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2.1 Introduction

In many ways, a living cell can be compared to a complex factory animated by
molecular nanomachines, mainly proteins complexes. Hence it is easy to conceive
that the expression of proteins, which are cellular effectors, cannot be constant.
On the contrary, it is highly dependent on the general context; environmental
conditions (pH, temperature, oxygenation, nutrient availability), developmental
stage of an organism (fetal spectrum of proteins differ from adult proteins in
mammals), response to a stress (UV irradiation, presence of a chemical toxic,
osmotic pressure alteration) and even diseases (cancer, attack of a pathogen) are
examples of contextual changes in the level of protein expression.

In order to understand this cellular state plasticity, a simplified view of this
machinery, following general transfers of information according to the central
dogma of molecular biology, is the sequence of events: (1) stimulation via a
signaling pathway (e.g. presence of an environmental stimulation, followed by
internal transduction of the signal), (2) effective stimulation of a transcription factor,
(3) activation of the transcription of a particular gene, (4) production of messenger
RNA (mRNA) (see Fig. 2.1), (5) translation of mRNA, i.e. production of a functional
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Inria Sophia Antipolis Méditerranée, Biocore project-team, 2004 Route des Lucioles, 06902
Sophia Antipolis, France
e-mail: madalena.chaves@inria.fr; jean-luc.gouze@inria.fr

F. Dayan
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Fig. 2.1 Gene transcription (steps (3) and (4) in the Introduction): the enzyme RNA polymerase
(RNAP) binds to DNA (black double strand) and produces a strand of RNA messenger (blue
strand). This blue strand is a complementary copy of a sequence of DNA code (Image taken
from [2])

Fig. 2.2 Translation and protein synthesis (step (5) in the Introduction): a ribosome (two green
units) is a large complex involving specific RNA (ribosomic RNA) complexed with proteins,
synthesizing a polypeptide chain from a messenger RNA. Such a chain may form a protein on
its own, or may contribute to a multimeric protein, see also Chap. 1 (Image taken from [1])

protein (see Fig. 2.2). Transcription factors are particular proteins that can recognize
DNA motifs on the genome and consequently stimulate the transcription of a precise
gene. A recognition motif is a short DNA sequence that is specific to a certain
transcription factor. The transcription factor itself can be considered as a sensor
of the cellular context.

2.1.1 Biological Systems and Experimental Techniques

A first example is provided by the Hypoxia Inducible Factor-1 (HIF-1), which
is stimulated when oxygen pressure decreases: chemically, low intracellular oxy-
gen concentration impairs the hydroxylation of the HIF-1α subunit, which leads
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to stabilization of this transcription factor (hypoxia signaling pathway). As a
consequence, it recognizes Hypoxia Response Elements which are DNA motifs
associated to a series of genes involved in adaptation to low pO2. Among these
genes, erythropoietin (or epo) is a well known inducer of red blood cells production;
thus the low oxygen signal leads to secretion of the EPO protein and ultimately
to an increase in erythropoiesis. This whole process aims at compensating poor
oxygenation. In contrast, under normal pO2 conditions, this stimulation of the epo
gene is absent.

Another classical example, for bacterial cells, is the lac operon. An operon is a
typical structure of bacterial genomes. It can be viewed as a “pack” of genes that are
regulated by a unique promoter sequence. For instance, the lac operon is composed
of the lacZ, lacY and lacA genes. In an environment with no glucose but with lactose
available, the lac operon genes are transcribed, leading to lactose consumption as
a source of energy. In that case, the level of transcription factors does not change
directly, but the efficiency of transcription is regulated by a lactose repressor protein
(impairing transcription in the absence of lactose) and by a Catabolite Activator
Protein (which favors transcription in the absence of glucose).

These examples illustrate the complexity of gene regulation networks (GRN)
for eukaryotic as much as prokaryotic cells. From an experimental point of view,
biologists can access different intermediaries of these networks: genomic data
(presence/absence of a DNA motif, complete sequence determination, mutations),
mRNA quantification (large scale semi-quantitative screening with DNA arrays,
or more focused and more precise analysis with Quantitative Polymerase Chain
Reaction), quantitative gene activity measurements (luciferase reporter genes),
quantitative protein detection (use of specific antibodies, fluorescent fusion pro-
teins), or even molecular interactions estimation (semi-quantitatively with Förster/
Fluorescence Resonance Energy Transfer, double hybrid, co-precipitation). Dynam-
ics can also be followed thanks to tools like time-lapse microscopy or Fluorescence
Recovery After Photo-bleaching microscopy on living cells (for an overview of
some of these techniques see [15, 28]).

2.1.2 Mathematical Modeling

Therefore, large amounts of data, of more or less qualitative nature, are now avail-
able; one of the main challenges of molecular biology is to develop methodologies
for using these data to address biological questions. Because of the complexity of
the networks, it is necessary to design models, describing the dynamical functioning
of the GRN. Indeed, the expression of genes, the concentrations of mRNA and
proteins evolve with respect to time, and possibly converge toward some steady
state, some periodic behavior or some other complex dynamical attractor. The
emergence of these patterns from the dynamical interactions between the elements
of the network, and the comparison with experimental data, will provide new keys
to the comprehension of molecular biology, and enable scientists to solve important
problems.
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Yet, the methods for design and analysis of GRN are still quite recent. The
Boolean and discrete approaches go back to works of Kauffmann (1969) and
Thomas (1973), the continuous differential approach was applied by Goodwin
(1963) to GRN, and the piecewise affine models were initiated by Glass and
Kauffman [22]; for references see the review by de Jong [16]. There are still many
open problems, mainly due to the large number of elements in a network. It is now
possible to describe the behavior of a network with dozens of genes, but what about
networks with several thousands of genes? These are still not attainable, even with
the power of present computers and algorithmic methods.

As we have seen, the choice of a modeling approach is dependent on the type and
amount of experimental data available, and on the nature of the biological questions
asked by the modeler. In this chapter, two fundamental strategies will be detailed:
continuous models and logical models. The first one gives quantitative predictions
but needs quantitative biological data in order to fit parameters. The second is mainly
based on a correct description of the logical links between biological entities (and
is for instance particularly adapted to DNA array data that describe if a given gene
is on/off). Nevertheless, both approaches can be used either to simulate biological
phenomena or to predict properties that are intrinsically linked to the structure of
the model, such as oscillatory or switch behaviors.

2.1.3 Chapter Overview

Public

This short introduction to GRN modeling is directed at Master level students whose
background is either in the biological or the mathematical sciences.

Outline

A short overview of the main mathematical tools and concepts is provided, both on
continuous (ordinary differential equations or hybrid systems) (see Sect. 2.2) and
discrete (see Sect. 2.3) formalisms. For each type of formalism, simple examples
of how to model genetic networks are worked out in more detail. Some successful
applications of these methodologies to complex networks are also described.

2.2 Continuous and Hybrid Models of Genetic Regulatory
Networks

The concentrations of molecular species (such as proteins or messenger RNAs)
change in response to cellular signals. In this section, the concentrations are assumed
to vary in a continuous manner, and their dynamical behavior will be described
by systems of ordinary differential equations or the more abstract piecewise affine
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(PWA) systems. These models often assume an homogeneous distribution of the
molecules over a selected volume of space and describe, for instance, the dynamics
of the concentration of some protein in a population of cells.

2.2.1 Challenges

The choice of appropriate variables is one of the first steps in the construction
of a model for a biological network. The network is made of nodes (proteins,
or RNA) and the edges usually describe the fact that some biochemical species
acts positively or negatively on the variation with respect to time of some other
biochemical species. Each variable (node) will play a different role in the behavior
of the system, and have different degrees of relevance. Some variables can be
measured experimentally, and are thus easier to compare to the model. Other
variables may be easier to control from the exterior. Large systems of differential
equations will require the introduction of a large number of parameters which will
be unknown and should be estimated. In general, from a theoretical point of view,
large dimensional systems are difficult to analyze and can only be studied through
numerical simulations. Therefore, a fundamental step is the development of model
reduction methods to simplify large networks and obtain more tractable systems of
lower dimension, which are more easily studied in detail.

Two classical examples are the “positive” and “negative” feedback loops, formed
by variables (proteins, for instance) that influence one another in a closed circuit, or
loop. A circuit with two proteins that mutually repress or activate each other is a
positive loop; if one of the interactions is a repression and the other an activation,
then the circuit is a negative loop. Each of these two motifs appears frequently in
GRN, and has a well known dynamical behavior; they can be combined with other
motifs to represent the dynamics of complex regulatory networks. The negative loop
is a system that generates oscillatory behavior, while the positive loop generates one
or two stable steady states, and will be analyzed in detail in the next sections.

2.2.2 Mathematical Tools

This section quickly summarizes some basic mathematical results that will be useful
in the analysis of systems of ordinary differential equations. For further details see,
for instance [18].

2.2.2.1 Analysis of Two-Dimensional Systems

Consider a system with two variables, x = (x1, x2)
t, where each xi represents the

concentration of some molecular species, and x evolves in the region of space where
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all coordinates are either zero or positive (to be called the positive orthant). Define
R+ = [0,+∞) and the two-dimensional positive orthant as R2

+ = R+ × R+. The
evolution of variable xi along time is governed by a known function fi : R2

+ → R+,
which depends on both variables. Given initial values x0 = (x10, x20), solutions
xi(t;x10, x20) for i = 1, 2 may be found by solving the initial value problem:

ẋ1 = f1(x1, x2), x1(0) = x10,

ẋ2 = f2(x1, x2), x2(0) = x20.

A sufficient condition to guarantee that this problem has a unique solution is that
the functions f1 and f2 are continuous and have bounded, continuous derivatives,
with respect to both variables. The positive orthant is invariant for this system if:
whenever xi0(0) ≥ 0, then xi(t;x10, x20) ≥ 0 for all t ≥ 0 (i = 1, 2). The
following condition guarantees invariance of the positive orthant:

xi = 0 ⇒ fi(x1, x2) ≥ 0, i = 1, 2, (2.1)

which means that, at the boundary of the positive orthant, the vector field is either
zero or points towards the interior of the orthant, thus preventing the variables to
decrease to negative numbers. From now on, it will be assumed that functions fi
satisfy the required conditions, and that solutions of the initial value problem exist,
are unique, and non-negative.

For most systems the fi are nonlinear functions, and it is not possible to obtain
closed form solutions of the initial value problem. However, qualitative analysis of
the phase space can give a very good idea of the general behavior of the solutions.
The signs of the vector field (f1(z), f2(z)) at each point z ∈ R

2
+ indicate the

direction of the solution at that point: for example, if f1(z) < 0 and f2(z) > 0,
then the variable x1 will decrease and x2 will increase whenever a solution passes
through the point z. The nullclines are curves that delimit regions of the plane where
the sign of the vector fields is constant:

Nullcline i: Γi = {x ∈ R
2
+ : fi(x) = 0}.

For an example see Fig. 2.5. The points of intersection of the nullclines are called
the equilibria or steady states of the system:

x∗ = (x∗
1, x

∗
2) ∈ R

2
+ : f1(x

∗
1, x

∗
2) = 0 and f2(x

∗
1, x

∗
2) = 0.

A steady state is a configuration of the system where both variables remain constant,
and may be stable or unstable. To characterize this stability property suppose a small
perturbation is applied to the initial condition, when x(0) = x∗. If the solution
always returns back to x∗ after a while, then the steady state x∗ is stable; if the
solution moves away from x∗ without returning to the point, then the steady state
x∗ is unstable. The basin of attraction of x∗ is the set of points x0 ∈ R

2
+ such
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that the solution x(t;x0) converges to x∗ as time approaches infinity. The stability
of a steady state x∗ can be determined by computing the Jacobian matrix and its
eigenvalues, λ± at that point:

J(x) =

(
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)
.

The steady state x∗ is locally stable if all eigenvalues of J(x∗) have a strictly
negative real part: Re(λ±) < 0. For two-dimensional systems, the stability can also
be established by looking at the trace and the determinant of the Jacobian matrix:

tr(J(x)) =
∂f1
∂x1

+
∂f2
∂x2

, det(J(x)) =
∂f1
∂x1

∂f2
∂x2
− ∂f2
∂x1

∂f1
∂x2

.

The steady state x∗ is locally stable if: tr(J(x∗)) < 0 and det(J(x∗)) > 0.
Geometrically speaking, the equilibria in dimension two can be classified into
saddle (one positive and one negative real eigenvalue), stable sink (two real
negative eigenvalues), unstable sink (two real positive eigenvalues), stable focus
(two complex conjugate eigenvalues with negative real part), unstable focus (two
complex conjugate eigenvalues with positive real part), plus the non-generic cases.

2.2.2.2 Analysis of n-Dimensional Systems

This analysis can be extended to general systems of ordinary differential equations.
Consider now a system with n variables x=(x1, . . . , xn)

t ∈ R
n
+, f =(f1, . . . , fn)

t

with f : Rn
+ → R

n and
ẋ = f(x), x(0) = x0. (2.2)

For large n, it becomes difficult to perform the stability analysis for a general set
of parameters, and so the steady states, the Jacobian matrix and its egenvalues
will typically be computed numerically, for given sets of parameters. As for the
two-dimensional systems, existence and uniqueness of solutions of Eq. (2.2) are
guaranteed by sufficient conditions on f : each fi is continuously differentiable.
The invariance of the positive orthant may be checked by condition in Eq. (2.1)
for i = 1, . . . , n.

The nullclines corresponding to each variable can be similarly computed: Γi =
{x ∈ R

n
+ : fi(x) = 0}. The steady states are given by all points x∗ such that

fi(x
∗) = 0, for i = 1, . . . , n. The Jacobian matrix is again obtained by computing

the partial derivatives of fi:

J(x) =

⎛
⎜⎝

∂f1
∂x1
· · · ∂f1

∂xn

...
...

∂fn
∂x1
· · · ∂fn

∂xn

⎞
⎟⎠ .
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The eigenvalues of the Jacobian matrix at equilibria are computable, at least
numerically. Local asymptotic stability of x∗ arises if all eigenvalues have a strictly
negative real part. Global stability may be established through a Lyapunov function
(but they are not easy to find). A Lyapunov function for system ẋ = f(x) is a
continuously differentiable function V : Rn

+ → R+ satisfying V (x) ≥ 0 for all
x ∈ R

n
+ with V (x) = 0 if and only if x = x∗, and ∂V

∂x ẋ ≤ 0.

2.2.2.3 Different Timescales: Tikhonov’s Theorem

Systems in the form of Eq. (2.2) whose variables evolve at different timescales can
often be simplified. The main idea is to separate the system into “fast” and “slow”
variables, and assume that the “fast” variables reach a (quasi) “steady state”. This
method allows reducing system in Eq. (2.2) to a new system with less variables,
but with essentially the same dynamical behavior. This method can be applied only
under appropriate conditions (briefly stated below) which are known as Tikhonov’s
Theorem (see, for instance, [27]). Let x ∈ R

p
+, y ∈ R

q
+, and ε � 1 be a small real

number. Consider a system of the form

⎧⎪⎪⎨
⎪⎪⎩
ẋ = f(x, y, ε),

εẏ = g(x, y, ε),

(x(0), y(0)) = (x0, y0),

(2.3)

with f and g sufficiently smooth, under the following hypotheses:

• H1 (slow manifold): there exists a unique solution, y = g̃(x), sufficiently
smooth, of g(x, y, 0) = 0; the matrix ∂g/∂y(x, g̃(x), 0) has all eigenvalues with
strictly negative real part;

• H2 (reduced system): the scalar system ẋ = f(x, g̃(x), 0), x(0) = x0 has a
solution x0(t) on an interval [0, T ] (0 < T <∞);

• H3: y0 is in the basin of attraction of the steady state g̃(x0) of the fast system
ξ̇ = g(x, ξ, 0).

If hypotheses H1-H3 are satisfied, the system in Eq. (2.3) admits a solution
(xε(t), yε(t)) on [0, T ]; in addition, limε→0+ xε(t) = x0(t) and limε→0+ yε(t) =
y0(t) = g̃(x0(t)), uniformly on time on any closed interval contained in (0, T ].

The variables y are “faster”, since ẏ evolves very rapidly when compared to ẋ.
Hypothesis H1 means that y evolves rapidly to a quasi steady state value, y = g̃(x),
depending only on x. This quasi steady state evolves on the slow time scale.

2.2.2.4 General Piecewise Affine Systems

The model has the general form

ẋi = fi(x) − γixi, 1 ≤ i ≤ n, (2.4)
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x2

fB(x) − γx

F (x) − γx

x1

fA(x) − γx

fθ2(x) − γx

A

B

q2

Fig. 2.3 Sliding mode solution. These type of solutions may occur when the vector fields in
regions A and B point in opposite directions (fA, fB). At the boundary of A and B (the segment
x2 = θ2), the vector field may be defined as a convex combination of the two vector fields:
F (x) = αfA(x) + (1 − α)fB(x). The values of α range between [0, 1], forming the convex
hull cone. A sliding mode solution, with vector field fθ2 (x), can be found by setting x2 = θ2 and
F2(x1, θ2) − γθ2 = 0, and computing the appropriate value for α

where x = (x1, . . . , xn)
t is a non-negative vector of variables. The non-negative

quantities fi(x) and γixi represent production and loss (or transformation) rates
for each variable xi. The functions fi : Rn

+ → R+ will be constant in rectangular
regions of the state space whose boundaries will be called thresholds. The (n− 1)-
dimensional hyperplanes defined by these thresholds partition the state space into
hyper-rectangular regions which are called domains or boxes (see an example
in Sect. 2.2.3.3). For any domain D, the function f(x) = (f1(x), . . . , fn(x)) is
constant for all x ∈ D, and it follows that the PWA system can be written as an
affine vector field ẋ = fD − γx, x ∈ D where fD is constant in D.

The point φ(D) = γ−1fD ∈ Ω is called the focal point for the flow in D,
and globally attracts the trajectories until they reach the boundaries of the domain.
The focal points define the possible transitions associated with the domain D; the
transition graph describes these transitions and gives the qualitative behavior of
the system. This graph can be efficiently computed, and its properties analyzed
(see the example in Sect. 2.2.3.3).

On the thresholds, the solutions have to be appropriately defined, typically
through a construction due to Filippov. This construction considers all the solutions,
as if the step function could take all the values of the interval [0, 1] on the threshold.
To be more explicit, let n = 2 and consider two regular domains,A andB, separated
by one threshold (x2 = θ2), as in Fig. 2.3. Let co denote the closed convex hull of a
set of vector fields. We define the differential inclusion

ẋ ∈ H(x), (2.5)

with

H(x) = co
{
fD(x) − γx : Ds ∈ ∂D} , if x ∈ Ds, a switching domain
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where fD − γx is the vector field of the system on a regular domain D. In
Fig. 2.3, there are only two regular domains (A and B) whose boundary contains
the switching domain defined by x2 = θ2, and hence the convex hull H(x) is the
cone formed by the two vectors fA(x) − γx and fB(x)− γx.

A solution of Eq. (2.5) on [0, T ] in the sense of Filippov is an absolutely
continuous (w.r.t. t) function ξ(t;x0) such that ξ(0;x0) = x0 and dξ/dt ∈ H(ξ)
for almost all t ∈ [0, T ]. It may give rise to a sliding mode along the plane defined
by the threshold. See for instance [9] for a deeper analysis of solutions of PWA
systems.

2.2.3 Methodological Developments

In general, there are n molecular species in a system, x = (x1, . . . , xn)
t ∈ R

n
+,

and the changes in the concentration of species i result from a balance between
production or synthesis processes (gi(x) ≥ 0) and degradation or transformation
(di(x) ≥ 0) into other species. Each species is thus characterized by an equation of
the form:

dxi
dt

= gi(x) − di(x). (2.6)

The main problem is the choice of appropriate mathematical expressions of gi(x)
and di(x). These will depend on the modeling formalism and should reflect the
observed dynamical behavior. For instance, for PWA systems, gi(x) = fi(x) and
di(x) = γixi, as seen in Eq. (2.4).

2.2.3.1 Modeling Transcription and Translation

In the classical sequence of events, transcription is initiated upon binding of a
transcription factor to the gene. Besides transcription factors, other proteins may
bind to specific sites of the gene and contribute to enhance (respectively, reduce) the
transcription rate. Such proteins are called activators (respectively, repressors). In
general, the binding of m molecules of protein A to the promoter site of a gene (D)
to form a new complex (C), is represented as

D +mA
k1

�
k2

C, (2.7)

and can be modeled through the law of mass-action, where each reaction rate is
proportional to a product of concentrations according to the stoichiometry:

{
Ċ = k1DA

m − k2C,

Ḋ = −Ċ.
(2.8)
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If no other reactions take place, there is conservation of mass D +C = DT (the
total amount of promoter sites, free or bound, remains constant), which can be used
to reduce the number of variables. One can viewA as an external variable. Using the
observation that binding processes are typically faster than transcription, the system
in Eq. (2.8) can be simplified through a process similar to Tikhonov’s method, by
setting the equations for C and D at “quasi steady state” (Ċ ≈ 0), to obtain:

⎧⎨
⎩C = DT

Am

θm
A +Am ,

D = DT − C = DT
θm
A

θm
A +Am ,

(2.9)

with θA = (k2/k1)
1/m. The amount of mRNA molecules (denoted M ) produced

may depend both on the concentration of DNA sites bound to an activator or
repressor, and on the amount of free DNA sites. For simplicity, it will be assumed
that the effect of activators and repressors can be modeled independently. Since
binding of A to D is fast, the most natural form for the production of mRNA is a
linear dependence on D and C. In addition, mRNA decays at a constant rate γM ,
which yields the equation:

Ṁ = α0D + α1C − γMM. (2.10)

In the case of an activator, the contribution ofC to mRNA production is much larger
than that of D, which can be represented by specifying α1 
 α0. Defining κ0 =
α0DT and κ1 = (α1 − α0)DT , substitution of the quasi-steady state expressions
for C and D in Eq. (2.9) into Eq. (2.10) yields:

Ṁ = κ0 + κ1
Am

θmA +Am
− γMM. (2.11)

In the case of a repressor, the contribution ofC to mRNA production is much smaller
than that of D (α1 � α0). Now define κ0 = α1DT and κ1 = (α0 − α1)DT , to
obtain:

Ṁ = κ0 + κ1
θmA

θmA +Am
− γMM (2.12)

In either case, the parameter κ0 (� κ1) denotes a residual or basal activity. For
further modeling aspects see also [3].

The next step is translation, or protein synthesis from mRNA. This is itself a
sequence of several intermediate steps, and can be modeled as a linear function of
the mRNA, together with a natural decay term:

Ṗ = κ2M − γPP. (2.13)

The translation and transcription system in Eqs. (2.10)–(2.13) can be further sim-
plified by using the fact that mRNA degrades faster than protein, or γM 
 γP .
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Consider the case of an activator as in Eq. (2.11) and change the time variable to
τ = γP t, to obtain:

{
dM
dτ = κ0

γP
+ κ1

γP

Am

θm
A +Am − γM

γP
M,

dP
dτ = κ2

γP
M − P.

(2.14)

For a fixed value ofA, Tikhonov’s theorem can now be applied with y =M , x = P ,
ε = γP /γM and with f(x, y, ε) = κ2

γP
y − x, g(x, y, ε) = κ0

γM
+ κ1

γM

Am

θm
A +Am − y.

Substituting the quasi steady state expression for mRNA into the protein Eq. (2.14),
and rewriting the system in the original time variable, obtains the reduced system:

Ṗ = κ̃0 + κ̃1
Am

θmA +Am
− γPP, (2.15)

where κ̃0 = κ2κ0/γM and κ̃1 = κ2κ1/γM . This yields a dynamical equation for
the protein concentration, directly dependent on the amount of activator (A). From
now on, all the intermediate steps (the binding of A to the promoter and synthesis
of mRNA) can be left out of the model.

The expression h+(x, θ,m) = xm/(θm + xm) (or Hill function) is known to
fit well to synthesis and activity rates. Similarly, the inhibition function can be
represented as: h−(x, θ,m) = 1 − h+(x, θ,m) = θm/(θm + xm). For gene
regulatory networks, the exponentm is considered to be “large” (m ≥ 2), according
to experimental data [40]. Note that the qualitative form of h+(x, θ,m) remains
essentially unchanged for m ≥ 2, with the same maximal and half-maximal values
(max(h−) = 1 and h±(θ, θ,m) = 1/2), the only difference being the steepness
of the function around the value θ. For large m, the parameter θ has therefore a
special meaning: it is a threshold value below which there is practically no activity
and above which activity is (almost) maximal. In the limit as m tends to infinity, the
Hill function becomes a step function, as described in Sect. 2.2.3.3.

2.2.3.2 Continuous Differential Systems for Genetic Network Models

To illustrate the modeling and analysis of complex GRN, consider a regulatory motif
that appears frequently in genetic networks: two genes that mutually inhibit them-
selves or, more precisely, the proteinA encoded by gene a represses transcription of
gene b, and vice-versa (Fig. 2.4). The concentration of each protein can be described
by ẋj = κjMj − γjxj , and each mRNA by an expression as in Eq. (2.12):

Ṁj = κj0 + κj1h
−(xi, θi,mi)− γMjMj , for j, i ∈ {1, 2} and j �= i. (2.16)

Using the quasi-steady state assumption for the protein and mRNA equations,
the system can be reduced to the dynamics of the protein concentrations, ẋi =
fi(x1, x2) with (renaming constants):
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a b

BA

Fig. 2.4 Mutual inhibition between two genes. The white rectangles represent genes a and b,
which are transcribed and then translated into the respective proteins, A and B (this is represented
by the arrows). Each of these proteins inhibits the transcription of the gene of the other protein
(A�B, B�A)

f2(x1, x2) = 0

f1(x1, x2) = 0 f2(x1, x2) = 0
f1(x1, x2) = 0

x1 x1

x(t) x(t)

x2 x2

a b

Fig. 2.5 Phase plane for the system of Eq. (2.17), for two different sets of parameters: (a)
bistability, or (b) a single steady state. Stable steady states are marked by a black circle, and the
unstable steady state by an open rectangle. In each region delimited by the nullclines (f1(x) = 0
in red, f2(x) = 0 in blue), the sign of the vector field of each coordinate is unchanged. One
solution is shown in black. Parameter values for case (a): κ10 = 0.02, κ11 = 1, θ1 = 0.3, γ1 = 1,
κ20 = 0.05, κ21 = 2, θ2 = 0.6, γ1 = 1.3, m1 = m2 = 4; for case (b) the only difference is
κ21 = 1

⎧⎪⎨
⎪⎩
ẋ1 = κ10 + κ11

θ
m2
2

θ
m2
2 +x

m2
2

− γ1x1,

ẋ2 = κ20 + κ21
θ
m1
1

θ
m1
1 +x

m1
1

− γ2x2.
(2.17)

(Note that, in this section, the function fi denotes the full right-hand side of the ẋi
equation, as in Sect. 2.2.2.1.) The dynamics of this system depend on the values
of the parameters. The nullclines and steady states for system in Eq. (2.17) are
represented in Fig. 2.5. Two distinct generic cases can be identified:

(a) mi large, θi < (κi0 + κi1)/γi, for all i = 1, 2. There are two stable and one
unstable steady states. The stable steady states can be intuitively understood:
one of the proteins is present at high concentration hence inhibiting transcription
of the second gene, and implying that the second protein is only present in low
concentration. This co-existence of two stable steady states is called bistability;

(b) mi large, θi > (κi0 +κi1)/γi, for some i = 1, 2. There is a unique steady state,
which is stable.
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The stability of the steady states obtains by studying the Jacobian matrix. In this
example, it is clear that the equation of each nullcline, fi(x1, x2) = 0, implicitly
defines a function x2 = f̃i(x1). Thus the derivatives of fi and f̃i are related by the
Implicit Function Theorem:

0 =
∂fi
∂x1

+
∂fi
∂x2

dx2

dx1
=
∂fi
∂x1

+
∂fi
∂x2

df̃i
dx1

. (2.18)

The Jacobian matrix and its determinant can thus be written:

J(x) =

⎛
⎝− ∂f1

∂x2

df̃1
dx1

∂f1
∂x2

− ∂f2
∂x2

df̃2
dx1

∂f2
∂x2

⎞
⎠ and det(J) =

∂f1
∂x2

∂f2
∂x2

(
df̃2
dx1
− df̃1
dx1

)
. (2.19)

Therefore, its trace and determinant at a steady state x∗ are

tr(J∗) = −(γ1 + γ2),

det(J∗) = γ2κ11
m2θ

m2
2 (x∗

2)
m2−1

(θm2
2 + (x∗

2)
m2)2

(
df̃2
dx1

(x∗)− df̃1
dx1

(x∗)

)
, (2.20)

where df̃i/dx1(x
∗) denote the slope of the curves f̃i at x∗. It is clear that the trace

is always negative. For the steady states near one of the axis (one of the proteins at
low concentration), it holds that 0 > df̃2/dx1(x

∗) > df̃1/dx1(x
∗), and therefore

the determinant is positive – these are stable steady states. The middle steady state
is unstable, since the opposite inequality holds and the determinant is negative.

This example is also known as the bistable switch, as only an external stimulus
can force the system to evolve, or switch, from one steady state to the other (see
discussion on Sect. 2.2.4).

2.2.3.3 Piecewise Affine Systems for Genetic Network Models

As seen above, the analysis of the dynamics of a dynamical system described by
differential equations can be quite complicated in dimension greater than two. We
are looking for a more algorithmic approach, easily implementable on a computer.
We will consider a qualitative description of the bistable switch, corresponding to
the case mi →∞ where sigmoidal functions h− become step functions. This is an
approximation of the “real” system, done for an easier comprehension.

The formalism is as described in Sect. 2.2.2.4. The functions fi now represent
the dependence of the rate of synthesis of a protein encoded by gene i on the
concentrations xj of the other proteins in the cell. The term γixi represents the
degradation rate of protein xi. The functions fi : Rn

+ → R+ can be written as

fi(x) =
∑
l∈I

κilbil(x), (2.21)
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where κil > 0 is a rate parameter, bil : Rn
+ → {0, 1} is a boolean-valued regulation

function, and I is an index set. The regulation functions bil capture the conditions
under which the protein encoded by gene i is synthesized at a rate κil. These
conditions are written down as combinations (sums of products) of step functions
s+, s− : R+ × R+ → {0, 1}, where s+(xj , θij) = 1 if xj > θij , and s+(xj , θij) = 0

if xj < θij , and s−(xj , θij) = 1 − s+(xj , θ
i
j). The parameters θij are threshold

concentrations.
This class of PWA systems was first introduced by Glass and Kauffman [22],

and is widely used for modeling genetic regulatory networks [9, 17, 22, 34]. Step
functions are not defined at threshold points, but solutions of the system “across” or
“along” a threshold can still be defined in the sense of Filippov, as the solutions of
differential inclusions, as shown in Sect. 2.2.2.4 and Fig. 2.3.

In the PWA formalism, the bistable system in Eq. (2.17) is defined inside the
(invariant) set Ω = [0, κ1/γ1]× [0, κ2/γ2]. Assuming for the sake of simplicity that
κ10 = κ20 = 0, one gets the equations:

{
ẋ1 = κ1s

−(x2, θ2)− γ1x1,

ẋ2 = κ2s
−(x1, θ1)− γ2x2.

(2.22)

The space of state variables Ω is now divided into four boxes, or regular domains,
where the vector field is uniquely defined:

B00 = {x ∈ R
2
+ : 0 < x1 < θ1, 0 < x2 < θ2}

B01 = {x ∈ R
2
+ : 0 < x1 < θ1, θ2 < x2 < κ2/γ2}

B10 = {x ∈ R
2
+ : θ1 < x1 < κ1/γ1, 0 < x2 < θ2}

B11 = {x ∈ R
2
+ : θ1 < x1 < κ1/γ1, θ2 < x2 < κ2/γ2}.

In addition, there are also switching domains, where the system is defined only as a
differential inclusion, corresponding to the segments where each of the variables
is at a threshold (xi = θi and xj ∈ [0, κj/γj]). In each of the four regular
domains, the differential system is affine, and simple to study. In B00 for instance
ẋ1 = κ1 − γ1x1, ẋ2 = κ2 − γ2x2, and the solution can easily be written and
converges exponentially towards a steady state (κ1/γ1, κ2/γ2). If we suppose that
θi <

κi

γi
, then this steady state is outsideB00, and the solution will switch to another

system when it crosses one of the thresholds. This succession of possible transitions
will result in a transition graph, describing the possible sequences of boxes.

For the bistable switch, there are two classical stable steady states, P1 and P2,
and an unstable Filippov equilibrium point, P3, analogous to a saddle point (see
Fig. 2.6):

P1 =

(
κ1

γ1
, 0

)
, P2 =

(
0,
κ2

γ2

)
, P3 = (θ1, θ2).
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θ1

x2

x1

θ2

P2

P1

P3

x(t)

Fig. 2.6 Phase plane for the piecewise linear system of Eq. (2.22), with all parameters as in
Fig. 2.5a (except κ10 = κ20 = 0 and mi = ∞). The nullclines cannot be defined as in
the continuous model (2.17) but, instead, the threshold values θ1, θ2 divide the plane into four
rectangular regions, where the vector field is constant. There are still two stable steady states
(P1,P2), but the unstable steady state is now defined as an unstable Filippov equilibrium (P3).
One solution is shown in black, which may be compared to that shown in Fig. 2.5a

P1 and P2 belong to the boundary of their respective domains (B10 andB01), so that
any trajectory entering one of these domains remains there. In contrast, trajectories
starting in B00 or B11 will switch to another domain. This leads to the following
transition graph for the bistable switch:

01 ←− 11

−→ ←−

00 −→ 10

where P1 is represented by 10, P2 by 01, and P3 is not represented in this diagram,
as it is located in the middle, at the boundary of the four regular domains. This
discrete abstraction (in the sense of hybrid systems) is a qualitative description of
the behavior of the dynamical system. It can be used to check some qualitative
properties of the system. Software exist that are able to compute the graph and
check some of its properties, with model checking techniques.

2.2.3.4 Towards Control of Genetic Networks

An important problem is to be able to lead the system to a prescribed behavior. In
control theory, the input represents the actions that a user (here a biologist) is able to
exert on the system. From an experimental point of view, one common manipulation
is to change the synthesis rate of messenger RNA by addition of a plasmid (a small
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unit of DNA that replicates within a cell independently of the chromosomal DNA).
Therefore, it is reasonable to suppose that the input will act on the synthesis rates.
The system with inputs can thus be written:

ẋ1 = uκ1s
−(x2, θ2)− γ1x1, ẋ2 = uκ2s

−(x1, θ1)− γ2x2. (2.23)

Moreover, different hypotheses can be made concerning the control u: it can take
continuous values, or only qualitative values, e.g. two values umin, umax and the
value u = 1 corresponding to no control. The effective application of the control
also depends on the measurements we are able to do, which can be continuous
or qualitative. The ultimate goal can be to render the point P1 (or P2) stable in
the whole space (see, for instance, [10]). This poses new and original problems
to both mathematicians (to design the input laws) and to biologists (to implement
them in the cell). This approach is used in synthetic biology, where artificially built
biological circuits realize some tasks [21].

2.2.4 Success Stories

2.2.4.1 The Bistable Switch

The example studied in Sect. 2.2.3.2 is a frequently observed motif in biological
networks (for instance, the system governing transcription of the lac operon contains
a similar positive loop). These positive loops are typically observed composed with
other motifs to form larger networks, but a very successful experiment by Gardner
et al. in [21] showed that such a system can be synthetically implemented in a
cell. Gardner et al. constructed plasmids containing two genes coding for proteins
that repress each other, and inserted these plasmids in a strain of the bacterium
Escherichia Coli. Transcription of each gene could be further controlled by an
inducer, so that the whole system could be re-set. A mathematical model was used
to determine appropriate intervals for some of the parameters, such as the maximal
transcription rates, and concentrations of inducers. The experiments measure the
expression of one of the genes, which we will call A, and show that the synthetic
circuit indeed behaves as a bistable switch: following induction with inducer 1, gene
A will be highly expressed, and stably maintain this expression for several hours
after the inducer has been removed. Re-setting the system by means of inducer 2
will cause gene A to lower its expression to near zero and remain thus (until a new
inducer is applied). Therefore, the synthetically constructed system has the capacity
to stably exist in two distinct modes, corresponding to high or low expression of
gene A, while the inducers are used to force the system to switch between these two
modes. This is a clear observation of bistability in a genetic network.
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Fig. 2.7 Genetic network, including proteins and regulations that come into play during a
nutritional stress response in E.coli: CRP activation module (Cya, CRP, Fis), DNA topology
module (GyrAB, TopA, Fis), stable RNA output module (Rrn) (Adapted from [34])

2.2.4.2 The Carbon Starvation Response in Escherichia coli

One of the successful applications of the PWA formalism is the study of the genetic
network that regulates nutritional stress response in Escherichia Coli. The model
was developed by Ropers et al. [34] to describe the dynamics of a family of genes
that regulate the carbon starvation response in E.coli (Fig. 2.7): crp (xc), cya (xy),
fis (xf ), gyrAB (xg), topA (xt), and rrn (xr). Nutritional stress is represented by an
input u ∈ {0, 1}: u = 0 if carbon is present (no stress), and u = 1 in the absence of
carbon. The PWA equations are shown in Table 2.1, and their mathematical study
can be found in [24].

For the case u = 1, the asymptotic dynamics of the system in Table 2.1 satisfies:

xc(t)→ κ1
c + κ2

c + κ3
c

γc
> θ3c > θ2c ; xy(t) = θ3y (in finite time);

xf (t)→ 0; xg(t) = θ2g (in finite time); , xt(t)→ 0. (2.24)

Therefore, solutions converge to an equilibrium point in the sense of Filippov. In
practice, there are sliding modes along the planes xg = θ2g and xy = θ3y .

For the case u = 0, the asymptotic dynamics of the system in Table 2.1 can be
reduced to the equations on xg and xf with:

1. xc(t)→ κ1
c

γc
and xy(t)→ κ1

y+κ2
y

γy
, after some finite time;

2. Sliding mode along the plane xt = θ1t with the solution eventually jumping down
to the region xt < θ1t , and staying there;
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Table 2.1 Example piecewise affine model and parameter inequalities

ẋc = κ1c + κ2cs
−(xf , θ

2
f )s

+(xc, θ1c)s
+(xy , θ1y)s

+(u, θu) + κ3cs
−(xf , θ

1
f ) − γcxc

ẋy = κ1y + κ2y [1 − s+(xc, θ3c)s
+(xy , θ3y)s

+(u, θu)] − γyxy

ẋf = κ1f [1 − s+(xc, θ1c)s
+(xy , θ1y)s

+(u, θu)]s−(xf , θ
5
f )

+κ2fs
+(xg, θ1g)s

−(xt, θ2t )s
−(xf , θ

5
f ) × [1 − s+(xc, θ1c )s

+(xy , θ1y)s
+(u, θu)] − γfxf

ẋg = κ1g[1 − s+(xg , θ2g)s
−(xt, θ1t )]s

−(xf , θ
4
f ) − γgxg

ẋt = κ1t s
+(xg, θ2g)s

−(xt, θ1t )s
+(xf , θ

4
f ) − γtxt

ẋr = κ1rs
+(xf , θ

3
f ) + κ2r − γrxr

0 < θ1c <
κ1
c

γc
<

κ1
c+κ2

c
γc

< θ2c < θ3c <
κ1
c+κ3

c
γc

0 < θ1y <
κ1
y

γy
< θ2y < θ3y <

κ1
y+κ2

y

γy

0 < θ1f <
κ1
f

γf
< θ2f < θ3f < θ4f < θ5f <

κ1
f+κ2

f

γf

0 < θ1g < θ2g <
κg

γg

0 < θ1t < θ2t <
κt
γt

Fig. 2.8 Asymptotic behavior of the PWA in the (xf , xg) plane, for the case u = 0. Thick black
lines indicate sliding modes [24]

3. Damped oscillations around the point xg = θ1g and xf = θ4f . It is shown that all
trajectories will asymptotically converge to this point, which is an equilibrium in
the sense of Filippov;

4. xr(t)→ κ1
r+κ2

r

γr
following the solution xf .

There are also sliding modes along the segments: xg = θ2g with xf < θ4f and
xg > θ1g with xf = θ5f (Fig. 2.8).

The PWA formalism allowed a more rigorous analysis of the complex network of
carbon starvation response in Escherichia Coli. Major participants were identified as
well as their roles in the presence or absence of nutritional stress. This PWA network
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could be further analyzed using a constraint-based method [14] to evaluate and
improve the structure of the network under the parameter constraints on Table 2.1.

This example illustrates the sequence of events delineated in the introduction:
the external or environmental signal is the presence (u = 0) or absence (u = 1)
of a nutrient source, which may trigger the activation of the transcription of some
genes, with production of the respective mRNA and proteins. Depending on the
external signal, the response of the system is different, leading to low (respectively,
high) expression of gene fis if nutrient is absent (respectively, present). Similar
conclusions hold for the remaining genes, and many of the predictions have been
experimentally observed.

2.3 Discrete Models of GRN

2.3.1 Challenges

In the previous section, the concentrations of molecular species are handled in
continuous frameworks, using differential equations and it is shown that some
regions (domains) of the space of state variables can be identified so that a more
abstract continuous modeling framework can be applied, namely the piecewise
affine systems. Going further into abstraction, many biological questions can be
answered by only looking at the successive boxes that the cells under study can
follow, forgetting the precise state in each box. Such models are called discrete
models, as the state of a variable at a given time can be described by an integer
value: the number of the interval containing the continuous state.

There are several motivations to consider qualitative models that forget the
precise continuous state into a box:

• Numerous biological questions are themselves of qualitative nature;
• The in vivo measurement capabilities offer a resolution that does not allow

to validate or refute a very precise value for the continuous parameters of a
differential equation;

• Discrete descriptions can be easily modeled and simulated by computers, even
when hundreds of variables are involved, allowing to experiment large genetic
networks in silico.

These biological considerations have motivated the discrete approach proposed by
René Thomas (presented in the next section).

Perhaps more importantly, discrete models can be studied using powerful
techniques from computer science:

• Combinatorial approaches, often based on graph theory, are able to establish
general laws about the link between the form of the interaction graph and the
dynamic behavior of the system (e.g. there are behaviors that are unreachable for
some interaction graphs);
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• Formal logics, mainly temporal logics, can be used to automatically perform
complex reasonnings about a given discrete model, so that discrete parameter
values can often be deduced from behaviors observed in vivo.

All in all, discrete models are particularly well suited to perform qualitative
reasonning in a computer aided manner and they help biologists to elucidate open
questions about the functioning of many gene networks. It finally appears that
computer reasonning capabilities are at least as useful as simulation capabilities.
Discrete modeling is consequently able to provide the biologists with quick helpful
information about open problems (possible behaviors, refutation of hypotheses,
missing variables or missing interactions. . . ); they are able to quickly prune some
inconsistent intervals for the parameters in continuous models; they are also able to
suggest experimental plans optimized to check a biological hypothesis.

2.3.2 Methodological Developments

2.3.2.1 René Thomas’ Logical Method

R. Thomas’ logical method consists in modeling the qualitative behavior of a gene
network under the form of a finite state transition graph. This state transition graph
is built from the interaction graph of the network together with logical parameters
that describe the combined effects of switch-like interactions.

More precisely, the starting point of Thomas logical method is an interaction (or
regulatory) graph G. The vertices, denoted from 1 to n, correspond to genes, and
each arc i→ j is associated with sign sij (Fig. 2.9). If sij is positive (resp. negative),
it means that the protein encoded by i activates (resp. inhibits) the synthesis of the
protein encoded by j. For every vertex i, we denote by Gi the set of regulators of i,
that is, the set of vertices j such that j → i is an arc of G, and we denote by Ti the
set of vertices regulated by i.

The first step of the logical method consists in associating with every vertex i a
natural number bi, called the bound of i, such that: bi ≤ card(Ti), and bi > 0 if Ti
is not empty. Then,Xi = {0, 1, . . . , bi} corresponds to the possible (concentration)
levels for the protein encoded by i, and X =

∏
iXi corresponds to the set of

possible (discrete) states for the system.
The second step consists in associating with each interaction i → j an integer

tij ∈ Xi, tij > 0, called the logical threshold of the interaction i → j. It
is required that, for every i, and for every integer l ∈ Xi, l > 0, there exists
at least one interaction i → j such that tij = l (condition C1). Then, at state
x = (x1, . . . , xn) ∈ X , we say that a regulator j of i is a resource of i if: xj ≥ tji
and sji = + (effective activator), or xj < tji and sji = − (ineffective inhibitor).
In other words, j is a resource of i when its concentration level xj “favors” the
synthesis of the protein encoded by i. The set of resources of i at state x is denoted
by ωi(x). See Fig. 2.10 for an illustration.



68 G. Bernot et al.

21

+

+

–

Fig. 2.9 An interaction graph
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(2, 0) {1, 2} {1}
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a b

Fig. 2.10 Logical thresholds and resources. (a) The interaction graph of Fig. 2.9 together with the
bounds b1 = 2 and b2 = 1, and the logical thresholds t11 = 2, t12 = 1 and t21 = 1. (b) The table
gives the set or resources ωi(x) of i = 1, 2 according to the state x of the system

The third step consists in associating with every vertex i and every set of
regulators Ω ⊆ Gi a logical parameter Ki,Ω ∈ Xi, in such a way that: for all
i, and for all subsets Ω and Ω′ of Gi, if Ω ⊆ Ω′ then Ki,Ω ≤ Ki,Ω′ (condition
C2). Intuitively, Ki,Ω is the level toward which i evolves (focal level) when Ω is
the set of resources of i. In other words, at state x, the level of i is: increasing if
xi < Ki,ωi(x); stable if xi = Ki,ωi(x); and decreasing if xi > Ki,ωi(x). The signs
of the interactions of G are taken into account through the condition C2, which
states that the focal level of i increases (Ki,Ω ≤ Ki,Ω′ ) when its resources increase
(Ω ⊆ Ω′), that is, when there are more activators and less inhibitors (so that the
resources of i favor effectively the synthesis of the protein encoded by gene i).

More precisely, once logical parameters have been given, the behavior of the
system is described by a directed graph, called asynchronous state graph, and
defined by: the set of vertices is X ; for every state x and every vertex i such that
xi �= Ki,ωi(x), there is an arc (or transition) from x to the state x′ defined by:

x′
i =

{
xi + 1 if xi < Ki,ωi(x)

xi − 1 if xi > Ki,ωi(x)

and x′
j = xj ∀j �= i.

See Fig. 2.11 for an illustration.
If every variable is stable at state x (that is if xi = Ki,ωi(x) for every i), then x has

no outgoing transition in the asynchronous state graph, and it corresponds to a stable
state of the system. More generally, the attractors of the system are the smallest
non-empty subsets of states A ⊆ X that we cannot leave, that is, such that for every
transition x → y of the state graph, if x ∈ A then y ∈ A. So {x} is an attractor if
and only if x is a stable state. Attractors that are not stable states (attractors of size
at least two) are called cyclic attractors, because once the system is inside such an
attractor, it cannot reach a stable state, and thus, it necessarily describes sustained
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a b c

Fig. 2.11 (a) The interaction graph of Fig. 2.9 together with bounds, logical thresholds and logical
parameters. (b) The table gives the focal point of i = 1, 2 according to the state of the system. This
table results from the one of Fig. 2.10 and the parameter values given in (a). (c) The asynchronous
state graph resulting from the data given in (a). This asynchronous state graph can be easily built
from the table given in (b)

oscillations. It is easy to show that from any initial state, there always exists a path
leading to an attractor (and so, there always exists at least one attractor). It is in
this weak sense that one can consider that attractors perform an attraction. The state
graph of Fig. 2.11 contains a unique attractor, the stable state (2, 1), and indeed,
from every initial state, there exists a path leading to this unique attractor.

2.3.2.2 Relationships with the Continuous Approaches

The dynamics of a network whose interaction graph is G may be described, using
the piecewise affine model (see Sects. 2.2.3.3 and 2.2.2.4), by the following system:

ẋi = κi +
∑
j∈Gi

κji · s(sji)(xj , θji)− γi · xi (i = 1, . . . , n), (2.25)

where: κi and γi are the “basal” synthesis rate and the degradation rate of i; Gi is
the set of regulators j of i; κji, θji and sji ∈ {+,−} are the synthesis rate, the
quantitative threshold and the sign associated with the interaction j → i; s+ and s−

are the step functions defined in Sect. 2.2.2.4. We will now describe how to obtain,
from the quantitative parameters κi, κij , γi and θij , the qualitative parameters bi, tij
and Ki,Ω describing an asynchronous state graph abstracting the system (2.25).
First, for all i, let Θi = {θij |i ∈ Gj} be the set of “out-going” quantitative
thresholds of i, and set

bi = card(Θi) (first step). (2.26)

Then, consider the resulting set of discrete states X =
∏n

i=1{0, 1 . . . , bi}, and the
discretization mapping

d : Rn → X, d(x) = (d1(x1), . . . , dn(xn)), di(xi) = card({θ ∈ Θi|xi ≥ θi}).
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Using this discretization map, let us define the logical thresholds and logical
parameters as follows: for every i, every j such that i → j is an arc of G, and
every Ω ⊆ Gi,

tij = di(θij) (second step), Ki,Ω = di(κi +
∑
j∈Ω

κji/γi) (third step).

(2.27)
In this way, conditions C1 and C2 are satisfied, and Snoussi [35] proved that the
resulting asynchronous state graph has the following property1:

Theorem 1 ([35]). There exists a transition from the discrete state x ∈ X to the
discrete state x′ ∈ X if and only if there exists a solution ξ of the differential
system (2.25), and t′ ∈ R, such that d(ξ(t)) = x for all 0 ≤ t < t′ and d(ξ(t′)) = x′

(i.e. there exists a solution ξ starting in the regular domain d−1(x) that reaches the
regular domain d−1(x′)). Consequently: all solutions ξ such that, for all t, there
exists at most one i such that ξi(t) ∈ Θi, (and thus almost all solutions), are
represented by a path in the asynchronous state graph.

So each differential system of the form (2.25) is abstracted by an asynchronous
state graph that can be built from G using the logical method. And conversely,
thanks to the conditions C1 and C2, every asynchronous state graph S built from
G with the logical method (from the parameters bi, tij and Ki,Ω) is the abstraction
of an infinite set of differential systems of the form (2.25). (More precisely, S is
an abstraction of (2.25) for every κij , γi and θij verifying the equalities (2.26)
and (2.27).) Thus, the logical method may be seen as a constructive method for
abstracting the infinite number of differential systems of the form (2.25) into a finite
number of asynchronous state graphs.

2.3.2.3 Positive and Negative Circuits

In practice, while G may often be established from experimental data, (see for
instance the database RegulonDB [20] about gene interactions in E. coli,) the bounds
b, the logical thresholds t and the logical parametersK remain most often unknown.
An interesting question is then: which dynamical properties of a gene network can
be inferred from its interaction graph, in the absence of information on the value
of these parameters? This question can be partially solved by studying positive and
negative circuits of G.

A positive (resp. negative) circuit of G is a directed cycle containing an even
(resp. odd) number of negative arcs. The interaction graph of Fig. 2.9 contains a
positive circuit of length one (1 → 1) and a negative circuit of length two (1 →
2→ 1).

1Provided that (κi +
∑

j∈Ω κji/γi) �∈ Θi for all Ω ⊆ Gi.
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René Thomas highlighted the predominant (dynamical) role of positive and
negative circuits by stating the following two rules [39]: (1) A necessary condition
for the presence of several stable states is the presence of a positive circuit in G. (2)
A necessary condition for the presence of sustained oscillations is the presence of a
negative circuit in G.

These rules are “transversal” to the considered modeling framework in the sense
that they have been proved for differential models [12, 23, 26, 29, 36–38], Boolean
models [4,5,30] and discrete models [32,33]. The obvious interest of these two rules
is that they relate the rather simple information contained in the interaction graph
G of a network to its much more complex dynamical behaviors. In addition, multi-
stationarity and sustained oscillations are, from a biological point of view, important
dynamical properties, respectively associated with differentiation processes and
homeostasis phenomena.

Inside Thomas’ logical method, Thomas’ rules take the following form:

Theorem 2 ([32, 33]).

1. IfG has no positive circuit, then for all bounds b, logical thresholds t, and logical
parameters K , the resulting asynchronous state graph has at most one attractor.

2. If G has no negative circuit, then for all bounds b, logical thresholds t, and
logical parameters K , the resulting asynchronous state graph has no cyclic
attractor.

In fact, if G has no positive (resp. negative) circuit, then every associated
asynchronous state graph contains a unique attractor (resp. at least one stable state).
These are simple consequences of the above theorem and the basic observation,
already mentioned, that a state graph has always at least one attractor.

Most often, real interaction graphs contains positive and negative circuits, so that
the previous theorem cannot be applied to obtain information on the dynamics of
the system. However, the following theorem, which extends the first point of the
previous theorem, can always be used (in the worst case, take I = {1, . . . , n}).
Theorem 3 ([4,31]). If I is a set of vertices such that every positive circuit ofG has
at least one vertex in I , then the asynchronous state graph resulting from the bounds
b, logical thresholds t and logical parameters K contains at most

∏
i∈I(bi + 1)

attractors.

This theorem shows that the number of attractors is small when positive circuits
are highly connected. The number of positive circuits is not the relevant parameter:
if there is one million of positive circuits, but if all these circuits contain a vertex i
with bi = 1, then there are at most two attractors. Note also that the upper bound is
tight in some cases. For instance, if G consists in a single vertex (vertex 1) with a
positive arc 1 → 1, and if b1 = t11 = K1,{1} = 1 > K1,∅ = 0, then the resulting
asynchronous state graph has 2 = b1 + 1 attractors (that are stable states).



72 G. Bernot et al.

2.3.2.4 Formal Methods

SMBioNet. Given an interaction graphG, the number of asynchronous state graphs
that we can build with the logical method is finite. For instance, 90 different
asynchronous state graphs can be built from the interaction graph of Fig. 2.9.2

A natural question is then: How to find, among this finite set of asynchronous
state graphs, those that are coherent with biological observations (or hypothesis)
on the dynamics of the system?

Formal methods are useful to perform automatically such a selection. First, a
temporal logic can be used to translate the dynamical observations into a temporal
formulaΦ, which can be handled by a computer. Then, one can use model-checking
algorithms in order to check automatically if a given state graph (a model) satisfies
or not formula Φ. Hence, to solve the question, the following (basic) approach can
be used: enumerate the different asynchronous state graphs, and select those that
satisfy Φ using model-checking techniques.

This enumerative approach has been implemented in a software called
SMBIONET [8]. The temporal logic used is the well known Computational Tree
Logic (CTL) [19], and the verification step is performed with the model-checker
called NUSMV [11]. The Computational Tree Logic is briefly presented in the next
paragraph. An illustration, on a real case, of this logic and the enumerative approach
is then given in Sect. 2.3.3.

But before going further, let us briefly discuss the enumerative approach. The
obvious limitation is that the number of state graphs to enumerate (which increases
exponentially with the number of components) is often too huge to consider
networks with more than ten genes or so. The obvious interest is that temporal logic
and model checking allow us to handle automatically rather complex dynamical
properties, and that the method is exhaustive: all the state graphs associated with G
that are consistent with Φ are reported. (For other applications of formal methods
in the context of gene regulatory networks, see for instance [6, 7, 13, 14] and the
references therein.)

Computational Tree Logic. In an asynchronous state graph, a given state has
generally several successors. So without additional information, all the successors
are possible next states: the dynamical description is undeterministic. In other
words, given an initial state x, the possible evolutions of the system are given by
the set of paths starting from x, and these paths may be seen as a tree rooted at x.

2For the interaction graph of Fig. 2.9, we have b1 ∈ {1, 2}, t11, t12 ∈ {1, b1} and b2 = θ21 = 1.
If b1 = 1, then t11 = t12 = 1, and there are 18 possible instantiations of the parameters K ,
which lead to a set of 18 different asynchronous state graphs. If b1 = 2 there are two cases. First,
if t11 = 1 < t21 = 2, there are 60 possible instantiations of the parameters K , which lead to
a set S of 42 different asynchronous state graphs. Second, if t11 = 2 > t21 = 1, there are 60
possible instantiations of the parameters K , which lead also to a set of 42 different asynchronous
state graphs, but 12 of them are contained in S . Hence, the total number of asynchronous state
graphs is 18 + 42 + 42 − 12 = 90.
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The Computational Tree Logic allows the formulation of properties on this tree. It
is thus well adapted to formulate dynamical properties on undeterministic discrete
dynamical systems. In particular, one can express possibilities in the future. For
instance, the formula EF(li = 0) expresses that “it is possible to reach a state in
which the level of the ith component is 0”, and the formula EG(li = 0) expresses
that “it is possible that the ith component stay for ever at the level 0”.

Computational Tree Logic is defined in two steps. The first step consists in
defining the syntax of the logic, i.e. rules for constructing formulas. The second
step consists in defining the semantic of the logic, i.e. meaning of formulas.

The syntax of CTL is inductively defined by:

• For all genes i and integers k, (li = k), (li < k), (li > k), (li ≤ k) and (li ≥ k)
are (atomic) CTL formulas.

• If φ and ψ are two CTL formulas then (¬φ), (φ ∧ ψ), (φ ∨ ψ), (φ ⇒ ψ),
EX(φ), EF(φ), EG(φ), E(φ Uψ), AX(φ), (AF(φ)), (AG(φ)), and (A(φ U ψ)) are
CTL formulas.

The semantic is given by the satisfaction relation |= between the states x of a
given asynchronous state graphs S and the CTL formulas φ. The semantic of atomic
formulas is the following: x |= (li = k) if and only if xi = k; x |= (li < k)
if and only if xi < k and so on. The semantic of the classical logical connectives
¬ (negation), ∧ (conjunction), ∨ (disjunction), and ⇒ (implication) is usual: for
instance, x |= φ ∧ ψ if and only if x |= φ and x |= ψ. The other connectives,
called temporal connectives, are made with two letters and lead to formulas that are
satisfied by a state x according to the set of infinite paths of S starting from x.3

Intuitively, E and A correspond to existential and universal quantifiers respectively:
E means “for at least one path” and A “for all paths”. The other letters express
properties along the paths: X(φ) means that φ is true at the neXt step, F(φ) means
that φ is ture in the Future; G(φ) means that φ is Globally true, and (ψ U φ) means
thatψ is always true Until φ becomes true. See Fig. 2.12 for an illustration. Formally,
the semantic of temporal connectives is given by:

• x |= EX(φ) ⇐⇒ there exists a successor of x satisfying φ.
• x |= AX(φ) ⇐⇒ all the successors of x satisfy φ.
• x |= EF(φ) ⇐⇒ there exists an infinite path starting from x which contains a

state satisfying φ.
• x |= AF(φ) ⇐⇒ all the infinite paths starting from x contain a state

satisfying φ.
• x |= EG(φ) ⇐⇒ there exists an infinite path starting from x which only

contains states satisfyingφ.

3An infinite path of S is an infinite sequence of states x0x1x2, . . . such that, for all k ∈ N: if xk

has a successor in S, then xk → xk+1 is an arc of S, and xk = xk+1 otherwise.
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Fig. 2.12 Illustration of the semantic of temporal connectives. Paths starting from the root
correspond to paths starting from x. The circles containing φ (resp. ψ) corresponds to states
satisfying φ (resp. ψ)

• x |= AG(φ) ⇐⇒ all the infinite paths starting from x only contain states
satisfying φ.

• x |= E(ψ U φ) ⇐⇒ there exists both an infinite path x0x1x2 . . . with x = x0

and i ∈ N such that xi |= φ and xj |= ψ for all j < i.
• x |= A(ψ U φ) ⇐⇒ for all infinite paths x0x1x2 . . . with x = x0, there exists
i ∈ N such that xi |= φ and xj |= ψ for all j < i.

If all the states of a state graph S satisfy a given formula, we say that S satisfies
this formula. For instance, the formula

(l1 ≥ 1)⇒ AX(AF(l1 ≥ 1)),

is satisfied by S if and only if for every path x0, x1, . . . starting from an initial state
x0, with x0

1 ≥ 1, there exists t > 0 such that xt1 ≥ 1. In other words, the formula
means that when the level of the first component is at least one at time t, then it will
be at least one at another time t′ > t. The asynchronous state graph of Fig. 2.11
satisfies this property. The formula

(l1 = 0)⇒ AG(l1 < 2)
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is satisfied by S if and only if every path starting from a state x, with x1 = 0, only
contains states y such that y1 < 2. In other words, the formula means that when
the level of the first component is zero, then it will be always less than two. The
asynchronous state graph of Fig. 2.11 does not satisfy this property, because of the
presence of the path (0, 0)→ (1, 0)→ (2, 0).

To summarize, the interest of CTL is twofold. Firstly, it allows to express, in
a simple way, rather complex dynamical properties on undeterministic transition
systems. Secondly, every CTL formula φ can be checked on a transition system
S in a polynomial time with respect to the size of φ and S. (More precisely, the
complexity of the verification is in O(|φ| · |S|) where |φ| is the number of symbols
in φ seen as a string, and |S| is the sum of the number of vertices and the number
of transitions of the state graph S.) Notice though, as discussed in Sect. 2.3.2.4, that
the number of state graphs grows exponentially with the number of components.

2.3.3 Success Story: Pseudomonas aeruginosa and Cystic
Fibrosis

The bacteria Pseudomonas aeruginosa [25] are commonly present in the environ-
ment and secrete mucus only in lungs affected by cystic fibrosis. As it increases
the respiratory deficiency of the patient, it is the major cause of mortality. Bacteria
isolated from cystic fibrosis lungs continue to grow in laboratory as mucous colonies
for numerous generations (mucoid phenotype). A majority of these bacteria present
a mutation. Does it mean that the mutation is the cause of the passage to the mucoid
state?

A majority of biologists tend to follow this hypothesis. However, the regulatory
network that controls the mucus production has been elucidated (Fig. 2.13a) and the
regulatory graph contains two feedback circuits among which one is a positive one
(Fig. 2.13b). This positive circuit makes possible a dynamic with two attractors that
would allow, from a biological point of view, an epigenetic change (stable change
of phenotype without mutation) from the non-mucoid state to the mucoid one.

From a biological point of view, it is very important to determine whether the
mucoidy can be induced by an epigenetic phenomenon or not. In such a case, the
elimination of the anti-AlgU gene (via a mutation) could be favored later on because
an inhibitor complex is produced, which is toxic for the bacteria.

From a modeling point of view, and because the mathematical model of mucus
production system is not yet determined, this question becomes: Can we exhibit,
from the interaction graph of 2.13, a dynamical model (an asynchronous state graph)
presenting at least two attractors, one in which mucus is regularly produced and one
in which mucus is not produced?

Assuming that AlgU activates the mucus production at its maximal level bAlgU,
to state that a model which regularly produces mucus is equivalent to the fact that
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Fig. 2.13 Mucus production in Pseudomonas aeruginosa (a) The main regulatory genes (b) A
possible interaction graph (identical to the one of Fig. 2.9)
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Fig. 2.14 Modeling the mucus production in Pseudomonas aeruginosa (a) The interaction
graph of Fig. 2.13 together bounds, logical thresholds and logical parameters. (b) The resulting
asynchronous state graph. It satisfies the formulas (2.28) and (2.29). It has two attractors: a cyclic
attractor {(1, 0), (2, 0), (2, 1), (1, 1)} in which mucus is regularly produced, and a stable state (0, 0)
in which mucus is not produced

the concentration level of AlgU is repeatedly equal to bAlgU. Thus this information
can be expressed in CTL as:

(lAlgU = bAlgU)⇒ AX(AF(lAlgU = bAlgU)). (2.28)

Moreover we know that the wild bacteria never produces mucus by themselves when
starting from a basal state (second attractor):

(lAlgU = 0)⇒ AG(lAlgU < bAlgU). (2.29)

Using SMBIONET, one shows that, among the 73 asynchronous state graphs
that can be built using the logical method, from the interaction graph of Fig. 2.13,
there are 17 asynchronous state graphs verifying the two previous formulas (one of
them is display in Fig. 2.14). Consequently, because the set of remaining models
is not empty, the epigenetic question receives a positive answer from the modeling
standpoint. This epigenetic question has not only an academic interest because this
prediction has been validated experimentally that could lead to new therapeutic
strategies.
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2.4 Outlook

A large amount of data on gene regulation is currently available. This created an
upsurge of interest in modeling regulatory networks. Here, three usual approaches
to modeling were presented: continuous differential systems (based on sigmoidal
functions), piecewise affine systems (based on step functions), and discrete systems.
On the one hand, continuous systems present a higher level of details and offer the
ability to model dynamics. But on the other hand, discrete (or logical) systems are
easier to analyze, need a smaller amount of data, can be deduced from qualitative
observations, and thus allow modeling of larger systems. The choice then depends
on the nature of input data and of the biological question under consideration.
Furthermore, the well understood relationships between the continuous and discrete
approaches presented here, allow one to follow a classical and simple strategy to
model a new biological system: the discrete approach can be taken as a useful first
step as long as the input data are qualitative, then more accurate descriptions can be
achieved through continuous models based on the discrete ones when more precise
input data are available.

Research on gene regulatory networks is rather active, and many research
directions are relevant. From a computational point of view, it becomes crucial to
develop techniques that allow the modeling of large systems, for instance using
sensible model reductions or modular decompositions. Another direction consists
in using experimental design approaches to select sets of experiments that are
efficient to validate or to refute a model. From a biological point of view, a
number of outstanding questions are open. The stochasticity and robustness of
regulatory networks are not well understood. The dynamical influence of network
architectures, and the evolutionary processes that produce them, are also far from
being understood. Furthermore, models for the interplay between gene network and
other processes, such as metabolism and cell signaling, have to be developed.

2.5 Online Resources

Several computer tools are available to help modeling and analyze genetic regula-
tory networks. A few examples are:

GNA (Genetic Network Analyzer)
http://www.genostar.com/en/genostar-software/gnasim.html

Modeling and simulation of GRN, using piecewise linear models.The user specifies
the equations, the parameters (synthesis and degradation rates, thresholds), and
inequality constraints between them.

GINsim (Gene Interaction Network simulation)
http://gin.univ-mrs.fr

Modeling and simulation of GRN, based on a discrete, logical formalism. The
user may specify a model of a GRN in terms of asynchronous, multivalued logical
functions.
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SMBioNet (Selection of Models of Biological Networks)
http://www.i3s.unice.fr/∼richard/smbionet

Modeling and model-checking analysis of GRN, based on a discrete, logical
formalism (see Sect. 2.3.2.4).

The Biochemical Abstract Machine BIOCHAM
http://contraintes.inria.fr/BioCham

A modeling environment for systems biology, with features for inferring unknown
model parameters from temporal logic constraints.

SBML (Systems Biology Markup Language)
http://sbml.org/Main Page

A standard formalism for the construction and exchange of computer models of
biological processes.
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