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The human cognitive map formation is still an open question. Based on biological facts, the cognitive map
origin goes back to the age of the fetus human. In this paper, our aim is to provide a possible answer to
that question. Accordingly, we present a theoretical model of the development of the cognitive map of a
fetus human using its sensorimotor data. We define positions of the cognitive map as associations
between high-level perceptions created from different sensory sources. We use a proposed method
referred to as Frequency-based-means clustering algorithm to develop the perceptions that form the
association map. Our proposed theoretical model is tested on simulated data. Results show that our
model is a possible candidate for demonstrating how the cognitive map is formed. In addition, compar-
ison with k-means clustering is presented and results show that the frequency-based-means clustering
has a better performance than k-means clustering and is more suitable for this application.
© 2020 Production and hosting by Elsevier B.V. on behalf of Faculty of Computers and Artificial Intelli-
gence, Cairo University. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

There is a sharp distinction between perception which is
defined as the processing of sensory information that occurs at sev-
eral levels) and cognition which is the judging of representational
contents related to reasoning [16]. Tolman proposed the term cog-
nitive map, which is an internal mental representation (or image)
of external environmental feature or landmark. He thought that
individuals acquire large numbers of cues (i.e. signals) from the
environment and could use these to build a mental image of the
environment (i.e. a cognitive map) [9,1]. A cognitive map consists
of “positions”. By using this internal representation of a physical
space they could get to the goal by knowing where it is in a com-
plex environment through different paths. Cognitive mapping is
usually divided into building two internal representations: one
for developing person to object relation (egocentric) and another
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for object to object relation (allocentric). Imperfections in encoding
either relations can introduce imperfections in representations of
environments in memory [18]. Some studies done on cognitive
map consider it allows one to locate oneself in a familiar environ-
ment and to go from one place to another even through parts of the
environment never visited before. Others see that it is not a unitary
integrated representation, but consists of stored discrete pieces
including landmarks, route segments, and regions [15]. There are
many studies performed on high-level cognitive maps of adults
whose purpose is to navigate to go from one route to another,
how to link routes to go from one location to another, and how
people have different abilities to form cognitive maps. But, there
are no studies done on the origin of the cognitive maps in the fetus
stage despite that fetus is able to move its hand to suck its thumb,
which means it has the ability to recognize its mouth location and
learn how to reach it. Similarly, it can grab its umbilical cord which
means it is able to reach it. From these simple moves, we believe
that the fetus forms a simple cognitive map that enables him to
reach different objects in the womb. Proprioception and perceptual
learning affects the generation of a cognitive map. The influence of
proprioception on human spatial cognition is investigated in [19]
and it is found that proprioception can influence the time neces-
sary to use spatial representations while other factors such as
visio-spatial abilities can influence the capacity to form accurate
spatial representations [20]. This was done by the study of the
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navigation of blind individuals and comparing to the navigation
and way finding in individuals without any visual impairments
[10]. It is found that the combination of both proprioception and
auditory sense helps the blind individuals to build their cognitive
map for the surrounding environment and are able to navigate
easily after a number of trials [18]. These studies included the
sense of touch with the proprioception. Some applications are
made to help blind individuals move freely based on these findings
[14]. Accordingly, the spatial positions can be represented in terms
of proprioceptions and the sense of touch (i.e. pressure perception).
Unlike vision and auditory senses, the proprioception development
is not studied much due to the difficulty to measure its perfor-
mance, but in [11], a study was presented to explain the proprio-
ception development in children and it concluded that its
precision improves with age. Recently, a study [12] highlighted
that the sensorimotor system of the fetus plays an important role
in forming the cognitive map. In addition, it is suggested that the
sensorimotor data can be used to obtain higher level propriocep-
tions which provide the fetus with interpretation about his limbs
positions in [2]. Perceptual learning is the discovery of new struc-
ture in sensory stimulation [13]. Although the sensory stimulation
are the same, with repetitions, new structures start to appear
which changes our perceptions. For instance, a student reading
an article, s/he perceives more information each time s/he reads
it. Similarly, experienced chefs are able to perceive structures in
their sensory environment, i.e. they are able to easily detect ingre-
dients in a given dish, where there was none before and that is
invisible to those who do not have the same level of experience.
Perceptual learning can be seen as a form of clustering as men-
tioned in [8]. In the same sense, the fetus starts by making random
movements and the received sensory feedbacks are used for gener-
ating proprioceptions and perceptions about the environment. As
noticed, no previous work built a model that integrates the senso-
rimotor system, the proprioceptions and perceptions with the cog-
nitive map. Moreover, there was no study presented to model the
cognitive map formation for the fetus. Working on the fetus is dif-
ferent from working on the adults. The fetus has no vision capabil-
ity so it is not able to see objects in its environment and determine
their places. Instead, it depends on its immature, developing pro-
prioception and touch sensation rather than vision for recognizing
objects and positions. Consequently, the fetus is able to identify
positions and built his primary cognitive map using its propriocep-
tion and touch perceptions only. In this paper, we propose a
theoretical model that shows how the sensory data obtained by
the sensorimotor system can be used to make higher level percep-
tions and proprioceptions by using the frequency-based-means
clustering algorithm, and how these, in turn, generate positions
that form the cognitive map. We refer to the proprioceptions as
length perceptions because proprioceptions can be seen as a
form of perception regarding the self position. Section 2
demonstrates the suggested model. Section 3 illustrates how the
proprioceptions and perceptions are obtained and developed
through a proposed clustering method. Section 4 presents integrat-
ing the generated proprioceptions and perceptions to produce
positions saved in the cognitive map. The simulation and the
results are presented in Section 5 and the paper is concluded in
Section 6.

2. From the sensorimotor system to the cognitive map

When the muscle moves, different sensory feedbacks are
received from the body and from the environment. Sensory feed-
backs from the body are received from the proprioceptors such
as the muscle spindle and the golgi tendon organs whereas the
sensory feedbacks from the interaction with the environment

include the pressure felt by the tactile sensation [5]. All these sen-
sory data are collected and processed. Accordingly, proprioceptions
are produced from the sensory length and perceptions are gener-
ated from the sensory pressure. Next, all the obtained perceptions
and proprioceptions obtained from different sensory neurons are
collected in the mechanoreceptors-association-map where associ-
ation links are created connecting the perceptions that exist
together. The pairs of the proprioceptions and perceptions repre-
sent a position in the cognitive map.

3. The Generation of perceptions and proprioceptions using
clustering

In the fetus stage, there is no knowledge about how it can iden-
tify its sensations, it starts learning on its own the process of cre-
ating perceptions. This can be seen as unsupervised learning. It
may use clustering to group similar data together and separate
them from different groups to identify its surrounding environ-
ment. Accordingly, its cognition ability increases with time as more
clusters are formed. There are many adaptive clustering techniques
in literature [4,21,7]. But, they can not be applied in our problem
because the creation of clusters has no biological interpretation.
As explained above, we hypothesize that fetus human develops
its cognition through the repetition of certain values with time. Ini-
tially, the fetus groups all the sensory values it receives in one clus-
ter. In other words, it considers it is at the same position even
when the muscle length changes. When a sensory value is repeated
a lot with time, its mind starts to distinguish it from the rest of val-
ues. This creates a new cluster for this value as the center of the
cluster, the cluster members will be its similar values. The brain
is not very precise and full of noise [3,17], so the center is updated
to be the average value of the cluster member. The creation of a
new cluster in our algorithm is based on that the frequency of a
value starts exceeding either a pre-defined threshold or the maxi-
mum frequency of its cluster. In other words, the proposed cluster-
ing process groups similar values together until one of them
becomes significantly repeated, hence, form a new cluster on its
own and take its similar members with it. Through time, it is be
able to recognize all the values incrementally by repeating its
actions and receiving the same sensory values. The frequency-
based-means clustering follows this idea. Assume we have a set
of clusters C and a set of input length values L. For any cluster
c € C, we define count(I(t)) as the count of sample [ at time ¢ and
maxcount(c) as the maximum count in cluster ¢ such that if
count(l(t)) > maxcount, then I(t) is expelled from the cluster and
forms a cluster on its own. Threshold is a threshold value for the
allowed frequency of the sample in any cluster such that If
count(L(t)) > Threshold, then I(t) is expelled from the cluster and
forms a cluster on its own. For any input sample [(t) € L at time
t, we use dist(Ceenter,I) as the euclidean distance between cluster ¢

Table 1
Comparison between K-means clustering and the Frequency-based-means clustering.

Point of Comparison K-Means Frequency-based
Means
Requires Pre-determined Number True False
of Clusters
Results may be altered from one True False
run to another
Number of Required Parameters 1 1
Suitable for Online Input Data False True

Distance-based
Repetitive
Quantitative data

Distance-based
Quantitative

Clustering Criteria
Type of data
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Fig. 1. The System Framework.

with center Ceneer and sample [ to assign [ to the nearest cluster.
Fig. 2 describes the algorithm. We are using the frequency-
based-means clustering to obtain perceptions over time. The clus-
ter centers are referred to as the perceptions in our case. This way
the human mind perceptions evolve with time; which represents
cognition improvement. The frequency-based-means clustering
algorithm can work on sequential online data. Its time of conver-
gence is independent on the data values but it is dependent on
the frequency of the data values and the repetition threshold that
is chosen. Table 1 summarizes the main differences between the

| Create first cluster with center = I(t)

Initialize count(I(t)) = 1

Input data sample (1(6))

k-means clustering and the Frequency-based-means clustering
algorithms. Fig. 1.

4. Creating the cognitive map

Depending on the collected sensory data, higher level percep-
tions are created. The perceptions obtained from different sensory
neurons are associated in a map called a mechanoreceptors map.
Different identified proprioceptions and perceptions that occur
together are associated together. This association defines a position

Assign to the nearest cluster | Count((t)) = count(l(t — 1)) +1

| Calculate the maxcount of cach cluster |4—
| Update each cluster center = the average of the cluster members |«
t=t+1

No

Count(I(t)) in ¢ = maxcount(c
OR
Count(I(t)) = Threshold

Create a new cluster with center = the sample. |

}

| Redistribute all the samples among the available clusters |

I

Fig. 2. Frequency-based-means Clustering.
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Fig. 3. The mechanoreceptors-association-map showing defined positions in the cognitive map. In time t = 1, only one position is defined between L1 and P1. At time t = 2,
positions are formed for (L1,P1), (L3,P1) and (L6,P2) because they occured together many times. On the other hand, no positions are defined between L1 and P2 or L3 and P2 or

L6 and P1 because they didn't exist simultaneously.

in the cognitive map. The association links are dynamically
updated with time as more cognitive abilities are acquired or as
there is a change in the environment. Once an ensemble of percep-
tions are produced together, they are linked together using links
with small weights. These weights will be increased everytime this
ensemble is repeated in order to strengthen the association
between them. This way, the association link weights between dif-
ferent perceptions of an ensemble are proportional to the strength
of the ensemble. This means that the perceptions that do not occur
together should have zero weights for their association links. In
case of a dynamically changing environment, some ensembles
may exist for some times then they no longer do. In that case,
the association link weights of that ensemble should decrease
gradually until they become zero. Fig. 3 demonstrates the associa-
tion between length perceptions and pressure perceptions in the
mechanoreceptors-association-map. The sensory length values
form length perceptions and the sensory pressures form the pres-
sure perceptions that reflects whether there is an object in the
environment or not. Both the proprioceptions and perceptions that
occur together have association link created with weight greater
than or equals to 1. If any proprioception does not exist simultane-
ously with a perception, their link weights are zeros. These associ-

ations are updated through time when new perceptions are added
or even deleted from one or more sensory neurons. For any length
proprioception (L;) and pressure proprioception (P;) , there is a
associations (L;,P;), with weight=w;. When a command
sequence (Q,) results in perceptions L;,P;, then the weight is
updated according to algorithm 1. When a pair of a length propri-
oception and pressure proprioception occurs at the same time,
their link weight will increase by one unless it reached a maximum
threshold to prevent domination. Similarly, the links between pairs
of this length and other pressures will decrease. This is to model
the case of dynamic environment where an object exists some-
times then disappears due to either its movement or the body
movement. Accordingly, the object is not in the same previous
place and does not correspond to this length anymore. Despite this
change, the mind does not forget that this length corresponds to
that pressure (of the object) instantly. It needs some time to forget
this link. That’s why the link weight decreases gradually by one
each time this link is not correct until it reaches zero when it is
assumed it does not exist anymore.The resulted weights will be
saved in memory for future use in making goal directed
movements.
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Fig. 4. An example of the generated data.

Algorithm 1: The relation between length perceptions and
pressure perceptions

Variables:
T: The final time.
L: The set of length values.
P: The set of pressure values.
L; € L: Length value.
P; € P: Pressure value.
wypi: The connection weight between length value Li and
pressure value Pj.
Begin
Fort=1:T
Foreach L; € L
Foreach P; € P
If(L; == L) A (Pe == P})
wyp (H)=wpp,(t = 1) +1
wp, (t)=max (0, wyp, (t —1) — 1)
such that k # j.
EndIf
EndFor
EndFor
EndFor
End

Hence, this architecture is dynamic as the number of perceptions
changes with time until it reaches stability, when the change in
weights is nearly constant and no new perceptions are created.

5. Experimental setup
5.1. Data generation

To make a voluntary movement, command sequences are given
to the motor neuron that controls the muscle and causes muscle
contraction. There are involuntary movements that can also result
in changing the muscle length. In the end, all muscle lengths will
be covered, each with a certain frequency. We will explain in
details the data generation for obtaining muscle lengths that corre-
sponds to muscle movements, to be used in our experiment.

5.2. The command sequence

Motor neurons fire when they receive a command so that the
corresponding muscle fibers contract. Hence, there will be a spike
coming out from the firing neuron when there is a command.
Accordingly, the command sequence Q is a sequence of a command
q, at time t represents whether there is a spike (1) or not (0). In
other words, a command state sequence is represented by a binary
sequence such that 1 implies contraction and O implies no contrac-
tion. The command state sequence Q is generated from a Bernoulli
distribution given by:

q=p(1-p"" (1)

such that t = 1 refers to issuing a command with probability p and
t = 0 implies the absence of command with probability (1 — p). We
have used p = 0.9 to model the spontaneous large number of input
command sequence to be given to the muscle. The generated
sequence is of duration 20 for each movement. For 10 consecutive
movements, the total duration of the generated sequences is 200.
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Fig. 5. An example of perceptions evolution across movements in one simulation. (a) The x-axis shows the sensory length values found per movement. Each color represents
a cluster with cluster center marked by “x”. Initially, all the obtained length values are assigned to one cluster. With the repetition of length values, they will be recognized as
perceptions, hence, the number of perceptions increases with time. Here, the presented maximum length is the assumed maximum muscle length. (b) depicts the mean
squared error between the actual length values and the perceived length values as well as the standard deviation across all movements. From (a) and (b), It is noticed that
some movements that have the same perceptions incorporate an increase in the error as seen in the 2nd and the 3rd movements. This is due to the inclusion of either new
length values or old values that are larger than the recognized perceptions which increases the error as well as the variance, those will be discriminated with time.

5.3. The sensory data

It dictates the sensory length values are obtained after using a
given command sequence. When a command is given to a muscle,
a force is generated causing increase in its fibers tension. Muscles
differ in terms of the number of fibers and size such that increasing
them means the ability to get more force. Each muscle is repre-
sented by a Gaussian function with large variance for large muscles
and small variance for small muscles.

(x — mean)?

Muscle = exp e

(2)

where x represents the fiber sizes. The contraction is given by a con-
volution function between the muscle and the command sequence:

contraction = Muscle®Q (3)
where ©® denotes the convolution operator and Q is that state
sequence. The length sensory values are generated based on the fact
it increases by increasing the contraction and it is constant when
the contraction is either constant or decreasing. For an action with
duration T, the length is given by:

length;,;. () tmodT =0
length(t — 1) + Acontraction ~Acontraction > 0
length(t — 1) Acontraction <0

length(t)

(4)

The pressure appears when the fetus senses an obstacle (ex: his
face) that brings a different sensation. Initially, when the fetus has
low energy, his muscle won’t be able to reach any obstacle and
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Fig. 6. Threshold effect in Frequency-based-means clustering algorithm. Mean Squared Error between the actual sensory length values and the perceived ones are shown
when the input data are clustered using Frequency-based-means clustering using different threshold values. When the threshold decreases, more clusters are produced.

Hence, the average approaches the cluster members resulting in smaller MSE.

hence, the pressure is zero. For simplicity, the pressure is modeled
as either there is an object or not. The pressure is modeled as a unit
step function.

1 length(t) > Thresholdengm

0 length(t) < Thresholdiengn ®)

pressure(t) = {

The generated sensory length have values from 5 to 20 and an
object is assumed to be at Thresholdie,,n = 14. Fig. 4 shows an
example of the data generated for the motor command sequenc,
the sensory length and the sensory pressure.

5.4. Performance measures

For comparing the performance of k-means clustering and the
Frequency-based-means clustering, we calculates the intra-
cluster distance in which the distance between the every point to
the center of the cluster is measured. We use the Mean Squared

25

Error (MSE) between every cluster member sample and the center
of the cluster.

N M 5

D> (ti—g)

[i=1]j=1]
MSE=—"———— 6
where N is the number of samples in the cluster and M is the num-
ber of clusters. We apply this equation to the length such that ¢ is
the sensory length and c represents a proprioception for each
movement.

5.5. Simulation and results

Using the above mentioned equation, we have generated ten
different simulated data. Frequency-based-means clustering is
applied to the sensory length data to get length perceptions and
to the sensory pressure data to get pressure perceptions. Fig. 5
depicts the resulted perceptions of one simulation for 10 consecu-

—I— K-means, Calinski
= I— - K-means, K=4
—I— Frequency-based-means Clustering, Threshold = 4

MSE between the Actual
Sensory Length and the Perceived Length

6 7 8 9 10

Movement Number

Fig. 7. Comparison between the performance of the Frequency-based-means clustering and K-means clustering. The results of generating perceptions for 10 movements
obtained from 10 simulations are depicted for the frequency-based-means with a threshold values equal to 4, k-means with k = 4, and k-means where k is chosen by Caliniski
Harabasz. Mean Squared Error is calculated between the actual sensory length values that are clustered and the perceived lengths in each case. The frequency-based-means
clustering gets nearly similar results to the k-means with the Caliniski Harabasz. The constant k-means has the worst performance because as the number of movements
increase, more data are obtained and are distributed among the same number of clusters resulting in large clusters with increased intra-cluster distance. Accordingly, using a
constant number of clusters is not suitable for data that increases with time and this demonstrates that perceptions must be increasing with time.
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Fig. 9. An example of the resulting cognitive map.

tive movements upwards with repetition threshold equal to 4. It is
shown how the perceptions approach the length values with time
as more movements are produced. Fig. 6 demonstrates the effect of
the threshold on the Frequency-based-means clustering. Using
smaller thresholds results in faster clustering and lower mean
squared error. We have repeated the experiments using k-means
clustering where k is constant (chosen empirically as 4) or chang-
ing in an increasing order with the movements. In the latter, we
chose the Calinski Harabasz index [6] as a criteria for choosing
the optimal number of clusters. The input range was increasing
with the number of movements. Results are presented in Fig. 7
and shows that the Frequency-based-means clustering has a com-
parable performance to k-means using the Calinski Harabasz index
and is better than using a constant number of clusters. This result
emphasizes that perceptions must be increasing with time. Other-
wise, human cognition ability of his surrounding deteriorates. After
getting the perceptions, the mechanoreceptors-association-map is
created using algorithm 1 and is shown in Fig. 8. It can be seen that

there can be a length having two pressure perceptions in early
movements. This is due to the immature differentiation between
the different perceptions and mixing different sensory values that
have different sensations in one group. This will be solved in the
next movements as the sensory values with the same sensations
are grouped together and the old association links fade. Fig. 9
demonstrates how the cognitive map is formed through
consecutive movements. The number of positions of the cognitive
map increases as more movements are done an as the
mechanoreceptors-association-map is updated.

6. Conclusion and future work

We have investigated the problem of how the human mind
builds cognitive perceptions from the sensory data provided by
the body at the fetus stage. We have proposed a model that process
the sensory data and built a mechanoreceptors-association-map
which outputs positions in the cognitive map. The Frequency-
based-means clustering algorithm is used to generate perceptions
from the sensory data. A detailed study was presented for this clus-
tering algorithm and comparison with k-means clustering is pro-
vided. This algorithm can only work on data that is characterized
by having repetitions. As a future work, it will be extended to elim-
inate this limitation to be valid for use for a greater number of
applications. In addition, we have proposed an algorithm to build
the mechanoreceptors-association-map and dynamically update
its association links to mimic storing new positions and forgetting
old positions. This work can benefit in the Biology field to help in
understanding how the human gain his navigational skills. In addi-
tion, knowing which brain areas are responsible for each function
can be useful in detecting the cause of any deterioration in move-
ment or perceptions. This can help in the medical field to better
understand the cause of many syndromes. On the other hand,
the frequency-based clustering can be useful in numerous fields.
It can be used in other biological applications such as modeling
and tracking of gaining new skills or habits of a person or a group
of people. It can also be used in a number of machine learning
applications such as the recommendation systems by identifying
new interests of any user and recommending goods that will inter-
est him, in chaotic systems to identify an repeating patterns and in
environmental applications that tracks natural phenomena in cer-
tain areas and identify any new phenomena that starts to exist.
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