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1. Introduction

Biological regulatory networks are often mathematically modeled by means of graphs which represent
the interactions between biological entities such as macromolecules or genes. Current advances in molec-
ular biology provide us with fairly complete such maps of gene interactions for an increasing number
of species. Following the success of the genomic and post-genomic area, this kind of model becomes
essential for understanding and predicting cell behaviour in a bottom-up approach.

The regulatory network of a cell, as a whole, is composed of some tens of thousands of genes (e.g.
6000 genes in the yeast genome and between 30.000 and 40.000 genes in mammalian genomes). Unfor-
tunately, rigorous models revealing the precise causal functioning of a regulatory network are currently
limited to some tens of genes. The main reason for this limitation is that such models involve a large
number of parameters which must be indirectly deduced from the cell behaviour, since they are not di-
rectly measurable, leading to many experiments in order to indirectly find the parameter values. Such
very precise dynamic models are consequently focused on few genes selected because they cooperate to
realize a precise biological function.

Therefore, to predict biological behaviour (or phenotype) from the static knowledge of a regulatory
graph, there are two main scientific trends:

• studying regulatory networks in the large: probabilistic or statistical approaches can be used to
extract general predictions according to some characteristics of the interaction network [11, 16,
21]. Those characteristics can be simple local measurements such as the degree of each node or
global measurements such as the graph diameter. Qualitative or logical properties of such large
networks are less studied except for some works allowing to focus on some relevant complex
properties by simplifying some simple causal cascades [7].

• studying regulatory networks in detail: “concentration levels” are attached to each entity belonging
to the graph and the goal is to predict their possible evolution [43, 10, 8, 12]. Additional parameters
are then required in order to precisely deduce the possible trajectories in the space of possible
states. Those parameters define the nature of the considered interactions as well as their relative
strengths. This scientific trend is mostly used to analyze in detail the functioning of well identified
biological functions inside the cell [40, 23, 28, 22, 6, 44, 18, 32, 33, 20, 24, 1]. Lastly, Petri nets
are well studied in computer sciences since more than thirty years and there are also some hopes
to take benefits of this corpus: pioneering works in this area are for example proposed in [5, 14].

This article belongs resolutely to the second trend. Nevertheless, we believe that it is possible to
increase the number of considered genes via a decomposition of the graph into some kind of “modules.”
The modules should be studied independently and we should be able to deduce the global behaviour
from the knowledge of the individual behaviour of each module. The notion of module remains to be
defined in general and this article constitutes a first step towards this general definition.

We adopt here the formalism of René Thomas [38, 37, 41, 39, 36, 3]. It has the advantage to be a
logical modelling approach which can benefit from very powerful automated tools in computer science
such as model checking [9, 4]. This discrete modelling has been proved compatible with differential
modelling (ODE) [29, 30] and has won a following. Several theoretical results, which are deeply relevant
for biology, have been established over about thirty years (in particular, feedback circuits in the regulatory
graphs have been extensively studied [38, 30, 41, 35, 15, 29, 13, 39, 33, 12, 26, 2, 25, 27, 19, 31]).
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In continuation of this school, we establish a non trivial theorem about embeddings of biological
regulatory networks. Given a sub-network embedded into a larger one, we give a necessary and sufficient
condition to ensure that its “isolated behaviour” is not affected by the embedding. Therefore, our work
constitutes a step towards a modular approach , trying to split regulatory networks into smaller parts
which can be treated independently [34].
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Figure 1. Embedding of a biological regulatory network

More precisely, as illustrated in Figure 1, an embedded network N communicates with the rest of
a larger network L through two kinds of arrows: input arrows which go from a gene outside of N to a
gene of N (bold arrows) and output arrows which go from a gene of N to the outside (grey arrows).
We demonstrate that only the input arrows can influence the behaviour of N and we give a necessary
and sufficient condition to preserve the behaviour of N . This condition is expressed on the parameters
associated to each input arrow. The advantage of our result is that it establishes the equivalence between:

• a global behavioural property of the network

• and a limited collection of algebraic constraints on local parameters, which is easier to verify
mechanically.

Our result offers an effective verification of the behaviour preservation without checking all the pos-
sible states of the network and without enumerating all possible dynamics. This necessary and sufficient
condition only involves the static description of the network, which makes possible an algorithmic veri-
fication with reasonable CPU time.

2. Biological Regulatory Network (BRN): Static Description

The logical framework for Biological Regulatory Networks (BRN for short) of René Thomas [37] is
based on an abstract view of the interactions between objects of a biological system, mainly genes or
macromolecules. Models within this framework mainly describe the nature of the interactions (inhibi-
tion or activation) and their strength without explicitly considering the detailed underlying biochemical
reactions. They allow us to predict the dynamics of a BRN.
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Graph theory is very convenient to support this kind of description, because graphs capture the
“static” knowledge about the interactions. In the next section, we will see that graphs are also a use-
ful tool to represent possible dynamics of the biological system, deduced from the static description. In
the article, we will introduce the useful concepts on graphs on a “call-by-need” basis, under the title
“Graph terminology.”

Graph terminology: A directed graph G is a set V of vertices together with a set E of edges. An edge
(u, v) goes from a vertex u of V to another vertex v of V .
A directed graph is said to be labelled when each edge carries an information, called the label of the
edge. Labelled directed graphs can be drawn with a diagram as in Figure 2 where α, β and γ are the
labels. It is also possible to put labels on vertices if necessary.

x y

β

γ

α

Figure 2. An example of labelled graph

A predecessor of a vertex v in a graph G is a vertex u of G such that there is an edge from u to
v. The set of predecessors of v is denoted by G−1(v). In Figure 2, x and y are the predecessors of x:
G−1(x) = {x, y} and G−1(y) = {x}.

In the terminology of biological regulatory networks it is convenient to call “variables” the considered
biological objects. One variable can cover any useful concept such as gene, RNA, protein, as well as a
rough abstraction of those three facets of a gene, or a cluster of genes and so on. Such an abstraction is
considered adequate if it preserves the ability to associate an abstract “concentration level” or “expression
level” to a variable at any time.

If we represent variables as vertices of a directed graph then an edge (u, v) represents an action of u

on v: the expression level of v with respect to the expression level of u, after a sufficient delay for u to
act on v, is most of the time a sigmoid. let us moreover assume that u also acts on w as in Figure 3a, then
three intervals are relevant for the expression level of u (Figure 3b): in the interval called “0” u neither
acts on v nor on w, in the interval called “1” it acts on v only and finally in the interval called “2” it acts
on both variables.

In Figure 3b, the sigmoid of v being increasing, we say that u is an activator of v and, the sigmoid
of w being decreasing, we say that u is an inhibitor of w. Finally Figure 3c summarizes all these types
of information: u begins to activate v at the interval numbered 1 and u begins to inhibit w at the interval
numbered 2. This is formally expressed on the graph as: the threshold of (u, v) is “1” with the sign “+”
and the threshold of (u,w) is “2” with the sign “−”.

This idea to make a partition of the set of possible expression levels into several consecutive intervals
allows us to consider a finite set of discrete expression levels. Considered expression levels for a variable
u will therefore be integer values 0, 1, 2, . . . up to a given boundary bu. This constitutes a valuable
discrete partitioning of a continuous global interval.

Predicting the dynamics of the expression level of the variables is of course a major issue. In the
framework of René Thomas, a variable v tends towards an expression level which depends only on the



G. Bernot, F. Tahi / Embedding of Biological Regulatory Networks 5

(b)(a) (c)

0

1

−
2

+

1 2

v

w

w v

w
u

v

u u

Figure 3. Interactions of variables and expression levels

expression level of its activators and inhibitors. More precisely, it only depends on the set ω of its
“resources.” In the following definition, the expression level towards which v tends is denoted by Kv, ω .

Definition (Biological Regulatory Networks): A biological regulatory network (BRN for short) is a
triple N = (V,E,K) where:

• N = (V,E) is a labelled directed graph.

• Each vertex v of V is called a variable of the BRN, and is provided with a strictly positive integer
bv ∈ IN∗, called the boundary of v.

• Each edge (u, v) of E is labelled by a couple (t, ε) where t, called threshold, is an integer between
1 and bu and ε, called sign, belongs to {+,−}. When ε = +, u is called an inducer of v. When
ε = −, u is called an inhibitor of v.

• K = { Kv, ω | v ∈ V and ω ⊂ N−1(v) } is a family of integers such that 0 ≤ Kv, ω ≤ bv for any
variable v and for any subset ω of the predecessors of v in N . The family K is called the set of
parameters of N .

In the literature [29, 30], it is often additionally required that if ω1 ⊂ ω2 then Kv, ω1 ≤ Kv, ω2 . This
restriction means that the more resources a variable owns, the more its expression level tends to grow. In
this article, all our results remain valid with or without this restriction.

In the following, when several BRNs are considered, we note V N the set of variables of a BRN N ,
V P the set of variables of a BRN P , etc. and similar notations apply for E and K . The exponent is
omitted when the considered BRN is obvious from the context.

3. Dynamics of BRNs

It is generally impossible for a human to predict the behaviour of a biological system by looking at
its static description alone. One of the main advantages of the René Thomas’ approach is to offer a
qualitative representation of the system dynamics which is predictable using a computer. This section
gives the corresponding formal definitions. See [4] for a more detailed presentation.
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3.1. States and Resources of a Variable

According to our BRN framework, the state of a system is characterized by the expression level of each
variable. Thus, a state can be defined as a map which associates with each variable its current expression
level.

Definition (States of a BRN): Given a BRN N , a state of N is a mapping µ : V → IN such that for
any variable v ∈ V , we have 0 ≤ µ(v) ≤ bv . The integer µ(v) is then called the expression level of v.

So far, at a given time, each variable v has a given expression level. The evolution of this expression
level is driven by the current state of the inducers and inhibitors of v. Figure 4 shows that:

• an inducer of v is an actual resource of v only when it passes its threshold

• an inhibitor plays a symmetric role; it is a resource only when it does not pass its threshold.

vv

u1 u2

u1 is not a
resource of v

u2 is a
resource of v

u1 is a
resource of v

u2 is not a
resource of v

Figure 4. Induction (resp. inhibition) of v by u1 (resp. u2)

Definition (Resources of a Variable): Given a state µ and a variable v of a BRN N , the set of resources
of v is the set ωv(µ) containing all the variables u of N such that:

• u is a predecessor of v in the underlying directed graph of N

• the edge (u, v) is labelled by (t, ε) and

i) if ε is the sign “+” then µ(u) ≥ t

ii) if ε is the sign “−” then µ(u) < t

The set of variables ωv(µ) is consequently the subset of N−1(v) containing both the inducers of v whose
expression level has reached the threshold and the inhibitors of v whose expression level has not reached
the threshold.

3.2. State Graph

The dynamics of a BRN is defined by a graph that defines which states can be reached from any given
state.

If a variable v has an expression level µ(v) at a given time, then this expression level is attracted
towards Kv, ωv(µ). Let us assume for instance that Kv, ωv(µ) = µ(v) + n with n > 1. The variations of
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concentration levels being continuous in vivo, the expression level µ(v) cannot directly jump to Kv, ωv(µ).
It takes the neighbor value µ(v) + 1, as defined below:

Definition (κ functions): Given a state µ and a variable v of a BRN N , κv(µ) is defined as follows:

• if µ(v) < Kv, ωv(µ) then κv(µ) = µ(v) + 1

• if µ(v) = Kv, ωv(µ) then κv(µ) = µ(v)

• if µ(v) > Kv, ωv(µ) then κv(µ) = µ(v)− 1

The function κ represents a “first step” evolution of the expression level of v from its current expression
level µ(v) to its “target level1” Kv, ωv(µ).

Kinetics in vivo make highly improbable that two variables go through their threshold exactly at
the same time. Therefore, variables vary asynchronously, which leads to a state graph where only one
variable evolves at a time.

Definition (“Asynchronous” State Graph): The state graph of a BRN N is the directed graph S whose
vertices are all the possible states of N and such that there is an edge from a state µ to a state µ ′ iff
there exists a variable v verifying:

• µ′(v) = κv(µ) 6= µ(v)

• for any variable v′ 6= v we have µ′(v′) = µ(v′)

An edge of the state graph from µ to µ′ is usually denoted as (µ→ µ′) and is called a transition.

Figure 5 shows the underlying labelled graph of a BRN, the table of target levels according to an
arbitrarily fixed set of parameters, and the corresponding state graph. Let us consider for instance the
state “1 0” (i.e. µ(x) = 1 and µ(y) = 0). The arrow x → x being labelled by (1,+) in Figure 5, x

is a resource of itself and the arrow y → x being labelled by (1,+), y is not a resource of x. Thus, x

is attracted towards Kx, x. Similarly, the arrow x → y being labelled by (2,+), x is not a resource of
y and the arrow y → y being labelled by (2,−), y is a resource of itself (because it does not pass its
threshold). Thus, y is attracted towards Ky, y . So, the state “1 0” is attracted towards the target state
“2 2” (as Kx, x = 2 and Ky, y = 2), which tends to increase the expression levels of x and y. Only one
variable evolves at a time by one unit, thus two transitions start from the state “1 0” in the state graph:
(“1 0”→“2 0”) and (“1 0”→“1 1”).

Graph terminology: A path of length n from a vertex x0 to a vertex xn in a directed graph is a sequence
of edges of the form (x0, x1) (x1, x2) (x2, x3) · · · (xn−1, xn). If x0 = xn then the path is called a circuit.

For example, (x, y) (y, x) is a circuit in the graph of Figure 5.

Remark: The condition κv(µ) 6= µ(v) for asynchronous state graphs in the previous definition removes
elementary circuits of the state graph where a state points to itself. Indeed, many approaches in the
literature would add an elementary circuit on the state “2 2” in the state graph of Figure 5. In the
literature, such cases allow the user to identify stable (regular) steady states. According to our definition,
these states are identified as the ones with no outgoing transition.

1The target level Kv, ωv(µ) is also called image in the literature or sometimes “(local) attractor” or “focal point”
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Figure 5. Example of a BRN and its state graph

According to the regulatory network approach, the behaviour of a cell is observed through variations
of the quantities of diverse macromolecules produced in the cell. This is expressed in René Thomas’s
approach by variations of the expression levels belonging to the state graphs. Each path in the state graph
represents a possible evolution of the biological system. Notice that two BRNs have the same behaviour if
and only if they have the same set of paths, i.e. the same state graphs. Therefore, studying the behaviour
of BRNs amounts to studying their state graphs.

4. Embeddings of BRNs

Studying the behaviour of the whole regulatory network of a cell would generate a combinatorial explo-
sion which is entirely outside current know how. Biological knowledge begins to provide us with some
fairly complete static description of gene interactions in some species (Yeast, E.coli, . . . ). However, there
is a huge gap between the static knowledge of a regulatory graph and the knowledge of the corresponding
regulatory network dynamics.

In practice, we are consequently restricted to the study of smaller regulatory networks, focusing on
sets of genes participating in targeted biological functions. These networks are therefore sub-networks
of the whole cell regulatory network and hopefully, the studied behaviour of each of them will not be
affected by its relationships with the whole network. In this article, our goal is precisely to offer rigorous
conditions to reach this hope.
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4.1. Partial BRN

According to this aim, an obvious preliminary condition is to consider all interactions inside each con-
sidered sub-network. The definition of partial BRN below reflects this preliminary condition.

Graph terminology: Given a directed graph G, a subgraph of G is a graph G′ whose set of vertices is
included in the set of vertices of G and whose set of edges is included in the set of edges of G. If G ′

contains all the edges of G which connect vertices of G′ (i.e. for all vertices u and v of G′, the edge
(u, v) belongs to G′ iff it belongs to G), then G′ is called a partial graph of G.

Definition (Partial BRN): A BRN P is a partial BRN of a BRN L iff:

• the underlying directed graph of P is a partial graph of the underlying directed graph of L

• any edge of P has the same label in L

• for any variable v of P and for any subset ω of the predecessors of v in P , we have KPv, ω = KLv, ω

Notice that in this definition, all the parameters of L of the form KLv, ω such that v or any variable
of ω does not belong to P are ignored. Mainly, the object of the reminder of this article is to study the
effect of these ignored “external variables” on the behaviour of P .

4.2. Level Folding

Let us consider the example of Figure 6. The graph of Figure 5 is not directly a partial graph of Figure 6
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1
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Parameters:
Kx=0, Kx, x=4, Kx, y=2, Kx, u=0, Kx, xy=4, Kx, xu=4, Kx, yu=4, Kx, xyu=3,
Ky=0, Ky, x=3, Ky, y=3, Ky, xy=3,
Ku=0, Ku, y=2,
Kv=0, Kv, x=0, Kv, u=0, Kv, w=0, Kv, xu=1, Kv, xw=1, Kv, uw=1, Kv, xuw=1,
Kw=0, Kw, x=1

Figure 6. A BRN which embeds the BRN of Figure 5

because the thresholds of edges (x, y), (y, x) and (y, y) differ. Nevertheless, assuming that we remove
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all the edges starting from x or y to u, v or w, the threshold of the edge (x, y) becomes the second
threshold among the ones of edges starting from x. Similarly, the threshold of (y, x) becomes the first
threshold starting from y and the threshold of (y, y) becomes the second one. Consequently, when u, v

and w are removed from Figure 6, it is sensible to consider that we retrieve Figure 5. In other words, the
graph of Figure 5 is not directly a partial graph of Figure 6 but is in fact embedded in the graph of Figure
6.

This example reveals the usefulness of a folding function in order to keep the thresholds consecutive
in the graph.

Definition (Level Folding): Let N be any BRN and let u ∈ V be a variable of N . The set of the
threshold values of the outgoing edges of u can be sorted in strictly increasing order. Let t0, t1, · · · , td
be the strictly increasing sequence such that t0 = 0, td = bu (boundary of u) and the intermediate ti are
the sorted threshold values.
Given an expression level l ∈ [0, bu] of u, there exists a unique i such that ti ≤ l < ti+1 (or i = d if
l = bu). We define the folding function ρu : [0, bu]→ [0, d] by ρu(l) = i.

For example, if the underlying directed graph of N is the one of Figure 7 then ρx(0) = 0, ρx(1) =
ρx(2) = ρx(3) = 1, ρx(4) = 2, ρy(0) = ρy(1) = 0, ρy(2) = 1 and ρy(3) = 2.

1
+ x y

3
–

4 +

+2

Parameters:
Kx=0, Kx, x=4, Kx, y=2, Kx, xy=4,
Ky=0, Ky, x=3, Ky, y=3, Ky, xy=3

Figure 7. Example of a non canonical BRN

4.3. Embeddings of BRNs

Given a BRN, it is always possible to use the folding function in order to minimize its thresholds and
parameters. The resulting BRN takes a form which can be considered as canonical.

Definition (Canonical Form): For any BRN P , the BRN N obtained by replacing:

• the boundary bv of each variable v by ρv(bv)

• each threshold s of any edge (u, v) by ρu(s)

• each parameter Kv, ω by ρv(Kv, ω)

is called the canonical form of P . The function which associates to a BRN its canonical form is obviously
idempotent. A BRN which is equal to its canonical form is said to be canonical.
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According to this definition, Figure 5 defines a canonical BRN which is the canonical form of the
BRN of Figure 7.

Definition (Embedding of BRNs): Let N and L be two BRNs. We say that N is embedded in L iff
there exists a partial BRN P of L whose canonical form is equal to the canonical form of N .

Remark: This implies that the variables of N belong to L (V N ⊂ V L). Moreover, N being given, P
is unique if it exists (since V P = V N ).

For example, the BRN defined in Figure 5 is embedded in the BRN of Figure 6 because the BRN of
Figure 7 is a partial BRN of the one of Figure 6 whose canonical form is equal to the BRN of Figure 5
(which is already canonical).

4.4. Preservation of Behaviour

When a BRN N is embedded in a BRN L, the preservation of the behaviour of N means intuitively that
each variable of L which does not belong to N cannot modify the behaviour of N . In other words,
whatever the expression level of those variables is, it is unable to modify “noticeably” the expression
level of the variables of N . A transition in L is “noticeable” only if it induces a state modification in the
folded version of the set of states of N .

Definition (State Folding): Let P be any BRN and let µ : V P → IN be a state of P . The folded state
ρ(µ) is the state µ′ : V P → IN defined by µ′(u) = ρu(µ(u)) for any variable u of P .

In order to consider all possible expression levels of a variable without modifying the state of the
other variables, we technically need the notion of state assignment.

Notation (State Assignment): Let µ be a state of a BRN L, let u be a variable of L and let l be an
integer such that 0 ≤ l ≤ bu. We note µ[u←l] the state µ′ such that µ′(u) = l and µ′(u′) = µ(u′) for all
variables u′ 6= u. We say that [u ← l] is a state assignment.

Finally, we can define the preservation of behaviour as follows:

Definition (Preservation of Behaviour): An embedding of a BRN N into a BRN L preserves the
behaviour of N iff for any transition (µ → µ′) of SL such that ρ(µ|N ) 6= ρ(µ′|N ) and for any state

assignment [u ← l] such that u does not belong to N , the transition (µ[u←l] → µ′[u←l]) also belongs
to SL.

Remark: The condition ρ(µ|N ) 6= ρ(µ′|N ) allows us to ignore the states of N which point to themselves
as in Remark of Section 3.2 above.

Let us consider for example the embedding of the BRN of Figure 5 into the BRN of Figure 6. Figure 6
contains five variables which make it difficult to draw its whole state graph. Fortunately, the variables v

and w are resources neither of x nor of y. Consequently, only the different values of the variable u have
to be considered to detect the transitions of the form (ρ(µ|{x,y}

) → ρ(µ′|{x,y}
)) such that ρ(µ|{x,y}

) 6=

ρ(µ′|{x,y}
). Figure 8 gives the state graph of the BRN of Figure 6 restricted to {x, y} according to these

remarks. Consider, for example, the transition from (x = 3, y = 3) to (x = 4, y = 3) when u = 0 or
u = 1. If we assign [u ← 2], this transition disappears. Consequently, the embedding of variables x and
y (i.e. Figure 5) into the BRN of Figure 6 does not preserve behaviour, as ρx(3) = 1 6= ρx(4) = 2. This
is indeed the case for the four bold transitions of Figure 8.
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Figure 8. The state graph of the BRN of Figure 6 restricted to {x, y}

5. Main Results

In this section, we prove the main theorem of this article. It establishes that the preservation of behaviour
defined above is equivalent to a considerably smaller set of conditions, limited to the parameters of some
“frontier” variables of N . State folding plays an important role and we first prove (Section 5.1) that it
makes sense to fold an entire state graph; then we prove (Section 5.2) that canonical forms “commute”
with state graph foldings. Lastly, Sections 5.3 and 5.4 give and prove the main theorem.

5.1. State Graph Folding

State folding defined in the previous section preserves the resources of each variable, as shown below.

Proposition: Let v be a variable of a BRN P , let µ be a state of P and let C be the canonical form of
P . The set of resources of v in P w.r.t. µ is equal to the set of resources of v in C w.r.t. ρ(µ).
Formally: ωPv (µ) = ωCv (ρ(µ)) .

Proof:
Let u be any variable of P−1(v) and let t be the threshold of (u → v). As t is a threshold, ρv is defined
in such a way that for any expression level l of u we have: ρv(l) ≥ ρv(t)⇔ l ≥ t. Applied to l = µ(u),
since ρu(µ(u)) = (ρ(µ))(u), it comes (ρ(µ))(u) ≥ ρ(t) ⇔ µ(u) ≥ t. By contraposition, it comes
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(ρ(µ))(u) < ρ(t) ⇔ µ(u) < t. Thus, by definition of C, u is a resource of v in P w.r.t. µ iff it is a
resource of v in C w.r.t. ρ(µ). ut

This proposition makes it reasonable to introduce the following definition of folded state graphs.

Definition (State Graph Folding): Let N be a BRN embedded in a BRN L. The folded state graph of
the embedding, by notation abuse ρN (SL), is defined by:

• the nodes of ρN (SL) are all the possible states of the canonical form of N

• the edges of ρN (SL) are the transitions of the form (ρ(µ|N ) → ρ(µ′|N )) such that (µ → µ′) is a

transition of SL and such that ρ(µ|N ) 6= ρ(µ′|N ), where “µ|N ” stands for the restriction of µ to

V N (remind that V N ⊂ V L).

Let us again consider the embedding of the BRN of Figure 5 into the BRN of Figure 6. Figure 9
gives the folded state graph of the embedding according to previous definition. In the state graph at the
left of Figure 9, the singular values (threshold) drawn with bold lines are the values where ρ(x) or ρ(y)
changes. The folded graph at the right of Figure 9 is obtained by keeping only the transitions which cross
the bold lines. All the other transitions are ignored.

folding
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3 4
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Figure 9. Construction of the folded state graph resulting from the state graphs obtained in Figure 8

5.2. Preservation of state graph

Let N be a BRN embedded in a BRN L. Let P be the partial graph of L corresponding to the embedding
of N . Since the behaviour of N is reflected by its state graph, the preservation of its behaviour should
imply that the state graph SN of N is equal to the state graph SP of P . However, two questions must
be addressed before proving such a theorem:

• The expression levels of P are not comparable with the ones of N due to the folding stuff seen
before. Consequently, we have to compare the folded versions of SN and SP .
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• When considering N or P individually, there are two ways to get a folded view of their behaviour:
either one could consider the folded state graphs of N and P or one could consider the state
graphs of their canonical forms. So, should we compare the folded state graphs of N and P or
should we compare the state graphs of their canonical forms?

The following theorem solves both of these questions, because it has a corollary which establishes
that the folded state graph of a BRN is equal to the state graph of its canonical form (which solves the
second question according to the previous definition), and it proves that if an embedding preserves the
behaviour then the folded state graphs are equal.

Theorem (Preservation of State Graph): If the embedding of the BRN N into the BRN L preserves
the behaviour of N then the folded state graph ρN (SL) is equal to the state graph SC of the canonical
form C of N .

Proof:
Let P be the partial BRN of L whose canonical form is C.
SC ⊂ ρN (SL): Let (ν → ν ′) be any transition of SC . Let us prove that there exists a transition (µ→ µ′)

of SL such that ρ(µ|N ) = ν and ρ(µ′|N ) = ν ′. This means that ρ(µ|C ) = ν and ρ(µ′|C ) = ν ′ because C
and N have the same set of variables.
Let v be the variable of C such that ν ′(v) = κCv (ν) = ν(v) + δ (with δ = ±1). Since ρv is surjective and
monotonic, there exists a level of expression lv of v in L such that ρv(lv) = ν(v) and ρv(lv + δ) = ν ′(v).
For the same reason, there exists a state η of P such that η(v) = lv and ρ(η) = ν. Now let us consider the
variables of L−1(v) which do not belong to P : it is always possible to assign them expression levels such
that they are not resources of v in L. Let us also choose arbitrary expression levels for the other variables
of L which do not belong to P: this defines a state µ of L. By construction, ωLv (µ) = ωPv (η) = ωCv (ν)
and ρ(µ|C ) = ν and ρ(µ[v←lv+δ]

|C ) = ν ′. Consequently, it is sufficient to prove that (µ→ µ[v←lv+δ]) is
a transition of SL.
This amounts to the demonstration that κLv (µ) = lv + δ. When δ = 1, it means that KL

v, ωLv (µ)
>

lv and since ρv is an increasing function, ρv(K
L
v, ωLv (µ)

) > ρv(lv) is a sufficient condition. We have

ρv(K
L
v, ωLv (µ)

) = ρv(K
P
v, ωPv (η)

) = KC
v, ωCv (ν)

as C is the canonical form of P and we have ρv(lv) = ν(v).

So, the sufficient condition becomes KC
v, ωCv (ν)

> ν(v) which precisely means that (ν → ν ′) is a transition

of SC . A similar reasoning applies if δ = −1 and this ends this part of the proof.
ρ(SL) ⊂ SC : Let (µ → µ′) be any transition of SL such that ρ(µ|N ) 6= ρ(µ′|N ) (i.e. ρ(µ|C ) 6= ρ(µ′|C )).

We will firstly prove that there exists a transition (η → η′) of SP such that ρ(µ|C ) = ρ(η) and ρ(µ′|C ) =

ρ(η′), and we will secondly prove that (ρ(η)→ ρ(η ′)) belongs to SC .
Let v be the unique variable such that µ′(v) = κLv (µ) 6= µ(v). It necessarily belongs to C as ρ(µ|C ) 6=

ρ(µ′|C ). Let us make an induction on the number n of variables in ωLv (µ) which do not belong to C. If

n = 0 then ωLv (µ) = ωPv (µ|C ) and we can choose η = µ|C and η′ = µ′|C because KL
v, ωLv (µ)

= KP
v, ωLv (µ)

,

thus κLv (µ) = κPv (η). If n > 0, then let us consider u, one of these variables, and let us choose lu, an
expression level of u such that u is not a resource of v. Since the embedding preserves the behaviour,
(µ[u←lu] → µ′[u←lu]) also belongs to SL, it has n− 1 variables in ωLv (µ) which do not belong to C, and
ρ(µ|C ) = ρ(µ[u←lu]) and ρ(µ′|C ) = ρ(µ′[u←lu]). This ends the first facet of the proof.

Let (η → η′) be any transition of SP such that ρ(η) 6= ρ(η′). Let v be the variable such that η′(v) =
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κPv (η) = η(v) + δ with δ = ±1. Let us assume that δ = 1. Consequently, KP
v, ωPv (η)

> η(v) and since

ρv(η
′(v)) = ρv(η(v) + 1) 6= ρv(η(v)) and since ρv is an increasing function, we get ρv(K

P
v, ωPv (η)

) >

ρv(η(v)). We know that ρv(K
P
v, ωPv (η)

) = KC
v, ωCv (ρ(η))

because C is the canonical form of P . Thus, by

construction of ρv , we have κCv (ρv(η(v))) = ρv(η(v)) + 1 = ρv(η(v) + 1) = ρv(η
′(v)). Consequently,

(ρ(η) → ρ(η′)) is a transition of SC . When δ = −1, we follow a similar proof (replacing “>” by “<”),
which ends the proof of the theorem. ut
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State graph of Figure 8 with Kx, xyu = 4 instead of 3.

Figure 10. Modified state graph of the BRN of Figure 6 restricted to {x, y}

To illustrate the previous theorem, let us come back to the example of Figure 6 and let us modify only
one parameter with Kx, xyu = 4 instead of 3. This defines another embedding of the BRN of Figure 5.
Figure 10 gives the corresponding state graph (still restricted to variables x and y). This new embedding
preserves the behaviour of the BRN of Figure 5 because the state graph restricted to x and y does not
change, whatever the values of u, v and w are. The folded state graph is then constructed in Figure 11
and we see that, as established by our theorem, it is equal to the state graph of Figure 5.

Corollary: The canonical form C of a BRN N preserves the behaviour of N and consequently, the
state graph of C is equal to the folded state graph of N .

Proof:
There is no variable u of N which does not belong to C. Consequently, the embedding of C into N
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Figure 11. Folding of the modified state graph obtained in Figure 10

preserves the behaviour of C and the previous theorem establishes that the folded state graph ρN (SN ) is
equal to the state graph SC of C. ut

5.3. Local Dynamics

Preservation of behaviour as defined in section 4.4 is based on an exhaustive knowledge of the state graph
of the global BRN. We have shown that this definition reflects our intuition of behaviour preservation.
However, this definition is difficult to directly check in practice, because it involves a large number of
transitions in the complete state graph (e.g. as in Figure 10 for only two variables). In order to more
easily check whether an embedding preserves the behaviour, we need to establish local criteria which
can be checked on a limited number of edges of the underlying BRN without constructing the whole state
graph. The definition of local dynamics preservation below does not refer to state graphs. It only relies
on edges and parameters of the global BRN. It requires two intermediate notions: ω-compatibility and
the signum function.

Definition (ω-compatibility): Let L be a BRN, let v be a variable of L and let ω a subset of L−1(v).
An expression level lv of v is said to be compatible with ω iff the following condition is satisfied:

if v ∈ L−1(v), let t be the threshold of the edge (v, v), then v ∈ ω iff lv ≥ t.
In other words, v belongs to ω iff lv actually makes v a resource of itself.

Terminology: The signum function is the function sign which associate −1 to any strictly negative
number, 0 to 0 and 1 otherwise.

Definition (Preservation of the Local Dynamics): Let N be a BRN embedded into a BRN L and let v

be a variable of N . An edge (u, v) of L preserves the local dynamics of v iff for any subset ω of L−1(v)
which does not contain u, and for any expression level lv of v compatible with ω, we have:

sign( ρv(K
L
v, ω∪{u}) − ρv(lv) ) = sign( ρv(K

L
v, ω) − ρv(lv) )

Intuitively, the previous formula can be explained as follows:



G. Bernot, F. Tahi / Embedding of Biological Regulatory Networks 17

• If at a given time the variable v has a certain expression level lv and v has a certain set of resources
ω, then we know that the expression level of v will increase (resp. decrease) iff KLv, ω is greater
than (resp. less than) lv .

• The variable u thus has no impact on the behaviour of v iff KL
v, ω∪{u} is also greater than (resp.

less than) lv . It can be expressed as: (KL
v, ω∪{u} − lv) has the same sign than (KLv, ω − lv).

• Lastly, one should not forget the folding function ρv , because we only look at the behaviour of the
embedded BRN.

The preservation of local dynamics as defined in this section seems intuitively far less restrictive than
the preservation of behaviour of Section 4.4, especially if it is checked only on a small subset of the edges
of L. The goal of Section 5.4 is to prove that the preservation of local dynamics, when checked on a well
chosen subset of edges of L, is in fact equivalent to the preservation of behaviour. From an algorithmic
point of view, this result is decisive to make practicable the verification of behaviour preservation.

5.4. The Main Theorem

When N is embedded into L the influence of L on the behaviour of N necessarily goes through the
edges of L entering into N . The set of these edges is called the “input frontier.”

Definition (Input Frontier): Let N be a BRN embedded into a BRN L. The input frontier of N in L
is the set of edges (u, v) of L such that u 6∈ N and v ∈ N .

For example, the input frontier of the embedding of Figure 6 is reduced to the edge (u, x). Notice
that the outgoing edges (going from x or y to u, v or w) are not in the input frontier. Indeed, outgoing
edges have no influence on N .

The following theorem shows that it is sufficient to check the local dynamics on the input frontier.

Theorem (Main Result): Let N be a BRN embedded into a BRN L. A necessary and sufficient con-
dition to preserve the behaviour of N in L is that all edges of the input frontier preserve the local
dynamics.

Proof:
Necessary condition: Let us assume that (u→ v) in the input frontier does not preserve the local dynam-
ics of v for a given set of resources ω in L. The values (ρv(K

L
v, ω∪{u})−ρv(lv)) and (ρv(K

L
v, ω)−ρv(lv))

do not share the same sign (more precisely, they are not both positive, or both negative, or both null).
Since ρv is monotonic, (KL

v, ω∪{u}− lv) and (KLv, ω− lv) do not share the same sign. Let µ be a state such

that ωLv (µ) = ω and let lu be an expression level of u such that u becomes a resource of v (µ and lu exist).
We necessarily have κLv (µ) 6= κLv (µ[u←lu]). Let us assume for example that κLv (µ) 6= 0 (a symmetric
reasoning applies if κLv (µ[u←lu]) 6= 0). Then the transition (µ → µ′), where µ′ = µ[v←κLv (µ)], belongs
to SL while (µ[u←lu] → µ′[u←lu]) does not. Thus, the embedding does not preserve the behaviour of N
in L.
Sufficient condition: Let (µ → µ′) ∈ SL such that ρ(µ|N ) 6= ρ(µ′|N ) and let [u ← l] be a state
assignment such that u 6∈ N . Let v be the variable such that µ(v) 6= µ′(v) : it belongs to N be-
cause ρ(µ|N ) 6= ρ(µ′|N ). It is sufficient to prove that κLv (µ) = κLv (µ[u←l]), because it implies that

(µ[u←l]→ µ′[u←l]) also belongs to SL.
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If ωLv (µ) = ωLv (µ[u←l]) then obviously κLv (µ) = κLv (µ[u←l]).
If ωLv (µ) 6= ωLv (µ[u←l]) then u belongs to L−1(v) and (u → v) belongs consequently to the input fron-
tier. We know that ρv(κ

L
v (µ)) − ρv(µ(v)) 6= 0 because ρ(µ|N ) 6= ρ(µ′|N ). Thus, by definition of κ, and

ρv being an increasing function, ρv(K
L
v, ωLv (µ)

) − ρv(µ(v)) 6= 0. The preservation of the local dynam-

ics implies that it has the same sign as ρv(K
L
v, ωLv (µ[u←l])

) − ρv(µ(v)). Finally, ρv being an increasing

function, KL
v, ωLv (µ)

− µ(v) and KL
v, ωLv (µ[u←l])

− µ(v) have the same sign and are different from 0. This

implies that κLv (µ) = κLv (µ[u←l]), which ends the proof. ut

Example: Let us consider the embedding of Figure 6. The edge (u→ x) constitutes the input frontier.

• Let us assume for example that lx = 3. We have Kx, xy=4 and Kx, xyu=3 as well as ρx(1) =
ρx(2) = ρx(3) = 1 and ρx(4) = 2. Thus, ρx(Kx, xy)− ρx(lx) = 1 and ρx(Kx, xyu)− ρx(lx) = 0.
So, local dynamics is not preserved.

• Looking at Figure 8, one can see why the behaviour is not preserved: the bold arrows of the state
graph differ if u = 2 (i.e. u is a resource of x) or not.

• As a consequence, when comparing the state graph of Figure 5 with the state graph of Figure 9,
one can see that the bold arrows added by the case u = 2 in Figure 8 have been added in Figure 9.
Thus, the global behaviour is not preserved.

Notice that because Kx, y=2 and Kx, yu=4, if lx is equal to 1, 2 or 3 then ρx(Kx, y) − ρx(lx) = 0 and
ρx(Kx, yu) − ρx(lx) = 1. Nevertheless, the local dynamics is preserved because when lx ≥ 1, x is
a resource of itself. Consequently, only the case where lx = 0 has to be considered and then both
expressions have the same sign.

Let us consider now the same embedding except that Kx, xyu=4 instead of 3.

• Then the local dynamics is preserved because for any possible value of lx and compatible ω,
ρx(Kx, ω∪{u}) − ρx(lx) has the same sign than ρx(Kx, ω) − ρx(lx) (and remind that (u, x) is the
only edge of the input frontier).

• According to the state graph side, we see on Figure 10 that even when u = 2, the reverse bold
arrows of Figure 8 do not occur.

• As a consequence, the state graph of Figure 11 is identical to the one of Figure 5.

6. Sufficient conditions to find behaviour preserving subnetworks

Let us assume that we want to verify whether the embedding of a subnetwork N of L preserves its
behaviour. The main advantage of the previous theorem is to avoid building the state graphs and more
importantly, to avoid checking the impact of all possible state assignments of the variables which do not
belong to N . It is sufficient to refer to a small number of static parameters of the BRN L (in the previous
example only one edge has to be considered, instead of a state graph of dimension 5).

Since embeddings which preserve behaviour identify sub-regulatory networks whose dynamics can-
not be influenced by the rest of the global BRN, those subnetworks are biologically interesting. Indeed,
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they “pilot” the whole behaviour of the global BRN since they can influence it via their “output frontier”
whilst they are not influenced via their input frontier.

According to this point of view, one of the advantages of the modelling activity could be to automat-
ically find those “pilot” subnetworks. Notice that this question is algorithmically far more difficult than
verifying a posteriori that an embedding preserves the behaviour of a given subnetwork. Checking all
the edges for all possible input frontiers induces a combinatorial explosion.

Nevertheless, our main theorem provides us with a simple sufficient condition. This condition can
easily be verified by classical algorithms on graphs.

Corollary: If P is a partial BRN of L whose input frontier is empty then the embedding of P into L
preserves the behaviour of P .

Proof:
Obvious from the main theorem. ut

In practice, this sufficient condition already identifies a certain number of interesting pilot subnetworks.
In the general case, it is indeed not necessary to compute all the algebraic expressions involved in the

definition of the preservation of local dynamics (where one algebraic expression per possible expression
level lv of the variable v is required). Provided that the variable v has no direct influence on itself, one
can take benefit of the following result:

Proposition: Let N be a BRN embedded into a BRN L and let (u, v) be an edge of the input frontier
such that v has no direct influence on itself (i.e. (v, v) 6∈ EN ). Then (u, v) preserves the local dynamics
of v if and only if: for any subset ω of L−1(v) which does not contain u, ρv(K

L
v, ω∪{u}) = ρv(K

L
v, ω).

Proof:
If ρv(K

L
v, ω∪{u}) = ρv(K

L
v, ω) then the preservation of the local dynamics is obvious. Conversely, if for

any expression level lv compatible with ω we have sign(ρv(K
L
v, ω∪{u})− ρv(lv)) = sign(ρv(K

L
v, ω)−

ρv(lv)), then, provided that v 6∈ L−1(v), it is always possible to choose lv = KLv, ω , which proves that
ρv(K

L
v, ω∪{u}) = ρv(K

L
v, ω). ut

This proposition avoids generating all possible expression levels of the variable v. It is sufficient to
test the equality of the folded values of some parameters of the BRN. When the variable v has a direct
influence on itself, it is less simple but a similar result holds:

Proposition: Let N be a BRN embedded into a BRN L and let (u, v) be an edge of the input frontier
such that v has a direct influence on itself (i.e. (v, v) ∈ EN ) with a threshold s and a sign ε. Then (u, v)
preserves the local dynamics of v if and only if for any subset ω of L−1(v) which does not contain u nor
v, the four following conditions are satisfied:

1.

{

max(KL
v, ω∪{u,v},K

L
v, ω∪{v}) ≥ s

and ε = “ + ”

}

=⇒ ρv(K
L
v, ω∪{u,v}) = ρv(K

L
v, ω∪{v})

2.

{

min(KL
v, ω∪{u,v},K

L
v, ω∪{v}) < s

and ε = “− ”

}

=⇒ ρv(K
L
v, ω∪{u,v}) = ρv(K

L
v, ω∪{v})
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3.

{

min(KL
v, ω∪{u},K

L
v, ω) < s

and ε = “ + ”

}

=⇒ ρv(K
L
v, ω∪{u}) = ρv(K

L
v, ω)

4.

{

max(KL
v, ω∪{u},K

L
v, ω) ≥ s

and ε = “− ”

}

=⇒ ρv(K
L
v, ω∪{u}) = ρv(K

L
v, ω)

Proof:
Preservation of local dynamics implies condition 1: If max(KL

v, ω∪{u,v},K
L
v, ω∪{v}) ≥ s and ε = “+ ”,

then choosing lv = max(KL
v, ω∪{u,v},K

L
v, ω∪{v}) is compatible with the set of resources ω ∪ {v}. Con-

sequently, from our main theorem, sign(ρv(K
L
v, ω∪{u,v})− ρv(lv)) = sign(ρv(K

L
v, ω∪{v} − ρv(lv))) and

lv being equal to one of the two parameters KL
v, ω∪{u,v} or KL

v, ω∪{v}, both signs are null. Consequently

ρv(K
L
v, ω∪{u,v}) = ρv(K

L
v, ω∪{v}) = ρv(lv) which proves the implication.

Preservation of local dynamics implies condition 2: The same reasoning holds when choosing lv =
min(KL

v, ω∪{u,v},K
L
v, ω∪{v}).

Preservation of local dynamics implies condition 3: If min(KL
v, ω∪{u},K

L
v, ω) < s and ε = “ + ”,

then choosing lv = min(KL
v, ω∪{u},K

L
v, ω) is compatible with the set of resources ω (which does not

contain v). Consequently, our theorem proves the implication in the same way as for the condition 1.
Preservation of local dynamics implies condition 4: The same reasoning holds when choosing lv =
max(KL

v, ω∪{u},K
L
v, ω).

Conditions 1 to 4 imply the preservation of local dynamics: From our main theorem it is sufficient to
prove that for any subset ω′ of L−1(v) which does not contain u, and for any expression level lv of v

compatible with ω′, we have sign( ρv(K
L
v, ω′∪{u}) − ρv(lv) ) = sign( ρv(K

L
v, ω′) − ρv(lv) ). Let us

denote ε and s respectively the sign and the threshold of the direct influence of v on itself.
If ε = “ + ” then the four following cases can be distinguished.
Case lv ≥ s and max(KL

v, ω′∪{u},K
L
v, ω′) ≥ s: Since lv ≥ s, ω′ is of the form ω′ = ω ∪ {v}. Conse-

quently, condition 1 implies that ρv(K
L
v, ω′∪{u}) = ρv(K

L
v, ω′), a fortiori sign( ρv(K

L
v, ω′∪{u}) − ρv(lv) )

is equal to sign( ρv(K
L
v, ω′) − ρv(lv) ).

Case lv ≥ s and max(KL
v, ω′∪{u},K

L
v, ω′) < s: ρv(K

L
v, ω′) < ρv(s) because KLv, ω′ < s and s

being a threshold of N , the folding function preserves this strict inequality. For the same reason
ρv(K

L
v, ω′∪{u}) < ρv(s). Consequently, sign( ρv(K

L
v, ω′∪{u}) − ρv(lv) ) = sign( ρv(K

L
v, ω′)− ρv(lv) )

= -1, as ρv(s) ≤ ρv(lv).
Case lv < s and min(KL

v, ω′∪{u},K
L
v, ω′) ≥ s: We have the inequalities ρv(K

L
v, ω′) ≥ ρv(s) and

ρv(K
L
v, ω′∪{u}) ≥ ρv(s) and ρv(s) > ρv(lv) for the same reasons as in the previous case. Consequently,

sign( ρv(K
L
v, ω′∪{u})− ρv(lv) ) = sign( ρv(K

L
v, ω′)− ρv(lv) ) = 1.

Case lv < s and min(KL
v, ω′∪{u},K

L
v, ω′) < s: Since lv < s, ω′ does not contain v. Consequently,

condition 3 implies that ρv(K
L
v, ω′∪{u}) = ρv(K

L
v, ω′), a fortiori sign( ρv(K

L
v, ω′∪{u}) − ρv(lv) ) =

sign( ρv(K
L
v, ω′) − ρv(lv) ).

If ε = “− ” then the same above cases are solved with the same reasoning using conditions 2 and 4.
ut
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Example:
According to the embedding of the BRN of Figure 5 into the BRN of Figure 6, the next to last propo-

sition can be applied to the edge (u, x). We have to verify whether for any subset ω of L−1(x) which
does not contain u, we have ρx(KL

x, ω∪{u}) = ρx(KLx, ω).
ω can be equal to: the empty set, the singletons x or y, or the pair x, y. This would mean:

1. ρx(KL
x, {u}) = ρx(KLx )

2. ρx(KL
x, {x,u}) = ρx(KL

x, {x})

3. ρx(KL
x, {y,u}) = ρx(KL

x, {y})

4. ρx(KL
x, {x,y,u}) = ρx(KL

x, {x,y})

This embedding does not preserve the local dynamics because the false equation is not satisfied: KL
x, {x,y,u} =

3 and KL
x, {x,y} = 4, and ρx(4) = 2 and ρx(3) = 1.

On the contrary, if we modify the BRN of Figure 6 with KL
x, {x,y,u} = 4 then the four previous

equations are satisfied and consequently the embedding preserves the behaviour.

7. Conclusion and perspectives

The theory of René Thomas is a discrete formalism for modelling biological regulatory networks. This
formalism has the advantage to handle the precise dynamics of gene regulation while benefiting from
automated logical tools. Our motivation is to develop a modular approach which allows the study of
large networks by splitting them into small sub-networks. Our theorem characterizes the sub-networks
which “pilot” the rest of the network since they cannot be influenced by the global network. We have
given several corollaries which facilitate the algorithmic search for these pilot sub-networks.

The main theorem established in this paper solves a strong view of modularity, since it applies to sub-
networks whose behaviour is entirely preserved by embedding. In the future, we would like to develop
theorems where the behaviour of the sub-network can be slightly modified by the global network but in
a rigorously controlled way.

Several extensions of this work can be considered in the near future. For example, we are interested
in sub-networks whose behaviour is preserved only for a subset of possible initial states. We are also in-
terested in sub-networks whose behaviour preserves only some given properties, such as the preservation
of the steady states (with possibly different trajectories).

So far, almost all the theoretical work related to Rene Thomas’ framework has been focused on global
properties of the network dynamics. The theoretical result given here opens the way to new studies for
biological regulatory networks related to modularity issues.
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