
A Genetically Modified Hoare Logic

G. Bernota, J.-P. Cometa, Z. Khalisa, A. Richarda, O. Rouxb

aUniversity Côte d’Azur
I3S laboratory, UMR CNRS 7271,

CS 40121, 06903 Sophia Antipolis Cedex, France
bIRCCyN UMR CNRS 6597, BP 92101,

1 rue de la Noë, 44321 Nantes Cedex 3, France

Abstract

An important problem when modelling gene networks lies in the identification
of parameters, even when considering a discrete framework as the one of
René Thomas. We present in this article a new approach based on Hoare
logic to generate constraints on parameter values. Specifications of observed
behaviours play a role comparable to programs in the classical Hoare logic,
and deduced weakest preconditions characterize the sets of all compatible
parameterizations, expressed as constraints on parameters. Finally we give,
in supplementary materials, a proof of soundness of our Hoare logic for gene
networks as well as a proof of completeness and decidability based on the
notion of the weakest precondition.

Keywords: Hoare logic, Gene regulatory networks, Thomas’ networks,
Parameter identification, Soundness and completeness

1. Introduction

Different methods for studying the behaviour of gene networks in a sys-
tematic way have been proposed. Among them, ordinary differential equa-
tions played an important role, which however mostly lead to numerical sim-
ulations. Besides, the abstraction procedure of René Thomas [1], approx-
imating sigmoid functions by step functions, makes it possible to describe
the qualitative dynamics of gene networks as paths in a finite state space.
Nevertheless this qualitative description of the dynamics is still governed by
a set of parameter values, which, although becoming small integers, remain
difficult to deduce from classical experimental knowledge. In this context, we

Preprint submitted to Theoretical Computer Science July 20, 2017

are interested in the exhaustive search of parameter values that are consis-
tent with specifications formalizing the experimentally observed behaviours
of gene regulatory networks.

Several works were undertaken with the objective to identify the parame-
ters. The application of temporal logic to biological regulatory networks was
presented in [2, 3], then constraint programming was used in [5, 4].

In this paper, we present a somewhat unexpected application of formal
methods to biology through a new approach based on Hoare logic [6] and its
associated weakest precondition calculus [7] that generates constraints on pa-
rameters. The formalism on which we decided to apply this idea is the one of
René Thomas because it is now universally recognized as the reference frame-
work for discrete modelling of gene networks. The key point of our proposal
is to define a language able to capture the actual traces observed by molecu-
lar biologists by means of a set of experiments (either at the transcriptomic
or proteomic level [8]). We have designed a language which is expressive
enough to specify sets of observed traces while preserving the completeness
of a corresponding extended Hoare logic. Since this method avoids building
the complete state graph, it results in a powerful technics to find out the con-
straints representing the set of consistent parameterizations with a tangible
gain for computation time. Indeed, the weakest precondition proof strategy
which extracts the constraints, goes through the trace specification syntax
but is independent of the size of the gene network.

The paper is organized as follows. The basic concepts of classical Hoare
logic and its associated Dijkstra weakest precondition are quickly reminded
in Section 2. The classical formal definitions for Thomas’ discrete gene reg-
ulatory networks are reminded in Section 3. Section 4 gives our definition
of (genetically modified) Hoare triples, including the assertion language and
the trace specification language. In Section 5, an extended Hoare logic for
gene networks is defined for Thomas’ discrete models. In Section 6, the ped-
agogical example of the incoherent feedforward loop of type 1 (made popular
by Uri Alon in [9, 10]) highlights the whole process of our approach to find
out the suitable parameter values. Section 7 (Related works) sketches the
previously existing methods for formal identification of discrete parameters
in gene network models. We conclude in Section 8. Supplementary materials
provide the mathematical semantics of these extended Hoare triples and a
proof of soundness of our Hoare logic for gene networks as well as a proof of
completeness and decidability.

2

2. Reminders on standard Hoare logic

The Hoare logic is a formal system for reasoning about the soundness of
imperative programs. In [6], Tony Hoare introduced the notation “{P} p {Q}”
to mean “If the assertion P (precondition) is satisfied before performing the
program p and if the program terminates, then the assertion Q (postcondi-
tion) will be satisfied afterwards.” This constitutes de facto a specification
of the program under the form of a triple, called the Hoare triple. In [7],
Edsger Dijkstra has defined an algorithm taking the postcondition Q and
the program p as input and computing the weakest precondition P0 that en-
sures Q if p terminates. In other words, weakest means that the Hoare triple
{P0} p {Q} is satisfied and that for any precondition P , {P} p {Q} is satisfied
if and only if P ⇒ P0 is semantically satisfied. Notice that weakest precondi-
tion means that it does not contain any useless condition, so, it means that
the set of states that satisfy the weakest precondition is the largest one. The
basic idea is to stamp the sequential steps of a program with assertions that
are infered according to the instruction they surround.

Within the following inference rules, p, p1 and p2 stand for programs,
P , P1, P2, I and Q stand for first-order assertions on the variables of the
program, v stands for a variable of the imperative program, and Q[v ← expr]
means that expr is substituted to each free occurrence of v in Q:

Assignment: {Q[v←expr]} v:=expr {Q}

Sequential composition:
{P2} p2 {Q} {P1} p1 {P2}

{P1} p1;p2 {Q}

Conditional branching:
{P1} p1 {Q} {P2} p2 {Q}

{(e∧P1)∨(¬e∧P2)} if e then p1 else p2 {Q}

Iteration:
{e∧I} p {I} ¬e∧I⇒Q
{I} while e with I do p {Q}

Empty program:
P⇒Q

{P} ε {Q} (where ε stands for the empty program)

The Iteration rule deserves some comments. The assertion I is called the
loop invariant and it is well known that finding the weakest loop invariant
(if any) is undecidable in general [11, 12]. So, Tony Hoare asks the pro-
grammer to give a loop invariant explicitely (with I). There are approaches

3

to help finding loop invariants similar to the iterative approach adopted in
ASTREE [13] (abstract interpretation [14]).

Some authors prefer the following iteration rule {e∧I} p {I}
{I} while e with I do p {¬e∧I}

that requires the application of the empty program rule to become equivalent
to our version. By doing so, these authors put the light on the fact that within
a program, each while instruction carries its own (sub)specification and it
can consequently be proved apart from the rest of the program.

From the standard set of Hoare logic rules, the following proof strategy
builds a proof tree that computes the weakest precondition [7].

Definition 2.1. (Dijkstra Backward strategy). Let {P} p {Q} be a Hoare
triple. We call backward strategy the proof strategy defined inductivelly on
p as follows:

1. If p is of the form p1; p2 where p2 is made of a single instruction,
then apply the Sequential composition rule.

2. If p is a single instruction, then apply the corresponding rule (Iteration
rule, Conditional branching rule or assignment rule).

3. Only after steps 1 and 2 have fully treated p, i.e. when all instructions
have been treated, apply the Empty program rule.

Notice that, these three items being mutually exclusive, the backward strategy
generates a unique proof tree. (In addition, the remaining leafs of the proof
tree must be handled using first order logic and arithmetic knowledge.)

By doing so, the precondition P0 obtained just before applying the last
Empty program rule is the weakest precondition. According to Stephen
Cook [15], the Hoare logic is complete assuming that each loop invariant
in the program is the weakest loop invariant with respect to the condition
computed just at the right of its while statement. More technically, a pro-
gram with a while statement is of the form: “p1 ; while e with I do p ; p2.”
The Dijkstra backward strategy computes inductively the weakest precondi-
tion Q2 such that, after the execution of p2, the postcondition is satisfied.
So Q2 becomes the postcondition of the while statement. The Cook result
is then valid when the invariant I is the weakest condition that ensures Q2

if the program exits from the while statement. All in all, the Cook result
means that the Hoare triple {P} p {Q} is correct if and only if P ⇒ P0 is
semantically satisfied. So the full completeness of the Hoare logic depends on

4

two things: a sufficient expressive power to express all the previously men-
tionned weakest loop invariants and the existence of a first-order proof tree
for P ⇒ P0 whenever it is semantically satisfied. Technically, this relies on
the expressiveness of the chosen underlying assertion language [16].

The most striking feature of the backward strategy for Hoare logic is
that, owing to very simple sequences of syntactic formula manipulations, we
capture the mathematical semantics of a program within first order logic.
Nevertheless, it is worth noticing that we only address partial correctness
since Hoare logic does not give any proof of the termination of the program
(while instructions may induce infinite loops).

3. Reminders on discrete gene regulatory network models

This section presents the formal framework based on the discrete mod-
elling method of René Thomas [17, 18] and introduced in [19]. As shown in

y
(1)

x
(2)

(x ≥ 2) ∧ µ3
µ1

µ2
x ≥ 1

µ3
¬(y ≥ 1)

Figure 1: The graphical representation of a gene regulatory graph R = (V,M,EV , EM)
with V = {x, y}, the bounds of x and y are respectively 2 and 1, M = {µ1, µ2, µ3}, ϕµ1

is
((x > 2) ∧ µ3), ϕµ2

is (x > 1), ϕµ3
is ¬(y > 1).

Figure 1, a gene regulatory graph is visualized as a labelled directed graph in
which vertices are either variables (within circles) or multiplexes (within rect-
angles). Variables abstract genes or their products, and multiplexes contain
propositional formulas that encode situations in which a group of variables
(inputs of multiplexes) influence the evolution of some variables (outputs of
multiplexes). In the figure the simple multiplex µ2 expresses that the variable
x can help the activation of the variable y when its state is at least equal
to 1. In general, multiplexes can represent combined biological phenomena,
one of the simplest being the formation of complexes (in which case the for-
mula would simply contain a conjunction). In the figure, the situation of µ1

is a little bit more elaborated: It reflects an auto-activation of x at level 2
which is controled by µ3. Because µ3 contains a negation, µ1 does not model
a positive cooperation of x and y: The auto-activation of x is inhibited by y.

5

So, in this example, there are three qualitatively interesting intervals of
expression levels for x: an interval called 0, where x can neither act on y nor
on itself, an interval called 1, where x can act on y and never on itself, and
an interval called 2, where x can act on y as well as on itself provided that
µ3 is satisfied. From the biological point of view, there is a threshold (i.e. a
given number of intracellular molecules produced by x) such that x is unable
(resp. able) to act on its target gene if its expression level is under (resp.
over) the threshold.

We say that the bound of x is bx = 2 and similarly there are only 2
qualitatively interesting intervals for y, so the bound of y is by = 1.

In general, this labeled directed graph is formally defined as follows.

Definition 3.1. A gene regulatory graph with multiplexes is a tuple R =
(V,M,EV , EM) satisfying the following conditions:

• V and M are disjoint sets, whose elements are called variables and
multiplexes respectively.

• G = (V ∪M,EV ∪ EM) is a labeled directed graph such that:

– Edges of EV start from a variable and end to a multiplex, and
edges of EM start from a multiplex and end to either a variable or
a multiplex.

– Every directed cycle of G contains at least one variable.

– Every variable v of V is labeled by a positive integer bv called the
bound of v.

– Every multiplex m of M is labeled by a formula ϕm belonging to
the language Lm inductively defined by:

− If v → m belongs to EV and s ∈ IN , then v > s is an atom
of Lm.

− If m′ → m belongs to EM then m′ is an atom of Lm.

− If ϕ and ψ belong to Lm then ¬ϕ, (ϕ ∧ ψ) and (ϕ ∨ ψ) also
belong to Lm.

All in all, the discrete values of a variable x abstract intervals of quantity
of molecules produced by x within the cell. These intervals are obtained by
sorting the activation thresholds of x on the list of its targets. Consequently

6

only the knowledge of the thresholds order is useful and not their actual
values. The multiplexes use these abstract levels in order to encode peculiar
biological knowledge into formulas that define the conditions under which
the regulation positively acts on its targets. If there is no peculiar knowledge
about cooperation over a given target, there is one multiplex per regulating
gene acting on this target, whose formula is reduced to an atom.

Successive multiplexes can be combined by flattening their formulas:

Definition 3.2. The flaten version of a formula ϕm, denoted ϕm, is obtained
by recursively substituting each occurence of a multiplex m′ in ϕm by its
formula ϕm′ (this recursive process of substitutions is well defined because G
has no directed cycle with only multiplexes).

In Figure 1, the flatten formula ϕµ1 is (x > 2) ∧ ¬(y > 1).
As a result of the flatening transformation, all the atoms of a flaten formula
are of the form v > s.

A state is obviously an assignment of integer values to the variables v
of V within the intervals [0, bv]. According to a given state, by replacing
variables by their values, ϕm becomes a propositional formula whose atoms
are the results of the integer inequalities.

Definition 3.3. (States η, satisfaction relation |=N and resources ρ). Let N
be a grn and V be its set of variables. A state of N is a function η : V → IN
such that η(v) 6 bv for all v ∈ V . Let L be the set of propositional formulas
whose atoms are of the form v > s with v ∈ V and let s be a positive integer
(so that ϕm is a formula of L for every multiplex m of N). The satisfaction
relation |=N between a state η of N and a formula ϕ of L is inductively
defined by:

• If ϕ is an atom of the form v > s, then η |=N ϕ if η(v) > s.

• If ϕ ≡ ψ1 ∧ ψ2 then η |=N ϕ if η |=N ψ1 and η |=N ψ2; and we proceed
similarly for the other connectives.

Given a variable v ∈ V , a multiplex m ∈ N−(v) (where N−(v) is the set of
multiplexes m such that m → v belongs to the interaction graph of N) is a
resource of v at state η if η |=N ϕm. The set of resources of v at state η is
defined by ρ(η, v) = {m ∈ N−(v) | η |=N ϕm}.

7

According to figure 1, at the state where η(x) = 2 and η(y) = 1, ϕµ2 is
satisfied and consequently µ2 is the only resource of y. On the contrary ϕµ1
is false and consequently the set of resources of x is empty.

The equilibrium toward which the expression level of a gene v is attracted
only depends on its set ω of resources. The interval number between 0 and bv
containing this equilibrium is classically denoted Kv,ω [20, 21, 17, 22, 2, 19].

Definition 3.4. A gene regulatory network (grn for short) is a couple N =
(V,M,EV , EM ,K) satisfying the following conditions:

• R = (V,M,EV , EM) is a gene regulatory graph with multiplexes,

• K = {Kv,ω} is a family of integers indexed by v ∈ V and ω ⊂ N−(v),
where N−(v) is the set of multiplexes m such that m→ v is an edge of
EM . Each Kv,ω must satisfy 0 6 Kv,ω 6 bv.

A usual notation abuse is the following: we write Kv instead of Kv,∅ and
we write Kv,m1m2... instead of Kv,{m1,m2,...}.

At a given state η, each variable v tries to evolve in the direction of
parameter Kv,ρ(η,v). Hence, at state η, v can increase if η(v) < Kv,ρ(η,v), it
can decrease if η(v) > Kv,ρ(η,v), and v is stable if η(v) = Kv,ρ(η,v).

y

x

1

1

0

0 2

Figure 2: State graph obtained according to Definition 3.5, following Figure 1 and arbi-
trarily assuming that Kx = 0, Kx,µ1

= 2, Ky = 0 and Ky,µ2
= 1.

In Figure 2, at the state (2, 1), we have Kx = 0 < η(x) = 2 and
Ky,µ2 = η(y) = 1, but (0, 1) is not a successor state of (2, 1) because the
protein degradation occurs one protein after the other and consequently the
concentration level of x cannot jump from 2 to 0. Consequently (1, 1) is the
next state.
At (1, 0), both Kx = 0 < η(x) = 1 and Ky,µ2 = 1 > η(y) = 0, but the
probability for x and y to cross their threshold exactly at the same time is

8

null [20, 21, 17, 22, 2, 19]1. Consequently, there are two possible next states:
(0, 0) if x crosses its threshold first and (1, 1) if y crosses its threshold first.

So, Thomas’ method assumes that variables evolve asynchronously and
by unit steps toward their respective target levels:

Definition 3.5. (State Graph). Let N = (V,M,EV , EM ,K) be a grn. The
state graph of N is the directed graph S whose set of vertices is the set of
states of N , and such that there exists an edge (called transition) η → η′ if
one of the following conditions is satisfied:

• For all variables v ∈ V we have η(v) = Kv,ρ(η,v), and then η′ = η.

• There exists v ∈ V such that η(v) 6= Kv,ρ(η,v), and

η′(v) =

{
η(v) + 1 if η(v) < Kv,ρ(η,v)

η(v)− 1 if η(v) > Kv,ρ(η,v)
and ∀u 6= v, η′(u) = η(u).

For each variable v such that η(v) 6= Kv,ρ(η,v), there is a transition allowing
v to evolve (±1) toward its focal level Kv,ρ(η,v). Every outgoing transition of
η is supposed to be possible, so that there is an nondeterminism as soon as η
has several outgoing transitions. Figure 2 represents a complete state graph.

4. Syntax of Hoare triples for gene networks

In order to formalize known information about a gene network, we intro-
duce in this section a language to express properties of states (assertions) and
a language to express properties of state transitions (trace specifications).

4.1. Assertions for discrete models of gene networks

Definition 4.1. (Terms and Assertions). Let N = (V,M,EV , EM ,K) be a
grn. The well formed terms for N are inductively defined by:

• Each integer n ∈ IN constitutes a well formed term

1Indeed, biologically, each threshold corresponds to a precise number of molecules pro-
duced by x or y respectively in the cell. So, the probability for the degradation to make the
number of x-molecules cross the x-threshold exactly at the same time as a new molecule
produced by y makes the y-threshold crossed, is null (a sufficiently precise time scale will
distinguish the two events).

9

• For each variable v ∈ V , the name of the variable v, considered as a
symbol, constitutes a well formed term.

• Similarly, for each v ∈ V and for each subset ω of N−(v), the symbol
Kv,ω constitutes a well formed term.

• If t and t′ are well formed terms then (t+ t′) and (t− t′) are also well
formed terms.

Let N = (V,M,EV , EM ,K) be a grn. The assertions for N are inductively
defined by:

• If t and t′ are well formed terms then (t = t′), (t < t′), (t > t′), (t 6 t′)
and (t > t′) are atomic assertions for N .

• If ϕ and ψ are assertions for N then ¬ϕ, (ϕ∧ψ), (ϕ∨ψ) and (ϕ⇒ ψ)
are also assertions for N .

A state η of the network N satisfies an assertion ϕ if and only if its
interpretation is valid in ZZ, after substituting each variable v by η(v) and
each symbol Kv,ω by its value according to the family K. We note η |=N ϕ.

Moreover, conventionnaly, we denote “>” the tautology (e.g. “1 = 1”).

4.2. Trace specifications for discrete models of gene networks

When biologists observe the dynamics of gene expression levels along a
set of experiments, they extract, as a direct experimental knowledge, some
sets of observed traces. It is consequently of first interest to see these sets of
observations as basic elements for the specification of gene networks.

Definition 4.2. (Trace specifications). Let N = (V,M,EV , EM ,K) be a
grn. The set of trace specifications for N is inductively defined by:

• For each v ∈ V and n ∈ [0, bv] the expressions v+, v− and v := n
are atomic trace specifications (respectively increase, decrease or as-
signment).

• If e is an assertion for N , then the expression assert(e) is an atomic
trace specification.

10

• If p1 and p2 are trace specifications then (p1; p2) is also a trace speci-
fication (sequential composition). Moreover the sequential composition
is associative, so that we can write (p1; p2; · · · ; pn) without intermediate
parentheses.

• If p is a trace specification and if e and I are assertions for N , then
(while e with I do p) is also a trace specification. The assertion I is
called the invariant of the while loop.

• If p1 and p2 are trace specifications then ∀(p1, p2) and ∃(p1, p2) are
also trace specifications (quantifiers). Moreover the quantifiers are as-
sociative and commutative, so that we can write ∀(p1, p2, · · · , pn) and
∃(p1, p2, · · · , pn) as useful abbreviations.

Conventionnaly, we denote:

• ε (called the empty trace) the trace specification assert(>).

• if e then p1 else p2 (called conditional branching) the trace specifica-
tion ∃(assert(e); p1 , assert(¬e); p2), where p1 and p2 are any trace
specifications and e is an assertion for N .

Intuitivelly, v+ (resp. v−, v := n) means that the expression level of
variable v is increasing by one unit (resp. decreasing by one unit, set to a
particular value n during the experiment). assert(e) allows one to express a
property of the current state without change of state. Sequential composition
allows one to concatenate two trace specifications. The loop invariant I, as
in classical Hoare logic, is a way to handle an unknown number of trace rep-
etitions: It will facilitate proofs of Hoare triples. Finally it becomes possible
to group together several trace specifications thanks to the quantifiers ∀ and
∃. These intuitions are formalized as follows via a binary relation between
states and sets of states.

Notation 4.3. For a state η, a variable v and i ∈ [0, bv], we note η[v ← i]
the state η′ such that η′(v) = i and for all u 6= v, η′(u) = η(u).

Definition 4.4. (Mathematical semantics of a trace specification). Let N =
(V,M,EV , EM ,K) be a grn, let S be the state graph of N whose set of
vertices is denoted S and let p be a trace specification for N . The binary
relation

p
; is the smallest subset of S × P(S) such that, for any state η:

11

1. If p is the atomic expression v+, then let us consider the state η′ =
η[v ← (η(v) + 1)]: If η → η′ is a transition of S then η

p
; {η′}.

2. If p is the atomic expression v−, then let us consider the state η′ =
η[v ← (η(v)− 1)]: If η → η′ is a transition of S then η

p
; {η′}.

3. If p is the atomic expression v := i, then η
p
; {η[v ← i]}.

4. If p is of the form assert(e), if η |=N e, then η
p
; {η}.

5. If p is of the form ∀(p1, p2): If η
p1
; E1 and η

p2
; E2 then η

p
; (E1∪E2).

6. If p is of the form ∃(p1, p2): If η
p1
; E1 then η

p
; E1, and if η

p2
; E2

then η
p
; E2.

7. If p is of the form (p1; p2): If η
p1
; F and if {Ee}e∈F is a F -indexed

family of state sets such that e
p2
; Ee, then η

p
; (

⋃
e∈F Ee).

8. If p is of the form (while e with I do p0):

• If η 6|=N e then η
p
; {η}.

• If η |=N e and η
p0;p
; E then η

p
; E.

Detailed comments about this definition can be found in supplementary ma-
terials Appendix A.

4.3. Hoare triples

Similarly to Section 2, two assertions and one trace specification are used
to constitute a Hoare triple for gene networks.

Definition 4.5. A Hoare triple for a grn N is an expression of the form
{P} p {Q} where P and Q are assertions for N , called pre- and post-
condition respectively, and p is a trace specification for N .

In practice P can describe a set of states where cells have been synchronised at
the beginning of the experiment, for example all states for which the variable
v has value zero (P ≡ (v = 0)), the trace specification p describes biologically
observed dynamic processes, for example increase of the expression level of
v (p ≡ v+), and the postcondition also describes observations at the end of
the experiment, for example all states for which the variable v has value one
(Q ≡ (v = 1)), and so on. Whether or not the triple is satisfied by a given
gene network N , will depend on its state transition graph, thus it will depend
on the parameter values in K.

12

Definition 4.6. (Semantics of a Hoare triple). Let N = (V,M,EV , EM ,K)
be a grn and let S be the state graph of N whose set of vertices is denoted
S. A Hoare triple {P} p {Q} is satisfied if and only if:

For all η ∈ S satisfying P , there exists E such that η
p
; E and for all

η′ ∈ E, η′ satisfies Q.

See supplementary materials Appendix A for more details.

5. A Hoare logic for discrete models of gene networks

In this section, we define our genetically modified Hoare logic by giving
the rule for each constructor of trace specifications (Definition 4.2). First,
let us introduce a few conventional names to denote formulas that will be
intensively used.

Notation 5.1. For each variable v of a grn N , we conventionally use the
following notations:

1. For each subset ω of N−(v) we denote by Φω
v the following formula

Φω
v ≡ (

∧
m ∈ ω

ϕm) ∧ (
∧

m ∈ N−(v)rω

¬ϕm)

where N−(v) r ω stands for the complementary subset of ω in N−(v).
From Definition 3.3, for all states η, η |=N Φω

v if and only if ω = ρ(η, v),
that is, ω is the set of resources of v at state η. Consequently, for each
v, there exists a unique ω such that η |=N Φω

v .

2. We denote by Φ+
v the following formula

Φ+
v ≡

∧
ω⊂N−(v)

(Φω
v =⇒ Kv,ω > v)

From Definition 3.5, we have η |=N Φ+
v if and only if there is a transi-

tion (η → η[v ← v + 1]) in the state graph S, that is, if and only if the
variable v can increase.

3. We denote by Φ−v the following formula

Φ−v ≡
∧

ω⊂N−(v)

(Φω
v =⇒ Kv,ω < v)

Similarly, η |=N Φ−v if and only if the variable v can decrease from the
state η in the state graph S.

13

See Section 6 where examples of these formulas are given.
Our Hoare logic for discrete models of gene networks is then defined by

the following inference rules, where v is a variable of the grn and k ∈ [0, bv].

1. Rules encoding Thomas’ discrete dynamics.

Incrementation: { Φ+
v ∧ Q[v←v+1] } v+ {Q}

Decrementation: { Φ−v ∧ Q[v←v−1] } v− {Q}

2. Rules coming from Hoare logic. These rules are similar to the ones
given in Section 2. Obvious rules for the expression assert(Φ), and for
the quantifiers, are added:
Assert: { Φ ∧ Q } assert(Φ) { Q }

Universal quantifier:
{P1} p1 {Q} {P2} p2 {Q}
{P1∧P2} ∀(p1,p2) {Q}

Existential quantifier:
{P1} p1 {Q} {P2} p2 {Q}
{P1∨P2} ∃(p1,p2) {Q}

Assignment: {Q[v←k]} v:=k {Q}

Sequential composition:
{P1} p1 {P2} {P2} p2 {Q}

{P1} p1;p2 {Q}

Iteration:
{e∧I} p {I} ¬e∧I⇒Q
{I} while e with I do p {Q}

Empty trace:
P ⇒ Q
{P} ε {Q}

3. Boundary axioms asserting that all values stay between their bounds,
for each v ∈ V and ω ⊂ N−(v):

0 6 v ∧ v 6 bv ∧ 0 6 Kv,ω ∧ Kv,ω 6 bv

Remark 5.2.

• (Φ+
v ⇒ v < bv) can be deduced from the boundary axioms: Φ+

v implies
that for ω corresponding to the current set of resources, Kv,ω > v and,
using the boundary axiom Kv,ω 6 bv, we get v < bv.

14

• Similarly, we have (Φ−v ⇒ v > 0).

These implications will be used in Section 6.
The conditional branching rule of the standard Hoare logic has not been

reproduced here because the trace specification (if e then p1 else p2) is a
shorthand for ∃(assert(e); p1 , assert(¬e); p2). The conditional branching
rule remains correct.

We prove in Supplementary Materials Appendix B that this modified
Hoare logic is sound and complete and we show that the weakest loop in-
variants can always be computed. More precisely, the proof strategy called
backward strategy, already described at the end of Section 2, also applies here:
It computes the weakest precondition.

Nevertheless, similarly to classical Hoare logic which reflects a partial
soundness of imperative programs, the previous definition does not imply
termination of while loops.

6. A pedagogical example

In [9, 10] Uri Alon and co-workers have studied the most common in
vivo patterns involving at most four genes. Among them, even without con-
sidering feedback loops such as in [23], there are interesting patterns whose
dynamics is less obvious than it seems. In particular they have emphasized
the incoherent feedforward loop of type 1. It is composed by a transcrip-
tion factor a that activates a second transcription factor c, and both a and
c regulate a gene b. The gene a is an activator of b whereas the gene c is
an inhibitor of b. There is a “short” positive action of a on b and a “long”
negative action via c: a activates c which inhibits b. The left hand side of
Figure 3 shows such a feedforward loop. Supposing that both thresholds of
actions of a are equal leads to a Boolean network since, in that case, the
variable a can take only the value 0 (a has no action) or 1 (a activates both b
and c). The right hand side of the figure shows the corresponding grn with
multiplexes: σ encodes the “short” action of a on b, whilst l followed by λ
constitute the “long” action.

Classical interpretation: Uri Alon and many biologists have in mind that
if a is equal to 0 for a sufficiently long time, both b and c will also be
equal to 0, because b and c need a as a resource in order to reach the
state 1. They also have in mind that the function of this feedforward

15

a

c

b1 +

1+

1 −

a 1

1

c

b

1

l

a > 1

a > 1

σ

¬(c > 1)

λ

Figure 3: (Left) Boolean “incoherent feedforward loop of type 1” according to
Uri Alon. (Right) Corresponding grn N=(V,M,EV , EM ,K). V={a, b, c} with
ba=bb=bc=1. M={l, λ, σ}, φl ≡ (a > 1), φλ ≡ (¬(c > 1)), φσ ≡ (a > 1).
K={Ka,Kc,Kc,l,Kb,Kb,σ,Kb,λ,Kb,σλ}.

loop is to ensure a transitory activity of b that signals when a has
switched from 0 to 1. The idea is that a activates the productions of b
and c, and then c stops the production of b.

Here, we revisit this affirmation via four different trace specifications, and
we prove formally that the affirmation is only valid under some constraints
on the parameters of the network, and only under the assumption that b
starts its activity before c.

Is a transitory production of b possible? The simple popular idea that b is
activated and then the activation of c inhibits b is specified by the Hoare
triple {P} P1 {Q0} where P ≡ (a = 1 ∧ b = 0 ∧ c = 0), P1 ≡ (b+; c+; b−)
and Q0 ≡ (b = 0). The backward strategy using our genetically modified
Hoare logic on this example gives the following successive conditions.

• The weakest precondition obtained through the last expression “b−” is
Φ−b ∧Q0[b← b−1] (Decrementation rule):

Φ∅
b ⇒ Kb < b

Φσ
b ⇒ Kb,σ < b

Φλ
b ⇒ Kb,λ < b

Φσ,λ
b ⇒ Kb,σλ < b

b− 1 = 0

≡


(¬¬(c > 1) ∧ ¬(a > 1))⇒ Kb < b
(¬¬(c > 1) ∧ (a > 1))⇒ Kb,σ < b
(¬(c > 1) ∧ ¬(a > 1))⇒ Kb,λ < b
(¬(c > 1) ∧ (a > 1))⇒ Kb,σλ < b
b− 1 = 0

16

which simplifies as Q1 ≡


b = 1
((c > 1) ∧ (a < 1)) =⇒ Kb = 0
((c > 1) ∧ (a > 1)) =⇒ Kb,σ = 0
((c < 1) ∧ (a < 1)) =⇒ Kb,λ = 0
((c < 1) ∧ (a > 1)) =⇒ Kb,σλ = 0

• Then, the weakest precondition obtained through the expression “c+”
is Φ+

c ∧Q1[c← c+ 1]:

¬(a > 1)⇒ Kc > c
a > 1⇒ Kc,l > c
b = 1
((c+ 1 > 1) ∧ (a < 1))⇒ Kb = 0
((c+ 1 > 1) ∧ (a > 1))⇒ Kb,σ = 0
((c+ 1 < 1) ∧ (a < 1))⇒ Kb,λ = 0
((c+ 1 < 1) ∧ (a > 1))⇒ Kb,σλ = 0

which simplifies as

Q2 ≡



c = 0
a < 1⇒ Kc = 1
a > 1⇒ Kc,l = 1
b = 1
a < 1⇒ Kb = 0
a > 1⇒ Kb,σ = 0

using the boundary axioms and Re-

mark 5.2.

• Lastly, the weakest precondition obtained through the first “b+” of the

trace is Φ+
b ∧Q2[b← b+1] which simplifies asQ3 ≡



a < 1⇒ Kb,λ = 1
a > 1⇒ Kb,σλ = 1
c = 0
a < 1⇒ Kc = 1
a > 1⇒ Kc,l = 1
b = 0
a < 1⇒ Kb = 0
a > 1⇒ Kb,σ = 0

Then, using the Empty trace rule, it follows that P =⇒ Q3 i.e. (a = 1 ∧ b =
0 ∧ c = 0) =⇒ Q3. After simplification we get correctness if and only if
Kb,σλ = 1 and Kc,l = 1 and Kb,σ = 0. So, under these three hypotheses
and whatever the values of the other parameters, the system can exhibit a
transitory production of b in response to a switch of a from 0 to 1.

Is a transitory production of b possible without increasing c? The previous
trace specification P1 is not the only one reflecting a transitory production

17

of b, there may be other realisations of this property. For example one can
consider the trace specification

P2 ≡ (b+; b−).

With respect to this trace specification, the weakest precondition obtained
through the last expression “b−” is of course Q1 as previously. Then, the
weakest precondition obtained through “b+” is

Q4 ≡


b = 0
((c > 1) ∧ (a < 1)) =⇒ ((Kb = 1) ∧ (Kb = 0))
((c > 1) ∧ (a > 1)) =⇒ ((Kb,σ = 1) ∧ (Kb,σ = 0))
((c < 1) ∧ (a < 1)) =⇒ ((Kb,λ = 1) ∧ (Kb,λ = 0))
((c < 1) ∧ (a > 1)) =⇒ ((Kb,σλ = 1) ∧ (Kb,σλ = 0))

Q4 is not satisfiable: It implies that each parameter associated with b is both
equal to 0 and 1. The trace (b+; b−) is not realisable (inconsistent weakest
precondition).

The existence of the trace (b+, c+, b−) does not imply a transitory production
of b for all traces in the same gene network. When Kb,σλ = 1, Kc,l = 1 and
Kb,σ = 0, that is when trace (b+, c+, b−) is realisable, this does not prevent
from some other traces that do not exhibit a transitory production of b. For
instance the simple trace specification P3 ≡ c+ leaves b constantly equal to
0, and the Hoare triple{

a = 1 ∧ b = 0 ∧ c = 0 ∧
Kb,σλ = 1 ∧ Kc,l = 1 ∧ Kb,σ = 0

}
c+

{
b = 0

}
is satisfied, as the corresponding weakest precondition Q5 is clearly implied
by the precondition.

Q5 ≡ Φ+
c ∧Q0[c← c+ 1] ≡


c = 0
a = 0 =⇒ Kc = 1
a = 1 =⇒ Kc,l = 1
b = 0

Once a constantly equals 1, if c reaches level 1 before b, even transitorily, then
no production of b is possible anymore. We prove this property by showing
that the following triple is inconsistent, whatever the loop invariant I:
a = 1 ∧ b = 0 ∧
c = 1 ∧Kb,σλ=1 ∧
Kc,l=1 ∧ Kb,σ=0

while b<1 with I do ∃(b+, b−, c+, c−)︸ ︷︷ ︸
P4

{b=1}

18

The subtrace specification ∃(b+, b−, c+, c−) reflects the fact that a stays
constant but b or c evolves. Thus, the while statement allows b and c to
evolve freely until b becomes equal to 1.
Applying the Iteration rule, I has to satisfy ¬(b < 1) ∧ I =⇒ (b = 1): This
property is trivially satisfied whatever the assertion I, due to the boundary
axioms. I has also to satisfy {b < 1 ∧ I} ∃(b+, b−, c+, c−) {I} which gives
via the existential quantifier rule:

Q6 ≡
{

(Φ+
b ∧ I[b← b+ 1]) ∨ (Φ−b ∧ I[b← b− 1]) ∨

(Φ+
c ∧ I[c← c+ 1]) ∨ (Φ−c ∧ I[c← c− 1])

Consequently I must be any assertion such that

(b = 0 ∧ I) =⇒ Q6

Let us denote P the precondition of the trace specification P4. Applying the
Empty trace rule, it results that I must also satisfy P =⇒ I. So, because
P =⇒ (b = 0), we have P =⇒ (b = 0 ∧ I), which, in turn implies Q6.
Moreover, let us remark that Q6 =⇒ (Φ+

b ∨Φ−b ∨Φ+
c ∨Φ−c). Consequently,

if the Hoare triple of P4 is correct, then P =⇒ (Φ+
b ∨Φ−b ∨Φ+

c ∨Φ−c) which
is impossible because, if P is satisfied then

• Φ+
b is false, as a = 1, c = 1 and Kb,σ = 0

(indeed,Φ+
b implies a = 1 ∧ c = 1⇒ Kb,σ > 0)

• Φ−b is false, as b = 0 (Φ−b implies b > 0)

• Φ+
c is false, as c = 1 (Φ+

c implies c < 1)

• Φ−c is false, as a = 1, c = 1 and Kc,l = 1
(Φ−c implies a = 1 ∧ c = 1⇒ Kc,l < 1).

So, we have formally proved that when a is constantly equal to 1, as soon
as c has reached the level 1, it becomes never possible for b to increase
to 1. As announced at the begining of this section, this proof contradicts the
universality of the classical interpretation of this incoherent feedforward loop
of type 1.

7. Related Works

What motivates the introduction of formal methods in discrete modelling
of gene networks (or any complex system) is of course the automation of
parameter identification.

19

First approaches based on Thomas’ modelling used hand-made identifi-
cation taking benefit from known mathematical properties on circuits and
using simulations, on a “trial and error” method [24, 25]. Later on, simu-
lation softwares helped systematic simulations, mainly GNA [26] and GIN-
sim [27] that also include some tools for the determination of invariants. On
biological systems where sufficient biological knowledge drastically limits the
possible parameter values, approaches purely based on simulations remain
efficient [28].

The first use of the power of formal methods really comes with temporal
logics and model checking with the software SMBioNet [2]. Later on, GNA
also included some aspects of model checking and Alexander Bockmayr and
Heike Siebert [29] introduced timed automata using UPPAAL. Constraint
solving efficiently complemented the temporal logic approach [5, 4] as well as
symbolic execution technics [3]. More detailed descriptions of these methods
and their variants can be found in [30, 31]. These approaches fully take ben-
efit from biological expertise, formalizing knowledge into temporal formulas
but they need a large interpretation capacity of the experimental observa-
tions. This was our motivation to introduce Hoare Logic which uses trace
specifications directly extracted from experiments.

Following the same motivation, Heike Siebert and co-workers [32] encoded
time-series measurements into CTL formulas. Their approach is able to take
into account partially known time-series measurements using repeatedly en-
capsulated EF statements. Then, they use softwares such as SMBioNet in
order to identify the parameters. The price to pay is a huge computation
time to identify the parameters, compared to constraint solving. Also, com-
pared to our Hoare Logic, neither assignment, nor quantifier nor iteration are
possible. Notice that although the Siebert’s approach is based on a modal
logic, a procedure based on tableau semantics [33, 34], does not apply because
the objective of using time-series from biological experiments is, similarly to
our approach, to extract constraints on the Thomas’ parameters; it is not to
prove the satisfiability of the considered time-series2.

On the semantic side, Definition 4.4 is in fact rather natural and similar

2Notice also that, although both Dijkstra weakest precondition algorithm and the
tableau procedure for LTL go backwards, they are intrinsically different. In particular, in
the Hoare approach as well as ours, the size of the formulas built by the Dijkstra algorithm
increases up to the final constraint, contrarily to tableau procedure that builds a sequence
of decreasing subformulas of the considered formula.

20

ideas have been used for concurrent systems in computer science, such as for
instance in [35, 36] where the authors defined a mathematical semantics for
concurrent propositional dynamic logic. Our definition has a slightly different
treatment of quantifiers, disjunctions and conjunctions in order to cope with
the biological meaning of non-determinism.

Last but not least, whatever the aforementioned formalism, there is no
possibility to model an intervention of the biologist during the experiment.
Knock-Outs of genes are typical examples of such interventions. In our for-
malism they are easy to express in trace specifications, using asignment ex-
pressions (such as v := 0). They are not directly expressible in the other
formalisms, including CTL or LTL, because the logic formulas they consider
are by definition satisfied (or not) according to the paths within a given model
which is a transition graph deduced from the gene network: knock-outs do
not correspond to transitions.

Let us additionally remark that abstract interpretation [14] subsumes
the Hoare logic, so a natural question is should we use genetically modified
abstract interpretation instead of genetically modified Hoare logic? The point
is that the dynamics of Thomas’ networks is formalized in a easy way using
Hoare inference rules, whereas abstract interpretation would make things
more complicated without actual benefit. Hoare triples facilitate discussions
with biologists.

8. Conclusion

As a consequence of our results, when a genetically modified Hoare triple
is correct, we are always able to automatically generate all the weakest loop
invariants and to build a syntactic proof tree that establishes the soundness.
In other words, the assertion language of Definition 4.1 is expressive enough
to ensure the purely logical soundness and decidability of our genetically
modified Hoare logic with while loops and quantifiers. This is an important
step towards a systematic exploitation of the numerous gene expression traces
available in biological databases.

We used our genetically modified Hoare logic on several examples in-
cluding the classical epigenetic switch of λ phage and, in cooperation with
biologists, other examples of credible size such as the circadian clock or the
cell cycle in mammals. In all examples the computation of the weakest pre-
condition takes less than one tens of second on a standard laptop (dual core,
2GHz). What can take time is the resolution of constraints, varying from

21

ten seconds to one day, depending on the chosen constraint solver and the
problem under consideration (CTL based softwares require several days to
model check all the possible sets of parameter values). On the mammal cell
cycle example, inspired by the model proposed by John Tyson in [37], we
made a discrete model with 5 variables and 11 multiplexes. We obtained
a set of 339 738 624 possible valuations, each model with 48 states and 26
parameters. From biological knowledge we extracted 12 trace specifications.
After applying our Hoare logic method, 13 parameters were entirely identified
(50%) and only 8192 valuations remained possible according to the generated
constraints (0.002%). Lastly additional reachability properties (endoreplica-
tion and quiescent phase) have been necessary to identify all parameters by
formalizing them into temporal logic.

One may easily imagine similar works for many applications besides gene
networks. When modelling any complex system, the cornerstone lies, what-
ever the application domain, in the identification of the parameters. Hoare
logic was initially designed for proofs of imperative programs. In this paper,
we divert this approach for exhibiting constraints on parameters of gene net-
work models. One can imagine several other adaptations for several types
of discrete complex systems, the key point is to extract from the considered
underlying modelling framework, a first order formula that characterizes the
conditions under which a transition exists.

Acknowledgment

The authors thank the French National Agency for Research (ANR-14-
CF09-0011 HyClock project) for its support. This work has also been partly
supported by the ANR-10-BLANC-0218 BioTempo project, by the CNRS
PEPII project CirClock and by the European PHC PROCOPE project
TiGeRNet.

References

[1] R. Thomas, Regulatory networks seen as asynchronous automata : A
logical description, J. theor. Biol. 153 (1991) 1–23.

[2] G. Bernot, J.-P. Comet, A. Richard, J. Guespin, Application of formal
methods to biological regulatory networks: Extending Thomas’ asyn-
chronous logical approach with temporal logic, Journal of Theoretical
Biology 229 (3) (2004) 339–347.

22

[3] D. Mateus, J.-P. Gallois, J.-P. Comet, P. Le Gall, Symbolic modeling
of genetic regulatory networks, Journal of Bioinformatics and Compu-
tational Biology 5 (2B) (2007) 627–640.

[4] F. Corblin, S. Tripodi, E. Fanchon, D. Ropers, L. Trilling, A declara-
tive constraint-based method for analyzing discrete genetic regulatory
networks, Biosystems 98 (2) (2009) 91–104.

[5] E. Fanchon, F. Corblin, L. Trilling, B. Hermant, D. Gulino, Modeling
the molecular network controlling adhesion between human endothelial
cells: Inference and simulation using constraint logic programming, in:
CMSB, 2004, pp. 104–118.

[6] C. Hoare, An axiomatic basis for computer programming, Communica-
tions of the ACM 12 (10) (1969) 576–585.

[7] E. W. Dijkstra, Guarded commands, nondeterminacy and formal deriva-
tion of programs, Commun. ACM 18 (1975) 453–457.

[8] A. Bernot, Genome transcriptome and proteome analysis, John Wiley
& Sons, 2004.

[9] S. Shen-Orr, R. Milo, S. Mangan, U. Alon, Network motifs in the tran-
scriptional regulation network of escherichia coli, Nature Genetics 31
(2002) 64–68.

[10] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon,
Network motifs: Simple building blocks of complex networks, Science
298 (2002) 824–827.

[11] W. Hatcher, A semantic basis for program verification, J. of Cybernetics
4 (1) (1974) 61–69.

[12] A. Blass, Y. Gurevich, Inadequacy of computable loop invariants, ACM
Transactions on Computational Logic 2 (1) (2001) 1–11.

[13] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Min, D. Monniaux,
X. Rival, The ASTRE analyser., in: M. Sagiv (Ed.), ESOP 2005 The
European Symposium on Programming, no. 3444 in LNCS, Springer,
2005, pp. 21–30.

23

[14] P. Cousot, R. Cousot, Basic concepts of abstract interpretation., in:
R. Jacquard (Ed.), Building the Information Society, Kluwer Academic,
2004, pp. 359–366.

[15] S. A. Cook, Soundness and completeness of an axiom system for program
verification, SIAM Journal on Computing 7 (1) (1978) 70–90.

[16] D. Kozen, J. Tiuryn, On the completeness of propositional Hoare logic,
Information Sciences 139 (3) (2001) 187–195.

[17] R. Thomas, R. d’Ari, Biological Feedback, CRC Press, 1990.

[18] R. Thomas, M. Kaufman, Multistationarity, the basis of cell differentia-
tion and memory. II. logical analysis of regulatory networks in terms of
feedback circuits, Chaos 11 (2001) 180–195.

[19] Z. Khalis, J.-P. Comet, A. Richard, G. Bernot, The SMBioNet method
for discovering models of gene regulatory networks, Genes, Genomes and
Genomics 3(special issue 1) (2009) 15–22.

[20] R. Thomas, A. Gathoye, L. Lambert, A complex control circuit. regula-
tion of immunity in temperate bacteriophages., Eur. J. Biochem. 71 (1)
(1976) 211–27.

[21] R. Thomas, Logical analysis of systems comprising feedback loops., J.
Theor. Biol. 73 (4) (1978) 631–56.

[22] E. Snoussi, R. Thomas, Logical identification of all steady states : the
concept of feedback loop caracteristic states, Bull. Math. Biol. 55 (5)
(1993) 973–991.

[23] B. Yordanov, G. Batt, C. Belta, Model checking discrete-time piecewise
affine systems: application to gene networks, in: Control Conference
(ECC), 2007 European, IEEE, 2007, pp. 2619–2626.

[24] M. Kaufman, J. Urbain, R. Thomas, Towards a logical analysis of the
immune response, Journal of theoretical biology 114 (4) (1985) 527–561.

[25] R. Thomas, M. Kaufman, Multistationarity, the basis of cell differenti-
ation and memory. I. & II., Chaos 11 (2001) 170–195.

24

[26] H. de Jong, J. Geiselmann, C. Hernandez, M. Page, Genetic network
analyzer: qualitative simulation of genetic regulatory networks., Bioin-
formatics 19 (3) (2003) 336–44.

[27] A. Gonzalez, A. Naldi, L. Sanchez, D. Thieffry, C. Chaouiya, Ginsim: a
software suite for the qualitative modelling, simulation and analysis of
regulatory networks, Biosystems 84 (2) (2006) 91–100.

[28] R. Khoodeeram, G. Bernot, J.-Y. Trosset, An ockham razor model of
energy metabolism, in: P. Amar, F. Kps, V. Norris (Eds.), Proc. of
the Thematic Research School on Advances in Systems and Synthetic
Biology, EDP Science, 2017, pp. 81–101.

[29] H. Siebert, A. Bockmayr, Temporal constraints in the logical analysis
of regulatory networks, Theoretical Computer Science 391 (3) (2008)
258–275.

[30] G. Bernot, J.-P. Comet, C. Risso-de Faverney, Regulatory networks,
in: B. Reisfeld, A. Mayeno (Eds.), Computational Toxicology, Vol. II,
Humana Press, ISBN 978-1-62703-058-8, USA, 2013, pp. 215–234.

[31] G. Bernot, J.-P. Comet, H. Snoussi, Formal methods applied to gene
network modelling, in: L. Farinas del Cerro, K. Inoue (Eds.), Logical
Modeling of Biological Systems, Bioengineering and health science se-
ries, ISTE & Wiley, ISBN 978-1-84821-680-8, 2014, pp. 245–289.

[32] H. Klarner, A. Streck, D. Šafránek, J. Kolčák, H. Siebert, Parameter
identification and model ranking of Thomas networks, in: Computa-
tional Methods in Systems Biology, Springer, 2012, pp. 207–226.

[33] M. Reynolds, A traditional tree-style tableau for LTL, CoRR
abs/1604.03962.
URL http://arxiv.org/abs/1604.03962

[34] M. Bertello, N. Gigante, A. Montanari, M. Reynolds, Leviathan: A new
LTL satisfiability checking tool based on a one-pass tree-shaped tableau.,
in: IJCAI, 2016, pp. 950–956.

[35] D. Peleg, Concurrent dynamic logic, Journal of the ACM (JACM) 34 (2)
(1987) 450–479.

25

[36] M. Hennessy, Algebraic Theory of Processes, MIT Press, 1988.

[37] J. Tyson, B. Novak, Temporal organization of the cell cycle, Current
Biology 18 (17) (2008) R759–R768.

26

Supplementary materials

Appendix A. Semantics of Hoare triples for gene networks

We define the semantics of a trace specification via a binary relation
between states and sets of states. This relation characterises all the possible
realisations of the trace specification. The general ideas that motivate our
definition are the following:

• Starting from an initial state η, a trace specification without existential
or universal quantifier is either realised by associating with η another
state η′ or is not realisable so that η′ does not exist. For example, the
atomic expression v+ associates η′ with η (where ∀u 6= v, η′(u) = η(u)
and η′(v) = η(v) + 1) if and only if the transition η → η′ exists in the
state space. If, on the contrary, this transition does not exist, the trace
specification is not realisable.

• Existential quantifiers open a sort of space of possibilities for η′: Ac-
cording to the chosen trace specification under each existential quanti-
fier one may get different associated states. Consequently, one cannot
define the semantics as a partial function that associates a unique η′

with η; a binary relation is a more suited mathematical object (denoted
; in the sequel).

• A universal quantifier induces a sort of unity/solidarity between all the
states η′ that can be obtained through each trace specification under
its scope. We will see later (Definition Appendix A.2) that all these
states have to satisfy the postcondition. For this reason, we define a
binary relation that associates a set of states E with the initial state
η: “η ; E”. Such a set E can be understood as grouping together
the states it contains in preparation for checking the forthcoming post
condition.

• When the trace specification p contains both existential and universal
quantifiers, we may consequently get several sets E1, · · · , En such that
η

p
; Ei, each of the Ei being a possibility through the existential quan-

tifiers of p and all the states belonging to a given Ei being together
through the universal quantifiers of p. On the contrary, if p is not re-
alisable, then there is no set E such that η

p
; E (not even the empty

set).

27

Definition Appendix A.1. (Mathematical semantics of a trace specifica-
tion). Let N = (V,M,EV , EM ,K) be a grn, let S be the state graph of N
whose set of vertices is denoted S and let p be a trace specification for N .
The binary relation

p
; is the smallest subset of S ×P(S) such that, for any

state η:

1. If p is the atomic expression v+, then let us consider the state η′ =
η[v ← (η(v) + 1)]: If η → η′ is a transition of S then η

p
; {η′}.

2. If p is the atomic expression v−, then let us consider the state η′ =
η[v ← (η(v)− 1)]: If η → η′ is a transition of S then η

p
; {η′}.

3. If p is the atomic expression v := i, then η
p
; {η[v ← i]}.

4. If p is of the form assert(e), if η |=N e, then η
p
; {η}.

5. If p is of the form ∀(p1, p2): If η
p1
; E1 and η

p2
; E2 then η

p
; (E1∪E2).

6. If p is of the form ∃(p1, p2): If η
p1
; E1 then η

p
; E1, and if η

p2
; E2

then η
p
; E2.

7. If p is of the form (p1; p2): If η
p1
; F and if {Ee}e∈F is a F -indexed

family of state sets such that e
p2
; Ee, then η

p
; (

⋃
e∈F Ee).

8. If p is of the form (while e with I do p0):

• If η 6|=N e then η
p
; {η}.

• If η |=N e and η
p0;p
; E then η

p
; E.

This definition calls for several comments.
The relation

p
; exists because (i) the set of all relations that satisfy the

properties 1–8 of the definition is not empty (the relation which links all
states to all sets of states satisfies the properties) and (ii) the intersection of
all the relations that satisfy the properties 1–8, also satisfies the properties.

A simple atomic expression such as v+ may be not realisable in a state
η (if η → η′ is not a transition of S). In this case, there is no set E such

that η
v+
; E. The same situation happens when the trace specification is an

assertion that is not satisfied at the current state η.
Universal quantifiers propagate non-realisable trace specifications: If one

of the pi is not realisable then ∀(p1, · · · , pn) is not realisable. It is not the

case for existential quantifiers : If η
pi
; Ei for one of the pi then η

∃(p1···pn)
; Ei

even if one of the pj is not realisable.
When a while loop does not terminate, there is no set E such that

η
while...
; E. This is due to the minimality of the binary relation

p
;. On

28

the contrary, when the while loop terminates, it is equivalent to a trace
specification containing a finite number of occurrences of the subtrace p0 in
sequence, starting from η.

The semantics of sequential composition may seem unclear for readers not
familiar with commutations of quantifiers. We give an example to explain
the construction of

p1;p2
; (see Figure A.4):

p2p1

F1=

ηa

ηb

ηc

η

E4

E1

E2

E3

F2=

gives: η
E1 ∪ E4

E2 ∪ E3

E2 ∪ E4

E1 ∪ E3

p1; p2

Figure A.4: An example for the semantics of sequential composition

• Let us assume that starting from state η, two sets of states are possible
via p1: η

p1
; F1 = {ηa, ηb} and η

p1
; F2 = {ηc}. It intuitively means that

p1 permits a choice between F1 and F2 through some existential quan-
tifier and that the trace specification leading to F1 contains a universal
quantifier grouping together ηa and ηb.

• Let us also assume that

– starting from the state ηa, two sets of states are possible via p2:
ηa

p2
; E1 and ηa

p2
; E2,

– starting from the state ηb, two sets of states are possible via p2:
ηb

p2
; E3 and ηb

p2
; E4,

– and there are no set E such that ηc
p2
; E.

When focusing on the traces of (p1; p2) that encounter F1 after p1, the traces
such that p1 leads to ηa must be grouped together with the ones that lead
to ηb. Nevertheless, for each of them, p2 permits a choice of possibilities:

29

between E1 or E2 for ηa and between E3 or E4 for ηb. Consequently, when
grouping together the possible futures of ηa and ηb, one needs to consider the
four possible combinations: η

p1;p2
; (E1∪E3), η

p1;p2
; (E1∪E4) η

p1;p2
; (E2∪E3)

and η
p1;p2
; (E2 ∪ E4).

Lastly, when focusing on the traces of (p1; p2) that encounter F2 after p1,
since ηc has no future via p2, there is no family indexed by F2 as mentioned
in the definition and consequently it adds no relation into

p1;p2
; .

Let us remark that, if η
p
; E then E cannot be empty; it always contains

at least one state. The proof is easy by structural induction of the trace
specification p (using the fact that a while loop which terminates is equiva-
lent to a trace specification containing a finite number of occurrences of the
subtrace p0).

Definition Appendix A.2. (Semantics of a Hoare triple). Given a grn
N = (V,M,EV , EM ,K), let S be the state graph of N whose set of vertices
is denoted S. A Hoare triple {P} p {Q} is satisfied if and only if:

For all η ∈ S satisfying P , there exists E such that η
p
; E and for all

η′ ∈ E, η′ satisfies Q.

The previous definition implies the consistency of all the traces described
by the trace specification p with the state graph: If the specification p is not
realisable starting from one of the states satisfying pre-condition P , then the
Hoare triple cannot be satisfied. For instance if some v+ is required by the
trace specification p but the increasing of v is not possible according to the
state graph, then the Hoare triple is not satisfied.
For example, let us consider the grn in Figure A.5 and its state graph.

1. The Hoare triple {(a = 0) ∧ (b = 0)} a+; a+; b + {(a = 2) ∧ (b = 1)}
is satisfied, because

• for all states that do not satisfy the pre-condition, the Hoare triple
is satisfied by definition,

• there is, in this example, a unique state satisfying the precondition
(a = 0) ∧ (b = 0) and from this state, the trace specification
a+; a+; b+ is possible and leads to the state (2, 1) and

• the state (2, 1) satisfies the postcondition (a = 2) ∧ (b = 1).

2. The Hoare triple {(a = 2) ∧ (b = 0)} b+; a−; a − {(a = 0) ∧ (b = 1)}
is not satisfied because from the state satisfying the precondition, the

30

µ1

µ2

µ3

b

a

1

1

0

0 2

a b
(2) (1)

¬(b ≥ 1)

a ≥ 2

a ≥ 1

Figure A.5: (Left) The graphical representation of the grn N = (V,M,EV , EM ,K) with
V = {a, b}, the bounds of a and b are respectivelly 2 and 1, M = {µ1, µ2, µ3}, ϕµ1

is
(a > 2), ϕµ2 is (a > 1), ϕµ3 is ¬(b > 1). Finally the family of integers is {Ka = 1,
Ka,µ1 = 2, Ka,µ3 = 2, Ka,µ1µ3 = 2, Kb = 1, Kb,µ2 = 1}. (Right) Representation of its
state graph.

first expression b+ is realisable and necessarily leads to the state (2, 1)
from which the next expression a− is not consistant with the state
graph.

3. The following Hoare triple contains two existantial quantifiers and a
universal one:
{(a = 0)∧(b = 0)} ∀(a+, b+);∃(a+, b+);∃(ε, b+) {(b = 1)} (remember
that ε denotes the empty trace and is an abbreviation for assert(>)
where > stands for a tautology).

• We have clearly (0, 0)
∀(a+,b+)
; {(1, 0), (0, 1)}

• Since we have (1, 0)
∃(a+,b+)
; {(2, 0)} and (1, 0)

∃(a+,b+)
; {(1, 1)} and

(0, 1)
∃(a+,b+)
; {(1, 1)}, we deduce (0, 0)

∀(a+,b+);∃(a+,b+)
; {(1, 1), (2, 0)}

and (0, 0)
∀(a+,b+);∃(a+,b+)

; {(1, 1)}.

• We have trivially (1, 1)
∃(ε,b+)
; {(1, 1)}

• Moreover we have both (2, 0)
∃(ε,b+)
; {(2, 0)} and (2, 0)

∃(ε,b+)
; {(2, 1)}

• We deduce that the considered trace specification p can lead to 3
different sets of states: (0, 0)

p
; {(1, 1), (2, 0)}, (0, 0)

p
; {(1, 1)}

and (0, 0)
p
; {(1, 1), (2, 1)}.

Because the postcondition is satisfied in both states (1, 1) and (2, 1),
the two last sets of states which are in relation with (0, 0), satisfy the
postcondition. Consequently although the first set does not, one can
deduce that the Hoare triple is satisfied.

31

Appendix B. Partial Soundness and Completeness

As usual in Hoare logic, “partial” has to be understood here as “assuming
that the while loops of the considered trace specification terminate.”

Appendix B.1. Partial soundness

The soundness of our modified Hoare logic means that: Given a network
N = (V,M,EV , EM ,K), if ` {P} p {Q} according to the inference rules of
Section 5 (and after substituting the symbols K... by their value in N), then

for all states η that satisfies P , if there exists E such that η
p
; E, then there

exists E ′ such that η
p
; E ′ and ∀η′ ∈ E ′, η′ |=N Q.

The proof is made as usual by induction on the proof tree of ` {P} p {Q}.
Hence, we have to prove that each rule of Section 5 is correct. Here we develop
only the Incrementation rule and the Sequential composition rule since the
correctness of the other inference rules is either similar (Decrementation rule),
trivial (Assert rule, Quantifier rules, Assignment rule, Empty trace rule and
Boundary axioms) or standard in Hoare logic (Iteration rule). Let us note
that the correctness of the Sequential composition rule is not trivial because
its semantics is enriched to cope with the quantifiers.

Let η be any state of N .

Incrementation rule: { Φ+
v ∧ Q[v←v+1] } v+ {Q} (where v is a

variable of N)

From Definition Appendix A.2, the hypothesis is

H η |=N Φ+
v and η |=N Q[v ← v + 1]

and we have to prove the conclusion

C there exists E ⊂ S such that η
v+
; E and ∀η′ ∈ E, η′ |=N Q

Let us choose E = {η′} with η′ = η[v ← η(v) + 1]. From Notation 5.1,
the hypotesis η |=N Φ+

v is equivalent to (η → η′) ∈ S, which in

turn, according to Definition 4.4, implies η
v+
; {η′}. Hence, it only

remains to prove that η′ |=N Q, which results from the hypothesis
η |=N Q[v ← v + 1]. 2

32

Sequential composition rule:
{P1} p1 {P2} {P2} p2 {Q}

{P1} p1;p2 {Q}
From Definition Appendix A.2, we consider the following three hy-
potheses:

H1 for all η1 ∈ S such that η1 |=N P1 there exists E1 such that

η1
p1
; E1 and ∀η′ ∈ E1, η

′ |=N P2

H2 for all η2 ∈ S such that η2 |=N P2 there exists E2 such that

η2
p2
; E2 and ∀η′′ ∈ E2, η

′′ |=N Q

H3 η |=N P1

and we have to prove the conclusion:

C there exists E ⊂ S such that η
p1;p2
; E and ∀η′′ ∈ E, η′′ |=N Q

Let us arbitrarily choose a setE1 such that η
p1
; E1 and ∀η′ ∈ E1, η

′ |=N

P2 (we know that E1 exists from H1 and H3).

For each η′ ∈ E1, we similarly choose a set Eη′

2 such that:

η′
p2
; Eη′

2 and ∀η′′ ∈ Eη′

2 , η
′′ |=N Q (we know that the family {Eη′

2 }η′∈E1

exists from H2 and the fact that η′ |=N P2 for all η′ ∈ E1)

Let E = (
⋃
η′∈E1

Eη′

2), we have: η
p1;p2
; E from Definition 4.4 and

∀η′′ ∈ E, η′′ |=N Q (from the way the union is built). 2

Appendix B.2. Completeness and weakest precondition

Completeness of Hoare logic is defined as follows. Given a network N =
(V,M,EV , EM ,K), if the Hoare triple {P} p {Q} is satisfied in N (according
to Definition Appendix A.2) then ` {P} p {Q} (using the inference rules
of Section 5 and after substituting the symbols K... by their value in N). We
prove the completeness by establishing that one can compute the weakest
invariants of all while loops and that the backward strategy gives a proof of
{P} p {Q}.

The main difference with respect to the classical completeness proof is
that we navigate into a finite state space, so that we will not have to care
about the incompleteness of arithmetic or restrictions about weakest loop
invariants. In the following proposition, we see that one can compute the
weakest invariant for each while occurrence in the trace specification. Only

33

practical reasons in order to facilitate proofs justify to ask the specifier to
include loop invariants into trace specifications: Often, a slightly non minimal
invariant considerably simplifies the proof tree.

Proposition Appendix B.1. (Existence of the weakest loop invariant).
Given a grn N = (V,M,EV , EM ,K), let us consider two assertions Q and
e, and a trace specification p. There exists a weakest loop invariant I such
that the Hoare triple {I} while e with I do p {Q} is correct.

The following proof is constructive and gives a way to compute I (see re-
mark Appendix B.4).
Proof:

1. In the first step of the proof, we build a set D as a countable union.

• Let q0 = {η ∈ S | η |=N Q∧¬e} be the set of all states that satisfy
Q without entering the while loop.

• given qi, let qi+1 = {η ∈ S | η |=N e and ∃E ⊂ S, η
p
; E and E ⊂

qi}. From Definition Appendix A.2, for each i, qi is the set of states
that induce exactly i while loops and such that the resulting states
satisfy Q.

• Let Dn =
⋃n
i=0 qi. The sequence of Dn is increasing and because

S is finite, it is stationary. So D =
⋃∞
i=0 qi exists and can be

inductively computed.

2. In the second step of the proof, we show that the caracteristic formula
of D is a loop invariant.

• Because D is finite, there is a formula I such that η |=N I iff
η ∈ D: I ≡

∨
η∈D 1η where 1η ≡

∧
v∈V v = η(v)

• I is a loop invariant because for each state η that satisfies I, there
is an integer i such that η ∈ qi.

– If i > 0, then η satisfies I ∧ e and by definition, there is a set
E such that η

p
; E and E ⊂ qi−1, consequently E satisfies I

because every state of qi−1 satisfies I.

– If i = 0, then η |=N ¬e, thus η 6|=N e ∧ I, which implies that
{e ∧ I} p {I} is satisfied for η, according to Definition Ap-
pendix A.2 and elementary truth tables.

34

3. In the last step of the proof, we show that each state of D satisfies any
minimal loop invariant.

• Let J be a minimal loop invariant. Assume that there is a state
η ∈ D that does not satisfy J . Then J ∨ 1η (where 1η is the
formula characterizing the state η), is strictly weaker than J . But
it is also an invariant since after i iterations of the while loop from
η, one of the resulting sets of states E satisfies Q. This contradicts
the minimality of J .

• Consequently I is the weakest loop invariant. 2

Theorem Appendix B.2. (Completeness theorem on the genetically mod-
ified Hoare logic). Given a grn N , a trace specification p and a post-
condition Q, the backward strategy defined at the end of Section 2, with the
inference rules of Section 5, computes after steps 1 and 2 the weakest precon-
dition P0 such that {P0} p {Q} is satisfied. In other words, for any assertion
P , if {P} p {Q} is satisfied, then P ⇒ P0 is satisfied (that is, the third step
of the backward strategy).

This theorem has an obvious corrolary.

Corollary Appendix B.3. Given a grn N , our modified Hoare logic is
complete.

Proof of the corollary: if {P} p {Q} is satisfied, then, from the theorem
above, there is a proof tree that infers the Hoare triple if there is a proof
tree for the property P ⇒ P0 (which is semantically satisfied because P0 is
the weakest precondition). First order logic being complete and the number
of possible substitutions being finite (the state space being finite), the proof
tree for P ⇒ P0 exists. 2

Proof of the soundness theorem:
Under the following two hypotheses

H1 the Hoare triple {P} p {Q} is satisfied, i.e., for all η satisfying P , there

exists E such that η
p
; E and for all η′ ∈ E, η′ satisfies Q,

H2 for all while statements of p, the corresponding loop invariant I is the
weakest one (Proposition Appendix B.1),

one has to prove the conclusion:

35

C P ⇒ P0 is satisfied, where P0 is the precondition computed from p and
Q by the steps 1 and 2 of the backward strategy with the inference
rules of Section 5.

The proof is done by structural induction according to the backward strategy
on p.

• If p is of the form v+, then the only set E such that η
v+
; E is E =

{η[v ← v + 1]}. The hypothesis H1 becomes:

H1 for all η satisfying P , η′ = η[v ← v + 1] satisfies Q and η → η′ is
a transition of S

and from the Incrementation rule, the conclusion becomes:

C P ⇒ (Φ+
v ∧Q[v ← v + 1]) is satisfied.

So, H1 ⇒ C straightforwardly results from the definition of Φv+

(Notation 5.1) and we do not use H2 .

• If p is of the form p1; p2, then we firstly inherit the two structural
induction hypotheses:

H3 for all assertions P ′ and Q′, if {P ′} p1 {Q′} is satisfied then P ′ ⇒
P1 is satisfied, where P1 is the precondition computed from Q′ via
the backward strategy

H4 for all assertions P ′′ and Q′′, if {P ′′} p2 {Q′′} is satisfied then
P ′′ ⇒ P2 is satisfied, where P2 is the precondition computed from
Q′′ via the backward strategy

Moreover the hypothesis H1 becomes (Definition 4.4):

H1 for all η satisfying P , there exists a family of state sets F =

{Ee}e∈F such that η
p1
; F and e

p2
; Ee for all e ∈ F and for all

η′ ∈ E = (
⋃
e∈F Ee), η

′ satisfies Q

Lastly, from the Sequential composition rule, the conclusion becomes:

C P ⇒ P1 is satisfied, where P1 is the weakest precondition of
{· · ·} p1 {P2}, P2 being the weakest precondition of {· · ·} p2 {Q}.

36

From H4 (with Q′′ = Q) it results that all the states e ∈ F of hypoth-

esis H1 satisfy P2. Consequently {P} p1 {P2} is satisfied. Thus, from

H3 (with Q′ = P2 and P ′ = P) it comes P ⇒ P1, which proves the
conclusion.

• If p is of the form while e with I do p′, then, by construction of the
backward strategy, applying the Iteration rule, we get P0 = I, and the
conclusion results immediately from H2 .

• Similarly to the soundness proof, we do not develop here the other cases
of the structural induction. They are either similar to already devel-
oped cases (Decrementation rule) or trivial (Assert rule, Quantifier
rules, and Assignment rule).

This ends the proof. 2

Remark Appendix B.4. Soundness and completeness being now established,
one can extend Proposition Appendix B.1 by giving a purely symbolic compu-
tation of the weakest loop invariant I of a while loop. Following the notations
of the proof of Proposition Appendix B.1:

• The set of states q0 is characterised by the formula Q0 ≡ ¬e ∧Q,

• In addition, assuming that the trace specification p terminates, the set
of states qi+1 is inductively characterised by the weakest precondition
Qi+1 obtained via the backward strategy of the proof of {Qi+1} p {Qi}
(this is due to the soundness and completeness of our calculus).

• From this construction, we deduce that the first integer n such that
qn+1 ⊂ Dn (where Dn =

⋃n
i=0 qi) is the first n such that Qn+1 ⇒∨n

i=0Qi. This implication is decidable because the set of possible sub-
stitutions is finite.

Proposition Appendix B.1 implies that the integer n mentioned before exists.
Consequently I =

∨n
i=0Qi can be expressed in a purely symbolic way. And

more importantly, this can be done from the solely knowledge of the inter-
action graph. The assertion I is then a constraint on states and parameters
K..., what we used in Section 6.

37

