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Abstract

Understanding how neurons integrate the thousands of inputs they receive is a
fundamental issue of neuroscience research. For this purpose, we define a new
model for studying the impact of the dendritic morphology on the neuronal
function. Following the Cable Theory application to neuron modelling, we
propose relevant abstractions to reduce the number of parameters while keep-
ing biophysical accuracy. This allows us to demonstrate a theorem character-
izing structural equivalence classes of neurons sharing the same input/output
(I/O) function. The theorem implies that the dendritic morphology is, surpris-
ingly, not as critical as expected with respect to the I/O function of the neuron.

1 Introduction

Understanding brain organization and the way it processes neuronal informa-
tion is an interdisciplinary worldwide challenge [6]. Here we focus on the I/O
function at the single neuron scale with a particular emphasis on neuron mor-
phology. It is known since decades that dendritic arborization is the part of the
neuron where most of the neuronal computation is performed. However, it has
been largely neglected up to know in computational neuroscience, faced with
the difficulty to reduce its complexity. For this purpose, we decided to sys-
tematically use the remarkable abstraction capabilities of theoretical computer
science. We propose the first neuron model integrating dendritic morphology,
based on formal methods. It permits to prove rigorous properties about the role
of the dentrites morphology in the I/O function of the neuron.

An input signal received on the dendritic tree far from the soma can easily un-
dergo a 40-fold attenuation [19]. It follows that strong distal excitatory signals
may be annihilated by a weak inhibitory signal received closer to the soma.
In accordance, inhibitory synapses seem to be mostly located on proximal
dendrites in some cell types [12, 1].

Section 2 introduces the basics about the neuron biology. Section 3 quickly
describes the existing neuron models and introduces our framework. Formal
methods commonly separate static descriptions from dynamics ones. Section 4



thus defines the static description of our framework, mainly allowing to de-
scribe the structure of a neuron. Section 5 defines the dynamic description,
allowing to rigorously link any input signal to its output signal for any given
neuron. Our formal approach allows establishing a necessary and sufficient
condition for two different neurons to have the same I/O function. Section 6
describes this result. We finally discuss the impact of neuron morphology on
its function in light of our result.

2 Archetypical biological neuron

2.1 Structure-function relationship

An archetypical neuron consists of a cell body called the soma and of two kinds
of extensions: dendrites on the one hand and an axon on the other hand (cf.
Figure 1). Nervous signals travel from dendrites to the axon passing through
the soma. Dendrites are tree structures which can be highly branched. Nervous
impulses are received at specific points called synapses, mostly located all
over the dendrites. These input signals then propagate along the dendrites
and accumulate in the soma which behaves as a bath with tap turned on. If
soma potential exceeds a given threshold, a nervous impulse is generated and
transmitted to adjacent neurons through the axon, partially emptying the bath.
It should be noted that there are different types of neurons whose structure may
widely vary from the archetypical one [17].

Soma Axon

Dendrites

Axon  hillock Synapses

Figure 1: Structure of archetypical biological neuron.

2.2 Resting potential

The neuron, as any cell, is delimited by a membrane. It is a lipid bilayer
pierced by channels confering a selective permeability to specific ions. At rest,
the neuronal membrane has a polarity: the interior of the cell is negatively
charged compared to the extracellular medium. This difference of potential of
about –70mV is called the resting potential, due to an unequal distribution of
ions on both sides of the membrane. When the permeability is disrupted, ionic
flows are generated leading the membrane potential to deviate from the resting



value. A depolarization is an increase in the potential beyond its resting value
and a hyperpolarization is a decrease.

2.3 Action potential

An action potential (AP) is the physiological support of what we call neuronal
information. It is a sudden and transient reversal of the membrane potential. It
is generated at the axon hillock where the membrane is rich in Na+ voltage-
dependent channels (cf. Figure 1). As the extracellular media is highly concen-
trated in Na+, the opening of these channels causes a massive inflow of Na+

resulting in a strong depolarization. These channels are rapidly inactivated and
closed. At the same time, voltage-dependent K+ channels open, leading to a
K+ ouflow, returning the potential to its resting value. This repolarization is
usually followed by a slight hyperpolarization. The amplitude and duration of
APs are constant parameters for a given neuron type. Therefore both duration
and amplitude cannot encode the nervous signal. Therefore, the intensity
depends only on APs frequency.

2.4 Synaptic transmission

Although there are electrical synapses, most of them are chemical. Incoming
APs trigger the release of neurotransmitters in the synaptic cleft. These small
molecules bind to receptors on the postsynaptic neuron membrane causing
ionic channels to open. This results in a membrane potential change, called a
postsynaptic potential (PSP), whose voltage is proportional to the intensity of
the stimulation. The PSP can be either a depolarization or a hyperpolarization
being thus respectively excitatory (EPSP) or inhibitory (IPSP). If the APs
frequency is sufficiently high, their individual effects (PSP) are added: it is
called temporal summation.

2.5 Propagation through the dendritic tree

PSPs generated at synapses propagate along the dendrites towards the soma.
As thousands of synapses are distributed over the dendritic tree, the signals
are combined all along: it is called spatial summation. The spreading of the
electrical signal in dendrites is decremental: the potential tends to return to
its resting value due to leak channels allowing ions to cross the membrane
following the electrochemical gradient.



2.6 Integration by the soma and axon transmission

The soma accumulates all the signals having undergone both temporal and
spatial integrations. There is a threshold below which the potential change at
the soma has no consequence. However, if the depolarization is strong enough,
a new AP is generated to be transmitted to other neurons via the axon. The
reaching of this threshold actually triggers the opening of voltage-dependent
Na+ channels at the origin of the APs (Section 2.3). The maximal theoretical
APs frequency is imposed by the refractory period in which no AP can be
generated despite a suprathreshold potential. It is due to a transient inactivation
of the Na+ voltage-dependent channels just after each AP beginning. This
absolute refractory period is followed by a relative one during which the
stimulation must be stronger than usual to trigger the opening.

The newly generated APs propagate along the axon towards their output synapses
in a regenerative way. It means that, contrary to the signal conduction in
dendrites, the APs do not undergo any alteration.

3 Single neuron models

Neuron models described in the literature can be categorized according to their
goal of modelling, separating computational from biophysical models.

3.1 Computational neuron models

Computational models are considered as computational units thus highly ide-
alized. The first example is the formal neuron proposed by McCulloch and
Pitts in 1943 [11]. It is a binary neuron which performs a weighted sum of its
inputs. A Heavyside function is applied to calculate its output: 1 if the sum
exceeds the threshold and 0 otherwise. It allows elementary logic calculations
and it is mostly used as part of networks for artificial intelligence purposes.
Basically, it is a bio-inspired calculation and it should not be used for a deep
understanding of the neuronal functioning.

3.2 Biophysical neuron models

Biophysical models are mostly used to understand the neuronal behaviors.
They allow to focus on specific mechanisms and usually consider the mem-
brane potential as the key variable. The potential depends on the electrical
membrane properties. One of the most famous biophysical model was pre-
sented by Hodgkin and Huxley in 1952 [7]. It describes the dynamics of ion
channels governing the initiation of the AP by a set of non linear differential



equations. This model is accurate and compatible with experimental observa-
tions. However, it is very complicated and difficult to validate because of its
large number of parameters [13]. This model thus led to simplified models
such as the FitzHugh-Nagumo model [5].

3.2.1 The Integrate-and-Fire model

The Intergrate-and-Fire (I&F) model, proposed by Lapicque in 1907, does
not focus on the molecular mecanisms governing the AP. It focuses on the I/O
function of the neuron [10, 3]. The membrane is described as an electrical
circuit constituted of a capacitor in parallel with a resistor. In the leaky-I&F
model, an additional term is added to take into account the leak of ions through
the membrane: C dV

dt = −gl(V − V0) + I(t), where V is the membrane
potential, C the capacitance, V0 the resting potential, gl the leak conductance
and I(t) the injected current (external or synaptic). This differential equation
describes the potential dynamics below the threshold. The AP initiation is
not explicitly represented: in addition, when V reaches the threshold, an AP
is generated. At the same time, the potential is reset and the threshold value
is updated to take into account the refractory period [18]. There are other
extensions of the I&F model such as quadratic or exponential models [2].

3.2.2 Cable Theory applied to dendrites

Most of the existing neuron models are punctual, meaning that the neuron is
equivalent to a point, ignoring its morphology. However, there are biophysical
models focusing on the influence of structural characteristics on the nervous
signal propagation. One of them is the Cable Theory applied to dendrites,
proposed by Rall, a pioneer of dendrites modelling, in the 1960’s [14, 15].
Cable Theory is based on a second order partial differential equation developed
by Lord Kelvin in 1850 to describe the attenuation of the electrical signal
spreading along a submarine cable. This concept was later applied to den-
drites [15]. The dendrites are considered as cylindrical cables along which
an electrical signal passively propagates. This phenomenon is described as
follows: λ∂

2V
∂x2

= τ ∂V∂t + V , where V is the membrane potential variation
from the resting value, x is the traveled distance over the cylinder, t is the
time, λ =

√
rm
ri

is the space constant and τ = rm × cm is the time constant
where ri is the intracellular resistance, rm the membrane resistance and cm the
membrane capacitance.

Given an initial condition, the equation is solved analytically for different
boundary conditions, assuming an infinite or a finite cable. The equation de-
scribes the attenuation undergone by the nervous signal during its conduction,



taking into account the length of dendrites, their diameter and the composition
of the membrane. It is the basis of essentially all simulators taking the neuronal
morphology explicitly into account such as Neuron or GENESIS [1]. However,
the main drawback of this approach is the number of parameters involved [13].

3.3 A framework dedicated to the study of dendritic integration

In the remainder of this chapter, we study the impact of the morphology of the
dendritic trees on the neuron I/O function. For this purpose, we have developed
the first formal neuron model integrating dendrites morphology. We are at
the interface between computational and biophysical models as we are not
directly interested in the cellular mechanisms involved in neuron properties but
rather in the “computational properties” of the neuron. Notwithstanding, our
parameters can always be correlated with observable biophysical entities. Our
major contribution is to model this process by mixing discrete and continuous
modelling. Since the AP is known for its speed and its stereotypical properties,
it is reasonable to consider it as an instantaneous event identified by its time
of occurrence (conventionally called spike). More precisely, in our model
a neuron receives spikes sequences at synapses. Those discrete inputs are
immediately converted into continuous signals which then conduct through the
dendritic tree towards the soma. The soma integrates all the signals and when
a threshold is reached, a spike is emitted on the output. Our soma modelling
is inspired by the leaky-I&F model. To investigate the dendritic integration,
we focus on dendrites modeling, choosing Cable Theory as a basis. Although
based on noticeable hypotheses [4], Cable Theory is credible and it allows
very efficient abstractions. We have reduced the number of parameters while
keeping the biophysical accuracy. Thanks to this approach, we are able to
study equivalent classes of dendritic integration.

It is worth noting that our framework will include an abstract modelling of the
ionic charge flows in the excited neuron. These charges are directly related to
the membrane potential difference compared to the resting value, depending on
the local membrane properties. Charges travel through the dendritic tree and
they are summed at branching points. Finally, they control the soma potential
and consequently the spike emissions. From our abstract point of view, we will
make no difference between “charges” and “potentials.”.

4 Static description of a neuron

According to computer science, a tree is recursively defined as a root node to
which is attached a forest of children trees. Our neuron model consists of a
forest of dendritic trees connected to a root soma and we ignore the axon as it



transmits the signal from the soma without any loss (cf. Figure 2) . Synapses
on the dendritic forest are the input ports of the system. They receive sequences
of spikes and each of them triggers a local change of the electrical potential.
The potential reaches a maximal absolute value after a short period of time
and then returns progressively to its resting value. The kinetic is proper to
each synapse and characterized by the parameters given in Definition 1.

Definition 1. [Synapse] A synapse is a triplet s = (νs, τ̂s, τ̌s) where:

• νs is a non-zero real number called maximal potential of a spike for s.
If νs > 0 then s is said excitatory, otherwise it is said inhibitory;

• τ̂s and τ̌s are strictly positive real numbers respectively called rise time
and descent delay of the potential.

Continuous signals generated at synapses then propagate in the dendritic trees
towards the soma. We choose to divide dendrites into homogeneous elemen-
tary compartments delimited by branching points and synapses (Definition 4).
In agreement with Cable Theory, we hypothesize a passive signal propagation
with leakage. Whatever the boundary conditions, the analytical solution of the
linear cable equation is of the form V (x) = V0 × α where α, is a variable de-
pending on x. Therefore, we decided to describe the potential at the output of
a compartment as equal to the potential at its input attenuated by a coefficient
α after a delay δ (Definition 2). Grouping the parameters of the Cable Theory
into those two abstract parameters greatly simplifies our model.

Definition 2. [Compartment] A compartment is a couple c = (δc, αc) where:

• δc is a real number greater or equal to zero called the crossing delay
for c;

• αc is a real number such that αc ∈]0, 1], called the attenuation at the
end of c. If δc = 0, then αc = 1.

The soma accumulates input signals coming from the dendrites making its
potential changing gradually. At the same time, there is a leak of charges
making the potential slowly returning to its resting value. The soma is also
characterized by its activation threshold from which it can emit a spike, and
by the duration of the refractory periods (Definition 3). Note that the relative
refractory period can be technically expressed by an augmented threshold.

Definition 3. [Soma] A soma is a tuple ∇ = (θ, θ̂, ρ, ρ̂, γ) where all the pa-
rameters are strictly positive real numbers: θ is called the activation threshold,
θ̂ the threshold augmentation, ρ the absolute refractory period, ρ̂ the relative
refractory period and γ is called the leak.



Definition 4. [Neuron] A neuron is a labelled rooted tree satisfying the follow-
ing conditions: any non-root node having 0 or 1 child is labelled by a synapse,
any branch is labelled by a compartment and any non-root node having at
least 2 children is called a branching (and is not labelled). The root of the tree
is labelled by a soma. Given a neuron N, we note Sy(N) the set of its synapses
and Co(N) the set of its compartments. Moreover, the direct children of the
soma are called dendritic trees. Finally, we note N the set of all neurons.

Synapses

Branchings

Compartments

Soma

Figure 2: Schematic representation of our neuron model structure.

In computer science, the parent of a node is its only neighbour on the way
to the root. The root is the only parentless node. Children of a node are
its neighbours except its parent node. In the neuron model, the information
goes from the leaves (synapses) to the root (soma). To avoid any confusion,
we use the terms input/output and predecessor/successor to replace the couple
child/parent. Given a neuron N and a compartment y c−→ z: y is called the
input node of c, z the output node of c, c the output compartment of y and c
the input compartment of z. We note In(z) the set of the input compartments

of z. A predecessor of y c−→ z is a compartment in N of the form x
c′−→ y and

we note Pred(c) the set of the predecessors of c. Also, we call contributor
compartments of c (CC(c)), the compartments at delay 0 from y. We define
the synaptic contributors (CS(c)) in a similar way. More formally:

Definition 5. [Contributors] Given a neuron N and a compartment y c−→ z,
∀c′ ∈ Pred(c), the set of the contributor compartments of c noted CC(c) is
defined inductively by:

• If δc′ 6= 0 then c′ ∈ CC(c);

• If δc′ = 0 then CC(c′) ⊂ CC(c).

Moreover, the set of the synaptic contributors of y c−→ z noted CS(c) is the
subset of Sy(N) defined inductively by:



• If y ∈ Sy(N) then y ∈ CS(c);

• ∀c′ ∈ Pred(c), if δc′ = 0 then CS(c′) ⊂ CS(c).

5 The state of a neuron and its dynamics

To describe the state of a neuron and its dynamics, we need to introduce the
notion of “segment”:

Notation 1. Given a set E, a segment with values in E is an application ω :
[0, t] → E where t ∈ IR+ ∪ {+∞} with the convention that [0,+∞] = IR+.
We note Sgt the set of all the segments and we endow Sgt(E) with a partial
internal law of concatenation as follows:
if ω1 : [0, t1] → E and ω2 : [0, t2] → E are two segments such that t1 ∈ IR+

and ω1(t1) = ω2(0), then ω1 · ω2 is the concatenated segment 1 ω1 · ω2 :
[0, t1 + t2] ∈ E such that:

• (ω1 · ω2)(t) = ω1(t) if t 6 t1

• (ω1 · ω2)(t) = ω2(t− t1) if t > t1

We note
n•

i=1
ωi for ω1 · ω2 · ... · ωn, the concatenation of the n segments.

Moreover, if � is a binary operation on E, it can be extended as follows: if
ω1 and ω2 are segments of the same length t0, we note ω1�ω2: [0, t0] → E
the segment such that (ω1�ω2)(t) = ω1(t)�ω2(t) for all t ∈ [0, t0]. When

� = +, we accept the notation
n∑
i=1

ωi for ω1 + ω2 + ...+ ωn.

The input signals are received at the synapses in the form of infinite segments
taking value 1 at the times of the spikes and 0 otherwise (Definition 6). The
output signal will be of the same type so that our modelling opens a way of
building a network where the input of a neuron would come from the output of
other ones.

Definition 6. [Signal] A signal is a segment ω : IR+ → {0, 1} such that:

∃r ∈ IR∗+,∀t ∈ IR+, (ω(t) = 1 ⇒ (∀t′ ∈]t, t+ r[, ω(t′) = 0))

The carrier of ω is defined by: Car(ω) = {t ∈ IR+|ω(t) = 1}. A signal such
that Car(ω) is a singleton {u} is called a spike at the time u, noted ωu.

We call “trace”, the potential change triggered by a spike. It directly de-
pends on the synapse parameters (Definition 1). This continuous variation

1by convention (t1 +∞) = +∞



is exponential from a biophysical point of view [15, 16]. For the sake of
simplicity, we approximate it as linear (Definition 7). It seems reasonable
as the experiments do not always follow the theoretical model and show a
significant variability [8]. The temporal summation observed in biology is
reproduced by making the sum of the respective traces of the successive spikes.
It gives what we call the trace of the signal (cf. Figure 3).

Definition 7. [Trace of a signal] The trace of a spike ωu on a synapse s is the
segment vs,ωu defined by:

• If t 6 u then vs,ωu(t) = 0;

• If u 6 t 6 u+ τ̂s then vs,ωu(t) = νs
τ̂s

(t− u);

• If u+ τ̂s 6 t 6 u+ τ̂s + τ̌s then vs,ωu(t) = νs
τ̌s

(u+ τ̂s + τ̌s − t);

• If u+ τ̂s + τ̌s 6 t then vs,ωu(t) = 0

Moreover, given an input signal ωs on a synapse s, the trace of ωs is defined
by the real segment vs,ωs =

∑
u∈Car(ωs)

vs,ωu .
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Figure 3: Trace of a signal. The trace of a signal is the sum of the traces of its
spikes. Each spike received at a synapse s causes a maximum variation νs of
the potential after a time τ̂s followed by a return to the resting potential with a
delay τ̌s.

The state of a neuron at a given time is the value of the potential at every point
of it. It includes the state of the soma and the state of all the compartments
(Definition 9).

The value of the potential at the soma is not sufficient to characterize its state.
One must also know the time elapsed since the last emmited spike to manage
refractory periods. We thus define the state of the soma as a couple (e, p) where
e is the elapsed time since the last spike and p is the current soma potential.
Due to the biological properties of the neuron, there is a constraint on this
couple which has to be nominal (i.e. normal): when p is above the threshold,
e is necessarily less than the refractory period duration (Definition 8). Indeed,



when p exceeds the threshold, there are only two possibilities: either e is in the
refractory period, or a spike is emitted and thus e is reset to 0.

Definition 8. [Nominal] Given a soma ∇ = (θ, θ̂, ρ, ρ̂, γ), a couple (e, p)
where e ∈ IR+ and p ∈ IR, is nominal if (e < ρ) or (p < θ) or (p <

θ + θ̂ + θ̂(ρ−e)
ρ̂ ). We note Nominal(∇) the set of all the nominal couples.

Based on the compartment definition (Definition 2) and knowing the potential
at its input node, it is easy to calculate the potential at its output after its
crossing delay. The potential at each point of a compartment at a given time is
deduced from this relationship. We thus define the state of a compartment c at
a time h as a segment vhc (t) which describes the evolution of the potential at
its output between h and h+ δc (cf. Figure 4).

Definition 9. [State of a neuron] The state of a neuron N is a triplet η =
(V, e, p) where:

• V is a family of segments, indexed by Co(N), the set of the compart-
ments of N; each segment is of the form vc : [0, δc]→ IR where δc is the
crossing delay of the compartment c. For each compartment c:

vc(δc) ∼

 ∑
c′∈CC(c)

vc′(0)

αc

where by convention the comparator ”∼” is: ”=” if its input node is a
branching, ”>” if its input node is an exitatory synapse or ”6” if its
input node is an inhibitory synapse;

• e ∈ IR+ represents the elapsed time since the last spike and p ∈ IR is
called the soma potential such that the couple (e, p) is nominal for the
soma of N.

We note ζN the set of all the states of the neuron N.

The compartments dynamics is done by “segments sliding” by an arbitrary
timestep ∆ (cf. Figure 5). The potential at the input of c is calculated from
the potential at the output of its contributor compartments while taking into
account the spikes received at synaptic contributors. More formally:

Theorem 1. [Dynamics of the compartments]

Let a neuron N , an initial state ηI = (V I , eI , pI) and an input signal S =
{ωs}s∈Sy(N). There exists a unique application V : IR+×Co(N)→ Sgt(IR),
which associates a segment vhc (t) : [0, δc] → IR for each couple (h, c) ∈
IR+ × Co(N) and such that, for any ∆ 6 inf({δc|c ∈ N ∧ δc > 0}) and
for each couple (h, c):



1. v0
c = vIc

2. for any t+ ∆ 6 δc, vh+∆
c (t) = vhc (t+ ∆),

3. for any t such that δc − ∆ 6 t 6 δc, vh+∆
c (t) =( ∑

c′∈CC(c)

vhc′(t− δc + ∆) +
∑

s∈CS(c)

vhs,ωs
(t− δc + ∆)

)
αc.

v
c

0 ±
cc

t

Figure 4: The state of a compartment. The state of a compartment c is
the potential at its output between t = 0 (vc(0)) and the crossing delay of
c (vc(δc)).
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Figure 5: Dynamics of the compartments. The state of the compartments at
time h + ∆ can be calculated from the state of the compartments at time h
by “sliding.” The potential at the input of a compartment is the sum of the
potentials at the output of its contributors.

Lastly, the soma dynamics is inspired by the leaky-I&F model. At a time t,
the soma potential depends on inputs coming from the dendritic trees (denoted
F (t)) and on the leak γ applied to the current value of the potential. From
an initial condition (e0, p0), we can define the PF function which describes
the evolution of the soma potential over time (Lemma 1). To account for the
refractory period, the couple (e, p) is forced to remain nominal (Definition 8).
So when p reaches the threshold, its value is reduced (by θ) and e is reset to
0. PF is hence discontinuous at this set of times that defines the carrier of the
output signal (Definition 6).



Lemma 1. [Technical lemma] Given a soma ∇ = (θ, θ̂, ρ, ρ̂, γ), there exists
a unique family of functions PF : Nominal(∇) × IR+ → IR indexed by the
set of continuous and lipschitzian functions F : IR+ → IR, such that for any
couple (e0, p0) ∈ Nominal(∇), PF satisfies:

• PF (e0, p0, 0) = p0

• ∀t ∈ IR+ the right derivative dPF (e0,p0,t)
dt exists and is equal to F (t) −

γ.PF (e0, p0, t)

• ∀t ∈ IR+, ` = lim
u→t−

(PF (e0, p0, u)) exists and:

– if (t+ e0, `) ∈ Nominal(∇) then PF (e0, p0, t) is continuous and
is derivable if t > 0 therefore PF (e0, p0, t) = `,

– otherwise, for any u > t, PF (e0, p0, u) = PG(0, `−θ, u−t) where
for any x ∈ IR+, G(x) = F (x+ t).

The lemma hereinabove allows us to define the dynamics of a neuron which
associates a state to each time.

Definition 10. [Dynamics of a neuron] Given a neuron N , an initial state
ηI = (V I , eI , pI) and an input signal S = {ωs}s∈Sy(N), the dynamics of N
is the infinite segment d : IR+ → ζN defined by:

• d(0) = ηI

• ∀h ∈ IR+, d(h) = η = (V, e, p) where:

– V = {V (h, c)}c∈Co(N) = {vhc }c∈Co(N) where the application V
is the one from Theorem 1;

– Consider beforehand F (~) =
∑

c∈In(∇)

v~c (0).

F is lipschitzian at ~ as in any point its derivative is between( ∑
s∈Sy(N)

−νs
τ̌s

)
and

( ∑
s∈Sy(N)

νs
τ̂s

)
. According to Technical lemma 1,

there exists a unique function PF such that PF (eI , pI , 0) = pI

and ∀~, dPF (eI ,pI ,~)
dh = F (~) − γ.PF (eI , pI , ~). Therefore, if

PF (eI , pI , ~) is continuous on the ]0, ~] interval, then e = eI +
~. Otherwise, let ~′ be the greatest ~ such that PF (eI , pI , ~) is
discontinuous, then e = h− ~′.

– Considering the previous PF function, p = PF (eI , pI , h).



6 Remarkable properties

We found that any neuron can be reduced to a pin-holder. A “pin-holder” is
a neuron where each dendritic tree is simply one synapse linked to the soma
by a single compartment. The pin-holder corresponding to a neuron can be
obtained by applying the decomposition function defined below:

Definition 11. [Decomposition function] We note P , the set of all the pin-
holders. The decomposition function fd : N → P is the application which
associates to any neuron N ∈ N the neuron from P built as follows:

• fd(N) has the same soma than N : ∇,

• fd(N) has the same set of synapses than N : Sy(fd(N)) = Sy(N),

• For each synapse s ∈ Sy(N), there exists a unique path made of com-
partments c1, ..., cn (where for all i, ci = (δci , αci)) from ∇ to s in
N . Therefore, the compartment linking ∇ to s in fd(N) is the couple

(δs, αs) such that δs =
n∑
i=1

δci and αs =
n∏
i=1

αci .

The definition of the state of a pin-holder differs from the state of its cor-
responding neuron only at the compartments level, as the soma remains the
same.

Definition 12. [State of a pin-holder] Given the state of a neuron N , we
note fdN : ζN → ζfd(N) the application which associates to each state η =

(V, e, p) of N , the state fdN (η) = (V , e, p) of fd(N) such that for each
synapse s of fd(N) and c its output compartment:

vc = vc1 · (vc2 × α1) · ... · (vcn ×
n−1∏
i=1

αi) =
n•

i=1

vci × i−1∏
j=1

αj


such that c1, ..., cn is the path of compartments from ∇ to s in N where for
each i, ci = (δci , αci).

Thanks to the pin-holder concept we have introduced, we demonstrated the
following theorem:

Theorem 2. [The pin-holder theorem] Let N1 and N2 be two neurons. If
fd(N1) = fd(N2) then, for any input signal S , N1 and N2 have the same
soma dynamics meaning that the evolution of the (e, p) couples with time is the
same after a certain delay. Therefore, they have the same output signal (ω∇)
after a certain delay.
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Figure 6: The pin-holder theorem. The theorem defines equivalent classes of
structure and demontrates that the exact shape of dendritic trees is not critical
in the I/O function of the neuron. The neurons N1, N2 and P represented
here belong to the same class. The parameters are (α = 0.1, δ = 1) for
the blue compartments, (α = 0.25, δ = 2) for the purple compartments and
(α = 0.125, δ = 3) for the green compartments.

The interesting result is that a pin-holder is the canonical representative of a
large set of neurons (cf. Figure 6). According to Theorem 2, these neurons
have the same soma dynamics and therefore the same output for a given input.
This result shows that the dentrites morphology is, surprisingly, not critical
when only taking into account the I/O function of the neuron. Instead of
the precise morphology, attenutation and delay are the key parameters in this
function.

Moreover, the normalization into a pin-holder is an important reduction of the
neuron complexity and this is very efficient for computational purposes.

Notice that the pin-holder is a sort of extension of the classical formal neuron
(Section 3). Indeed, the α parameter of the compartments in our model is
comparable to the weights applied to the inputs in the classical version. The
main difference is the delay brought by our δ parameter.

7 Conclusion

The complex neuronal information processing emerges from an appropriate
arrangement of a large number of neurons, each behaving as a device with
potentially rich computational capabilities. Focusing on the I/O function at
the scale of an individual neuron is thus a fundamental step in understanding
the whole brain function. Cable Theory provides a good approximation to
link the structure of the neuron to its function. As we are interested in the
impact of dendrites morphology, we decided to base our work on this founding
model. We proposed relevant abstractions to reduce the number of parameters
while keeping the biophysics relevance. This enabled us to demonstrate the
pin-holder theorem showing that a very large number of different dendtritic
tree structures share the same I/O function. Consequently, and unexpectedly,



under the assumptions of Cable Theory, it implies that the precise morphology
does not have a critical impact on the neuron I/O function, only delays and
attenuations matter. It then comes that the dendritic morphology is probably
essentially driven by the fact that neuronal structure is the result of a progres-
sive development during neuroembryogenesis.

Among the basic Cable Theory assumptions, the passive conduction of the
signals through the dendrites is a strong one: Some neurons exhibit active
mechanisms at the level of dendrites [8]. Another assumption is that synapses
parameters do not noticeably vary in time although inhibitory synapses seem
to be more effective when an excitatory signal passes close to them [9, 17].
Taking into account these properties to model more complex neurons would
probably modify our basic results, but we provide a first track on how the
inputs distributed over the dendritic tree interact in time and space to determine
the I/O function of the neuron.

A future direction is to take benefit from the pin-holder theorem in order
to study interconnected neurons. Our framework opens up perspectives for
precise network studies for two principal reasons. First, thanks to our hybrid
approach, we would only need to work on discrete signals as the continous part
of the system is restricted to the “internal” part of the neuron. Also, the pin-
holder theorem allows to drastically reduce the neuron model complexity and
this is a strong advantage for simulating and formally reasoning on networks.
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