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Abstract. Modelling activities in molecular biology face the di�culty
of prediction to link molecular knowledge with cell phenotypes. Even
when the interaction graph between molecules is known, the deduction
of the cellular dynamics from this graph remains a strong corner stone
of the modelling activity, in particular one has to face the parameter
identi�cation problem. This article is devoted to convince the reader
that computers can be used not only to simulate a model of the studied
biological system but also to deduce the sets of parameter values that lead
to a behaviour compatible with the biological knowledge (or hypotheses)
about dynamics. This approach is based on formal logic. It is illustrated
in the discrete modelling framework of genetic regulatory networks due
to René Thomas.

1 Introduction: modelling gene regulatory networks

Since the advent of molecular biology, biologists have to face increasing di�cul-
ties of prediction to link molecular knowledge with cell phenotypes. The belief
that the sequencing of genomes would rapidly open the door to a personal-
ized medicine has been confronted at �rst to the necessity of annotating �nely
genomes, then to the di�culty to deduce the structure(s) of proteins, then to the
huge inventory of interactions that constitute biological networks, and so on. In
the same way, we have to face now the fact that the knowledge of an interaction
graph does not make it possible to deduce the cellular dynamics. Indeed, inter-
action graphs are of static nature in the same way as genetic sequences, and it
turns out that a large number of parameters, which are unknown and not easily
measurable, control the dynamics of interactions.

Moreover, combined interactions (and especially feedback circuits in an in-
teraction graph) result in several possible behaviours of the system, qualitatively
very di�erent. Even with only two genes the situation is far from simple. Let us
consider for example the interaction graph of Figure 1.

This simple graph contains 2 circuits, whose intersection is the gene x. The
left hand side circuit is said positive:
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Fig. 1. A simple interaction graph containing a positive circuits and a negative one.

� If, from an external stress, the concentration level of the protein coded by
gene x grows up, then, at a certain threshold, it will favour the expression
of x, producing in turn more x proteins even if the external stress has dis-
appeared.

� On the contrary, if the concentration level of the protein of gene x is low,
then it will not favour the expression of x, and the concentration level of the
x protein can stay at a low level.

More generally, a positive circuit in a gene interaction network is a circuit that
contains an even number of inhibitions, and a positive circuit favours the ex-
istence of 2 stable states [28, 19, 24, 10, 27, 21] (respectively high level and low
level of expression of x).

The right hand side circuit is said negative because it contains an odd number
of inhibitions:
� If the concentration level of the protein coded by gene x grows up, then

it will favour the expression of gene y, which will in turn inhibit gene x,
resulting in a decreasing of the x protein concentration.

� Conversely, a low concentration level of the x protein shall decrease the
expression level of gene y, which shall become unable to inhibit x, resulting
in a higher expression level of x. . . and the process will start again.

More generally, a negative circuit favours homeostasy : oscillations which can
either be damped towards a unique stable state or sustained towards a limit
cycle surrounding a unique unstable equilibrium state of the biological system.

The two circuits of Figure 1 are consequently competitors: do we get one or
two stable states? shall we observe oscillations? and if so, do we get oscillations
around a unique stable state or around two stable states? These predictions
entirely depend on parameters that control the strength of the activation or
inhibition arrows of the interaction graph (see Section 2.3).

Most of the time, mathematical models are used to perform simulations using
computers. Biological knowledge is encoded into ordinary di�erential equations
(ODE) for instance, and many parameters of the system of ODEs are a priori
unknown, a few of them being approximately known. Many and many simula-
tions are performed, with di�erent values for the parameters, and the behaviour
observed in silico is compared with the known in vivo behaviour. This pro-
cess, by trial and error, makes it possible to propose a robust set of parameters



(among others) that is compatible with the biological observations. Then, sev-
eral additional simulations that simulate novel situations can predict interesting
behaviours, and suggest new biological experiments.

The goal of this article is to convince the reader that �brute force simula-
tions� are not the only way to use a computer for gene regulatory networks. A
computer can do more than computations. A computer manipulates symbols.
Consequently, using deduction rules, a computer can perform proofs within ad-
equate logics. One of the main advantages of logics is that they exhaustively
manipulate sets of models, and exhaustively manage the subset of all models
that satisfy a given set of properties. More precisely, a logic provides three well
established concepts:

� a syntax that de�nes the properties that can be expressed and manipulated
(these properties are called formulas),

� a semantics that de�nes the models under consideration and the meaning of
each formula according to these models,

� deduction rules or model checking from which we get algorithms in order to
prove if a given model (or a set of models) satisfy a formula (or a �nite set
of formulas).

Logic can thus be used to manipulate, in a computer aided manner, the set of
all the models that satisfy a given set of known properties. Such an exhaustive
approach avoids focusing on one model, which can be �tuned� ad libitum because
it has many parameters and few equations. Consequently it avoids focusing on
a model which is non predictive. Logic also helps studying the ability to refute
a set of models with the current experimental capabilities, it also brings useful
concepts such as observationally equivalent models, and so on. More generally
formal methods are helpful to assist biologists in their reasonnings [4, 7, 22, 1,
18].

In this article, we provide a survey of the �SMBioNet method� whose purpose
is to elucidate the behaviour of a gene interaction graph, to �nd all the possible
parameter values (if any), and to suggest suitable experiments to validate or to
refute a given biological hypothesis. In the next section, we remind the approach
of René Thomas [29] to obtain discrete models (with �nite sets of possible states)
for gene regulatory networks. We take as a pedagogical example the well known
lactose operon in E. coli. In Section 3, we show how temporal logic and more
precisely CTL can be used to properly encode biological properties. In Section 4,
we show how temporal logic can be used to guide the process of gene network
elucidation.

2 Discrete framework for gene regulatory networks

2.1 A classical example

In this article, we consider the system of the lac operon which plays a crucial
role in the transport and metabolism of lactose in Escherichia coli and some



other enteric bacteria [11]. Lactose is a sugar which can be used as a source of
carbon mandatory for mitosis. This system allows to switch on the production
of enzymes allowing the metabolism of carbon only if lactose is available and no
other more readily-available energy sources are available (e.g. glucose).

The lactose operon and its associated biological system. The operon
consists of three adjacent structural genes, a promoter, a terminator, and an op-
erator. The lac operon is regulated by several factors including the availability
of glucose or of lactose. When lactose is absent in the current environment, a
repressor protein maintains the expression of the operon at its basal level. In
presence of lactose, it enters into the cell thanks to a protein named permease
which is coded by the operon itself. The lactose proteins have a�nity to the
repressor proteins, form complexes with them leading �rst to a decreasing of the
concentration of free repressor and thus to the activation of the operon. Conse-
quently, the permease concentration increases, the lactose enters more e�ciently
into the cell, maintaining the low concentration of free repressor. These interac-
tions form then a positive feedback loop on the intracellular lactose (left part of
Figure 2).

Another protein coded by the operon plays also a role in the carbon metabolism:
the enzyme galactosidase. It is responsible for the degradation of the lactose in
order to transform the lactose into carbon. Thus the increasing of the intracellu-
lar lactose leads to an increasing of the galactosidase, then to the decreasing of
the intracellular lactose. These interactions form then a negative feedback loop
on the intracellular lactose (right part of Figure 2).

Moreover, when glucose is present, it inhibits indirectly the transcription of
the operon (via an indirect inhibition of cAMP (cyclic Adenosine MonoPhospate)
which forms with CAP (Catabolite gene Activator Proteins) the complex respon-
sible for the transcription of the operon. Thus this alternative pathway of the
carbon metabolism is inhibited.

To summarize, the intracellular lactose is subject to two in�uences which are
contradictory one to another. The positive feedback loop attempts to keep the
high concentration of intracellular lactose whereas the negative feedback loop
attempts to decrease this concentration, as shown in Figure 2.

Biological questions drive modelling abstractions. The modelling of a
biological system often means to construct a mathematical objet that mimics
the behaviours of the considered biological system. The elaborated model is
often built according to a particular knowledge on the system (interactions,
structuration, published behaviours, hypotheses. . . ), and this knowledge is often
not complete: for example one may improperly focus on a given subsystem.
Thus the modelling process presented in this paper proposes to construct models
according a particular point of view on the biological system. This point of view
may turn out to be inconsistent and the modelling process should be able to
point out inconsistencies leading to reconsider the model(s).
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Fig. 2. Schematic representation of the lac operon system in Escherichia coli

The construction of a model aims at studying a particular behaviour of the
system. Each facet of the system corresponds to a particular partial model. When
this facet of the system is understood, the modeller can throw away the current
model in order to go further in the understanding of the system. In other words,
the point of view of the modeller evolves during the modelling process, leading
to re�nements or re-buildings of the model.

In such a perspective, as the construction of the model is based on a set of
biological facts and hypotheses, it becomes possible to construct a model only
to test di�erent hypotheses, to apprehend the consequences of such hypotheses
and possibly to refute some of them. Last but not the least, these models can
be used in order to suggest some experiments.

For example, if biologists want to put the spot on the use of lactose, then
we can adopt a modelling point of view that implicitly assumes the absence
of glucose. Then glucose does not belong to the model any more. Moreover,
even if it may seem surprising, the lacI repressor can be suppressed because the
inhibition of cellular lactose on lacI and the inhibition of the lacI repressor on
the operon are known to be always functional. These successive repressions can
consequently be abstracted by a unique direct activation from cellular lactose to
the operon.

Depending on the studied hypotheses, some additional simpli�cations of the
model are possible:

� If the hypothesis does not refer explicitly to the galactosidase, then we can
abstract galactosidase in a similar manner than for the repressor, see Fig-
ure 3.

� If the hypothesis does not refer explicitly to the permease, then we can
abstract permease as in Figure 4.

In the sequel of this article we will consider the interaction schema of Figure 4.
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Fig. 3. Abstraction of the lac operon system when focusing on intra-cellular lactose
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Fig. 4. Abstraction of the lac operon system when focusing on intra-cellular lactose
and galactosidase.

2.2 Gene interaction networks
Discretization. When modelling gene interactions, threshold phenomena ob-
served in biology [16] constitute one of the key points for the comprehension of
the behaviour of the system. Combined with the additional in vivo phenomenon
of macromolecule degradation, the interaction curves get a sigmoidal shape (e.g.
Hill functions) [6], see Figure 5. Then, it becomes clear that for each interac-
tion, two qualitative situations have to be considered: the regulation is e�ective
if the concentration of the regulator is above the threshold of the sigmoid, and
conversely, it is ine�ective if the concentration of the regulator is below the
threshold.

When the product of a gene regulates more than one target, more than two
situations have to be considered. For example, Figure 5 assumes that u is a
gene product which acts positively on v and negatively on w; each curve being
the concentration of v (resp. w) with respect to the concentration of u; after a
su�cient delay for u to act on v (resp. w). Obviously, three regions are relevant
in the di�erent levels of concentration of u:

� In the �rst region u acts neither on v nor on w,
� In the second region, u acts on v but it still does not act on w:
� In the last region, u acts both on v and w:

The sigmoid nature of the interactions shown in Fig. 5 is almost always ver-
i�ed and it justi�es this discretization of the concentration levels of u: three
abstract levels (0, 1 and 2) emerge corresponding to the three previous regions
and constitute the only relevant information from a qualitative point of view1.

The generalization is straightforward: if a gene acts on n targets, at most
n + 1 abstract regions are considered (from 0 to n). Less abstract levels are
possible when two thresholds for two di�erent targets are equal.
1 Atypic behaviours on the thresholds can also be studied, see for example [8].
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Fig. 5. Discretization of concentration of a regulator with 2 targets.

Gene regulatory graphs. A biological regulatory graph is de�ned as a labelled
directed graph. A vertex represents a variable (which can abstract a gene and
its protein for instance) and has a boundary which is the maximal value of its
discrete concentration level. Each directed edge u → v represents an action of
u on v. The corresponding sigmoid can be increasing or decreasing (Figure 5),
leading respectively to an activation or an inhibition. Thus each directed edge
u→ v is labelled with an integer threshold belonging to [0, bu] and a sign: + for
an activation of v and − for an inhibition of v.

De�nition 1. A biological regulatory graph is a labelled directed graph G =
(V,E) where:

� each vertex v of V , called variable, is provided with a boundary bv ∈ N∗ less
or equal to the out-degree of v in G; except when the out-degree is 0 where
bv = 1;

� each edge u→ v of E is labelled with a couple (t; ε) where t, called threshold,
is an integer between 1 and bu and ε ∈ {−,+}.

The schematic �gure 4 is too informal to represent a biological regulatory
graph: the edge modelling the auto-regulation of the intra-cellular lactose does
not point on a variable but on an edge and, moreover, the thresholds are missing.

To construct from the �gure 4 a biological regulatory graph, we modify the
edge modelling the auto-regulation of the intra-cellular lactose: its target be-
comes directly the intra-cellular lactose, see Figure 6. Moreover, three di�erent
rankings of thresholds can be considered : cases A, B or C.

Gene regulatory networks. The discretization step allows one to consider only
situations which are qualitatively di�erent: if an abstract level changes, there ex-
ists at least one interaction which becomes e�ective or ine�ective. To go further,
one has to de�ne what are the possible evolutions of each variable under some
e�ective regulations. Assuming that u1 . . . un have an in�uence on v (entering
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Fig. 6. Three di�erent biological regulatory graphs of the operon lactose system (note
the di�erent values of interaction thresholds).

arrows ui → v), toward which concentration level is v attracted? This level de-
pends on the set of active regulators, which evolves with time: at a given time,
only some of them pass the threshold.

For example in Figure 6-A, the level toward which intra-cellular lactose is
attracted only depends on the presence of extra-cellular lactose (i.e. has a level
greater or equal to 1), the presence of itself (i.e. has a level greater or equal to
2) and the absence of galactosidase (i.e. has a level strictly less than 1). Indeed
the absence of an inhibitor is equivalent to the presence of an activator, from
the symmetry of sigmoids.

These �target� concentration levels are de�ned by parameters, denoted by
kv,ω, where ω is a subset of regulators. Biological regulatory networks are bio-
logical regulatory graph (De�nition 1) together with these parameters kv,ω.
De�nition 2. A biological regulatory network is a couple R = (G,K) where
G = (V,E) is a biological regulatory graph, and K = {kv,ω} is a family of
integers such that
� v belongs to V ,
� ω is a subset of G−1(v), the set of predecessors of v in the graph G, and will

be called a set of resources of v,
� 0 ≤ kv,ω ≤ bv

Intuitivelly, the parameter kv,ω describes the behaviour of variable v when all
variables of ω act as a resource of v (a resource being the presence of an activator
or the absence of an inhibitor).

Most of the time, we consider an additional monotony condition called the
Snoussi condition [25]:

∀v ∈ V, ∀ω, ω′ ∈ G−1(v), ω ⊂ ω′ ⇒ kv,ω ≤ kv,ω′

In other words, values of parameters never contradict the quantity of resources.
For the running example, the variable intra-cellular lactose, noted intra in

the sequel, is regulated by two activators, and by one inhibitor. This variable can
thus be regulated by 23 = 8 di�erent subsets of its inhibitors/activators. In the
same way, 2 parameters have to be given for the variable galactosidase, noted g
in the sequel. To sum up, 10 parameters have to be given

K =
{

kg,∅, kg,{intra}, kintra,∅, kintra,{extra}, kintra,{g}, kintra,{extra,g},
kintra,{intra}, kintra,{intra,extra}, kintra,{intra,g}, kintra,{intra,extra,g}

}
.



These parameters control the dynamics of the model since they de�ne how tar-
gets evolve according to their current sets of ressources.

2.3 Dynamics of gene networks: State graphs.

At a given time, each variable of a regulatory network has a unique concentration
level. The state of the biological regulatory network is the vector of concentration
levels (the coordinate associated with any variable u is an integer belonging to
the interval from 0 to the boundary bv).

According to a given state, the resources of a variable are the regulators
that help the variable to be expressed. The set of resources of a variable is
constituted by all activators whose level is above the threshold of activation and
all the inhibitors whose level is below the threshold.

Resources are used to determine the evolution of the system. At a given state,
each variable is attracted by the corresponding parameters kv,ω where ω is its
set of resources. The function that associates with each state the vector formed
by the corresponding kv,ω is an endomorphism of the state space. Table 1 de�nes
the endomorphism for the example of Figure 6-A when extra-cellular lactose is
present (parameter values are given in the caption).

extra intra g ω(intra) ω(g) kintra,ω(intra) kg,ω(g)

1 0 0 {extra, g} {} 2 0
1 0 1 {extra} {} 0 0
1 1 0 {extra, g} {intra} 2 1
1 1 1 {extra} {intra} 0 1
1 2 0 {extra, intra, g} {intra} 2 1
1 2 1 {extra, intra} {intra} 1 1

Table 1. Partial state table for the �gure 6-A. Here only state with extra-cellular lac-
tose are considered. Values of parameters are : kintra,{extra} = 0, kintra,{extra,intra} =
1, kintra,{extra,g} = 2, kintra,{extra,intra,g} = 2, kg,∅ = 0 and kg,{intra} = 1.

Such a table can be represented by a asynchronous state graph in which each
state has a unique successor: the state towards which the system is attracted,
see the left part of Figure 7 where extra is supposed to be equal to 1. In this
example, when the system is in the state (1, 1, 0), it is attracted towards the
state (1, 2, 1). Variables intra and g are both attracted toward di�erent values.
The probability that both variables pass through their respective thresholds
at the same time is negligible in vivo, but we do not know which one will be
passed �rst. Accordingly we replace such a diagonal transition by the collection
of the transitions which modify only one of the involved variables at a time. For
example, transition (1, 1, 0) → (1, 2, 1) is replaced by the transitions (1, 1, 0) →
(1, 2, 0) and (1, 1, 0) → (1, 1, 1): the �rst one corresponds to the case where the



variable intra evolves �rst whereas the second one corresponds to the case where
the variable g evolves �rst, see the right part of Figure 7.

An arrow of length greater or equal to 2 would imply a variable which in-
creases its concentration level abruptly and jumps several thresholds. For our
example, when the system is in the state (1, 0, 0), it is attracted towards the state
(1, 2, 0). Since the concentration varies continuously, independently of whether it
varies rapidly or not, real transitions should only address neighbor states. Thus,
transition (1, 0, 0) → (1, 2, 0) is replaced by the transition (1, 0, 0) → (1, 1, 0),
see the right part of Figure 7.

kintra,{extra} = 0
kintra,{extra,intra} = 1
kintra,{extra,g} = 2
kintra,{extra,intra,g} = 2
kg,∅ = 0
kg,{intra} = 1

1

0

1 20

synchronous state graph

1

0

0 1 2

asynchronous state graph

intra

g g

intra

Fig. 7. From the values of parameters to the asynchronous state graph.
.

The value of the parameter kv,ω (where ω is the set of resources of v at the
current state η), indicates how the expression level of v can evolve from the
state η. It can increase (respectively decrease) if the parameter value is greater
(respectively smaller) than the current level of the variable v. The expression
level must stay constant if both values are equal. Formally:

De�nition 3. The asynchronous state graph of the biologigical regulatory net-
work R = (G,K) is de�ned as follow:

� the set of vertices is the set of states Πv∈V [0, bv]
� there is a transition from the state n = (n1, . . . , n|V |) to m = (m1, . . . ,m|V |)

i�
{∃!i such that mi 6= ni

mi = (ni . ki,ωi(n))
or

{
m = n
∀i ∈ [1, |V |], ni = (ni . ki;ωi(n))

where ωv(n) represents the set of resources of variable v at state n and where
(a . b) = a+ 1 if b > a, (a . b) = a− 1 if b < a and (a . b) = a if b = a.

Transitions have some biological interpretations. For the current example,
horizontal left-to-right transitions correspond to the entering of extra-cellular
lactose into the cell whereas horizontal right-to-left transitions correspond to
the the breakdown of lactose into glucose.



Unfortunatelly, this asynchronous state graph has been built from the knowl-
edge of the di�erent parameters. In fact, usualy no information about these
parameters is available, it is necessary to consider all possible values.

The gene regulatory graphs of Figure 6-A and 6-B, give rise to 23 = 8 parame-
ters for intra-cellular lactose (intra) and 21 = 2 parameters for galactosidase (g).
The intra-parameters can get 3 possible values (from 0 to 2), the g-parameters
can get 2 possible values (0 or 1). So, there are 323×221

= 26244 di�erent regula-
tory networks associated to the regulatory graph of the �gures 6-A or 6-B. More
generally each gene of a regulatoty graph contributes for (out+1)2

in di�erent pa-
rameter combinations, where in and out are its in- and out-degrees in the graph,
and gene contributions are multiplicative. . . The total number of di�erents reg-
ulatory networks denoted by Figure 6 is thus 26244 + 26244 + 223 × 221

= 53512
because Figure 6-C assumes that the two outgoing arrows of intra-cellular lactose
share the same threshold.

Let us nevertheless note that the number of di�erent asynchronous state
graphs can be less than the number of parameterizations (two di�erent parame-
terizations can lead to the same state graph). For example, the parameterization
deduced from the one of Figure 7 by replacing the value of kintra,{extra,intra} by
0, leads to the same dynamics.

Anyway, the number of parameterizations depends of the number of interac-
tions pointing on each variables following a double exponential.

2.4 Introducing multiplexes
In order to decrease the number of parameterizations, other structural knowl-
edge can be useful. For example, let us consider a variable c that has 2 di�erent
activators a and b. Without information, we have to consider 22 = 4 di�erent
parameters associated with the four situations : what is the evolution of c when
both regulators are absent, when only a is present, when only b is present and
when both are present.
Sometimes additional structural knowledge can be derived from molecular biol-
ogy: for example, it could be known that the regulation takes place only when
both are present, because the e�ective regulator is in fact the complex of a and
b. In such a case, the four parameters account for only two parameters: what
is the evolution when the complex is present (both regulators are present) and
when the complex is absent (at least one of the regulator is absent). Such infor-
mation reduces the number of parameters, and drastically decreases the number
of parameterizations to consider.

Multiplexes allows the introduction of such information [2]. They provide a
slight extension of the R. Thomas' modelling, with explicit information about
cooperative, concurrent or more complex molecular interactions [13, 14]. Intuitiv-
elly, a regulatory graph with multiplexes is a graph with two kinds of vertices:
variables account for vertices (they constitute the set V of nodes, V for variables)
and moreover each information about cooperative concurrent or more complex
molecular interactions also gives rise to a vertex (they constitute the set M of
nodes, M for multiplexes). Information about molecular interactions is coded



into a logical formula that explains when the interaction takes place. In the
previous example of complexation, the interaction takes place only when both
regulators are present that is when (a ≥ sa) ∧ (b ≥ sb).
De�nition 4. A gene regulatory graph with multiplexes, is a tuple G = (V,M,EV , EM )
such that:
1. (V ∪M,EV ∪EM ) constitutes a (labelled) directed graph whose set of nodes

is V ∪M and set of edges is EV ∪ EM , with EV ⊂ V × IN ×M and EM ⊂
M × (V ∪M).

2. V and M are disjoint �nite sets. Nodes of V are called variables and nodes
of M are called multiplexes. An edge (v, s,m) of EV is denoted (v s→ m)
where s is called the threshold.

3. Each variable v of V is labelled with a positive integer bv called the bound of
v.

4. Each multiplex m of M is labelled with a formula belonging to the language
Lm inductively de�ned by:
� If (v s→ m) ∈ EV , then vs is an atom of Lm, and if (m′ → m) ∈ EM

then m′ is an atom of Lm.
� If φ and ψ belong to Lm then ¬φ, (φ ∧ ψ), (φ ∨ ψ) and (φ ⇒ Ψ) also

belong to Lm.
5. All cycles of the underlying graph (V ∪M,EV ∪ EM ) contain at least one

node belonging to V 2.
Let us remark that the point 1 of the previous de�nition separates two sets
of edges. On one hand the �rst set is made of edges starting from a variable:
their targets are multiplexes, they are labelled by a threshold that determine the
atoms used in the target multiplexes. On the other hand, the second set is made
of edges starting from a multiplex: their targets can be either a variable (the
target of the complex interaction) or a multiplex (the expressionlogical formula
of the source multiplex plays the role of an atom in the language of the target
multiplex).

We de�ne now the regulatory network with multiplexes as a regulatory graph
with multiplexes provided with a familly of parameters which de�ne the evo-
lutions of the system according to the subset of predecessors (which are now
multiplexes instead of variables).
De�nition 5. A gene regulatory network with multiplexes is a couple (G,K)
where
� G = (V,M,EV , EM ) is a regulatory graph with multiplexes.
� K = {kv,ω} is a family of parameters indexed by v ∈ V and ω ⊂ G−1(v)

such that all kv,ω are integers and 0 ≤ kv,ω ≤ bv.
As in the classical framework, the parameters kv,ω de�ne how evolves the

variable v when set of e�ective interactions on v is ω ⊂ G−1(v). This set of
e�ective interactions, named set of resources is de�ned inductivelly for each
variable v and each state η :
2 this condition is mandatory for the de�nition of dynamics (De�nition 6).



De�nition 6. Given a regulatory graph with multiplex G = (V,M,EV , EM ) and
a state η of G, the set of resources of a variable v ∈ V for the state η is the
set of multiplexes m of G−1(v) such that the formula ϕm of the multiplex m is
satis�ed. The interpretation of ϕm in m is inductively de�ned by:
� If ϕm is reduced to an atom vs of G−1(m) then ϕm is satis�ed i� v ≥ s

according to the state η.
� If ϕm is reduced to an atom m′ ∈M of G−1(m) then ϕm is satis�ed i� ϕm′

of m′ is satis�ed.
� If ϕm ≡ ψ1 ∧ ψ2 then ϕm is satis�ed if ψ1 and ψ2 are satis�ed; and we

proceed similarly for all other connectives.
We note ρ(v, η) the set of resources of v for the state η.

De�nition 3 of the asynchronous state graph remains valid for gene regulatory
graphs with multiplexes: the set of vertices does not change, nor the de�nition of
transitions, the only di�erence resids in the de�nition of the state of resources:
ωi(n) has to be replaced by ρ(v, n).

The contribution of multiplexes is thus simply to decrease the number of pa-
rameters. Introducing a multiplex corresponds to specify how the predecessors of
the multiplex cooperate, and allows one to associate a single parameter whatever
the number of predecessors. For example, if the cooperation of three regulators
on a common target is well know, without multiplexes, one needs 23 = 8 pa-
rameters to describe the evolutions of the targer in each situation whereas when
considering multiplexes, only 2 are mandatory: one to describe the evolution of
the target when cooperation of regulators takes places, and another to describe
the evolution of the target when the cooperation does not take place.

3 Temporal logic and Model Checking for biology
Since the parameters are generally not measurable in vivo, �nding a suitable
classes of parameters constitutes a major issue of the modelling activity. This
reverse engineering problem is a parameter identi�cation problem since the struc-
ture of the interactions is supposed known, see for example [15] for such a prob-
lem in the di�erential framework.

In our discrete framework, this problem is simpler because of the �nite num-
ber of parameterizations to consider. Nevertheless this number is so enormous
that a computer aided method is needed to help biologists to go further in the
comprehension of the biological system under study. Moreover, when studying a
system, the biological knowledge arrives in an incremental manner. It would be
apreciable to apprehend the problem in such a way that when a new knowledge
has to be taken into account, previous work is not put into question. In other
words, one would like to handle not only a possible model of the system, but the
exhaustive set of models which are, at a given time, acceptable according to the
current knowledge.

Biological knowledge, extracted from the litterature, about the behaviour of
the system, can be seen as constraints on the set of possible dynamics: a model



is satisfactory only if its dynamics are compatible with the biological behaviours
reported in the litterature. In a similar way, when a new wet experiment leads
to new knowledge about the behaviour of the system, it can also be used as a
new constraint which �lter the set of possible models: only the subset of models
whose dynamics is compatible with this new experiment have to be conserved
for further investigation.

It becomes straightforward that a computer aided approach has to be de-
velopped in order to manipulate the di�erent knowledge about the dynamics of
the system and to make use of them to automatically handle the set of compat-
ible parameterizations. Logic precisely allows the de�nition of the sets of these
models. In constitutes a suited approach for addressing such a combinatorial
problem.

3.1 The Computation Tree Logic (CTL)

Computation tree logic (CTL) is a branching-time logic, in which the time struc-
ture is like a tree: the future is not determined; there are di�erent paths in the
future, in other words, at some points of the time, it is possible to choose among
a set of di�erent evolutions.

CTL is generally used in formal veri�cation of software or hardware, specially
when the arti�cial system is supposed to control systems where consequences of
a bug can lead to tragedies (public transportation, nuclear power plants, ...).
For such a goal, software applications known as model checkers are useful: they
determine if a given model of a system satis�es or not a given temporal property
which is written in CTL.

Syntax of CTL. The language of well-formed CTL Formulae is generated by the
following recursive de�nition :

φ ::=





⊥ | > | p | atoms
(¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ⇒ φ) | (φ⇔ φ) | usual connectives
AXφ | EXφ | AFφ | EFφ | temporal connectives
AGφ | EGφ | A[φUφ] | E[φUφ] temporal connectives

where ⊥ and > codes for False and True, p denotes a particular atomic formula,
and φ is another well formed CTL formula. In the context of R. Thomas theory
for genetic regulatory networks, the atoms can be of the form (a ∝ n) where

� a is a variable of the system,
� ∝ is a operator in {<,≤, >,≥}
� n is an integer belonging to the interval [0, ba].

Semantics of CTL. This de�nition uses usual connectives ( ¬,∧,∨,⇒,⇔ as well
as temporal modalities which are pairs of symbols: the �rst element of the pair
is A or E and the second belongs to {X,F,G,U} whose meanings are given in
the next table.



First letter Second letter
A for All paths choices X neXt state
E for at least one path choice (Exist) F some Future state

G all future states (Globally)
U Until

Figure 8 illustrates each temporal modality :
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Fig. 8. Semantic of CTL formula. Dashed arrows (resp. arrows with empty head) point
on states where ϕ (resp. ψ) is satis�ed.

� EX(ϕ) is true at the current state if there exists a successor state where ϕ
is true.

� AX(ϕ) is true at the current state if in all successor states, ϕ is true.
� EF (ϕ) is true at the current state if there exists a path leading to a state

where ϕ is true.
� AF (ϕ) is true at the current state if all paths lead to a state where ϕ is true.
� EG(ϕ) is true at the current state if there exists a path starting from the

current state whose all states satisfy the formula ϕ.
� AG(ϕ) is true at the current state if all states of all paths starting from the

current state, satisfy the formula ϕ.
� E[ϕUψ] is true at the current state if there exists a path starting from the

current state leading to a state where ψ is true, and passing only through
states satisfying ϕ.

� A[ϕUψ] is true at the current state if all paths starting from the current
state lead to a state where ψ is true, pass only through states satisfying ϕ.



For example AX(intra ≥ 1) means that in all next states accessible from the
current state in the asynchronous state graph, the concentration level of intra
is greater or equal to 1. Note that this last formula is false in the asynchronous
state graph of �gure 7 if the initial state is (1, 1) or (0, 1) and is is true for all
other initial states. Formula EG(g = 0) means that there exists at least one path
starting from the current state where the concentration of g is constantly equal
to 0. In Fig. 7 no state satis�es this formula, because from each state, all paths
will return to a state where the concentration of g is equal to 0.

We say that a model or a state graph satis�es a CTL formula, if each state
satis�es the formula.

3.2 CTL to encode biological properties

CTL formulas are useful to express temporal properties of the biological system.
Once such properties have been elaborated, a model of the biological system will
be acceptable only if its state graph satis�es the CTL formulas, otherwise, it is
not considered anymore.

The �rst temporal property focuses on the functionality of the entering of
lactose into the cell. When external lactose is constantly present in the environ-
ment, after a su�cently long time, intra-cellular lactose will increase and will at
least cross its �rst threshold. This �rst property can then be written in CTL by
the formula ϕ1 as follows :

ϕ1 ≡ AG(extra = 1) =⇒ AF (intra > 0)

This CTL formula is not satis�ed by the state graph of Figure 9 (where only
the plane extra = 1 is drawn) because from the state (0, 0), it is not possible to
increase the abstract level of intra. Let us remark that the state graph of Figure 7
does satisfy it because each path leads to a state where intra is present.

kintra,{extra} = 0
kintra,{extra,intra} = 2
kintra,{extra,g} = 0
kintra,{extra,intra,g} = 2
kg,∅ = 0
kg,{intra} = 1

asynchronous state graph

1

0

0 1 2

synchronous state graph

1

0

1 20

g

intra

g

intra

Fig. 9. From others values of parameters to the asynchronous state graph.
.

The second temporal property focuses on the production of galactosidase.
When external lactose is constantly present in the environment, after a su�cently



long time, β-galactosidase will be su�ciently produced to degrade lactose, and
then it will stay present forever. The translation of this property into CTL is:

ϕ2 ≡ AG(extra = 1) =⇒ AF (AG(g = 1))

This CTL formula is not satis�ed by the states graphs of �gures 7 and 9: In the
�rst case, each path leads to a state where g = 0 whereas in the second case,
from the state (0, 0), it is not possible to increase the abstract level of g.

Similarly, when external lactose is constantly absent in the environment,
after a su�cently long time, β-galactosidase will disappear. The CTL formula
expressing this property is:

ϕ3 ≡ AG(extra = 0) =⇒ AF (g = 0)

The fourth formula we consider, states that when environment is rich in
lactose, the degradation of intra-cellular lactose to produce carbon, is not suf-
�cient in order to entirely consume the intra-cellular lactose. In other words,
the permease allows the lactose to enter su�ciently rapidly in order to balance
the consumption of intra-cellular lactose. To express this property, we focus on
the case where extra-cellular lactose is present, intra-cellular lactose and galac-
tosidase are present. In such a con�guration, the intra-cellular lactose will never
reach the basal level equal to 0. The CTL formula coding for this property is
then written as follow :

ϕ4 ≡ (AG(extra = 1) ∧ (intra > 0) ∧ (g = 1)) =⇒ AG (intra > 0)

This CTL formula is not satis�ed by the state graph of �gure 7 because from
each state, there is a path that leads to the total degradation of intra. The state
graph of �gure 9 does not satisfy it because each path starting from a state
where intra = 1 leads to a total degradation of intra.

The two last temporal properties focus on the functionality of the lactose
pathway, even when environment is no more rich in lactose. On one hand, when
intra-cellular lactose is present at level 1 but extra-cellular lactose is absent,
the pathway leads to a state where intra-cellular lactose has been entirely con-
summed, without passing through a state where intra is at its highest level (the
only source of intra-cellular lactose is the extra-cellular one). Moreover, when this
state is reached, there is no way to increase the concentration of intra-cellular
lactose: its level then remains to 0.

ϕ5 ≡ AG(extra = 0)∧(intra = 1) =⇒ A [(intra = 1)UAG(intra = 0)]

On the other hand, when intra-cellular lactose is present at level 2 but extra-
cellular lactose absent, the pathway leads to a state where intra-cellular lactose
has decreased to level 1.

ϕ6 ≡ AG(extra = 0) ∧ (intra = 2) =⇒ AF (intra = 1)

These two previous CTL formulas cannot be checked in Figures 7 and 9 because
the formulas concern the dynamics of the system when extra is absent whereas
the �gures focus on the dynamics when extra is present.



The formal language CTL has been developped in a computer science frame-
work, and then is not dedicated to gene regulatory networks. For example, it
is not possible to express in CTL that the dynamic system presents n di�erent
stable states. Nevertheless if we know a frontier between two stable behaviours,
it becomes possible to express it in CTL. Let us consider a system where if vari-
able a is at a level less than 2, the system converges to a stable state, and if
variable a is at a level greater than 2, the system converges to another stable
state. This property can be translated into the formula :

((a < 2) ⇒ AG(a < 2)) ∧ ((a >= 2) ⇒ AG(a >= 2))

Even if in some cases the translation of a property is tricky, in practice, CTL is
su�cient to express the majority of biological properties useful for gene regula-
tory networks.

Let us now emphasize that the CTL language makes the link between the
biological experiments and the models that are supposed to represent the be-
haviours of the studied biological system. Indeed,

� a CTL formula can be confronted against a model: the traces of the dynamics
of the model verify the temporeal properties expressed through the CTL
formula,

� a CTL formula can also be confronted against traces observed through an
wet experiment: either the wet experiment is a realisation of the temporal
property coded by the CTL formula, or it accounts for a counter example.

So, the modelling activity has to focus on the manner to select models that satisfy
CTL formulas representing dynamic knowledge, extracted from experiments,
about the system.

4 Computer aided elaboration of formal models

4.1 The landscape
The subject of this article is to present our computer aided method to accompany
the process of discovery in biology, by using formal modelling in order to make
valuable predictions.

According to this point of view, the �ultimate model�, which would perfectly
mimic the in vivo behaviour, is not our object of interest. It may be surpris-
ing for computer scientists, but this model is in fact rarely a subject of interest
for biologists. Indeed the �ultimate model� would be untractable. The majority
of valuable results, for a researcher in biology, comes from well chosen wet ex-
periments and contributions to biology �are� wet experiments. The theoretical
models are only intermediate objects, which re�ect intermediate hypotheses that
facilitate a good choice of experiments.

Consequently, a computer aided process of discovery requires to formally
manage these models. It implies a formal expression of the sensible knowledge
about the biological function under interest. It also implies a formal expression of



the set of (possibly successive) biological hypotheses that motivate the biological
research. So, our method manages automatically the set of all possible models
and we take bene�t of this in order to guide a sensible choice of wet experiments.

There are two kind of knowledge:

� Structural knowledge, that inventories the set of relevant genes as well as
the possible gene interactions. This knowledge can come from static analysis
of gene sequences or protein sequences; it can come from dynamic data, e.g.
transcriptomic data, via machine learning techniques; it can also come from
the literature. This kind of knowledge can be formalized by one or several
putative regulatory graphs.

� Behavioural knowledge, that re�ects the dynamic properties of the biological
system, such as the response to a given stress, some possible stationnary
states, known oscillations, etc. This kind of knowledge can be formalized by
a set of temporal formulas.

They give rise to several formal objects of di�erent nature:

� The set M of all the structurally possible regulatory networks (for each
putative regulatory graph, we consider all possible values of all the param-
eters). So, M can be seen as the set of all possible models according to the
terminology of formal logic, since each regulatory network de�nes a unique
state graph.
For example, once the decision to make permease implicit is taken, the pos-
sible regulatory graphs are drawn in Figure 6, where all possible threshold
distributions are considered. Remember that it gives rise to 53512 di�erent
parameterizations (section 2.3).

� The set Φ of the CTL formulas that formalize the dynamic properties.
For example, according to Section 3.2, the set Φ can contain the 6 formulas
from ϕ1 to ϕ6.

� Moreover, as already mentioned, the biological research is usually motivated
by a biological hypothesis, that can be formalized via a set of CTL formulas
H.
For example, let us consider the following hypothesis: �If extra-cellular lac-
tose is constantly present then the positive circuit on intra-cellular lactose
is functional.� It would mean that when extra-cellular lactose is constantly
present, there is a multi-stationnarity on intra, which is separated by its
auto-induction threshold 2 (according to the notion of characteristic state
[26]). It can be formalized with H = {ψ1, ψ2} as follows:

ψ1 ≡ AG(extra = 1) =⇒ (intra = 2 =⇒ AG(intra = 2))
ψ2 ≡ AG(extra = 1) =⇒ (intra < 2 =⇒ AG(intra < 2))

Of course, if �the ultimate model� were known and properly de�ned (i.e. a regu-
latory network with known values for all its parameters), it would satisfy exactly
the set of behavioural properties that are true in vivo, and thus M would be
reduced to a singleton (the ultimate model), Φ would be useless and H would be
decided, by simply checking if H is satis�ed byM. The di�culty comes from the



uncertainty of the model structure and parameters, the incompleteness of the
behavioural knowledge and the complexity of the systems which makes intuitive
reasoning almost useless when studying hypotheses.

Fortunately, once the formalization step is performed, formal logic and formal
models allow us to test hypotheses, to check consistency, to elaborate more
precise models incrementally, and to suggest new biological experiments.
The set of potential models M and the set of properties Φ∪H being given, two
obvious scienti�c questions naturally arise:
1. Is it possible that Φ ∪H and M ? In other words: does it exist at least one

model of M that satis�es all the formulas in Φ∪H ? In the remainder, this
question will be referred to as the consistency question of knowledge and
hypotheses.

2. And if so, is it true in vivo that Φ ∪ H and M ? As a matter of fact, the
existence of a mathematical model satisfying the hypotheses is not su�cient.
We must verify that the model re�ecting the real in vivo behaviour belongs
to the set of models that satisfy Φ∪H. It implies to propose experiments in
order to validate or refute H (assuming that the knowledge Φ is validated).

For both questions, we can take bene�t of computer aided proofs and com-
puter optimized validation schemas can be proposed. More precisely, a CTL
property can be confronted to traces and traces can be either generated by wet
experiments or extracted from a state graph. Consequently a logic such as CTL
establishes a bridge between in vivo experiments and mathematical models.

4.2 Consistency
In practice, when actually working with researchers in biology, there is an obvious
method to check consistency:
1. Draw all the sensible regulatory graphs according to biological knowledge,

with all the sensible, possible threshold allocations. It formalizes the struc-
tural knowledge.

2. From the discussions with the biologists, express in CTL the known be-
havioural properties as well as the considered biological hypotheses. It de-
�nes Φ and H.

3. Then, automatically generate, for each possible regulatory graph, all the
possible values for all Thomas'parameters: we get all the possible regulatory
networks. For all of them, generate the corresponding state graph: it de�nes
M. Our software platform SMBioNet handles this automatically.

4. Check each of these models against Φ ∪ H. SMBioNet intensively uses the
model checker called NuSMV [5] to perform this step automatically.

If no model survive to the fourth step, then reconsider the hypotheses and per-
haps extend model schemas. . .
On the contrary, if at least one model survives, then the biological hypotheses are
consistent. Even better: the possible parameter sets Kv,ω have been exhaustively
identi�ed.



If we consider for example the set of models M characterized by Figure 6-A,
there are 19 parameter settings leading to a dynamics compatible with the set of
properties Φ∪H proposed above. Among the 8+2=10 parameters that govern the
dynamics, 6 of them are completely identi�ed (i.e., shared by the 19 parameter
settings): Kintra = 0, Kintra,g = 0, Kintra,extra = 1, Kintra,extra g = 1, Kg = 0
and Kg,intra = 1. The 4 other parameters are those were intra is a resource of
itself.

With respect to the classical ODE simulation method where some possible
parameters are identi�ed by trial and error, this method has the obvious advan-
tage to compute the exhaustive set of possible models according to the current
biological knowledge. It has also the crucial advantage of facilitating the refuta-
tion of models in a systematic manner.

The four steps described before, as such, replace a �brute force simulation
method� by a �brute force refutation method� based on formal logic. In fact,
the method is considerably more sophisticated in order to avoid the brute force
enumeration of all the possible models. For example, in SMBioNet, when several
regulatory networks share the same state graph, only one of them is considered:
even better, it is not necessary to generate common state graphs as they can be
identi�ed a priori. In [9, 17], logic programming and constraint solving are inte-
grated in this method and they almost entirely avoid the enumeration of models
in order to establish consistency. In [23] model checking is replaced by proof
techniques based on products of automata. Moreover, in practice, the use of
multiplexes considerably reduces the number of di�erent networks to be consid-
ered. Anyway, all these clever approaches considerably improve the algorithmic
treatment, but the global method remains the same.

4.3 Selection of biological experiments
Once the �rst question (consistency) is positively answered, the second question
(validation) has to be addressed: we aim at proposing �wet� experiment plans
in order to validate or refute H (assuming that the knowledge Φ is validated).
Here, we will address this question from a point of view entirely based on formal
logic.

The global shape. Our framework is based on CTL whose atoms allow the
comparison of the discrete expression level of a gene with a given integer value.
So, a regulatory graph being given, we can consider the set CTLsyntax of all the
formulas that can be written about the regulatory graph, according to the CTL
language. Notice that this set is not restricted to valid formulas: for example if
ϕ belongs to CTLsyntax then its negation ¬ϕ also belongs to CTLsyntax.

� The set of hypotheses H is a subset of CTLsyntax. In Figure 10, we delimit
the set CTLsyntax with a bold black line and H is drawn in a circle.

� Unfortunately, it usually does not exist a single feasible wet experiment that
can decide if H is valid or not in vivo (except for trivial hypotheses, which do
not deserve a research campaign). A given wet experiment reveals a small set



of CTL properties, which are usually elementary properties. So, feasible wet
experiments de�ne a subset of CTLsyntax: the set of all properties that can
be decided, without any ambiguity, from a unique feasible wet experiment.
Such properties are often called observable properties and we note Obs this
subset of CTLsyntax. In Figure 10, Obs is represented by the vertically
hatched set.

� H is usually disjoint from Obs, however we can consider the set ThΦ(H) of
all the consequences ofH (assuming the knowledge Φ). In Figure 10, ThΦ(H)
is represented by the horizontally hatched set.

� Let E = ThΦ(H) ∩ Obs be the intersection of ThΦ(H) and Obs. It denotes
the set of all the consequences of the hypotheses that can be veri�ed experi-
mentally. If ψ is a formula belonging to E then there exists a wet experiment
e after which the validity of ψ is decided without any ambiguity:
• If the experiment e �fails� then ψ is false in vivo and the hypothesis H

is refuted.
• If on the contrary the experiment e �succeeds� then ψ is true in vivo. . .

Of course it usually does not imply H.
In Figure 10, the intersection E de�nes the set of relevant experiments with
respect to the hypothesis H.
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Fig. 10. Sets of CTL formulas involved in the computer aided selection of biological
experiments

Observability and refutability. According to Popper [20], we should only
consider hypotheses H for which we can propose experiments able to refute H:
if H is false in vivo, there must exist a wet experiment e that fails. In other
words: ¬H =⇒ (∃ψ ∈ E | ¬ψ), which is equivalent to: E =⇒ H.

Consequently, refutability depends on the �power� of Obs with respect to
H because E = ThΦ(H) ∩ Obs. If Obs is �big enough� then it increases the
capability of E to refute H. If E does not imply H (assuming Φ) it may result



that experimental capabilities in biology are unsu�cient, so H is out of the scope
of current know-how and current knowledge. It may also be possible that the
wet laboratory has not enough fundings, or that the experimental cost would be
disproportionate with regard to the problem under consideration.

We have shown so far that, for the modelling process, properties (Φ and H)
are as much important as models (M). Refutability issues prove that �experi-
mental observability� (Obs) constitutes the third support of the process.

Often, observable formulas are of the form (ρ =⇒ AF (ω)) or (ρ =⇒ EF (ω))
where ρ characterizes some initial states that biologists can impose to a popu-
lation of cells at the beginning of the experiment, and ω is deducible without
any ambiguity from what can be observed at the end of the experiment. We
use AF when all repeated experiments give the same result, and EF when we
suspect that some additional conditions are imposed by the chosen experimental
protocol during the experiments.

According to our small running example, we may consider that only external
lactose can be controled, and that the �ux of entering lactose can be roughly
estimated. So, ρ can be of the form extra = 0 or extra = 1, possibly pre�xed
by a modality such as AG. Moreover, if the �ux is considered �high�, it denotes
the presence of many permease proteins, and consequently implies that intra
has reached the threshold 2 (according to Figure 6-A). So, we may imagine for
example that ω can be of the form intra = 2 or its negation intra < 2, possibly
pre�xed by modalities such as AG or AU . This de�nes Obs.
We will see later on that this observability is a rough underestimation, and how
formal proofs can help improving it.

Selection of experimental schemas. Unfortunately, E is in�nite in general,
so, the art of choosing �good� wet experiments can be formalized by heuritics to
select a �nite (small) subset of formulas in E that has �good� chances to refute
H if one of the corresponding experiments fails.

Classical testing frameworks from computer science [3, 12] aim at selecting
such subsets. However the subsets selected by the corresponding software testing
tools are always huge because running lot of tests on a computer costs almost
nothing. Nevertheless, the main idea of these frameworks can still be suitably ap-
plied to regulatory networks. Tests are selected incrementally and completeness
to the limit is the main preoccupation: if H is not valid then the incremental
selection process must be able to provide a counter-example after a certain num-
ber of iterations. It formally means that each possible reason for H to be false
is tested after a �nite (possibly large) amount of selection time.

Let us illustrate this completeness criteria on a simple case: according to our
example, H is made of 2 formulas ψ1 and ψ2. Spending a lot of money to refute
only ψ1 would be a bad idea: this strategy would be incomplete because if H is
false because ψ2 is false, then this strategy will never refute H. Thus, one must
try to refute both formulas.
Refutation of ψ1: AG(extra = 1) =⇒ (intra = 2 =⇒ AG(intra = 2))
It is well known that the truth table of �=⇒� is always true when the precondition



is false. Consequently, any wet experiment that does not ensure AG(extra = 1)
has no chance to refute the hypothesis. So, Popper tells us that any experiment
associated with ψ1 must constantly have external lactose (and remind that, from
the context, glucose is always absent).
For the same reason, one must start with a population of bacteria with intra = 2
as initial state. . . and unfortunately the precondition ρ ≡ AG(extra = 1) ∧
(intra = 2) is not reachable according to our description of observable formulas.
Moreover, our knowledge (ϕ1 to ϕ6) never concludes on the atom intra = 2,
so CTL cannot propose a su�cient condition to reach this initial state. Let us
postpone this problem for a short time.
Refutation of ψ2: AG(extra = 1) =⇒ (intra < 2 =⇒ AG(intra < 2))
The same reasonning applies: one must start with a population of bacteria with
intra < 2 as initial state, and ensure AG(extra = 1). Here, the formal de�nition
of �<� allows to transform ψ2 into the conjunction of two formulas, using classical
unfolding techniques:

ψ3 ≡ AG(extra = 1) =⇒ (intra = 0 =⇒ AG(intra < 2))
ψ4 ≡ AG(extra = 1) =⇒ (intra = 1 =⇒ AG(intra < 2))

From now on, we have to refute 3 hypotheses (ψ1, ψ3 and ψ4) and again,
the completeness of the method imposes to treat all of them. More precisely, the
completeness of the unfolding technique, commonly used in prolog for example,
ensures the completeness of our method to select wet experiments: in practice,
after several unfoldings, the set of formulas under consideration gives a complete
panel of the qualitatively di�erent cases that deserve to be experimented in the
wet laboratory. Unfolding steps make the cases more and more precise. This
example gives the 3 obvious cases; for more elaborated examples, the exhaustive
inventory of the relevant cases is far less obvious for a human, and the technique
has proved useful.

On this example, we would have to ask the biologists if they can increase their
experimental operability in order to control the value of intra at the initial state
of the experiments. Proof techniques can help. For example ψ3 needs intra = 0
and there are formulas in Φ that conclude on intra = 0. In fact, it is not di�cult
to establish that Φ implies ϕ7:

ϕ7 ≡ AG(extra = 0) =⇒ AF (AG(intra = 0))

The formula ϕ7 indicates that the atom intra = 0 can be included in the pre-
conditions ρ of observable formulas. This extension of Obs suggests the following
experimental protocol: in order to ensure intra = 0, keep the cell population in
an environment without external lactose for a su�ciently long time, and then,
put external lactose in order to check ψ3.

By the way, this ψ3-experiment gives, after a su�ciently long time in the
Petri dish, a high �ux of entering lactose, which shows that intra = 2. This
refutes the hypothesis H in vivo, although it was consistent.



5 Conclusion
We have shown that formal methods from computer science can help the dis-
covery process in molecular biology. More precisely, we have proposed a formal
modelling method for gene regulatory networks, based on the discrete approach
of René Thomas, that we have enriched with CTL and model checking. We have
also shown that, even if simulations are useful and easy to perform in this setting,
the main subject to address is the logical identi�cation of parameters. During
the modelling process, we must face incomplete knowledge and, consequently,
we must manage in parallel:

� a (possibly large) set of di�erent potential models and parameter values,
� a set of known behavioural properties (whose consistency has to be man-

aged),
� a set of biological hypotheses, that motivate the biological research (and

whose consistency has to be managed),
� and a set of conceivable wet experiments (which appears sometimes to be

unsu�cient to identify the parameters or to refute some potential models).

Our framework is not only a method to identify the �good� model(s), it is rather
a full modelling process to accompany the discovery process in molecular biol-
ogy, from the elaboration of abstract models to the design of well chosen wet
experiments.

At the beginning of the process, the hypotheses of interest being expressed,
we can simplify the models under consideration provided that the simpli�cations
do not modify the truth of the hypotheses. This simple idea allows to e�ciently
reduce the number of nodes in the regulatory graph.

Consistency check is the next step of our method and the formalization of
biological properties into temporal logic is a key point. It facilitates the use of
tools from formal logic, e.g. model checking or constraint solving, in order to
establish the consistency of knowledge and hypotheses.

Lastly, a formal de�nition of the so called observable properties helps to
suggest wet experiments in order to validate or refute the hypotheses in vivo.
If the hypotheses are consistent, then formal manipulations of the syntax of
the formulas, such as unfolding techniques and theorem proving, can produce
observable consequences that describe wet experiment schemas.

All in all, formal models are not �universal� in biology: they are only a tem-
porary intermediate that serve to validate or refute biological hypotheses.
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