

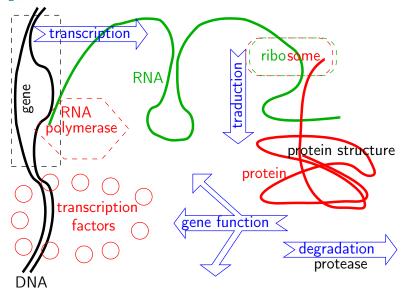
Modelling Biological Regulatory Networks using Formal Methods

Gilles Bernot Université Côte d'Azur, CNRS, I3S, France

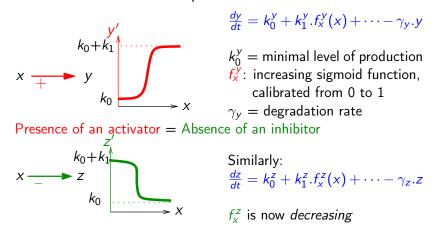
DNA, RNA, proteins and chemical kinetics of regulatory genes

- Discrete models for regulatory networks
- Hand made identification of parameters
- Regulatory networks and temporal logic
- ► The TotemBioNet approach
- Extracting interesting experiments from models
- Complex vs. complicated...

DNA, RNA, proteins and genes



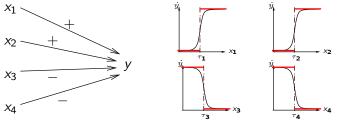
Chemical kinetics of regulatory genes Regulatory genes = Genes whose products regulate other genes From concentration levels to production rates:



Experimental capabilities: hopeless to measure all k_i^v , f_u^v , γ_v !

First simplification: piecewise linear

Approximate sigmoids as step functions:



 $\begin{array}{l} \frac{dy}{dt} = k_0 + k_1 . \mathbb{1}_{x_1 \geqslant \tau_1} + k_2 . \mathbb{1}_{x_2 \geqslant \tau_2} + k_3 . \mathbb{1}_{x_3 < \tau_3} + k_4 . \mathbb{1}_{x_4 < \tau_4} - \gamma . y \\ \text{Solutions of the form } Ce^{-\gamma t} + \frac{\Sigma \mathbb{1}_{k_i}}{\gamma} \text{ whose } \lim_{t \to \infty} \text{ is } \frac{\Sigma \mathbb{1}_{k_i}}{\gamma} \\ \text{As many such equations as genes in the interaction graph} \end{array}$

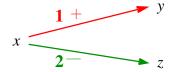
In each hypercube, all the trajectories have a unique *attractive point*, which can be outside de hypercube

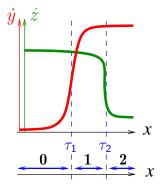
Experimental capabilities: hopeless to measure all k_i^{ν} , τ_i^{ν} , γ_v + does not capture <u>non deterministic</u> behaviours...

▶ DNA, RNA, proteins and chemical kinetics of regulatory genes

- Discrete models for regulatory networks
- Hand made identification of parameters
- Regulatory networks and temporal logic
- ► The TotemBioNet approach
- Extracting interesting experiments from models
- Complex vs. complicated...

Homogeneous intervals w.r.t. the action of the gene on the network

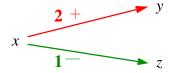


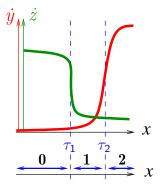


イロト イヨト イヨト

э

Homogeneous intervals w.r.t. the action of the gene on the network



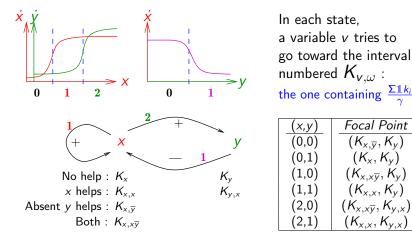


イロト イヨト イヨト

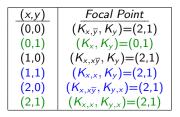
-

Only the relative order of the τ_i matters!

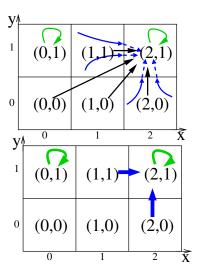
Thomas (& Snoussi) regulatory networks



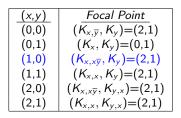
Presence of an activator = Absence of an inhibitor = A resource



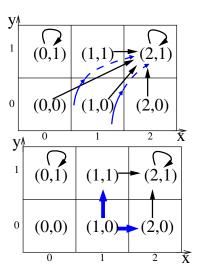
Note: arbitrary values of the K_{\dots}



・ロト ・ 同ト ・ ヨト ・ ヨト … ヨー



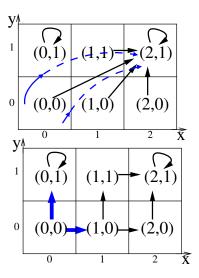
"desynchronization"



▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Focal Point (x,y)(0,0) $(K_{x,\overline{y}}, K_{y}) = (2,1)$ $(K_x, K_y) = (0,1)$ (0,1) $(K_{x,x\overline{y}}, K_y) = (2,1)$ (1,0) $(K_{x,x}, K_y) = (2,1)$ (1,1)(2,0) $(K_{x,x\overline{y}}, K_{y,x}) = (2,1)$ (2,1) $(K_{x,x}, K_{y,x}) = (2,1)$

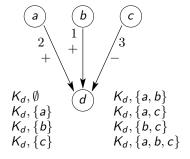
"desynchronization" \longrightarrow by **units** of Manhattan distance



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 2^i parameters where *i* is the in-degree of the gene

 $\prod_{genes} (o+1)^{2^i} \text{ possible parameter values}$ where o is the out degree of each gene



◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Yeast \approx 7000 genes Human \approx 25000 genes Rice \approx 40000 genes

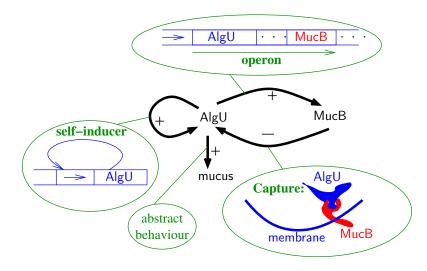
\int_{∞} The main problem

Exhaustively identify the sets of (integer) parameters that cope with known behaviours from biological experiments Solution = perform reverse engineering *via* formal logic

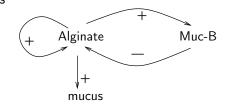
- 2003: enumeration + CTL + model checking (Bernot, Comet, Pérès, Richard)
- 2005: path derivatives + model checking (Batt, De Jong)
- > 2005: PROLOG with constraints (*Trilling*, *Corblin*, *Fanchon*)
- 2007: symbolic execution + LTL (Mateus, Le Gall, Comet)
- 2011: traces + enumeration + CTL + model checking (Siebert, Bockmayr)
- 2014: Process Hitting (Paulevé, Roux, Magnin, Folschette)
- 2014 (tool): CoLoMoTo (collectif)
- 2015: genetically modified Hoare logic + constraint solving (Bernot, Comet, Roux, Khalis, Richard)
- 2020 (tool): TotemBioNet (Collavizza)

▶ DNA, RNA, proteins and chemical kinetics of regulatory genes

- Discrete models for regulatory networks
- Hand made identification of parameters
- Regulatory networks and temporal logic
- ► The TotemBioNet approach
- Extracting interesting experiments from models
- Complex vs. complicated...



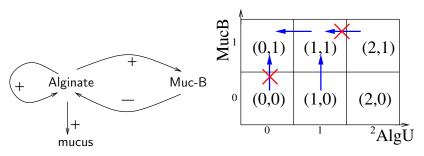
Difficulty to predict the result of combined regulations Difficulty to measure the strength of a given regulation Example of "competitor" circuits

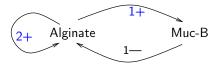


イロト 不得 トイヨト イヨト 三日

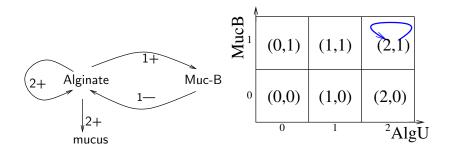
Multistationarity ? Homeostasy ?

Many underlying qualitative models: \approx 700 qualitative behaviours





▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



 $K_{AlgU,AlgU} = 2$ and $K_{MucB,AlgU} = 1$

イロト 不得下 イヨト イヨト

- 2

Multistationarity vs. positive cycles

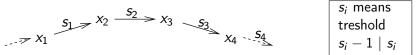
- A cycle in the interaction graph is *positive* if it contains an *even* number of inhibitions
- Theorem: if the state graph exhibits several attraction basins then there is at least one positive cycle in the interaction graph
- Was a conjecture from the 70's to 2004; proved by Adrien Richard and Jean-Paul Comet (and by Christophe Soulé for the continuous case)

- A cycle in the interaction graph is *negative* if it contains a *odd* number of inhibitions
- Theorem: if the state graph exhibits an homeostasy (stable oscillations) then there is at least one negative cycle in the interaction graph
- Was a conjecture from the 70's to ≈2010. True within the global graph (but Counter-examples have been found for *local* graphs: A. Richard, J.-P. Comet, P. Ruet)

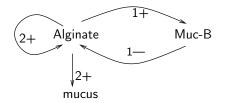
These theorems are very useful in practice when modelling biological examples

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Helps characterizing the saddle point (resp. center of the oscillations) of the behaviour "driven" by a positive (resp. negative) cycle.



Whatever the sign of $x_i \to x_{i+1}$, for some set of resources ω one should have $K_{x_{i+1},\omega} < s_{i+1} \leqslant K_{x_{i+1},\omega x_i}$, all along the cycle



イロト 不得下 イヨト イヨト

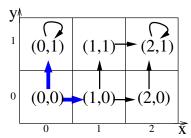
-

Knowledge: Oscollations of Alginate and MucB have been observed Consequence: $K_{MucB} < 1$ and $K_{MucB,Alginate} \ge 1$ and $K_{Alginate} < 1$ and $K_{Alginate,Alginate MucB} \ge 1$

Knowledge: Producing or not producing mucus are stable phenotypes Consequence: $K_{Alginate} < 2$ and $K_{Alginate,Alginate MucB} \ge 2$

▶ DNA, RNA, proteins and chemical kinetics of regulatory genes

- Discrete models for regulatory networks
- Hand made identification of parameters
- Regulatory networks and temporal logic
- The TotemBioNet approach
- Extracting interesting experiments from models
- Complex vs. complicated...



As many possible state graphs as possible parameter sets... (huge number)

(2,0)

... from each initial state: (0,1)-

1,0

2.1

CTL = Computation Tree Logic

Atoms = comparaisons : (x=2) (y>0) ...

Logical connectives: $(\varphi_1 \land \varphi_2) \quad (\varphi_1 \implies \varphi_2) \quad \cdots$

Temporal modalities: made of 2 characters

first character	second character
A = for All path choices	X = neXt state
E = there Exist a choice	F = for some Future state G = for all future states (Globally)
	U = Until

AX(y = 1): the concentration level of y belongs to the interval 1 in all states directly following the considered initial state.

EG(x = 0): there exists at least one path from the considered initial state where x always belongs to its lower interval.

neXt state:

 $EX \varphi$: φ can be satisfied in a next state

 $AX\varphi$: φ is always satisfied in the next states eventually in the Future:

 $\textit{EF}\varphi$: φ can be satisfied in the future

 $AF\varphi$: φ will be satisfied at some state in the future Globally:

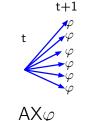
 $\textit{EG}\varphi$: φ can be an invariant in the future

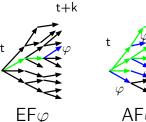
 $AG\varphi$: φ is necessarilly an invariant in the future Until:

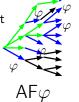
- $E[\psi U\varphi]$: there exist a path where ψ is satisfied until a state where φ is satisfied
- $\begin{array}{l} {\cal A}[\psi U\varphi]: \ \psi \ {\rm is \ always \ satisfied \ until \ some \ state \ where \ } \varphi \ {\rm is \ satisfied \ } \end{array}$

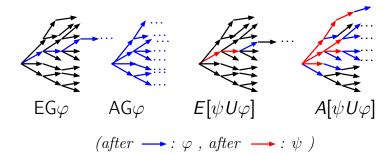
Semantics of Temporal Connectives

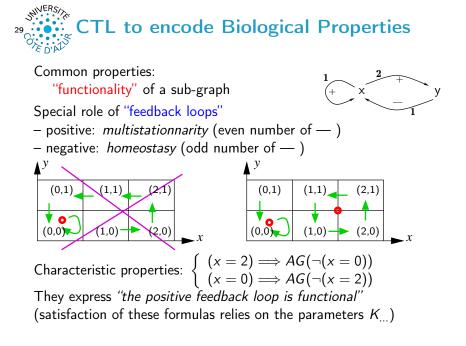
EXφ











- Efficiently computes all the states of a state graph which satisfy a given formula: { η | M ⊨_η φ }.
- Efficiently select the models which globally satisfy a given formula.

Intensively used:

- ▶ to find the set of all possible discrete parameter values
- to check models under construction w.r.t. known behaviours (one often gets an empty set of parameter values!)

> and to prove the **consistency** of a biological **hypothesis**

▶ DNA, RNA, proteins and chemical kinetics of regulatory genes

- Discrete models for regulatory networks
- Hand made identification of parameters
- Regulatory networks and temporal logic
- The TotemBioNet approach
- Extracting interesting experiments from models
- Complex vs. complicated...

Takes as input:

- an interaction graph
- some constraints on the parameters, if available
- a set of temporal formulas (CTL or similar)
- some experimentally observed paths, if available

Provides as output:

The exhaustive set of correct parameter settings that satisfy the input information

using sophisticated enumeration strategies in order to reduce the number of proofs by model checking.

TotemBioNet methodology

Most of the time, the set of correct parameter settings is either *empty* or *huge*

If empty: good news! research goes on

- reconsider biological "knowledge"
- reconsider its temporal logic encoding

If huge:

- randomly take one or two correct parameter settings
- randomly extract a few paths in the state graph
- most of the time, the biologist has an "obvious" reason to reject some paths
- encode the reason in temporal logic and start again...

... until the number of parameter settings becomes low and no more "obviously bad paths" are found.

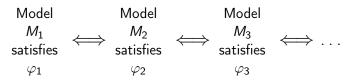
▶ DNA, RNA, proteins and chemical kinetics of regulatory genes

- Discrete models for regulatory networks
- Hand made identification of parameters
- Regulatory networks and temporal logic
- ► The TotemBioNet approach
- Extracting interesting experiments from models
- Complex vs. complicated...

Simplifications driven by the hypothesis

Biologists spend money and time for experiments because they have a **hypothesis** φ in mind that they want to test...

 \ldots Successive simplified views of the studied biological object and of the hypothesis:

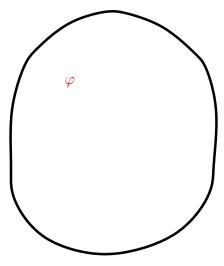


Node removing / Expression level folding / Node fusion / etc.

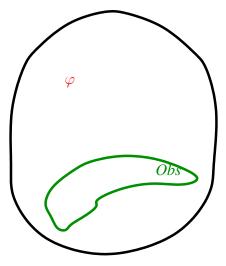
"Kleenex" models: hypothesis dependant models

Set of all the formulas:

 $\varphi = \mathsf{hypothesis}$

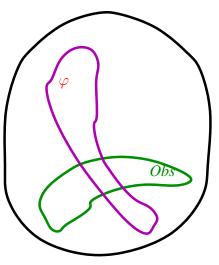


 $\varphi = hypothesis$ Obs = possible experiments

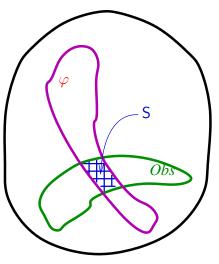


◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

 $\varphi = hypothesis$ Obs = possible experiments $Th(\varphi) = \varphi$ inferences



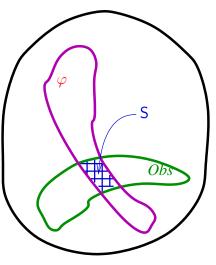
 φ = hypothesis Obs = possible experiments $Th(\varphi) = \varphi$ inferences S = sensible experiments



 φ = hypothesis Obs = possible experiments $Th(\varphi) = \varphi$ inferences S = sensible experiments

Refutability:

$$S \Longrightarrow \varphi$$
?

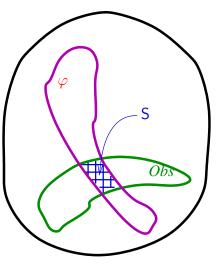


 $\varphi = hypothesis$ Obs = possible experiments $Th(\varphi) = \varphi$ inferences S = sensible experiments

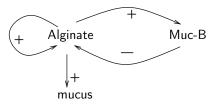
Refutability:

 $S \Longrightarrow \varphi$?

Best refutations: Choice of experiments in S ? \dots optimisations



 \mathcal{M} : (unknown thresholds)



$$\Phi: \begin{cases} (Alginate = 2) \Longrightarrow AG(Alginate = 2) & (hypothesis) \\ (Alginate = 0) \Longrightarrow AG(Alginate < 2) & (knowledge) \end{cases}$$

Assume that only *mucus* can be observed: Lemma: $AG(Alginate = 2) \iff AFAG(mucus = 1)$ (... formal proof by computer ...)

+ To validate: $(Alginate = 2) \implies AFAG(mucus = 1)$

$$\underset{C \neq D \in D^{S}}{\overset{\mathsf{MERS}}{\longrightarrow}} (Alginate = 2) \Longrightarrow AFAG(mucus = 1)$$

$A \Longrightarrow B$	true	false
true	true	false
false	true	true

Karl Popper: to validate = to try to refute *thus A=false is useless* experiments must begin with a pulse

The pulse forces the bacteria to reach the initial state Alginate = 2. If the state is not directly controlable we need to prove lemmas:

(something reachable) \implies (Alginate = 2)

General form of a test:

 $(something reachable) \implies (something observable)$

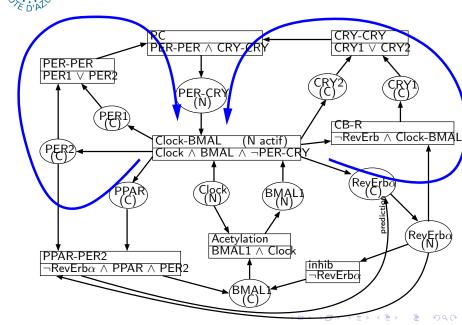
▶ DNA, RNA, proteins and chemical kinetics of regulatory genes

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- Discrete models for regulatory networks
- Hand made identification of parameters
- Regulatory networks and temporal logic
- ► The TotemBioNet approach
- Extracting interesting experiments from models
- Complex vs. complicated...

Circadian clock interaction graph

NERS



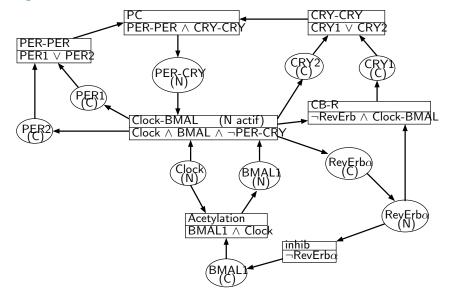
Impact of the day length on the persistence of the circadian circle ?

 \implies framework with time delays:

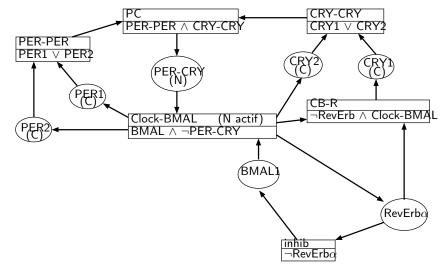
- ▶ mainly replace the integer K_{x,ω} by real numbers C_{x,ω,n}, called *celerities*, where n is the current state of x
- ▶ notice that $C_{x,\omega,n} > 0$ if $K_{x,\omega} > n$ and a few other logical properties
- extension of temporal logic with delays: $AF_{[t_1,t_2]}$ and so on

Decidability is lost but the identification of parameters remains "almost" automatic with such constant speeds $C_{x,\omega,n}$ (constraint solving on intervals)

Fold levels and remove PPAR

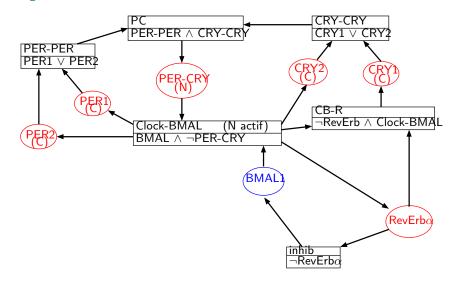


◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで



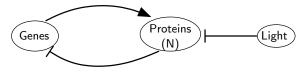
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

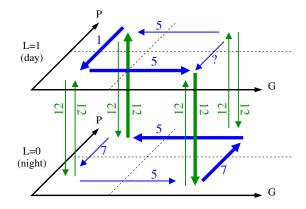
Separate inhibitors/activators of Clock-



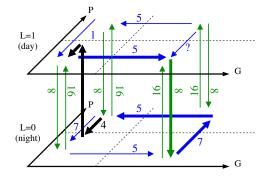
and Light prevents PER-CRY to enter the nucleus:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

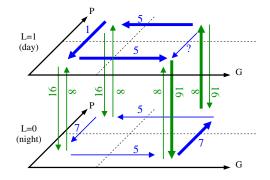




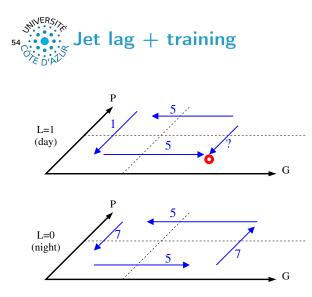
▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで



▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Make explicit the hypotheses that motivate the biologist

A far as possible formalize them to get a computer aided approach Behavioural *properties* are as much important as *models*

Mathematical models are not reality: let's use this freedom ! (several views of a same biological object)

Modelling is significant only with respect to the considered experimental *reachability* and *observability* (for refutability)

Formal proofs can suggest wet experiments "Kleenex" models help understanding main behaviours Specialized qualitative approaches can make complex models simple