rise to unstable limit cycle oscillations. This collides with saddle node with an infinite period. Unstable limit cycle (ULC) oscillations
emerges from the saddle and terminates with a large amplitude and infinite period. This is the SL bifurcation
In inset c is shown the period of the oscillations. II is the period of the stable oscillations that emerges from A whereas I is the period of the unstable
oscillations that results from the SB. The period of the oscillations tends to infinity suggesting homoclinic bifurcation
In the right panel the time series for two different initial conditions are shown
d and e are the time series of T’s and C’s respectively, for initial condition [1, 1, 1, 1, 1, 1]
f and g are the time series for initial conditions [15, 15, 15, 15, 15, 15] that exhibits domino-like oscillations
IET Syst. Biol., Vol. 1, No. 6, November 2007



2. Oscillations which are absent in T’s, are induced by C’s
through linear and nonlinear coupling.
3. The dynamics of the system are dependent on the initial
conditions of the system (Figs. 5d, e, f and g). Depending on
the initial conditions the system settles down either to the
oscillatory or to the stable steady state.

To obtain a better insight about the influence of binary
positive feedback loop in the system, two parameter bifur-
cation diagram is constructed with yd2

and kc1
as the par-

ameters (Fig. 6a). The highlights of the two parameter
bifurcation diagram are

(i) Two types of limit cycle oscillations are observed in the
system: sinusoidal and relaxation-like oscillations (regions I
and II, respectively, in Fig. 6a) because of the influence of
the binary feedback loops. To distinguish these two types of
limit cycle oscillations, one parameter bifurcation diagram
is constructed with kc1

as the parameter for a constant
yd2

¼ 5 (shown in Fig. 6d). For a low value of kc1
, smooth

unstable oscillations (ring type) arise from the Hopf bifur-
cation (IV, inset of Fig. 6d). This unstable oscillation
from the saddle changes its stability (V, inset of Fig. 6d )
to give rise to stable limit cycle that collides with stable
node with infinite period. The collision occurs at a high
value of kc1

and exhibits relaxation oscillations with a
IET Syst. Biol., Vol. 1, No. 6, November 2007
high period. This is saddle-node bifurcation with an
Infinite PERiod (SNIPER). Broadly, the transitions in the
two parameter bifurcation diagram in Fig. 6a when
moving from the bottom (low kc1

and yd2
) to top (high kc1

and low yd2
) are (a) region III ! I is the transition from

the stable steady state to HB and (b) region I ! II is the
transition from stable limit cycle oscillations to SNIPER
bifurcation through a SB. In the region of low kc1

, smooth
ring type oscillations are observed because the negative
feedback loop dominates over the positive feedback. In
the region of high kc1

, relaxation oscillations are observed
because of the strong influence exerted by the binary posi-
tive feedback loop over the negative feedback loop. There
are also a small region of cusp and Takens-Bogodonov
(TB) bifurcations in the two parameter bifurcation
diagram that occurs in between regions III and I. Cusp bifur-
cation arises because of the confluence of three steady states
of the saddle-node to a point (C1 and C2 of Fig. 6b) and TB
bifurcation (TB in Fig. 6b) arises because of the collision of
Hopf point with the saddle-node bifurcation [24].
(ii) The oscillations are arrested immediately when the
binary positive feedback loop is silenced. This is effected
by reducing the coupling constants kc1

, kc2
, kc3

to zero inde-
pendently. The oscillations are not resumed even after the
coupling constants are restored to its original value after
some time. One such case is shown in the Figs. 7a and b.
This is because the dynamical variables are moved away
Fig. 6 Two parameter bifurcation diagram illustrating the influence of binary positive feedback loop

a Two parameter bifurcation diagram of the model (7)–(12) with yd2
and kc1

as the parameter is shown. There are three regimes with I and II being
the regime of smooth sinusoidal (ring type) and relaxation-like oscillations, respectively. III is the stable-steady state regime
In b is shown the two cusp bifurcation (C1 and C2) and TB is the Takens-Bogodonov bifurcation and SL is the saddle-loop bifurcation enlarged from
the rectangular box in a. See the text for explanation. Regimes of smooth domino-like oscillations (I) that are separated from relaxation oscillations
(II) are shown for a particular coupling constant
c Time series and their corresponding attractors for kc1

¼ 0.15 chosen from regime I that shows smooth oscillations and below time series and cor-
responding attractor for kc1

¼ 1.5 chosen from regime II that shows relaxation oscillations. yd2
¼ 5 is chosen for the simulation of time series

d One parameter bifurcation to illustrate the occurrence of smooth and relaxation oscillations and the inset e shows the starting of unstable limit
cycle oscillations from saddle (IV) that changes it stability at (V) to stable limit cycle oscillations (see text for further explanations)
331



Fig. 7 Effect of silencing the binary positive feedback loop and checkpoint-like mechanism

a Complete arrest of oscillations when the coupling constant kc1
is made zero at t ¼ 500 for yd2 ¼ 5. The oscillations did not resume even after the

coupling constant kc1
¼ 0.15 is restored to its original value at t ¼ 600

The rest of the parameter values are the same
b Initiation of oscillations when the initial concentrations are reset to [15, 15, 15, 15, 15, 15] at t ¼ 700 with kc1

¼ 0.15. This is denoted by Q in the
figure at t ¼ 700
c One parameter bifurcation diagram from Fig. 6d is used to illustrate this behaviour. The triangle denotes the movement of the system when the
parameter and concentration are reset. Starting from Q, which is same as in b, is the initial value of kc1

and T where oscillations occur (0.15, 15).
When kc1

is made zero, the system moves to another stable steady state at (0, 0.5). When kc1
is restored to its original value, the system is moved to

another regime in the bifurcation diagram (0.15, 0.5) which again is the stable steady state. Finally when the concentration are reset the system moves
to Q again and oscillation resumes.
d Oscillations resume when uniformly distributed random number with noise intensity of 0.07 is added (shown as horizontal arrow) to the stable
steady state. The initial condition chosen for the simulation other than the noise induced oscillation is [15, 15, 15, 15, 15, 15]
from the limit cycle regime to the stable steady state in the
phase space. The oscillations can be restored by two differ-
ent ways: (a) by changing the initial conditions and (b) by
adding a small percentage of noise to stable steady state
of the system provides information about the robustness
of the steady state. In case (a), the oscillations are restored
when the concentration of the dynamical variables are reset
above the threshold value of both the bistable and oscil-
latory regime. This is illustrated using bifurcation diagram
shown in Fig. 7c. This brings in the notion of checkpoint
in the model. In case (b), the stable system obtained is not
robust when the stable steady states are perturbed with a
small percentage of noise as the noise induces a transition
from stable steady state to oscillations (Fig. 7d). This is
simulated using uniformly generated random number in
MATLAB with a noise intensity of 0.07 added to the
stable steady state concentration restores the oscillations,
suggesting the sensitive nature of the system to molecular
noise. A detailed work on the role of molecular noise will
be taken up as a future task.
(iii) When the Hill’s coefficient is changed from n ¼ 3 to
n ¼ 2 (Fig. 8a), the bifurcation diagram becomes less
complex because of the separation of bistable regime
from the two supercritical HB. Most importantly, homo-
geneous negative feedback loop alone do not exhibit HB
for n ¼ 2, that is, oscillation is absent for the parameter
set chosen (shown in the Appendix). This clearly indicates
the role of homogeneous positive feedback loop in inducing
and amplifying the oscillations in the system. This result is
similar to the experimental results of [25] wherein their
332
experiments on Xenopus laevis produced damped oscil-
lations when the positive feedback loop is silenced. A
summary of changing Hill’s coefficient and the correspond-
ing dynamics in the presence and absence of coupling the
ternary feedback loops observed in the bifurcation
diagram is given in Table 2.

3 Details of the construction of the mixed
feedback loop from the budding yeast cell cycle
data

In normal eukaryotic cell cycle, both positive and negative
feedback loops guide the cell through various phases,
namely G1, S-G2 and M phases [26]. In budding yeast
cell cycle, these feedback regulations are carried out by
cyclin-dependent kinase (CDK) along with two families
of cyclins, Cln’s and Clb’s and the inhibitors of the cyclin-
dependent complexes [27, 28]. Cyclins themselves are con-
trolled by various transcription factors through the positive
feedback loops at different phases of the cell cycle [29–31].
The checkpoints, which are discussed at length in the later
part of the article, involves the activation and suppression
of transcription factors, cyclins and their inhibitors
through silencing specific feedback loops. In general, the
precise events in the cell division cycle are controlled by
the transcription factors (TF), Cyclin/Cdk’s and their
inhibitors through intricate feedback loops at different
phases of the cell cycle. It is shown later that the complex
interactions among the regulatory proteins of the budding
IET Syst. Biol., Vol. 1, No. 6, November 2007



yeast cell cycle can be segregated into two ternary feedback
loops as shown in Fig. 2a and b. The basis for the segre-
gation based on the experimental data is presented in the
following two sections in detail.

Fig. 8 Effect of varying Hill’s coefficient in the model

a One parameter bi furcation diagram is constructed for Hill’s coeffi-
cient n ¼ 2 and yd2

¼ 4, keeping the other parameters constant. The
bifurcation diagram has isolated saddle-node and HB regime that do
not overlap. There are two supercritical HB in the diagram
In b Oscillations are absent for n ¼ 2, in the absence of both ternary
and binary positive feedback loops and c Oscillations are induced
and amplified in the presence of both binary and ternary positive
feedback
IET Syst. Biol., Vol. 1, No. 6, November 2007
3.1 Construction of homogenous ternary positive
feedback loop from the sequential regulation of TFs

Recently, through genome-wide location analysis the cell
cycle specific TFs functioning at one phase was found to
positively regulate the transcription factors in the sub-
sequent phase [17, 32]. These are two complexes, Mbp1
and Swi6 (hereafter called MBF) and the complex of
Swi4 and Swi6 (hereafter called SBF) that control late G1
genes. The transcription factors Mcm1, Fkh1, Fkh2 and
Ndd1 control the late G2/S genes whereas Swi5 and
Ace2 regulate both late M and early G1 genes. Mcm1 is
also involved in the transcription of M/G1 genes. The
sequential regulation of TFs are as follows: The cycle
starts with the late G1 transcription factors SBF and MBF
that regulate Ndd1 a G2 gene. Ndd1 positively regulates
Mcm1 and Fkh2 genes that are important for G2/M tran-
sition. Further, Ndd1 together with Mcm1/Fkh2 regulates
Swi5 and Ace2. Swi5/Ace2/Mcm1 activates M/G1
genes, completing one full cycle.

Homogeneous positive feedback loop is obtained from
the TF’s that are clubbed together because of their high
functional redundancies [17]. In G1 phase, the transcription
factors SBF, and MBF, respectively, share 31% and 77%
identity in their DNA binding domains, that is,

SBF þ MBF ! T1

In S-G2 phase, Fkh1 and Fkh2 are 16% identical and
mutations in Mcm1 and Ndd1 are lethal. Therefore all the
four transcription factors are taken as one dynamical vari-
able as T2, that is

Fkh1 þ Fkh2 þ Ndd1 þ Mcm1 ! T2

In M-phase Swi5 and Ace2 are 17% identical and taken
together as one dynamical variable T3, that is

Swi5 þ Ace2 ! T3

The wiring of the homogeneous positive feedback loops
that involves only TFs as shown in Figs. 9a and b are
same as in Fig. 2b. The mathematical equations (1)–(3)
are taken for the analysis and this gives rise only to
bistability.

3.2 Construction of homogeneous ternary
negative feedback loop from the cyclins and their
inhibitors

Cyclins and their inhibitors provide negative feedback loop
in the model. Two different Cyclins, Cln’s and Clb’s
Table 2: Effect of varying Hills coefficient ‘n’ in the bifurcation diagram

Hill’s coefficient (n) Uncoupled system Coupled system

eqns (1)–(3)(þFBL) eqns(4)–(6)(2FBL) eqns (7)–(12)

1 SS SS SS

2 SN SS HB(SUP þ SUP) þ SN

3 SN HB HB(SUB þ SUP) þ SN

4 SN HB HB(SUB þ SUP) þ SN

5 SN HB HB(SUB þ SUP) þ SN

The effect of ‘n’ on the dynamics of both coupled and uncoupled feedback loops are shown. The notation used
are SS, steady state; SN, saddle node; HB, Hopf bifurcation; SUP, supercritical and SUB, subcritical Hopf
bifurcations; FBL, feedback loop. For n ¼ 2, Hopf bifurcation is not seen in the negative feedback loop of the
uncoupled system. But Hopf bifurcation is obtained when coupled for certain values of parameter. This is
shown in Fig. 7. When n increases, the regime of steady state increases, whereas the regime of Hopf bifur-
cation decreases
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together with CDK Cdc28, play an important role at the
appropriate phases of the cell division cycle. The complex
of Cdc28 and Cln3 triggers the cell cycle and the complex
of Cdc28–Cln2, Cdc28–Clb5 and Cdc28–Clb2 initiates
budding, DNA synthesis and mitosis, respectively. The
inhibitors of the cyclins are Sic1, Cdh1 and Cdc20 that
down-regulate Cdc28–Clb2 [33, 34].

Constructing wiring diagram for the cyclins and their
inhibitors similar to the TFs is not a trivial task. This is
particulary true in the case of mitotic exit, where APC–
Cdc20, APC–Cdh1 and Sic1 involve in the inhibition of
Clb2–Cdc28 complex. APC–Cdc20 and APC–Cdh1 takes
a different path, whereas Sic1 takes another path in down-
regulating Clb2–Cdc28 complex. Their role in the mitotic
exit is also different. To overcome this problem, we consider
the circuit diagram of [18]. The circuit diagram shown in
Fig. 9c is similar to the circuit diagram shown in Fig. 6 of
[18]. In the circuit diagram, cyclins Clns and Clbs complexed
to the kinase Cdc28 pushes the cell to various phases of the
cell cycle. Clb–Cdc28 is required to START cell cycle with
the help of Cln/cdc28, whereas to FINISH the cell cycle,
Clb–Cdc28 is removed by the inhibitors of cyclins APC–
Cdc20, APC–Cdh1 and Sic1.

To START the cell cycle, Cln–Cdc28 kinases that are
immune to inhibitors, eliminate Sic1 by phoshorylating it
[27]. This releases Clb–Cdc28 from the clutch of inhibitors

Fig. 9 Abstraction of wiring diagram for the cell cycle of
budding yeast for the present study

Two different positive regulations are shown. The serial positive regu-
lation of only TFs is shown in a and b
The negative regulations are shown in c, d and e. In negative feedback
loop, CKI in c is replaced by Sic1 in d
Also the negative regulations shown in dashed arrow has not been
taken into consideration for the construction of feedback loop
similar to represillator in the present study
The circuits b and e are the positive and negative feedback loops
that are same as the one shown in Figs. 2b and 2a, respectively
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to start the cell cycle. Once the cell cycle is started, Cln–
cdc28 is inhibited by the Clb–cdc28 complex.

In the FINISH transition, the two important inhibitors
Cdh1 and Sic1 binds to Clb2–Cdc28 complex and
inhibits its activity. In the current study, out of the two
paths shown in Fig. 9c from [18], only the Clb–cdc28,
Cln–cdc28 and Sic1 are taken, whereas the other pathway
is excluded. Thus the negative regulation Clb–cdc28, s
cln–cdc28 s Sic1 s Clb/cdc28 constitutes a negative feed-
back loop identical to the repressilator.

The wiring of homogeneous negative feedback loop that
involves only cyclin and their inhibitors is same as the
wiring diagram as in Fig. 2a and the mathematical equations
(4)–(6) describing this process is considered. This gives rise
only to limit cycle oscillations.

3.3 Mutual interaction between the TFs, the
cyclins and their inhibitors: Generation of
mixed feedback loops

The circuit diagram for the coupling of TFs, cyclins and
their inhibitors are constructed by taking the following
facts into consideration (Fig. 10).

In G1 phase, expression of Cln’s (except Cln3) are posi-
tively controlled by SBF. SBF in turn is positively con-
trolled by all Clns as well as Clb5 [35, 36] (Fig. 10a).
Cyclins 1 and 2 are clubbed to Cln as shown in Fig. 10a.

In S-G2-M phase Clb2 is autocatalytic, because Clb2
activates its own TFs (MCM1) [31, 37]. Therefore the
mutual activation of Clb2 and MCM1 are considered in
the circuit (Fig. 10b).

In M-G1 phase, Sic1 transcription is regulated by Swi5
[38] But the inhibitor Sic1 has indirect influence on the tran-
scription factor SWI5 by negatively regulating Clb2–Cdc28
complex that in turn down-regulates the production of SWI5.
Since this is not a direct regulation it is shown in the dotted
lines that completes the positive feedback loop (Fig. 10c).

In summary, the transcription factors T1 regulates C1 posi-
tively and vice versa in the G1-phase. In the S-G2-M phase
transcription of Clb2 is autocatalytic and activates its own
TF Mcm1/Fkh2/Ndd1. Also in this phase, T2 regulates C2

positively and vice versa. In M/G1 transition, Sic1 is regu-
lated by Swi5. Sic1 has indirect influence on the TF Swi5.
So the interaction between all the T’s and C’s are positively
regulated in our model. The coupling of ternary positive and
negative feedback loops through homogeneous binary posi-
tive feedback loops shown in the bottom panel of Fig. 2c
gives rise to mixed feedback loops. The mathematical
equations (7)–(12) are used to construct bifurcation diagrams
to explain the dynamics of the cell division cycle.

4 Dynamics of the cell cycle network: Bifurcation
diagrams and the cell cycle events

The dynamics of the budding yeast cell cycle is studied by
taking yd2

as the control parameter. This parameter monitors
the cell cycle growth and division as shown in the bifurcation
diagram of Fig. 10. Importantly, the bifurcation diagram is
used to illustrate the occurrence of domino-like oscillations
and checkpoint dynamics. A rich bifurcation diagram illus-
trates the functioning of the cell cycle in terms of dynamical
system theory. In budding yeast, there is no clear G2 phase
and therefore can be considered as an alternation between
G1 and S-G2-M phases [18, 39]. These phases of budding
yeast cell cycle can be realised when yd2

changes from
smaller to larger values. G1 is a stable steady state whereas
S-G2-M phase is an unstable steady state surrounded by a
IET Syst. Biol., Vol. 1, No. 6, November 2007



Fig. 10 Abstraction of the relationship between TFs and the cyclins

All the TFs regulate the cyclin–cdc28 complex positively. The cyclins also in turn regulate the TFs positively thus closing the positive feedback loop
a, b
The TFs Swi5 in M-G1 phase shown in c regulate the inhibitor Sic1 positively, but not vice versa. The regulation of Swi5 by Sic1 is indirect and this
is denoted by the dashed lines
T1, T2 and T3 are the TFs, whereas C1, C2 are cyclin complexes and C3 is the inhibitors of cyclins. The negative regulation of Sic1 by Clb2/cdc28 is
not considered
stable limit cycle. There is also another stable steady state
between these two phases that is very small and cannot be
stabilised for a long time (shown as I in the bottom left
panel of Fig. 11a). This is also the case in the budding
yeast cell cycle. So to explain the dynamics of budding
yeast cell cycle, this small steady state is not considered.
Four saddle-node bifurcations at yd2

¼ 0.5769, 0.5188,
0.6835, 0.4234 and three HBs at yd2

¼ 0.6831, 0.5666 and
25.37 (I, II and III, respectively, in Fig. 11b and c) are
observed. When yd2

is decreased slowly from a high value
stable steady state is replaced by unstable steady state and
supercritical HB at yHd2

¼ 25.37. When yd2
is further

decreased, the period of the oscillations remains almost con-
stant with the amplitude of the oscillations in proportion top

(yd2

H2 yd2
) (Fig. 11d). As yd2

is further decreased to a
very low value, the period of the oscillation increases
rapidly and the oscillatory solution disappears at
yd2

¼ 0.7169. This is the saddle node bifurcation with an
Infinite PERiod [SNIPER; also called saddle node on invar-
iant circle (SNIC)], where the stable limit cycle with finite
amplitude disappears as the period diverges to infinity and
is replaced by the stable node (shown in Fig. 11a). The
system exhibits domino-like oscillations in a stepwise
fashion (Fig. 12a and b) with a period of approximately
90 min in one cycle for yd2

being 1.052. This value is
chosen for the simulation where the cell cycle is in unstable
state surrounded by stable limit cycle; that is, in S-G2-M
phase. The HBs at yd2

= 0.6831, 0.5661, shown in Fig. 11c
as I and II, is encompassed by the stable limit cycle oscil-
lation emerged from the HB III (shown in Fig. 11b). A
small region denoted by ‘I’ is an inverse supercritical HB
from which the limit cycle oscillations undergo a cascade
of period-doubling oscillations. II is a HB that emerges
from large period and collides with the unstable steady
state to give rise to SL bifurcation. This also terminates
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with an infinite period indicating SL bifurcation. Only HB
III has physical significance in the model.

4.1 Explanation for the occurrence of domino-like
oscillations

The bifurcation diagram (Fig. 11) and time series (Fig. 12) are
used to explain the occurrence of domino-like oscillations in
terms of Clb2 protein concentrations, that is, C2 in the model.
The concentration of C2 can be either low or high depending
on the phase in which the cell is present. This corresponds to
either a stable steady state or an oscillatory state in the bifur-
cation diagram. At G1, the concentration of Clb2 is very low
because the inhibitors of Clb2 namely Sic1 is in abundance,
that is, C3 is in abundance. This is a stable steady state in
the bifurcation diagram. In other words, when the inhibitor
Sic1 is high, Clb2 is low. Therefore there is an anti-phase
relationship between C2 and C3 in the time series. But Cln’s
present in the G1 phase are immune to these inhibitors.
When the concentrations of Cln’s increases, that is, when
C1 crosses a threshold concentration, the inhibitor Sic1 is
destroyed leading to an increase of Clb2 concentration fol-
lowed by the transition from G1 to S-G2-M phase. In the
bifurcation diagram this corresponds to a transition from the
stable steady state (G1) to oscillatory state (S-G2-M). In
S-G2-M phase, Clb2 is activated by the TF, T2.
Concomitantly, when Clb2 reaches a threshold concentration,
it involves in an indirect negative regulation of the TFs in the
G1 phase through the negative regulation of Clns. This results
in the fall of concentration in both T1 and C1 and a simul-
taneous rise in the concentration of both T2 and C2.
Therefore in S-G2-M phase, T2 and C2 are in phase with
each other but out of phase with T1 and C1. In addition, at
M-G1 phase, highly active Clb2 triggers their inhibitors.
The inhibitor C3 starts dominating at M-G1 transition and
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Fig. 11 One parameter bifurcation diagram for cell division cycle of budding yeast

One parameter bifurcation diagram is constructed with yd2
as the parameter. The other parameters that differs from the parameter set given in Table 1

are j2 ¼ 0.5, j3 ¼ 0.2, kc1
¼ 0.2 kc2

¼ 0.22, kc3
¼ 0.6, yd1

¼ 6, yd3
¼ 3 and n ¼ 2. I and II are the HB that takes place on the saddle and III is the

supercritical HB
a G1 is the stable steady state shown by the thick lines, whereas S-G2-M state is an unstable steady state surrounded by the stable limit cycle that
arise from HB III. In between these two states there is a small region of stable steady state that is not stabilised for a long time and this stable steady
state is not considered for the budding yeast cell cycle dynamics. The limit cycle is shown in the dark black filled circle
In b complete bifurcation diagram is shown. The stable steady states are denoted by solid lines, unstable steady states by broken lines, stable limit
cycle by filled circle and unstable limit cycle by unfilled circle
In c two other HB points (I and II) are shown. I and II are saddle loop bifurcation
In d is shown the period of the limit cycle arising from the HB III, which collides with the saddle and node namely saddle node on invariant circle.
The period near this bifurcation blows to infinity suggesting the homoclinic nature of bifurcations
degrades Clb2 for the successful completion of one cell div-
ision cycle. In this phase T3 and C3 are in phase with
each other but out of phase with T2 and C2. Simultaneously,
C1, which is immune to the inhibitors, initiates the next
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cycle by activating T1. These events result in a domino-like
oscillations because of highly ordered step-wise activation
and destruction of the TFs, cyclins and their inhibitors at
different phases of the cell cycle.
Fig. 12 Time series of the model for the cell division cycle of budding yeast

Period of the cycle is approximately 90 min. Eventhough the amplitudes are different, the cell cycle exhibits domino-like transition; that is, there is a
step-wise rise and fall of T’s a and C’s b in the model
yd2

is taken as 1.052 for the simulation when the cell is in S-G2-M state; that is, in the unstable state surrounded by stable limit cycle. The other
parameters used are from the legend of Fig. 10 and Table 1
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4.2 Explanation for the checkpoint point
mechanism: silencing of the negative feedback
loops and the dominance of positive feedback
loops

The bifurcation diagram and the time series are again used
to explain the checkpoint mechanism that blocks the pro-
gress of the cell cycle under unfavourable conditions in
either G1 or S-G2-M phases (Fig. 13). In G1 arrest state
both Cln’s and Clb’s are present at a very low concentration,
whereas in the S-G2-M phase arrest, the inhibitors of Clb’s
are present at a very low concentration. The checkpoint pro-
teins enforces this mechanism by effectively deactivating
the cyclins and their inhibitors. The checkpoint mechanism
is therefore explained by reducing y10 and y11 which are the
rates of cyclin synthesis and y12, the rate of their inhibitors
to a low value in the model. As a consequence, the G1 and
S-G2-M arrest state results in the weakening of the ternary
homogeneous negative feedback loops and the dominance
of the ternary positive feedback loops generated by the
interactions among the TFs in the model (Fig. 13 I, II and
III). Bifurcation diagram is constructed with yd2

as the par-
ameter. The G1 checkpoint for the budding yeast cell cycle
can be simulated by deactivating either Cln’s synthesis or
by Clb’s synthesis and both these cases are considered. In
the first case, the rate of cyclin synthesis Cln’s 1–3,
namely C1, is arrested by taking the rate y12 close to zero
(0.1). This results in a stable steady state that corresponds
to a very low production of Clb2 in the bifurcation
diagram (Fig. 13a). There are two stable steady states
with a low value of Clb2 concentration. In this, one of the
stable steady state that coexists with unstable steady state
IET Syst. Biol., Vol. 1, No. 6, November 2007
is isolated from other stable steady state and hence called
‘Isolas’ (inset of Fig. 13a). Depending on the initial con-
ditions the cell stays in either one of the steady states, but
importantly, the C2 concentration in both of these steady
states are extremely low in comparison with the G1-phase
of normal cell cycle (as shown in Fig. 11a), suggesting
the arrest of cell cycle in G1-phase. The time series of the
cyclins and their inhibitors are shown in the right panel of
Fig. 13a for one particular initial condition. Time series cor-
rectly show that in G1 arrest state the inhibitor of cyclins
(C3) is present in large quantity, whereas C2 is present in
a very low concentration. In the second case for
G1-checkpoint, the rate of Clb2 (C2) production y11 is
taken close to zero (0.1). There is a steep sigmoidal increase
in the concentration of C2 in the bifurcation diagram, but
reaches a saturation concentration (Fig. 13b). This steep
increase is similar to that Fig. 13a and the same saturation
concentration level is attained. In the time series, concen-
tration of C1 is still higher and the inhibitors of the
cyclins C3 is gradually destroyed with the increase of C1,
but C2 is still at a lower concentration in comparison with
the normal cell cycle, suggesting a G1 arrest state. Not
only the G1-checkpoint can be simulated by deactivating
either Cln’s or Clb’s concentration individually in the
model, but can also be realised by deactivating both Cln’s
and Clb’s rates simultaneously; that is, taking both y11

and y12 close to zero together and this results in the same
bifurcation diagram time series as in Fig. 13a.

In S-G2-M checkpoint simulation, the cell transits the G1
phase but is arrested in the S-G2-M phase. To simulate this
the rate of inhibitors production y10 is taken close to zero
(0.1). The cell is committed to division but it is blocked
Fig. 13 Bifurcation diagram and time series for the checkpoints of the budding yeast cell cycle

Two different checkpoint point controls simulated by varying the rate of cyclins synthesis and their inhibitors y12, y11 and y10 are shown with yd2
as

the bifurcation parameter. In the extreme right panel is shown the topology of the circuit where the checkpoint mechanism is illustrated through the
deactivation of homogeneous ternary negative feedback loops for G1 (I and II) and the S-G2-M phases (III)
The checkpoints can also be simulated by silencing the homogeneous binary positive feedback loops as shown in the dotted cross lines along with
negative feedback loops
In the left panel are the bifurcation diagram and the middle panels are the time series. a Cell cycle arrested in G1 phase for y12 ¼ 0.1
The box ‘I’ in the top left panel is expanded and shown as inset where there are two steady states for a small value of yd2

and one of them is isola. In
the isola, one stable steady state coexists with unstable steady state that is isolated from another stable steady state
b Cell cycle again arrested in G1 phase for y11 ¼ 0.1 and c
Cell cycle arrested in S-G2-M phase for y10 ¼ 0.1
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by the inhibitory signals. As a result there is an irreversible
transition from G1 to S-G2-M state (Fig. 13c). The concen-
tration of Clb2 is higher because the checkpoint proteins
block the inhibitors that involve in the destruction of
Clb2. This is shown clearly in the time series. In the
S-G2-M phase arrest, the cell may present in any one of
the phases depending on the initial conditions. When the
cell is present in G1 state, then the cell can still proceed
till M-phase, but cannot carry out the next cycle resulting
in irreversible transition. The checkpoint mechanism for
budding yeast cell cycle is thus well captured in the
model where the cell cycle can be blocked in any of the
phases by the checkpoint protein by blocking the synthesis
of cyclins and their inhibitors. The checkpoint mechanism
can also be simulated by silencing the coupling constants
kc1

, kc2
and kc3

along with silencing the synthesis of
cyclins and their inhibitors (Fig. 13 I, II and III). In the
wiring diagram this is equivalent to blocking selectively
both the binary positive feedback loop and the ternary nega-
tive feedback loop. Therefore in all the checkpoint mechan-
ism, homogeneous ternary positive feedback loops arising
out from the sequential regulation of TFs play a very
strong role in generating steady-state dynamics and
thereby exhibits mostly the stable steady states in the check-
point mechanism.

5 Discussion, conclusion and future direction
of work

In this article, a novel topology of regulatory network
abstracted from the experimental data of the budding
yeast cell cycle is presented in a modular form. The
present study consists of two parts. In the first part, the top-
ology (Fig. 2c) is decomposed in to two modules (Fig. 2a
and b) and the dynamics of both the individual and the
recomposed modules are thoroughly studied to determine
the role played by different feedback loops in the system.
The modules consist of the ternary homogeneous positive
and negative feedback loops that exhibits bistability and
limit cycle oscillations, respectively. The individual
modules are modelled with fewer number of variables and
parameters. As most of the kinetic constants are not
known, biologically plausible parameter values are chosen
for this study. The dynamics are found to be robust to par-
ameter variations and exhibit wide regime of bistability and
oscillations in the bifurcation diagram (Figs. 3 and 4). When
the modules are recomposed by binary positive feedback
loops the individual dynamics are mostly retained in apart
from other complex dynamics (Fig. 8). The complex
dynamics obtained are shown to be the result of varying
the strength of the binary positive feedback loop in the regu-
latory network. The role of this feedback loop is further
studied in detail by constructing one and two parameter
bifurcation diagrams. Codimension-2 bifurcation diagram
revealed TB and Cusp bifurcations (top left and right
panel of Fig. 6) and codimension-1 bifurcation diagram
revealed multistability and different types of limit cycle
oscillations (bottom left and right panels of Fig. 6). Two
specific examples are shown to illustrate the importance
of the binary positive feedback loops in the model that
has relevance in the functioning of the cell division cycle:
(i) it induces domino-like oscillations (Figs. 5 and 6) and
(ii) it brings in the notion of checkpoint mechanism (Figs.
7a and b). Most of the dynamics obtained are sensitive to
initial conditions and depending on the initial conditions
the system may settle down either to the oscillatory or to
the stable steady state (Fig. 7c). But the stable steady
states are not robust as indicated by the addition of small
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amount of noise that restores the system to its oscillatory
state (Fig. 7d). Period-doubling route to autonomous
chaos has also been observed and chaos coexists with
period-1 oscillations (Fig. 14). Period-1 oscillations are
found to dominate a very large parameter regime than that
of chaotic regime (bifurcation diagram not shown) and
therefore the model exhibits predominantly periodic oscil-
lations and not chaotic oscillations. Further, as the type of
chaos and its implication in the regulatory network of cell
division cycle is not clearly known, it is not pursued
further. To summarise the findings in the first part, the
role of positive and negative feedback loops, variation in
the Hill’s coefficent and the feedback mechanism that
brings about various types of oscillations are studied in
detail by constructing one and two parameter bifurcation
diagrams.

In the second part, it is shown that this simple model also
can clearly explain the functioning of the cell division cycle
of the budding yeast. The two most important characteristic
features that the protein network in the cell cycle exhibits
are the domino-like oscillations and the checkpoint mechan-
ism [40]. The present model exhibits both these features and
this is exploited to explain the functioning of budding yeast
cell cycle (Figs. 9 and 10). Checkpoint dynamics in the
model arise because of the sequential positive regulation
of the TFs, whereas the clock-like behaviour and domino-
like oscillations arise because of the sequential negative
regulation of the cyclins and their inhibitors. The binary
positive feedback loop that links the two ternary homo-
geneous feedback loops ensures that the dynamics of both
the feedback loops are maintained to explain the events that
govern the budding yeast cell cycle. However, the present
model cannot explain the occurrence of various phenotypes
because only the minimal dynamical variables that explains
the functioning of the wild-type dynamics are considered.

The complex cell cycle dynamics observed are the same
as the one observed by the Tyson and Novak’s group in
various versions of their model and the checkpoint mechan-
ism is also similar to the one observed by this group [41].
Their models are rigorous and powerful. Yet, the present
model differs from their various models in the way the top-
ology of the protein–protein interactions are constructed.
Also, the role played by the feedback loops in the normal
cell cycle and checkpoint dynamics is entirely different.
Though Chen’s elaborate models [19, 20], Battogtokh and
Tyson’s [42] simplified model and Csikasz-Nagy and
other’s [43] general model have considered TFs, the
sequential recruitment of the TFs that provide positive feed-
back loop are not considered their model. In the present
work it is shown clearly that the sequential recruitment of
the TFs contributes to bistability and plays a strong role
in the checkpoint mechanism. Cyclins and their inhibitors
though known to provide bistability is modelled here to
exclusively give rise to oscillatory behaviour. The complete
cell cycle is shown to be understood when recomposing
these two individual modules together by the binary positive
feedback loops. This also explains the occurrence of clock-
like behaviour and domino-like oscillations in the system.
This approach is entirely different from the various
models of Tyson’s group where, in all their models, only
the cyclins and their inhibitors plays a crucial role in gener-
ating both bistability and oscillations. However, in the
present model, the cyclins and their inhibitors that forms
homogeneous negative feedback loop module is abstracted
from Tyson and Novak’s [18] generic model. Therefore the
present model can be thought of as a subset of their simpli-
fied model, in which the new information, namely the
sequential activation of TFs, is incorporated in the present
IET Syst. Biol., Vol. 1, No. 6, November 2007



Fig. 14 Bifurcation diagram, time-series attractors for a constant vd2
and two different initial conditions

a Inverse period doubling route to chaos is shown for the parameters given in the Table 1. The region of the occurrence of chaos is small and the
initial conditions taken for simulating the bifurcation diagram are (3.36, 1.56, 1.36, 8.91, 2.14, 1.02) with a high relative (1 � 10210) and absolute
tolerances (1 � 10213). The other parameters that differs from the parameter set given in Table 1 are j2 ¼ 0.5, j3 ¼ 0.21, kc1

¼ kc2
¼ 0.2, kc3

¼ 0.6,
yd2

¼ 3 and n ¼ 2
b and d the time series while c and e the corresponding attractors. Birhythmiticity takes place between chaos and period-1 oscillations

Table 3: Table for one-to-one association with the dynamical variables of the present model
with various other species cell division cycle

Dynamical variable Budding yeast Fission yeast Xenopus Mammalian

T1 SBF þ MBF cdc10/Res1 XE2F E2F

T2 MCM1 – – MCM

T3 ACE2 þ SWI5 – – –

C1 Clb2,5 CDC13, Cig2 CycA/B CycA/B

C2 Cln1,2,3 Puc1 CycE/CycD CycE/D

C3 Sic1, Rum1, Ste9, Slp1 Xic1, Fzr, Fizzy P27Kip1, hCdh1, P55Cdc
IET Syst. Biol., Vol. 1, No. 6, November 2007 339



study. The present model is also considerably simpler and
all the cell cycle dynamics of the wild-type system are cap-
tured. We have also compared our model with other cell
cycle systems to identify the common dynamical variables
so that the model is made generic. This is similar to the
one made by Csikasz-Nagy and others [43] and is shown
in Table 3. Numerical simulations are not carried out at
present, as the present model is specific for budding yeast
cell cycle that has no G2 phase. Bifurcation analysis for
comparisons with other cell cycles that has clear G2 phase
is relegated to the future work.

Also, in future, a more detailed study of the functioning
of cell cycle will be taken up by adding few more
modules and in particular the modules of MEN and FEAR
network [44], to the existing feedback circuits. Efforts
will also be directed to distinguish the role of various feed-
back loops in the functioning of both wild and mutant types
of the different yeast cell cycle system.
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8 Appendix

8.1 Linear stability analysis

Linear stability analysis is carried out for (1)–(3) and
(4)–(6) separately to determine the nature of bifurcations
around the steady state. The steady states are determined
by simultaneously taking the rates of (1)–(3) and (4)–(6)
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to zero. The equations are linearised around the steady
states and the Jacobian is calculated. The nature of bifur-
cations around the steady state is determined by calculating
the eigenvalues of the Jacobian. All these calculations are
carried out using MATHEMATICAw [23, 1996]. All the
values are taken from the table except yd2

¼ 50 to determine
the steady states T1s, T2s, T3s for (1)–(3). There are three
steady states and they are (5.06, 32.57, 6.97), (1.03, 1.28,
0.86) and (1.90, 4.03, 2.89). To determine the stability of
these steady states, Jacobian is determined and is given by
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The eigen values for the steady state (5.06, 32.57, 6.97) is
20.92 + 0.14i and 20.65, for (1.03, 1.28, 0.86) it
is 20.97+ 0.23i and 20.55 and for (1.90, 4.03, 2.89)
it is 21.49 + 1.46i and 0.49. The system exhibits bistability
where two steady states are stable and one unstable as
determined from the eigen-values of the characteristic
equation.

The following are the linear stability analysis carried out
for (4)–(6). All the values are taken from the table except
y12 ¼ 15 to determine the steady states C1s, C2s, C3s for
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the equation (4)–(6). There is only one steady state and is
(16.66, 16.66, 16.66) and following are the Jacobian
around the steady state and the characteristic equations
used to determine the eigen-values of the Jacobian.
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The characteristic equation is
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The eigen values are 20.55 and 0.04 + 0.04i, where the
real part of the complex root is unstable and points to
unstable focus. This suggests that the HB is supercritical
in nature, where the unstable focus become stable limit
cycle. The supercritical HB is shown in Fig. 3.

For the same parameter set with Hills’ coefficient n ¼ 2,
the steady states C1s, C2s, C3s for (4)–(6) is (19.51, 19.51,
19.51). The eigen values are 20.41 and 20.03 + 0.03i,
where the real part of the complex root is negative and
points to stable focus. Thus, the limit cycle oscillations
are not possible for n ¼ 2.

Linear stability analysis cannot be performed for (7)–
(10) because of the high dimension of the system. So bifur-
cation analysis is directly carried out for these equations
using the software XPPAUT.
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