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Abstract

When modelling gene regulatory networks, the cornerstdribeomodelling
process is the search of parameter values which are camsigta the known
properties of the system. These parameters drive the dysarhthe system.
In this article, we give a formal definition of a slight extesrs of the R.
Thomas’ modelling framework, with explicit information aibt cooperative,
concurrent or more complex molecular interactions. It cdasbly decreases
the number of parameters and determining parameter valeesnies less
time consuming, making possible the study of larger systems

1 Introduction

To study complex biological systems, formal modelling igeafmandatory
since the complexity of the interleaved interactions betweonstituents makes
intuitive reasoning error prone. Numerous mathematicatl@lliong frame-
works have been proposed to model gene regulatory netwseksior exam-
ple [7, 13, 20, 8]. Common approaches are quantitative,coasedifferen-
tial or stochastic equations, providing numerical simolas of the system.
Nervertheless actual predictions often remain only gati¢ because the pa-
rameter values of these systems are not precisely knowrer&ether mod-
elling frameworks are based on a qualitative view, see fangde boolean
networks and their generalizations [16, 19], Petri nets64,hybrid mod-
ellings [12, 1], and stochastie-calculus [5]. Each modelling framework
highlights some views of models and allows one to detail @tastract differ-
ent biological aspects.

We focus here on Thomas’ modelling, in which the gene regufagys-
tem is represented by an interaction graph and a set of p&gesneThe
interaction graph is composed, on the one hand, of nodeshwdbstract
genes and their proteins, and on the other hand, of edge$ wdpcesent the
interactions between the genes. The values assigned tathmepters permit
one to deduce the dynamics of the system from the interagtiaph. Even
in a qualitative perspective, the lack of reliable data dltoe system leads to
a typical difficulty of the modelling approach : How to sel#loce parameter
values of the model?

For determining values of parameters, we proposed in [3¢$b the set
of all possible parameterizations against temporal ptogeerlt is finite in the



case of Thomas’ modelling. This approach can be computedd®] using
formal temporal logics and systematic model checking. Efé¢he set of
possible parameterizations is finite, it exponentiallygsavith the size of the
interaction graph. Several theorems established in themBlsbframework
considerably reduce the number of generated parametensetytheless, an
entire exploration is not conceivable for large networks.

In order to reduce the time required by this exploration stepecomes
crucial to introduce in the modelling framework more bidla informa-
tion (when available). In this chapter, we propose to take actcount in-
formation about how constituents of the system act on tleegets. For
example (Figure 1), if two genes act positively on a commagetavia the
formation of a complex (e.g. the transcription factor of twmmon target
contains the complex), then it is obvious that the commayetdnas in fact a
unique predecessor (the complex instead of two genes s$elyarand only
two possibilities (instead of four) can occur: The complsxpresent and
the transcription can take place or the complex is not piteskrdeed this
idea is far from being new but it has never been formalizedaupaw. R.
Thomas remarked that this kind of information can be takeénm atcount in
its modelling framework through the valuation of paramegtéut he did not
explicitely include such information in the interactioragh [18].

Figure 1: Example of cooperative action

Here, we propose a modelling framework in which the intecacgraph
makes such cooperative or concurrent biological phenomenplicit. The
decreasing of the number of parameters coupled with theadetbgy devel-
oped in [3], will make possible the study of larger systems.

The chapter is organized as follows. We firstly define our neterac-
tion graph: Multiplexesare formally defined to take into account available
biological information describing the cooperation or comency between
constituents acting on a common target. Then we define wharltgplax has
an effective action on its targets, and we construct thecgasal dynamics.
We show that Thomas’ and multiplex frameworks have the saovgep of
expression but we illustrate, through the classical exarpthe lac operon,
how multiplexes allow us to be more legible and terse. Las#dypresent the
benefits of this multiplex modelling.



2 GENE REGULATORY GRAPHS WITH MULTIPLEXES

Formal modelling frameworks for gene regulatory networkpresent inter-
actions between entities (genes, proteigis,) via a static graph Then,
dynamics focus on the evolution of entity expression leaeld ask for more
elaborated mathematical stuff with many parameters.

In our framework, we represent the static part by a directegbly com-
posed of two types of vertices: Variables which correspangkines and their
products, and multiplexes which correspond to interactimetween variables.
Multiplexes abstract biological phenomena like complexrfimg or more
elaborated phenomena. The predecessors of a multiplexthes eariables
or other multiplexes brought into play in the interactiohe tsuccessors are
called the targets of the interaction.

2.1 Formal Definition

The following notation will be useful.

Notation 1 Given a directed grapli’ and a nodey of G, G~!(v) is the set of
all nodesv’ of G such thatfv', v) is an edge o (set of predecessors of.

A multiplex is provided with a formula in a propositional liegwhich
encodes the situations in which the interaction occurs ekample, if a com-
plex formed with proteing andb is required in cooperative action and if the
complex @-b) is inactive in the presence of a proteirthen the corresponding
formulalooks like ‘aAbA—¢,” where the symbolsA” and “—” stand for “and”
and “not” respectively.

Definition 1 A gene regulatory graph with multiplexerG for short, is a
tupleG = (V, M, Ey, E),) such that:

1. (VUM, Ey U E)) constitutes a (labelled) directed graph whose set of
nodes is U M and set of edges By U Ey;, with By, C V x IN x M
andEy C M x (VUM).

2. V and M are disjoint finite sets. Nodes b&f are calledvariablesand
nodes of\/ are calledmultiplexes An edge(v, s, m) of Ey is denoted
(v = m) wheres is called the threshold.

3. Each variablev of V' is labelled with a positive integér, called the
bound ofw.

4. Each multiplexn of M is labelled with a formula belonging to the
languageL,,, inductively defined by:

o If (v -5 m) € Ey, thenv, is an atom ofL,,,, and if (m’ — m) €
E, thenm/ is an atom ofL,,,.



e If ¢ andi belong toL,, then—¢, (¢ A1), (¢ Vb)) and(¢p = V)
belong toL,,,.

5. All cycles of the underlying grapgly U M, Ey U E)) contain at least
one node belonging to.

Note: Condition 5 is necessary for the definition of dynan{s=se Defini-
tion 3).
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Figure 2: Graphical conventions

Figure 2 provides graphical conventions. In this figurg, c, d are vari-
ables;m, m’ are multiplexesin andc are the inputs ofn’ andb andd are its
outputs; the cyclé, m, m’ contains the variable

In addition to these standard graphical conventions, wendllight” ad-
ditional graphical notation abuse:

e If a variable is an input of a multiplex with only one threstiolve then
allow to omit the threshold in the formula. For example, igle 2, the
formula of multiplexm can be simply written as—(a A b).” Of course,
this light form is not possible fom/'.

e Multiplexes with a formula reduced to a unique atom can beorerd
from the diagram. In figure 3a, removing the multiplexallows us
to retrieve the usual diagrammatic convention of R. Thomasadtiva-
tions.

e Similarly, in figure 3b, we retrieve usual inhibitions, esthby adding
the minus sign, or by using the “inhibition arrow” usual irolmgy.

Infigure 2, we also see that in multiplex formulas the vaealdre indexed
by their thresholds. This is useful when a given variable act a multiplex
at several thresholds. The multipleX means that the expression levelcof
must be both greater thahand lower tharb in order to participate to the
induction ofd.
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Figure 3: Light graphical convention for activation and inhibition

2.2 States and resources

A gene regulatory graph with multiplexes constitutes tla¢isrepresentation
of the system. We have now to focus on the dynamics of the rsystb-
stracted by the evolutions of expression levels of varsblet us first define
the states of a system.

Definition 2 Astateof aRG G = (V, M, Ey, Ey) isamapn : V' — IN such
that for each variable) belonging toV, n(v) < b,.
n(v) is called the expression level of

A multiplex does not have any expression level because itleyeal
composition of variables at a given time. So, we considey tré expression
level of all the variables at that time and from this curretates it is possible
to deduce if the multiplex is active or neia the interpretation of its proposi-
tional formula.

According to a current state, the set of resources of a Varialis the
set of multiplexes which can helpto express its product. More precisely a
resource of a variablez is a multiplex belonging t6: ! (a) whose formula is
satisfied. So graphically, edges of interaction graphs hasgn but negative
actions are taken into account through multiplexes withdperator—. For
example, in Figure 2 the multiplex represents an inhibition (the complex
a-b inhibits b andd via m’).

Definition 3 Given arG G = (V, M, Ey, E);) and a state) of GG, the set

of resources of a variable € V for the staten is the set of multiplexes
m of G7'(v) such that the formula,, of the multiplexm is satisfied. The
interpretation ofy,, in m is inductively defined by:

e If ¢, is reduced to an atom, of G~!(m) theny,, is satisfied iffy(v) >
S.

e If ©,, is reduced to an atom’ € M of G~!(m) theny,, is satisfied iff
o of m’ is satisfied.



o If v, = Y1 Ay theny,, is satisfied if); and), are satisfied; and we
proceed similarly for all other connectives.

We notep(v, n) the set of resources offor the state.

This definition is actually inductive because never contain a cycle of
multiplex (item 5 of Definition 1). If cycle of multiplexes we allowed then
indeterminations or contradictions would be possible. iRstance, consider
the graph in figure 4. Suppose that the expression levelofjreater or equal
to the threshold:

e |f the formula ofm/ is assumed to be satisfied, then the formulanof
must be satisfied and so the formularof cannot be satisfied. So, we
get an inconstency.

e |f the formula of m/ is assumed to be unsatisfied, then the formula of
m must be unsatisfied and so the formulangfmust be satisfied. So,
whatever we assume, we always get an inconsistency.

Let us consider now, the graph in figure 4 where the formula@ated
with m/ is m instead of-m. Suppose again that the expression level o
greater or equal to the threshoid Then, the two interpretations of’ are
consistent and compatible with the current state. Thera is@determination
which is similar to the notion of schizophrenic cycles of 15

Figure 4. Cycle of multiplexes

To avoid these inconsistencies and indeterminationsesyafimultiplexes
are not allowed. This motivates the item 5 of Definition 1.

3 GENE NETWORKS WITH MULTIPLEXES

We call network a graph associated with the parameters wdetérmine the
dynamics.

Definition 4 A gene regulatory network with multiplex¢gN) is a couple
(G, K) where

= (V,M, Ey, Ey) is arG.

o (§
o € = {k,.} is a family of parameters indexed byc V andw C
G~'(v) such that allk, ,, are integers and < k,,, < b,.



Notice that each variable admits2™ parameters of the forrh, , wheren is
the in-degree ob in G.

Additional restrictions for the choice of parameters cancbasidered.
The Snoussi’s hypotheses [14] which ensure the consistdmyalitative be-
haviours with some underlying differential equation systare well-known:

If w C ' thenk,, < k,.. These hypotheses signify that an effective
resource cannot induce the decrease of the expressionoevelMoreover,
we can always ignore the parametéts, such that the conjunction of the
formulas associated with the multiplexes.dns unsatisfied for all states.

3.1 Dynamics

The value of the parametéy, ,(, ,) (Wherep is defined in definition 3 above),
indicates how the expression level ofcan evolve from the state. It can
increase (respectively decrease) if the parameter valyreger (respectively
less) thary(v). The expression level must stay constant if both values are
equal. The tendency (increasing, decreasing, unchangingariables are
given by the directional map associated with each state:

Notation 2 Given arRN N = (G, K) and a state) of G = (V, M, Ey, Ey),
thedirectional mapl : V' — {—1,0, 1} is defined by:

=1 ifn(v) > Ky pwmn
Vo e V,d(v) = 0 ifn(v) = kupwm
L ifn(v) < Ko pn

The probability that two variables change their expresdevel at the
same time is negligibla vivo, following the Thomas’ approach a state tran-
sition of the model modifies only one of the involved variaxée a time.

Definition 5 Let N = (G, K) be arN, and lety) be a state of7. A staten’ of
G is asuccessoof the state) if and only if :

e There exists a variable such that) (u) = n(u) + d(u) andd(u) # 0
e For any other variable) # u we havey' (v) = n(v)

In each state transition, at most one variable is modifiad;gtocedure is
calledasynchronous updata Thomas’ framework.

Definition 6 Theasynchronous state graphaRN N = (G, K) is the graph
S defined by:

e The set of vertices ¢ is the set of possible states@f(isomorphic to
the Cartesian producf] [0, b,]).
veV

e The set of edges df is the set of coupleén, n’) such thaty' is a
successor of.



4 RELATIVE TERSENESS WITH RESPECT TO THE CLASSICAL
FRAMEWORK

Obviously our framework with multiplexes embeds the clealsiThomas’
framework [17] as it is sufficient to translate an activat{ogesp. an inhibition)
with a multiplex whose formula is reduced to the input vaafresp. its
negation), see Figure 3. Conversely, a non atomic formula multiplex
obviously corresponds to a constraint on the parametersf@ll®wing an
induction similar to the one of Definition 3.

Our conviction is that this kind of knowledge is a static kiedge and
consequently it should be present in the interaction grémimilas in mul-
tiplexes). When we know, for biological reasons, the nawfreombined
influences, this information should be included in the ma$esoon as pos-
sible because it considerably reduces the number of pesgdyhmeters, as
shown in the example below. Of course, the nature of combimkbaences
is not alwaysa priori known and, in this case, according to our formalism,
variables have then several inputs in the regulatory graph.

4.1 Example of lactose operon.

The cell needs carbon. Carbon is preferably obtained fraroagevia a given
catalytic pathway. When glucose is absent, lactose is vieegh alternative
catalytic pathway.

Lactose operon in E.coli is the first genetic regulatory eyselucidated,
by Francois Jacob and Jacques Monod [9]. The induction iefgysstem
requires two conditions: Absence of glucose and presenizufse.

An operon is a set of contiguous genes whose transcripticangolled
simultaneously by a unique transcription factor. This $&iption factor has
an affinity with a DNA area at the beginning of the operon, edlbperator
and denoted O.

The lactose operon is formed by three genes denoted by Z, YXaRde genes
Z,Y and A produce respectively the enzymiegalactosidase, permease and
thiogalactoside transacetylase.

When glucose is absent, the alternative pathway is coatt@al follows:

e CAP (Catabolite gene Activator Protein) forms a complexwaAMP
(cyclic Adenosine MonoPhosphate), and binds to DNA to iaseethe
transcription of the operon. This is a positive regulation.

e The transcription of the operon is possible only if the DNA&&IO is
free. The regulatory protein lacl binds to O, this is a negategulation.
However, when lactose is present, a lactose isomer bindsktahd lacl
looses its affinity for O. So the operator O becomes free.

When glucose is present, the alternative pathway is irddhéts follows:
Glucose inhibits indirectly cAMP and leads to the absenasoafiplex CAP-
cAMP. Consequently, there is no transcription even if laghiesent.
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Figure 5. Lactose operon metabolism graph with and without mulkete

In Figure 5, the interaction graph of the lactose operon Begented
in the multiplex framework (the left part of the figure) andthe classical
Thomas’ framework (the right part of the figure). The first adiage of the
multiplex framework is its legibility: The left hand side e figure is, to
some extent, more legible than the textual descriptionrghefore. On the
contrary, the right hand side of the figure cannot be undedstaithout the
textual description.

The second advantage of the multiplex framework is methaggioal. When
we try to elucidate a biological system using Thomas’ framy we do
not know the values of the parameters: Thg, have to be inferred from
in vivo behaviours. Consequently, models with a small number afrpaters
allow us to rapidly converge towards the elucidation of thelgd biological
system. On the contrary, models with large numbers of patermean be
so heavy to manipulate that they obstruct the discoveryga®c On this
small lactose operon example, the total number of paraseiording to
the multiplex approach is 12, while the total number of pagters according
to the classical approach is 54. Putting as much staticnmdition as possible
explicitly in the graph (instead of putting it later manuwaith the dynamics)
considerably reduces the complexity of the modelling metihagy. Indeed,
formalizing cooperative actions of several variables om shme targetia
multiplexes enables one to merge into a single multiplexdifferent acting
resources.

The knowledge formalised into multiplexes can lead to redexen more
the number of useful parameters. In figure 6, multiplexesandm, cannot
be satisfied for the same state:; is active only if expression level aof is
strictly less than 2 whereas, is active when expression level @fis greater
or equal to 2. Among the set of formal paramet€rs- {k. 11, ke fm.}» Fe {mo}»
Ke,{mi,mo} }r Ke{m1,mo} IS NEver used. More generally, when two multiplexes
having the same target have twomutually exclusive formulag, and ¢-,
all parameters of the forn’, ., m, m,} can be ignored and the number of
relevant parameters is reduced.
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Figure 6: Example ofRG which contains mutually exclusive formulas

5 Application

The software SMBionet-3.0 [11] has been designed to fatalithe modelling
process of genetic regulatory systems. It allows one tasaledels of given
RG according to their temporal properties. It takes as inpris@and a formula
in temporal logic expressing the known or hypothetical terapproperties of
the system. It gives as output all the models satisfying dhela.

In both modelling frameworks (with or without multiplexesye have
to give a value to each parameter in order to deduce the dysaafithe
system. Because parameter values areanptiori known this leads us to
consider an enormous number of parameterizations. Indsseh variable
v admits2” parameters of the form, , wheren is the in-degree of in G
(w € G (v)). Each of these parameters can taket+ 1 different values
whereb, is the bound ofv. The number of parameterizations is then given
by Hv(b” + 1)*" wheren is the in-degree of. For the example of lactose
IS

operon in Thomas’ framework, the number of parameterinstis on the
order of 2.27 x 10® whereas in our multiplex framework, the number of
parameterizations i5296. For instance, in Thomas’ framework, the variable
permease has2* parameters, generatirﬂj4(65536) different parameter set-
tings while in our frameworkpermease has2 parameters, generatirij(4)
different parameter settings. The difference resides enatdition of the
multiplexes, which reduces the number of inward edges:tencase and so
the number of possible parameter settings. Consequeatting into account
information about cooperation between variables (thramgttiplexes) leads
to a significant decreasing of the number of possible modiédse, the set of
possible models is cut down by a factorla$000.

We used SMBionet-3.0 to exhibit models which present charistic
alternative catalytic pathway when glucose is absent. UtihdeSnoussi’s hy-
potheses (see section 3 Biological Regulatory Networkis mitltiplexes) and
for a given logical formula, all possible parameter setsimgour framework
have been explored i2i7 seconds whereas all possible parameter settings in
Thomas’ framework have been explored in approximateély) hours. Notice
that the ratio between both time is less thHain000 because SMBionet-3.0
optimizes the exploration of the model set.



6 CONCLUSION

We rigorously introduced propositional logic elements e tR. Thomas’
framework in order to take into account available inforraatconcerning the
cooperation or concurrency between genes or genes prodcittg on the
same targets.

This idea is rather natural: R. Thomas introduced in [17] &ation that
allows the representation seéveralactions of auniquegene on another one.
Moreover, dozens of articles can be cited which use simileas in different
frameworks:[2, 10]etc. Up to our knowledge, our contribution is the first one
which rigorouslyformalizegshis more elaborated framework.

The introduction of multiplexes makes models terser bexdhis frame-
work allows the gathering of edges into a single multiplex.

The major advantage of multiplex modelling is methodolagitt reduces
the number of parameters by formalizing additional biotadjinformation.
So, the step which searches parameter values consistériknatvn or hypo-
thetical properties of the system is significantly improvétiese advantages
open perspectives to study larger gene regulatory networks

Another advantage of multiplexes is to facilitate manipolas of net-
works. For example, we may develop graph folding methodsrderoto
reduce the number of variables, at the price of possibly lfmrgulas in
multiplexes. However the role of some variables in a pathssentially to
delay the global process. Consequently to improve the bicéd usefulness
of such abstractions, it seems necessary to take delayadotunt. One of
our future works will be to introduce delays in multiplexes.
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