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3 DNA, RNA, proteins and genes
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4 Chemical kinetics of regulatory genes

Regulatory genes = Genes whose products regulate other genes

From concentration levels to production rates:
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x (x)+ · · · − γy .y

ky0 = minimal level of production
f yx : increasing sigmoid function,

calibrated from 0 to 1
γy = degradation rate

Presence of an activator = Absence of an inhibitor
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f zx is now decreasing

Experimental capabilities: hopeless to measure all kvi , f vu , γv !



5 First simplification: piecewise linear

Approximate sigmoids as step functions:
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dy
dt = k0 + k1.1x1⩾τ1 + k2.1x2⩾τ2 + k3.1x3<τ3 + k4.1x4<τ4 − γ.y

Solutions of the form Ce−γt + Σ1ki
γ whose limt→∞ is Σ1ki

γ
As many such equations as genes in the interaction graph

In each hypercube, all the trajectories have a unique attractive
point, which can be outside de hypercube

Experimental capabilities: hopeless to measure all kvi , τ vi , γv
+ does not capture non deterministic behaviours. . .
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7 Multivalued Regulatory Graphs

Homogeneous intervals w.r.t. the
action of the gene on the network
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8 Multivalued Regulatory Graphs

Homogeneous intervals w.r.t. the
action of the gene on the network
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Only the relative order of the τi matters!



9 Thomas (& Snoussi) regulatory networks
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No help : Kx

x helps : Kx,x Ky,x

Absent y helps : Kx,y

Both : Kx,xy

+

0

In each state,
a variable v tries to
go toward the interval
numbered Kv ,ω :
the one containing Σ1ki

γ

(x,y) Focal Point
(0,0) (Kx,y ,Ky )
(0,1) (Kx ,Ky )
(1,0) (Kx,xy ,Ky )
(1,1) (Kx,x ,Ky )
(2,0) (Kx,xy ,Ky ,x)
(2,1) (Kx,x ,Ky ,x)

Presence of an activator = Absence of an inhibitor = A resource



10 State Graphs

(x,y) Focal Point
(0,0) (Kx,y ,Ky )=(2,1)
(0,1) (Kx ,Ky )=(0,1)
(1,0) (Kx,xy ,Ky )=(2,1)
(1,1) (Kx,x ,Ky )=(2,1)
(2,0) (Kx,xy ,Ky,x)=(2,1)
(2,1) (Kx,x ,Ky,x)=(2,1)
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11 State Graphs

(x,y) Focal Point
(0,0) (Kx,y ,Ky )=(2,1)
(0,1) (Kx ,Ky )=(0,1)
(1,0) (Kx,xy ,Ky )=(2,1)
(1,1) (Kx,x ,Ky )=(2,1)
(2,0) (Kx,xy ,Ky,x)=(2,1)
(2,1) (Kx,x ,Ky,x)=(2,1)
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12 State Graphs

(x,y) Focal Point
(0,0) (Kx,y ,Ky )=(2,1)
(0,1) (Kx ,Ky )=(0,1)
(1,0) (Kx,xy ,Ky )=(2,1)
(1,1) (Kx,x ,Ky )=(2,1)
(2,0) (Kx,xy ,Ky,x)=(2,1)
(2,1) (Kx,x ,Ky,x)=(2,1)
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“desynchronization” −→
by units of Manhattan distance
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13 Thomas parameters: exponential number

2i parameters
where i is the in-degree of the gene

∏
genes

(o + 1)2
i
possible parameter values

where o is the out degree of each gene
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Kd , {b}
Kd , {c}

Kd , {a, c}
Kd , {a, b}

Kd , {b, c}
Kd , {a, b, c}

Yeast≈7000 genes Human≈25000 genes Rice≈40000 genes



14 The main problem
Exhaustively identify the sets of (integer) parameters

that cope with known behaviours from biological experiments
Solution = perform reverse engineering via formal logic

▶ 2003: enumeration + CTL + model checking
(Bernot,Comet,Pérès,Richard)

▶ 2005: path derivatives + model checking (Batt,De Jong)
▶ 2005: PROLOG with constraints (Trilling,Corblin,Fanchon)
▶ 2007: symbolic execution + LTL (Mateus,Le Gall,Comet)
▶ 2011: traces + enumeration + CTL + model checking

(Siebert,Bockmayr)
▶ 2014: Process Hitting (Paulevé,Roux,Magnin,Folschette)
▶ 2014 (tool): CoLoMoTo (collectif)
▶ 2015: genetically modified Hoare logic + constraint solving

(Bernot,Comet,Roux,Khalis,Richard)
▶ 2020 (tool): TotemBioNet (Collavizza)
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16 Mucus production in P. aeruginosa

Capture:
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17 Static Graph v.s. Dynamic Behaviour

Difficulty to predict the result of combined regulations

Difficulty to measure the strength of a given regulation

Example of “competitor” circuits

Multistationarity ?
Homeostasy ?

—

+

+
mucus

+ Alginate Muc-B

Many underlying qualitative models: ≈ 700 qualitative behaviours



18 Strongly connected + Tresholds
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19 Stable states
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20 Multistationarity vs. positive cycles

▶ A cycle in the interaction graph is positive if it
contains an even number of inhibitions

▶ Theorem: if the state graph exhibits several
attraction basins then there is at least one positive
cycle in the interaction graph

▶ Was a conjecture from the 70’s to 2004; proved by
Adrien Richard and Jean-Paul Comet
(and by Christophe Soulé for the continuous case)
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21 Oscillations vs. negative cycles

▶ A cycle in the interaction graph is negative if it
contains a odd number of inhibitions

▶ Theorem: if the state graph exhibits an
homeostasy (stable oscillations) then there is at
least one negative cycle in the interaction graph

▶ Was a conjecture from the 70’s to ≈2010.
True within the global graph
(but Counter-examples have been found for local graphs:
A. Richard, J.-P. Comet, P. Ruet)
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+

These theorems are very useful in practice when modelling
biological examples



22 Caracteristic state of a cycle

Helps characterizing the saddle point (resp. center of the
oscillations) of the behaviour “driven” by a positive (resp. negative)
cycle.

x1

x2s1 x3

x4

s2
s3

s4

si means
treshold
si − 1 | si

Whatever the sign of xi → xi+1, for some set of resources ω
one should have Kxi+1,ω < si+1 ⩽ Kxi+1,ωxi , all along the cycle



23 Example:

1—

1+

2+
mucus

2+ Alginate Muc-B

Knowledge: Oscollations of Alginate and MucB have been observed
Consequence: KMucB < 1 and KMucB,Alginate ⩾ 1 and KAlginate < 1
and KAlginate,Alginate MucB ⩾ 1

Knowledge: Producing or not producing mucus are stable
phenotypes
Consequence: KAlginate < 2 and KAlginate,Alginate MucB ⩾ 2
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25 Time has a tree structure. . .
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As many possible state graphs
as possible parameter sets. . .
(huge number)
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26 CTL = Computation Tree Logic

Atoms = comparaisons : (x=2) (y>0) . . .

Logical connectives: (φ1 ∧ φ2) (φ1 =⇒ φ2) · · ·
Temporal modalities: made of 2 characters

first character second character
A = for All path choices X = neXt state

F = for some Future state
E = there Exist a choice G = for all future states (Globally)

U = Until

AX(y = 1) : the concentration level of y belongs to the interval 1 in all
states directly following the considered initial state.

EG(x = 0) : there exists at least one path from the considered initial
state where x always belongs to its lower interval.



27 Temporal Connectives of CTL

neXt state:
EXφ : φ can be satisfied in a next state
AXφ : φ is always satisfied in the next states

eventually in the Future:
EFφ : φ can be satisfied in the future
AFφ : φ will be satisfied at some state in the future

Globally:
EGφ : φ can be an invariant in the future
AGφ : φ is necessarilly an invariant in the future

Until:
E [ψUφ] : there exist a path where ψ is satisfied until a state

where φ is satisfied
A[ψUφ] : ψ is always satisfied until some state where φ is

satisfied



28 Semantics of Temporal Connectives

(after : φ , after : ψ )
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29 CTL to encode Biological Properties

Common properties:
“functionality” of a sub-graph

Special role of “feedback loops”
—

y
+

+ x
1 2

1

– positive: multistationnarity (even number of — )
– negative: homeostasy (odd number of — )

y

x

y

x

(0,1) (2,1)(1,1)

(2,0)(0,0) (1,0) (0,0) (1,0) (2,0)

(2,1)(1,1)(0,1)

Characteristic properties:
{

(x = 2) =⇒ AG (¬(x = 0))
(x = 0) =⇒ AG (¬(x = 2))

They express “the positive feedback loop is functional”
(satisfaction of these formulas relies on the parameters K...)



30 Model Checking

▶ Efficiently computes all the states of a state graph which
satisfy a given formula: { η | M |=η φ }.

▶ Efficiently select the models which globally satisfy a given
formula.

Intensively used:

▶ to find the set of all possible discrete parameter values
▶ to check models under construction w.r.t. known behaviours

(one often gets an empty set of parameter values!)
▶ and to prove the consistency of a biological hypothesis
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32 TotemBioNet

Takes as input:

▶ an interaction graph
▶ some constraints on the parameters, if available
▶ a set of temporal formulas (CTL or similar)
▶ some experimentally observed paths, if available

Provides as output:

▶ The exhaustive set of correct parameter settings that satisfy
the input information

using sophisticated enumeration strategies in order to reduce the
number of proofs by model checking.



33 TotemBioNet methodology

Most of the time, the set of correct parameter settings is either
empty or huge

If empty: good news! research goes on
▶ reconsider biological “knowledge”
▶ reconsider its temporal logic encoding

If huge:
▶ randomly take one or two correct parameter settings
▶ randomly extract a few paths in the state graph
▶ most of the time, the biologist has an “obvious” reason to

reject some paths
▶ encode the reason in temporal logic and start again. . .

. . . until the number of parameter settings becomes low and no
more “obviously bad paths” are found.
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35 Simplifications driven by the hypothesis

Biologists spend money and time for experiments because they
have a hypothesis φ in mind that they want to test. . .

. . . Successive simplified views of the studied biological object and
of the hypothesis:

Model
M1

satisfies
φ1

⇐⇒
Model
M2

satisfies
φ2

⇐⇒
Model
M3

satisfies
φ3

⇐⇒ . . .

Node removing / Expression level folding / Node fusion / etc.

“Kleenex” models: hypothesis dependant models



36 Generation of biological experiments (1)

Set of all the formulas:

φ = hypothesis

φ



37 Generation of biological experiments (2)

Set of all the formulas:

φ = hypothesis
Obs = possible experiments

Obs

φ



38 Generation of biological experiments (3)

Set of all the formulas:

φ = hypothesis
Obs = possible experiments
Th(φ) = φ inferences

Obs

φ



39 Generation of biological experiments (4)

Set of all the formulas:

φ = hypothesis
Obs = possible experiments
Th(φ) = φ inferences
S = sensible experiments

Obs

φ

S



40 Generation of biological experiments (5)

Set of all the formulas:

φ = hypothesis
Obs = possible experiments
Th(φ) = φ inferences
S = sensible experiments

Refutability:
S =⇒ φ ?

Obs

φ

S



41 Generation of biological experiments

Set of all the formulas:

φ = hypothesis
Obs = possible experiments
Th(φ) = φ inferences
S = sensible experiments

Refutability:
S =⇒ φ ?

Best refutations:
Choice of experiments in S ?
. . . optimisations

Obs

φ

S



42 How to validate a multistationnarity

M: (unknown thresholds)

—

+

+
mucus

+ Alginate Muc-B

Φ:
{

(Alginate = 2) =⇒ AG (Alginate = 2) (hypothesis)
(Alginate = 0) =⇒ AG (Alginate < 2) (knowledge)

Assume that only mucus can be observed:
Lemma: AG (Alginate = 2) ⇐⇒ AFAG (mucus = 1)
(. . . formal proof by computer . . . )

→ To validate: (Alginate = 2) =⇒ AFAG (mucus = 1)



43 (Alginate = 2) =⇒ AFAG (mucus = 1)

A =⇒ B true false
true true false
false true true

Karl Popper:
to validate = to try to refute

thus A=false is useless
experiments must begin with a pulse

The pulse forces the bacteria to reach the initial state Alginate = 2.
If the state is not directly controlable we need to prove lemmas:

(something reachable) =⇒ (Alginate = 2)

General form of a test:

(something reachable) =⇒ (something observable)



44 Menu

▶ DNA, RNA, proteins and chemical kinetics of regulatory genes
▶ Discrete models for regulatory networks
▶ Hand made identification of parameters
▶ Regulatory networks and temporal logic
▶ The TotemBioNet approach
▶ Extracting interesting experiments from models
▶ Complex vs. complicated. . .



45 Circadian clock interaction graph
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46 The target question

Impact of the day length on the persistence of the circadian circle ?

=⇒ framework with time delays:

▶ mainly replace the integer Kx ,ω by real numbers Cx ,ω,n, called
celerities, where n is the current state of x

▶ notice that Cx ,ω,n > 0 if Kx ,ω > n and a few other logical
properties

▶ extension of temporal logic with delays: AF[t1,t2] and so on

Decidability is lost but the identification of parameters remains
“almost” automatic with such constant speeds Cx ,ω,n (constraint
solving on intervals)



47 Fold levels and remove PPAR

PER-CRY
(N)
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¬RevErb ∧ Clock-BMALClock-BMAL (N actif)

Clock ∧ BMAL ∧ ¬PER-CRY
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48 Remove Clock and “tunnel” pathways

PER-CRY
(N)

CB-R
¬RevErb ∧ Clock-BMAL
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49
Separate inhibitors/activators of Clock-
BMAL

CB-R
¬RevErb ∧ Clock-BMAL

PER-PER
PER1 ∨ PER2

PC
PER-PER ∧ CRY-CRY

CRY-CRY
CRY1 ∨ CRY2

inhib
¬RevErbα

Clock-BMAL (N actif)
BMAL ∧ ¬PER-CRY

BMAL1

PER2(C)

PER1(C)

PER-CRY
(N)

CRY2
(C) CRY1

(C)

RevErbα



50 Fusion of all inhibitors

Genes Proteins
(N)

and Light prevents PER-CRY to enter the nucleus:

LightGenes Proteins
(N)



51 12 hours model
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52 Winter model
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53 Summer model
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54 Jet lag + training
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55 Take Home Messages

Make explicit the hypotheses that motivate the biologist

A far as possible formalize them to get a computer aided approach

Behavioural properties are as much important as models

Mathematical models are not reality: let’s use this freedom !
(several views of a same biological object)

Modelling is significant only with respect to the considered
experimental reachability and observability (for refutability)

Formal proofs can suggest wet experiments

“Kleenex” models help understanding main behaviours

Specialized qualitative approaches can make complex models simple


