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Static Graph v.s. Dynamic Behaviour

Difficulty to predict the result of combined regulations

Difficulty to measure the strength of a given regulation

Example of “competitor” circuits

Positive v.s. Negative circuits
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AlgU antiAlgU
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Even v.s. Odd number of “—” signs

Multistationarity v.s. Homeostasy
René Thomas, Snoussi, . . . , Soulé, Richard

Functional circuits “pilot” the behaviour



Mathematical Models and Simulation

1. Rigorously encode sensible knowledge, into ODEs for instance
2. ◮ A few parameters are approximatively known

◮ Some parameters are limited to some intervals
◮ Many parameters are a priori unknown

3. Perform lot of simulations, compare results with known
behaviours, and propose some credible values of the unknown
parameters which produce robust acceptable behaviours

4. Perform additional simulations reflecting novel situations
5. If they predict interesting behaviours, propose new biological

experiments
6. Simplify the model and try to go further



Mathematical Models and Validation

“Brute force” simulations are not the only way to use a computer.
We can offer computer aided environments which help:

◮ to consider simplified models that can be anatically solved
◮ to avoid models that can be “tuned” ad libitum
◮ to validate models with a reasonable number of experiments
◮ to define only models that could be experimentally refuted
◮ to prove refutability w.r.t. experimental capabilities
◮ to establish a methodology: models ↔ experiments

Observability issues:
Observability Group, Epigenomics Project.
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Multivalued Regulatory Graphs
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Regulatory Networks (R. Thomas)
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State Graphs
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Time has a tree structure
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CTL = Computation Tree Logic

Atoms = comparaisons : (x=2) (y>0) . . .

Logical connectives: (ϕ1 ∧ ϕ2) (ϕ1 =⇒ ϕ2) · · ·

Temporal connectives: made of 2 characters
first character second character

A = for All path choices X = neXt state
F = for some Future state

E = there Exist a choice G = for all future states (Globally)
U = Until

AX(y = 1) : the concentration level of y belongs to the interval 1 in all
states directly following the considered initial state.

EG(x = 0) : there exists at least one path from the considered initial

state where x always belongs to its lower interval.



CTL to encode Biological Properties

Common properties:
“functionality” of a sub-graph

Special role of “feedback loops”
—
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– positive: multistationnarity (even number of — )
– negative: homeostasy (odd number of — )
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Characteristic properties:

{

(x = 2) =⇒ AG (¬(x = 0))
(x = 0) =⇒ AG (¬(x = 2))

They express “the positive feedback loop is functional”

(satisfaction of these formulae relies on the parameters K...)



Model Checking

Efficiently computes all the states of a state graph which satisfy a
given formula: { η | M |=η ϕ }.

Efficiently select the models which globally satisfy a given formula.



Theoretical Models ↔ Experiments

CTL formulae are satisfied (or refuted) w.r.t. a set of paths from a
given initial state

◮ They can be tested against the possible paths of the
theoretical models (M |=Model Checking ϕ)

◮ They can be tested against the biological experiments
(Biological_Object |=Experiment ϕ)

CTL formulae link theoretical models and biological objects together



Menu

1. Modelling biological regulatory networks
2. Discrete framework for biological regulatory networks
3. Temporal logic and Model Checking for biology
4. Computer aided elaboration of formal models
5. Pedagogical example: Pseudomonas aeruginosa



Computer Aided Elaboration of Models

From biological knowledge and/or biological hypotheses, it comes:

◮ properties:

“Without stimulus, if gene x has its basal expression level,

then it remains at this level.”
◮ model schemas:
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Formal logic and formal models allow us to:

◮ verify hypotheses and check consistency
◮ elaborate more precise models incrementally
◮ suggest new biological experiments to efficiently reduce the

number of potential models



The Two Natural Questions

Φ = {ϕ1, ϕ2, · · · , ϕn} and M =
—
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1. Is it possible that Φ and M ?
Consistency of knowledge and hypotheses. Means to select
models belonging to the schemas that satisfy Φ.
(∃? M ∈ M | M |= ϕ)

2. If so, is it true in vivo that Φ and M ?
Compatibility of one of the selected models with the biological
object. Require to propose experiments to validate or refute

the selected model(s).

→ Computer aided proofs and validations



Question 1 = Consistency

1. Draw all the sensible regulatory graphs with all the sensible
threshold allocations. It defines M.

2. Express in CTL the known behavioural properties as well as
the considered biological hypotheses. It defines Φ.

3. Consider all the possible state graphs derived from M (i.e., all
possible parameters K...) and check each of them against Φ.
Our software plateform SMBioNet handles this automatically.

4. If no model survive to the previous step, then reconsider the
hypotheses and perhaps extend model schemas. . .

5. If at least one model survives, then the biological hypotheses
are consistent. Possible parameters K... have been established.

Now Question 2 has to be addressed



Question 2 = Validation

1. Among all possible formulae, some are “observable” i.e., they
express a possible result of a possible biological experiment.
Let Obs be the set of all observable formulae.

2. Let Th(Φ,M) be the set of consequences of Φ and M.
Th(Φ,M)∩Obs is the set of experiments able to validate the
survivors of Question 1. Unfortunately it is infinite in general.

3. Select a finite subset of Th(Φ,M) ∩ Obs that maximizes the
chance to refute the survivors

4. Perform these experiments.

Sometimes a complete and small set of experiments exists.
It has been the case of the mucus production of P.aeruginosa.
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Mutation, Epigenesis, Adaptation

Terminology about phenotype modification:

genetic modification: inheritable and not reversible (mutation)
epigenetic modification: inheritable and reversible
adaptation: not inheritable and reversible

Pseudomonas aeruginosa is an opportunistic bacteria that produces
mucus in the lungs of patients (often lethal in cystic fibrosis)

The biological question (Janine Guespin):
could mucus production in P. aeruginosa be the result of an
epigenetic switch ?

It would open the door to new possible therapies



Mucus Production in P. aeruginosa
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Parameters & thresholds: unknown

Thresholds for AlgU in P.aeruginosa are unknown:
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and parameters are unknown:

34 × 22 34 × 22 24 × 22

712 possible models

One CTL formula for each stable state:
(AlgU = 2) =⇒ AXAF (AlgU = 2)
(AlgU = 0) =⇒ AG (¬(AlgU = 2))

Question 1, consistency: proved by Model Checking

→ 10 models among the 712 models are extracted by SMBioNet



Validation of the epigenetic hypothesis

Question 2 = to validate bistationnarity in vivo

Non mucoid state: (AlgU = 0) =⇒ AG (¬(AlgU = 2))
P. aeruginosa, with a basal level for AlgU does not produce mucus

spontaneously: actually validated

Mucoid state: (AlgU = 2) =⇒ AX (AF (AlgU = 2))

Experimental limitation (1999-2000):
— AlgU can be saturated but it cannot be measured.
— Mucus production can be observed.

Experiment:
to pulse AlgU and then to test if mucus production remains

(⇐⇒ to verify a hysteresis)

This experiment can be generated automatically



To test (AlgU=2)=⇒AXAF (AlgU=2)

AlgU = 2 cannot be directly verified but mucus = 1 can be verified.
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Lemma: AXAF (AlgU = 2) ⇐⇒ AXAF (mucus = 1)
(. . . formal proof by computer . . . )

→ To test: (AlgU = 2) =⇒ AXAF (mucus = 1)



(AlgU = 2) =⇒ AXAF (mucus = 1)

A =⇒ B true false

true true false
false true true

Karl Popper:
to validate = to try to refute

thus A=false is useless

experiments must begin with a pulse

The pulse forces the bacteria to reach the initial state AlgU = 2.
If the state were not directly controlable we had to prove lemmas:

(something reachable) =⇒ (AlgU = 2)

General form of a test:

(something reachable) =⇒ (something observable)



Concluding Comments

Behavioural properties (Φ) are as much important as models (M)

Modelling is significant only with respect to the considered
experimental reachability and observability (Obs)

Formal proofs can suggest wet experiments

Based on the same ideas as SMBioNet, more elaborated approaches
exist:

◮ Hybrid approaches with chronometric considerations
◮ BIOCHAM also considers metabolic networks
◮ Computer aided weakening of inconsistent hypotheses
◮ . . .


