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Abstract

When modelling gene regulatory networks, the cornerstone of the modelling
process is the search of parameter values which are consistent with the known
properties of the system. These parameters drive the dynamics of the system.
In this article, we give a formal definition of a slight extension of the R.
Thomas’ modelling framework, with explicit information about cooperative,
concurrent or more complex molecular interactions. It considerably decreases
the number of parameters and determining parameter values becomes less
time consuming, making possible the study of larger systems.

1 Introduction

To study complex biological systems, formal modelling is often mandatory
since the complexity of the interleaved interactions between constituents makes
intuitive reasoning error prone. Numerous mathematical modelling frame-
works have been proposed to model gene regulatory networks,see for exam-
ple [7, 13, 20, 8]. Common approaches are quantitative, based on differen-
tial or stochastic equations, providing numerical simulations of the system.
Nervertheless actual predictions often remain only qualitative because the pa-
rameter values of these systems are not precisely known. Several other mod-
elling frameworks are based on a qualitative view, see for example boolean
networks and their generalizations [16, 19], Petri nets [4,6], hybrid mod-
ellings [12, 1], and stochasticπ-calculus [5]. Each modelling framework
highlights some views of models and allows one to detail or toabstract differ-
ent biological aspects.

We focus here on Thomas’ modelling, in which the gene regulatory sys-
tem is represented by an interaction graph and a set of parameters. The
interaction graph is composed, on the one hand, of nodes which abstract
genes and their proteins, and on the other hand, of edges which represent the
interactions between the genes. The values assigned to the parameters permit
one to deduce the dynamics of the system from the interactiongraph. Even
in a qualitative perspective, the lack of reliable data about the system leads to
a typical difficulty of the modelling approach : How to selectthe parameter
values of the model?

For determining values of parameters, we proposed in [3] to test the set
of all possible parameterizations against temporal properties. It is finite in the



case of Thomas’ modelling. This approach can be computer aided [3] using
formal temporal logics and systematic model checking. Evenif the set of
possible parameterizations is finite, it exponentially grows with the size of the
interaction graph. Several theorems established in the Thomas’ framework
considerably reduce the number of generated parameter sets, nevertheless, an
entire exploration is not conceivable for large networks.

In order to reduce the time required by this exploration step, it becomes
crucial to introduce in the modelling framework more biological informa-
tion (when available). In this chapter, we propose to take into account in-
formation about how constituents of the system act on their targets. For
example (Figure 1), if two genes act positively on a common target via the
formation of a complex (e.g. the transcription factor of thecommon target
contains the complex), then it is obvious that the common target has in fact a
unique predecessor (the complex instead of two genes separately) and only
two possibilities (instead of four) can occur: The complex is present and
the transcription can take place or the complex is not present. Indeed this
idea is far from being new but it has never been formalized up to now. R.
Thomas remarked that this kind of information can be taken into account in
its modelling framework through the valuation of parameters, but he did not
explicitely include such information in the interaction graph [18].
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Figure 1: Example of cooperative action

Here, we propose a modelling framework in which the interaction graph
makes such cooperative or concurrent biological phenomenon explicit. The
decreasing of the number of parameters coupled with the methodology devel-
oped in [3], will make possible the study of larger systems.

The chapter is organized as follows. We firstly define our new interac-
tion graph: Multiplexesare formally defined to take into account available
biological information describing the cooperation or concurrency between
constituents acting on a common target. Then we define when a multiplex has
an effective action on its targets, and we construct the associated dynamics.
We show that Thomas’ and multiplex frameworks have the same power of
expression but we illustrate, through the classical example of the lac operon,
how multiplexes allow us to be more legible and terse. Lastlywe present the
benefits of this multiplex modelling.



2 GENE REGULATORY GRAPHS WITH MULTIPLEXES

Formal modelling frameworks for gene regulatory networks represent inter-
actions between entities (genes, proteins,etc.) via a static graph. Then,
dynamics focus on the evolution of entity expression levelsand ask for more
elaborated mathematical stuff with many parameters.

In our framework, we represent the static part by a directed graph com-
posed of two types of vertices: Variables which correspond to genes and their
products, and multiplexes which correspond to interactions between variables.
Multiplexes abstract biological phenomena like complex forming or more
elaborated phenomena. The predecessors of a multiplex are either variables
or other multiplexes brought into play in the interaction; the successors are
called the targets of the interaction.

2.1 Formal Definition

The following notation will be useful.

Notation 1 Given a directed graphG and a nodev ofG,G−1(v) is the set of
all nodesv′ ofG such that(v′, v) is an edge ofG (set of predecessors ofv).

A multiplex is provided with a formula in a propositional logic which
encodes the situations in which the interaction occurs. Forexample, if a com-
plex formed with proteinsa andb is required in cooperative action and if the
complex (a-b) is inactive in the presence of a proteinc, then the corresponding
formula looks like “a∧b∧¬c,” where the symbols “∧” and “¬” stand for “and”
and “not” respectively.

Definition 1 A gene regulatory graph with multiplexes, RG for short, is a
tupleG = (V,M,EV , EM) such that:

1. (V ∪M,EV ∪EM ) constitutes a (labelled) directed graph whose set of
nodes isV ∪M and set of edges isEV ∪EM , withEV ⊂ V × IN ×M

andEM ⊂ M × (V ∪M).

2. V andM are disjoint finite sets. Nodes ofV are calledvariablesand
nodes ofM are calledmultiplexes. An edge(v, s,m) ofEV is denoted
(v

s
→ m) wheres is called the threshold.

3. Each variablev of V is labelled with a positive integerbv called the
bound ofv.

4. Each multiplexm of M is labelled with a formula belonging to the
languageLm inductively defined by:

• If (v
s
→ m) ∈ EV , thenvs is an atom ofLm, and if (m′ → m) ∈

EM thenm′ is an atom ofLm.



• If φ andψ belong toLm then¬φ, (φ ∧ ψ), (φ ∨ ψ) and(φ ⇒ Ψ)
belong toLm.

5. All cycles of the underlying graph(V ∪M,EV ∪ EM) contain at least
one node belonging toV .

Note: Condition 5 is necessary for the definition of dynamics(see Defini-
tion 3).
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Figure 2: Graphical conventions

Figure 2 provides graphical conventions. In this figure,a, b, c, d are vari-
ables;m,m′ are multiplexes;m andc are the inputs ofm′ andb andd are its
outputs; the cycleb,m,m′ contains the variableb.

In addition to these standard graphical conventions, we allow “light” ad-
ditional graphical notation abuse:

• If a variable is an input of a multiplex with only one threshold, we then
allow to omit the threshold in the formula. For example, in Figure 2, the
formula of multiplexm can be simply written as “¬(a∧ b).” Of course,
this light form is not possible form′.

• Multiplexes with a formula reduced to a unique atom can be removed
from the diagram. In figure 3a, removing the multiplexm allows us
to retrieve the usual diagrammatic convention of R. Thomas for activa-
tions.

• Similarly, in figure 3b, we retrieve usual inhibitions, either by adding
the minus sign, or by using the “inhibition arrow” usual in biology.

In figure 2, we also see that in multiplex formulas the variables are indexed
by their thresholds. This is useful when a given variable acts on a multiplex
at several thresholds. The multiplexm′ means that the expression level ofc
must be both greater than2 and lower than5 in order to participate to the
induction ofd.
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Figure 3: Light graphical convention for activation and inhibition.

2.2 States and resources

A gene regulatory graph with multiplexes constitutes the static representation
of the system. We have now to focus on the dynamics of the system, ab-
stracted by the evolutions of expression levels of variables. Let us first define
the states of a system.

Definition 2 A stateof a RGG = (V,M,EV , EM) is a mapη : V → IN such
that for each variablev belonging toV , η(v) ≤ bv.
η(v) is called the expression level ofv.

A multiplex does not have any expression level because it is alogical
composition of variables at a given time. So, we consider only the expression
level of all the variables at that time and from this current state it is possible
to deduce if the multiplex is active or notvia the interpretation of its proposi-
tional formula.

According to a current state, the set of resources of a variable a is the
set of multiplexes which can helpa to express its product. More precisely a
resourcer of a variablea is a multiplex belonging toG−1(a) whose formula is
satisfied. So graphically, edges of interaction graphs haveno sign but negative
actions are taken into account through multiplexes with theoperator¬. For
example, in Figure 2 the multiplexm represents an inhibition (the complex
a-b inhibitsb andd viam′).

Definition 3 Given aRG G = (V,M,EV , EM) and a stateη of G, the set
of resources of a variablev ∈ V for the stateη is the set of multiplexes
m of G−1(v) such that the formulaϕm of the multiplexm is satisfied. The
interpretation ofϕm in m is inductively defined by:

• If ϕm is reduced to an atomvs ofG−1(m) thenϕm is satisfied iffη(v) ≥
s.

• If ϕm is reduced to an atomm′ ∈ M ofG−1(m) thenϕm is satisfied iff
ϕm′ ofm′ is satisfied.



• If ϕm ≡ ψ1 ∧ ψ2 thenϕm is satisfied ifψ1 andψ2 are satisfied; and we
proceed similarly for all other connectives.

We noteρ(v, η) the set of resources ofv for the stateη.

This definition is actually inductive becauseRG never contain a cycle of
multiplex (item 5 of Definition 1). If cycle of multiplexes were allowed then
indeterminations or contradictions would be possible. Forinstance, consider
the graph in figure 4. Suppose that the expression level ofa is greater or equal
to the thresholds:

• If the formula ofm′ is assumed to be satisfied, then the formula ofm
must be satisfied and so the formula ofm′ cannot be satisfied. So, we
get an inconstency.

• If the formula ofm′ is assumed to be unsatisfied, then the formula of
m must be unsatisfied and so the formula ofm′ must be satisfied. So,
whatever we assume, we always get an inconsistency.

Let us consider now, the graph in figure 4 where the formula associated
with m′ is m instead of¬m. Suppose again that the expression level ofa is
greater or equal to the thresholds. Then, the two interpretations ofm′ are
consistent and compatible with the current state. There is an indetermination
which is similar to the notion of schizophrenic cycles of [15].
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Figure 4: Cycle of multiplexes

To avoid these inconsistencies and indeterminations, cycles of multiplexes
are not allowed. This motivates the item 5 of Definition 1.

3 GENE NETWORKS WITH MULTIPLEXES

We call network a graph associated with the parameters whichdetermine the
dynamics.

Definition 4 A gene regulatory network with multiplexes(RN) is a couple
(G,K) where

• G = (V,M,EV , EM) is a RG.

• K = {kv,ω} is a family of parameters indexed byv ∈ V and ω ⊂
G−1(v) such that allkv,ω are integers and0 ≤ kv,ω ≤ bv.



Notice that each variablev admits2n parameters of the formkv,ω wheren is
the in-degree ofv in G.

Additional restrictions for the choice of parameters can beconsidered.
The Snoussi’s hypotheses [14] which ensure the consistencyof qualitative be-
haviours with some underlying differential equation system, are well-known:
If ω ⊂ ω′ then kv,ω ≤ kv,ω′ . These hypotheses signify that an effective
resource cannot induce the decrease of the expression levelof v. Moreover,
we can always ignore the parameterskv,ω such that the conjunction of the
formulas associated with the multiplexes inω is unsatisfied for all states.

3.1 Dynamics

The value of the parameterkv,ρ(v,η) (whereρ is defined in definition 3 above),
indicates how the expression level ofv can evolve from the stateη. It can
increase (respectively decrease) if the parameter value isgreater (respectively
less) thanη(v). The expression level must stay constant if both values are
equal. The tendency (increasing, decreasing, unchanging)of variables are
given by the directional map associated with each state:

Notation 2 Given aRN N = (G,K) and a stateη ofG = (V,M,EV , EM),
thedirectional mapd : V → {−1, 0, 1} is defined by:

∀v ∈ V, d(v) =











−1 if η(v) > kv,ρ(v,η)

0 if η(v) = kv,ρ(v,η)

1 if η(v) < kv,ρ(v,η)

The probability that two variables change their expressionlevel at the
same time is negligiblein vivo; following the Thomas’ approach a state tran-
sition of the model modifies only one of the involved variables at a time.

Definition 5 LetN = (G,K) be aRN, and letη be a state ofG. A stateη′ of
G is asuccessorof the stateη if and only if :

• There exists a variableu such thatη′(u) = η(u) + d(u) andd(u) 6= 0

• For any other variablev 6= u we haveη′(v) = η(v)

In each state transition, at most one variable is modified; this procedure is
calledasynchronous updatein Thomas’ framework.

Definition 6 Theasynchronous state graphof a RN N = (G,K) is the graph
S defined by:

• The set of vertices ofS is the set of possible states ofG (isomorphic to
the Cartesian product

∏

v∈V

[0, bv]).

• The set of edges ofS is the set of couples(η, η′) such thatη′ is a
successor ofη.



4 RELATIVE TERSENESS WITH RESPECT TO THE CLASSICAL
FRAMEWORK

Obviously our framework with multiplexes embeds the classical Thomas’
framework [17] as it is sufficient to translate an activation(resp. an inhibition)
with a multiplex whose formula is reduced to the input variable (resp. its
negation), see Figure 3. Conversely, a non atomic formula ina multiplex
obviously corresponds to a constraint on the parameters [18] following an
induction similar to the one of Definition 3.

Our conviction is that this kind of knowledge is a static knowledge and
consequently it should be present in the interaction graph (formulas in mul-
tiplexes). When we know, for biological reasons, the natureof combined
influences, this information should be included in the modelas soon as pos-
sible because it considerably reduces the number of possible parameters, as
shown in the example below. Of course, the nature of combinedinfluences
is not alwaysa priori known and, in this case, according to our formalism,
variables have then several inputs in the regulatory graph.

4.1 Example of lactose operon.

The cell needs carbon. Carbon is preferably obtained from glucosevia a given
catalytic pathway. When glucose is absent, lactose is usedvia an alternative
catalytic pathway.

Lactose operon in E.coli is the first genetic regulatory system elucidated,
by François Jacob and Jacques Monod [9]. The induction of this system
requires two conditions: Absence of glucose and presence oflactose.

An operon is a set of contiguous genes whose transcription iscontrolled
simultaneously by a unique transcription factor. This transcription factor has
an affinity with a DNA area at the beginning of the operon, called operator
and denoted O.
The lactose operon is formed by three genes denoted by Z, Y andA. The genes
Z, Y and A produce respectively the enzymesβ-galactosidase, permease and
thiogalactoside transacetylase.

When glucose is absent, the alternative pathway is controlled as follows:

• CAP (Catabolite gene Activator Protein) forms a complex with cAMP
(cyclic Adenosine MonoPhosphate), and binds to DNA to increase the
transcription of the operon. This is a positive regulation.

• The transcription of the operon is possible only if the DNA area O is
free. The regulatory protein lacI binds to O, this is a negative regulation.
However, when lactose is present, a lactose isomer binds to lacI and lacI
looses its affinity for O. So the operator O becomes free.

When glucose is present, the alternative pathway is inhibited as follows:
Glucose inhibits indirectly cAMP and leads to the absence ofcomplex CAP-
cAMP. Consequently, there is no transcription even if lacI is present.
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Figure 5: Lactose operon metabolism graph with and without multiplexes.

In Figure 5, the interaction graph of the lactose operon is represented
in the multiplex framework (the left part of the figure) and inthe classical
Thomas’ framework (the right part of the figure). The first advantage of the
multiplex framework is its legibility: The left hand side ofthe figure is, to
some extent, more legible than the textual description given before. On the
contrary, the right hand side of the figure cannot be understood without the
textual description.

The second advantage of the multiplex framework is methodological. When
we try to elucidate a biological system using Thomas’ framework, we do
not know the values of the parameters: Thekv,ω have to be inferred from
in vivo behaviours. Consequently, models with a small number of parameters
allow us to rapidly converge towards the elucidation of the studied biological
system. On the contrary, models with large numbers of parameters can be
so heavy to manipulate that they obstruct the discovery process. On this
small lactose operon example, the total number of parameters according to
the multiplex approach is 12, while the total number of parameters according
to the classical approach is 54. Putting as much static information as possible
explicitly in the graph (instead of putting it later manually in the dynamics)
considerably reduces the complexity of the modelling methodology. Indeed,
formalizing cooperative actions of several variables on the same targetvia
multiplexes enables one to merge into a single multiplex thedifferent acting
resources.

The knowledge formalised into multiplexes can lead to reduce even more
the number of useful parameters. In figure 6, multiplexesm1 andm2 cannot
be satisfied for the same state:m1 is active only if expression level ofa is
strictly less than 2 whereasm2 is active when expression level ofa is greater
or equal to 2. Among the set of formal parametersK = {kc,{}, kc,{m1}, kc,{m2},
kc,{m1,m2}}, kc,{m1,m2} is never used. More generally, when two multiplexes
having the same targetv have twomutually exclusive formulasφ1 andφ2,
all parameters of the formKv,ω∪{m1,m2} can be ignored and the number of
relevant parameters is reduced.
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Figure 6: Example ofRG which contains mutually exclusive formulas

5 Application

The software SMBionet-3.0 [11] has been designed to facilitate the modelling
process of genetic regulatory systems. It allows one to select models of given
RG according to their temporal properties. It takes as input aRG and a formula
in temporal logic expressing the known or hypothetical temporal properties of
the system. It gives as output all the models satisfying the formula.

In both modelling frameworks (with or without multiplexes), we have
to give a value to each parameter in order to deduce the dynamics of the
system. Because parameter values are nota priori known this leads us to
consider an enormous number of parameterizations. Indeed,each variable
v admits2n parameters of the formkv,ω wheren is the in-degree ofv in G
(ω ⊂ G−1(v)). Each of these parameters can takebv + 1 different values
wherebv is the bound ofv. The number of parameterizations is then given
by

∏

v∈V

(bv + 1)2n

wheren is the in-degree ofv. For the example of lactose

operon in Thomas’ framework, the number of parameterizations is on the
order of 2.27 × 108 whereas in our multiplex framework, the number of
parameterizations is1296. For instance, in Thomas’ framework, the variable
permease has24 parameters, generating224

(65536) different parameter set-
tings while in our framework,permease has2 parameters, generating22(4)
different parameter settings. The difference resides in the addition of the
multiplexes, which reduces the number of inward edges topermease and so
the number of possible parameter settings. Consequently, taking into account
information about cooperation between variables (throughmultiplexes) leads
to a significant decreasing of the number of possible models:Here, the set of
possible models is cut down by a factor of175000.

We used SMBionet-3.0 to exhibit models which present characteristic
alternative catalytic pathway when glucose is absent. Under the Snoussi’s hy-
potheses (see section 3 Biological Regulatory Networks with multiplexes) and
for a given logical formula, all possible parameter settings in our framework
have been explored in27 seconds whereas all possible parameter settings in
Thomas’ framework have been explored in approximately1000 hours. Notice
that the ratio between both time is less than175000 because SMBionet-3.0
optimizes the exploration of the model set.



6 CONCLUSION

We rigorously introduced propositional logic elements in the R. Thomas’
framework in order to take into account available information concerning the
cooperation or concurrency between genes or genes productsacting on the
same targets.

This idea is rather natural: R. Thomas introduced in [17] a notation that
allows the representation ofseveralactions of auniquegene on another one.
Moreover, dozens of articles can be cited which use similar ideas in different
frameworks:[2, 10],etc.Up to our knowledge, our contribution is the first one
which rigorouslyformalizesthis more elaborated framework.

The introduction of multiplexes makes models terser because this frame-
work allows the gathering of edges into a single multiplex.

The major advantage of multiplex modelling is methodological: It reduces
the number of parameters by formalizing additional biological information.
So, the step which searches parameter values consistent with known or hypo-
thetical properties of the system is significantly improved. These advantages
open perspectives to study larger gene regulatory networks.

Another advantage of multiplexes is to facilitate manipulations of net-
works. For example, we may develop graph folding methods in order to
reduce the number of variables, at the price of possibly longformulas in
multiplexes. However the role of some variables in a path is essentially to
delay the global process. Consequently to improve the biological usefulness
of such abstractions, it seems necessary to take delays intoaccount. One of
our future works will be to introduce delays in multiplexes.
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