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“But technology will ultimately and usefully be better served by following

the spirit of Eddington, by attempting to provide enough time and intellectual
space for those who want to invest themselves in exploration of levels

beyond the genome independently of any quick promises for still quicker
solutions to extremely complex problems.”

Strohman RC (1977) Nature Biotech 15:199

FOREWORD

What are the salient features of the new scientific context within which biological
modelling and simulation will evolve from now on? The global project of high-throughput
biology may be summarized as follows. After genome sequencing comes the annotation
by ’classical’ bioinformatics means. It then becomes important to interpret the annota-
tions, to understand the interactions between biological functions, to predict the outcome
of perturbations, while incorporating the results from post genomics studies (of course,
sequencing and annotation do not stop when simulation comes into the picture). At that
stage, a tight interplay between model, simulation and bench experimentation is crucial.
Taking on this challenge therefore requires specialists from across the sciences to learn
each other’s language so as to collaborate effectively on defined projects.

Just such a multi-disciplinary group of scientists has been meeting regularly at Genopole,
a leading centre for genomics in France. This, the Epigenomics project, is divided into
five subgroups. The GolgiTop subgroup focuses on membrane deformations involved in
the functionning of the Golgi. The Hyperstructures subgroup focuses on cell division,
on the dynamics of the cytoskeleton, and on the dynamics of hyperstructures (which are
extended multi-molecule assemblies that serve a particular function). The Observability
subgroup addresses the question of which models are coherent and how can they best
be tested by applying a formal system, originally used for testing computer programs, to
an epigenetic model for mucus production by Pseudomonas aeruginosa, the bacterium
involved in cystic fibrosis. The Bioputing group works on new approaches proposed
to understand biological computing using computing machine made of biomolecules or
bacterial colonies. The SMABIo subgroup focuses on how multi-agents systems (MAS)
can be used to model biological systems.

The works of subgroups underpinned the conferences organised in Autrans in 2002, in
Dieppe in 2003, in Evry in 2004, in Montpelliers in 2005, in Bordeaux in 2006, back
to Evry in 2007, in Lille in 2008 and in Nice in 2009. The conferences in Evry in
2010 which as reported here, brought together over a hundred participants, biologists,
physical chemists, physicists, statisticians, mathematicians and computer scientists and
gave leading specialists the opportunity to address an audience of doctoral and post-
doctoral students as well as colleagues from other disciplines.

This book gathers overviews of the talks, original articles contributed by speakers and
subgroups, tutorial material, and poster abstracts. We thank the sponsors of this confer-
ence for making it possible for all the participants to share their enthusiasm and ideas in
such a constructive way.

Patrick Amar, Gilles Bernot, Marie Beurton-Aimar, Bruno Goffinet, Eric Goles, Janine Guespin,
Jiirgen Jost, Marcelline Kaufman, Frangois Képes, Pascale Le Gall, Reinhard Lipowsky, Jean-
Pierre Mazat, Victor Norris, EI Houssine Snoussi.



26/3/2010- page #4



26/3/2010- page #5

ACKNOWLEDGEMENTS

We would like to thank the conference participants, who have contributed in a way or
another this book. It gathers overviews of the talks, discussions and roundtables, original
articles and tutorial material contributed by speakers, abstracts from attendees, posters
and lectures proposed by the epigenesis groups to review or illustrate matters related to
the scientific topic of the conference.

Of course the organisation team would like to express gratitude to all the staff of the Evry
All Seasons Hotel for the very good conditions we have found during the conference.

Special thanks to the Epigenomics project for their assistance in preparing this bool§ for
publication. The cover photography shows the Faculté des Métiers Copyright Ville d’Evry.

We would also like to express our thanks to the sponsors of this conference for their
financial support allowing the participants to share their enthusiasm and ideas in such a
constructive way.

They were:

e Centre National de la Recherche Scientifique (CNRS):
http://www.cnrs.fr

Genopole® Evry:
http://www.genopole.fr

o GDRE CNRS 513 Biologie Systémique:
http://www.mpi-magdeburg.mpg.de/CNRS_MPG

e Consortium Biolntelligence (OSEOQ)

e PRES UniverSud Paris: .
http://www.universud-paris.fr/

¢ Institut National de Recherche en Informatique et en Automatique (INRIA):
http://www.inria.fr/

e GDR CNRS 3003 Bioinformatique Moléculaire:
http://www.gdr-bim.u-psud.fr

¢ Réseau national des systémes complexes (RNSC):
http://rnsc.csregistry.org/tiki-index.php

e INRAMIA: |
http://www.inra.fr

e Fondation Scientifigue Fourmentin-Guilbert:
http://www.fourmentinguilbert.org

THE EDITORS



26/3/2010- page #6



26/3/2010- page #7

INVITED SPEAKERS

TATSUYA AKUTSU
JuLio ARACENA
EsHEL BEN JACOB
JEAN-PAUL COMET
VINCENT FROMION
VassiLy HATZIMANIKATIS
JACQUES VAN HELDEN
NANcY KLECKNER
MeLANIE MUELLER
FrRANCOIS NEDELEC
ERIK VAN NIMWEGEN
GERMAN RIVAS

ERICH SACKMANN
JORG STULKE

JEAN WEISSENBACH

Kyoto Univ., (Japan)

Univ. Concepcion, (Chili)

Tel-Aviv Univ., (IL)

Univ. Nice, (F)

INRA, Jouy-en-Josas, (F)

EPF Lausanne, (CH)

ULB, Brussels, (BE)

Harvard Univ., MA, (USA)

MPIKG Postdam, (DE)

EMBL, Heidelberg, (DE)

Biozentrum Basel, (CH)

Centro de Investigaciones Bioldgicas, Madrid (SP)
Technische Universitat, Minchen, (DE)
Georg-August-Universitat, Goéttingen, (DE)
Institut de génomique, CEA, Evry, (F)



26/3/2010- page #8

CONTENTS

PARTI INVITED TALKS 13

CELL BIOPHYSICS

FRANCOIS NEDELEC
Modeling cytoskeletal structures with cytosim . . . . . . . .. 15

GERMAN RIVAS
Cytomimetic reconstitution of the bacterial proto-ring complex

inthetesttube . . . . . . . . . . . . .. ... ... ..., 17

ERICH SACKMANN
Mechanical forces control the structure and function of cells by
stimulating genetic expressions and biochemical signalling . . 19

DISCRETE APPROACHES TO REGULATORY NETWORKS

JEAN-PAUL COMET
Discrete and Hybrid Modeling of Gene Regulatory Networks . 21

JuLio ARACENA
Update digraph and dynamical behavior in Boolean networks . 23

TATSUYA AKUTSU
Algorithmic Aspects of Analysis and Control of Boolean Net-
WOIKS . . . o e e e e 25

MOLECULAR NETWORKS & MODELLING

ERIK VAN NIMWEGEN
Motif Activity Response Analysis: Inferring genome-wide tran-
scription regulation inmammals . . . . ... ... ... ... 27

JORG STULKE
Organisation of metabolism in Bacillus subtilis. Evidence for
the presence of protein complexes in central metabolism . . . 29

VINCENT FROMION

Recent progresses on the metabolism modeling of Bacteria:
definition of local and global modules and a first explanation
oftheiremergence . . . . . . .. .. ... ... ....... 31



26/3/2010- page #9

GENOMESCALE METABOLISM
JEAN WEISSENBACH

ToBe Announced . . . . . . . . . .. ... ... ... ... 33
VASSILY HATZIMANIKATIS
ToBe Announced . . . . . . . . . . ... ... ... . ... 35

JACQUES VAN HELDEN
Finding relevant paths in the not-so-small world of metabolic
networks . . . . . . . . L e e e e e 37

INFORMATION PROCESSING BY MICROORGANISMS

MEeLANIE MUELLER
Modeling intracellular cargo transport by several molecular
motors . . . . ... 39

NANCY KLECKNER
Physical and Mechanical Inputs into Chromosomal Processes 41

EsHEL BEN JACOB
ToBe Announced . . . . . . . . . . .. .. ... .. ... 43

PART Il ARTICLES 45

TATSUYA AKUTSU
Algorithmic Aspects of Analysis and Control of Boolean
Networks . . . . . . . . . e 47

JEAN-PAUL COMET AND GILLES BERNOT
Discrete and Hybrid Modeling of Gene Regulatory Networks . 61

Vic NORRIS, PATRICK AMAR, GUILLAUME LEGENT,
CAMILLE RiPOLL, MICHEL THELLIER AND JUDIT OVADI
Hypothesis: the cytoskeleton is a metabolic sensor . . . . . . 95

PART Il TUTORIALS 105

DAMIEN LARIVIERE, ERIC FOURMENTIN, IVAN JUNIER,
JoAN HERISSON, FRANCOIS KEPES

Initiation to 3D Modeling and Visualization of biological

PrOCESSES . . . v v v i v e e e e e e e e 107



26/3/2010- page #10

Ovipiu RADULESCU, ALEXANDER N. GORBAN,
ANDREI ZINOVYEV
Pruning, pooling and limiting steps in metabolic networks . . .

PARTIV POSTERS

ARIANNA BERTOLINO
Obliterating the phylogenetic bias in multiple sequence
alignment . . . .. ..

CARLA BOSIA
Nucleation dynamics in 2D cylindrical Ising models and
chemotaxis . . . . . . . . . . ...

APARNA DAS
Correspondence Between Discrete and Continuous Models of
Gene Regulatory Network . . . . . . . . ... ........

PIERRE-YVES DUPONT
CCAS: Cell Cycle Analyser Software . . . . . ... ......

MoHAMED ELATI
PreCislon: PREdiction of CIS-regulatory elements improved
bygenespositiON . . . . .. ... ... ... ........

DAvIDE FICHERA
Signatures of chemical diversity in metabolic network . . . . .

AMINE GHOZLANE
MetaboFlux: a method to analyse flux distributions in metabolic
NEtWOrkS . . . . . . . . e e

SVILEN ISKROV
Investigation of the topological structure of global genetic
networks . . . . . . . e e e

LAURENT JANNIERE
Coupling between metabolism and replication depends on the
flux travelling terminal reactions of glycolysis . . . . . . . . ..

DRAGANA JOVANOVSKA
Molecular networks and modeling with the Biocham Graphical
Userinterface . . . . . . . . . . . ... ... ... .. ...

109



26/3/2010- page #11

ZOHRA KHALIS
Using Hoare logic for constraining parameters of discrete
models of gene networks . . . . . . . ... ... ... ..

FATEN NABLI
Bipartite Graph Properties and Systems Biology . . . . . . . .

VINCENT NOEL
Modelling TGFj3-dependent NFxB response in cervical cancer
cell-lines . . . . . . . . .

MATTEO OSELLA
The role of incoherent microRNA-mediated feedforward loops
in noise buffering . . . . . .. ... ... ... ... ...

SABINE PERES
BioV: a formal description of biological processes based on
elementary bricks of actions . . . . . . ... ... ......

Loic PAULEVE
Refining Dynamics of Gene Regulatory Networks in a
Stochastic m-Calculus Framework . . . . . . . . . . .. ...

FLORIAN SIKORA
GraMoFoNe: a Cytoscape plugin for querying motifs without
topology in PPl . . . . . . .. . .. ... ... .. ...

FRANGOIS VALLEE
Using Multi-Agent Systems to Design Internal Movements of
Proteins . . . . . ... L

PARTV LIST OF ATTENDEES



26/3/2010- page #12



26/3/2010- page #13

PART| INVITED TALKS



26/3/2010- page #14



26/3/2010- page #15

MODELLING COMPLEX BIOLOGICAL SYSTEMS 15

Modeling cytoskeletal structures with cytosim
Francois Nédélec!

L EMBL, Heidelberg, Germany

Abstract

Living cells have a system of fibers and associated proteins, called the cy-
toskeleton, which provides the mechanical support necessary for migration,
polarization, division, etc. We study the cytoskeleton to better understand how
an initially uniform set of proteins can collectively generate order. Indeed,
the monomers can spontaneously assemble to form fibers, and multiple fibers
can self-organize into higher order structures spanning the entire cell. The
cytoskeleton offers many examples of remarkable structures generated by the
uncoordinated interactions of its constituant proteins. The self-organization
can sometimes be reconstituted in vitro, using a defined and limited set of
components. In this talk, we will discuss a complementary approach, in which
one uses numerical simulations to study the emergent properties. We will
introduce cytosim, ang give some examples of how this simulation can be
configured by a user. We will also give an example of current investigation
in the field of mitosis research.
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Cytomimetic reconstitution of the bacterial proto-ring
complex in the test tube

German Rivas!

L CIB / CSIC, Madrid, Spain

Abstract

Our long-term experimental goal is to build the minimum multi-protein com-
plex required to initiate bacterial cell division in the test tube. The dynamic
division ring formed at mid-cell towards the end of the cell cycle is composed
by at least ten division specific proteins that interact in a reversible manner to
form the functional assembly. The first multi-protein complex formed is the
proto-ring that initiates division. In E. coli the proto-ring is a complex of three
proteins (FtsZ, FtsA, and ZipA) assembling on the cytoplasmic membrane,
which is required for the incorporation of the remaining proteins at the mature
ring. The GTP-mediated assembly and disassembly of FtsZ (the bacterial
ancestor of the eukaryotic tubulin) are thought to be essential for the formation
of the septal ring.

We are using a complementary biophysical, biochemical, genetic and imaging
approach to reconstitute the proto-ring components into a variety of biomimetic
membrane systems, including nanodiscs and vesicles. To provide a native cell
environment, these studies are being done in a cytomimetic medium to re-
produce the crowded intracellular environment, physiological osmolarity and
energy supply pools. This set of tools will define the physicochemical con-
ditions that modulate the energetics and dynamics of FtsZ association to the
cytoplasmic membrane and its eventual dissociation from it.
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Mechanical forces control the structure and function of
cells by stimulating genetic expressions and biochemical
signalling

Erich Sackmann?!

! Physics Department Technical University Munich James Franck
Str.1 D85747 Garching, DE

Abstract

The physics of cells is greatly stimulated by the growing evidence that mechan-
ical forces play a ubiquitous role for the adaption of the material properties
of cells to their biological function. Cells can sense external forces through
their composite cell envelope and react in an interactive way either rapidly,
through the stimulation of biochemical switches, or slowly through stimulation
of genetic expressions. After an introduction into basic physical properties of
the composite envelope and the cytoplasmic space of cells several examples of
force controlled processes are discussed:

i Stem cells can differentiate by matching of their mechanical impedance
to that of the environment.

ii Cells exhibit stress and strain sensors and can adapt the adhesion strength
to external forces.

iii Cells can move over surfaces by propagation of adhesion-induced mi-
crodomains which stimulate solitary actin gelation waves through sig-
nalling lipids (PI-3,4,5-P3).
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Discrete and Hybrid Modeling of Gene Regulatory Networks
Jean-Paul Comet!

! Laboratoire I3S, UMR 6070 CNRS/UNSA,Algorithmes-Euclide-B,
2000 route des Lucioles, B.P. 121, F-06903 Sophia-Antipolis, France

Abstract

Computational modeling of genetic regulatory networks aims at deep under-
standing of how their components are controlled, thus allowing the prediction
of a set of non-obvious conclusions that can be experimentally tested. While
data on the connectivity among elements of the network is becoming increas-
ingly available, kinetic data of the associated biochemical reactions remain
to be determined. This parameter identification problem constitutes the cor-
nerstone of the modeling approaches. More precise the available information
about the dynamics of the system, more precise can be the model. But if
precision of the model is higher than the one of the knowledge of the biological
system, the precision given by computer simulations is only a consequence of
an arbitrary choice of parameter values.

This comment motivated some researchers to develop methods where this
identification problem is tractable. In particular Rene’ Thomas’ discrete mod-
eling of gene regulatory networks (GRN) is a well-known approach to study
the dynamics resulting from a set of interacting genes. It deals with some
discrete parameters which reflect the possible targets of trajectories. Those
parameters are a priori unknown, but they may generally be deduced from a
well-chosen set of biologically observed trajectories.

Besides, it neglects the time delay for a gene to pass from one level of
expression to another one whereas information on the time mandatory for the
system to go from a state to another one is often available. Such an information
is then not useful in such a framework to face up to the parameter identification
problem. It makes more useful the classes of models where time is explicit.
We then present an hybrid extension of pure discrete approach of R. Thomas in
which time is explicit: New parameters, i.e. delays mandatory for a gene to go
from a discrete abstract level to another one, allow the determination of time
along a trajectory. Such a modeling framework preserves powerful enough
computer-aided reasoning capabilities. The identification problem seems to
become more difficult because of the increased number of parameters but
computer is able to reject a large class of parameters.
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In this presentation, we sketch first the discrete framework introduced by
R. Thomas, in which each gene has several pertinent abstract levels, and we il-
lustrate how computer science technics are able to automate the determination
of parameters compatible with available knowledge about the dynamics of the
system. Then we introduce a possible extension of such a modeling in which
time is explicit, and show how constraints on these parameters can be deduce
from the differential framework.
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Update digraph and dynamical behavior in Boolean
networks

Julio Aracenal

! University of Concepcion, Chili

Abstract

Boolean networks (BNs) have been used as models of gene regulation and
other biological networks. One key element in these models is the update
schedule, which indicates the order in which states are to be updated. For a
long time synchronous update was the default choice for BN researchers, in
part because of the scarcity of actual models of real networks. In some cases,
most of the update schedules yield a different dynamical behavior than the
parallel one. We have studied the robustness of Boolean networks with respect
to different deterministic update schedules (synchronous, block-sequential, se-
quential). For a given Boolean network, we define equivalence classes of
update schedules with the same dynamical behavior, introducing a labeled
graph, named update digraph, which helps to understand the dependence of
the dynamics with respect to the update

In this talk, we will focus on the update digraph and the relation between
its structural characteristics and the robustness of the dynamical behavior of a
BN against changes in the update schedule. For instance, we will show how
the update digraph associated to a BN is related to the number and size of the
equivalence classes of update schedules yielding a same dynamical behavior.
This enables us to roughly quantifier the number of different dynamics and the
robustness of a network when we change the update schedule. Besides, we
will exhibit necessary and sufficient conditions on the update digraph for the
existence of different equivalence classes keeping a certain dynamical property
(e.g. limit cycles) but not necessarily the whole dynamics.
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Algorithmic Aspects of Analysis and Control of Boolean
Networks

Tatsuya Akutsu®

I Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan

Abstract

Analysis of genetic networks is an important topic in bioinformatics and com-
putational systems biology. For that purpose, various mathematical models
of genetic networks have been proposed and utilized. In this talk, we fo-
cus on the Boolean network (BN) model. Furthermore, we focus on detec-
tion/enumeration of attractors and finding of control actions for BNs. We
give a brief introduction of these problems and review algorithmic results
on these problems with focusing on our works. For detection of attractors,
we review an NP-hardness result, a recursive algorithm, and SAT-based algo-
rithms. For control of BNs, we review NP-hardness results and a polynomial
time algorithm for tree-structured networks. We also review practical integer
linear programming-based algorithms for both problems and for the minimum
knockout problem for Boolean models of metabolic networks. Finally, we
discuss about possible future developments on these problems.
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Motif Activity Response Analysis: Inferring genome-wide
transcription regulation in mammals

Erik Van Nimwegen'!

1 Biozentrum Basel, CH

Abstract

I will discuss an integrated computational approach, called motif activity re-
sponse analysis (MARA), for reconstructing transcription regulatory networks
in mammals from genome-wide expression data. Based on deep sequencing
data of transcription start sites we obtained a comprehensive *promoteromes’
in human and mouse, and using probabilistic comparative genomic methods
we predict binding sites for over 200 regulatory motifs in proximal promoters
genome-wide. Motif Activity Response Analysis (MARA) models genome-
wide gene expression profiles in terms of these predicted regulatory sites and
I will describe how MARA identifies, for a given system of study, the key
regulators driving expression changes, their activity profiles across the sam-
ples, and the sets of target promoters of each regulator. Time permitting I will
talk about how MARA can be extended to incorporate epigenetic changes to
chromatin structure.
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Organisation of metabolism in Bacillus subtilis: Evidence
for the presence of protein complexes in central metabolism

Jorg Stiilke!

! Georg-August-Universitiit, Gottingen, Germany

Abstract

Any cell contains a huge number of different proteins. For many organisms,
including the Gram-positive soil bacterium Bacillus subtilis, these components
are known due to the availability of genome information. However, only the
interactions among the biological macromolecules and with the metabolites
make this collection a living thing. We have studied such interactions for the
central metabolic pathways of B. subtilis. Given the large amount of differ-
ent pathways and reactions, enzymes and metabolites, the idea that enzymes
of important pathways are not just dissolved in a cytoplasmic soup seems
highly attractive. Such interactions were first identified by using the SPINE
approach of in vivo cross-linking [1] and then confirmed by bacterial two-
hybrid analyses. Indeed, we observed that glycolytic enzymes could contribute
to many interactions in the cell. Very prominent among these interactions are
those with a RNA processing machinery, the RNA degradosome, and those
among different glycolytic enzymes themselves [2]. It seems that the gly-
colytic enzymes form a complex in B. subtilis. Similarly, enzymes of the
tricarboxylic acid cycle interact with each other. The most prominent inter-
actions are those between citrate synthase, isocitrate dehydrogenase, malate
dehydrogenase, and fumarase. Our findings are in good agreement with the
hypothesis that metabolism takes place in an organized and structured manner.

References

[1] Herzberg, Flérez Weidinger, Dorrbecker, Hiibner, Stiilke and Com-
michau (2007) Proteomics 7: 4032-4035

[2] Commichau, Rothe, Herzberg, Wagner, Hellwig, Lehnik-Habrink, Ham-
mer, Volker, and Stiilke (2009) Mol. Cell. Proteomics 8: 1350-1360
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Recent progresses on the metabolism modeling of Bacteria:
definition of local and global modules and a first
explanation of their emergence

Vincent Fromion!

LINRA, Unité MIG, J ouy-en-Josas, France

Abstract

Growth is a highly optimized process in bacteria since the battle for the con-
quest of ecological niches is though. Understanding the key elements govern-
ing the growth rate management is then crucial to further understand and pre-
dict the bacterium behavior with respect to various environmental conditions.
Constraint-based approaches integrating the whole metabolic network of an
organism such as Flux Balance Analysis successfully predicted the maximum
growth rate reachable in various conditions [1]. However, limitations exist
since they fail to predict a number of commonly observed metabolic strategies.

Here we showed that the sharing of resources between the cellular pro-
cesses intrinsically and structurally limits the growth rate [2]. We formalized
the problem of resource repartition at the cell scale as a convex optimization
problem and demonstrated the existence of a trade-off for the protein reparti-
tion between the translation apparatus and the metabolic network. Moreover,
the resolution of this optimization problem for Bacillus subtilis allows the
estimation for a given medium composition of:

i the maximal growth rate reachable;

ii the concentrations of ribosomes, the concentration of proteins involved
in the metabolic network and more generally the resource repartition
between cell components;

iii the flux distribution.

Besides, we also predicted the induction and repression of metabolic sub-
systems with respect to the environmental condition which correspond to the
recently identified elementary modules of Bacillus subtilis [3]. Finally we also
recovered the well-known evolution of ribosomes and metabolic proteins with
respect to the growth rate of the Copenhagen school [4].

Another general conclusion of this work is the successful use of tools and
methods based on convex optimization in biology. The formalization of the
cell behavior is suitable for convex optimization and strong structural prop-
erties have been obtained allowing us to explain the emergence of functional



26/3/2010- page #32

32 MODELLING COMPLEX BIOLOGICAL SYSTEMS

modules in the metabolic network regulation. The links between these two
fields (biology and optimization) have to be strengthened in order to inves-
tigate fundamental questions such as the evolution of regulatory networks of
organisms with respect to the ecological niche.

References

[1] Edwards J, Palsson BO. The Escherichia coli MG1655 in silico metabolic
genotype: its definition, characteristics, and capabilities. Proc Natl Acad
Sci USA 97(10): 5528-5533, 2000.

[2] Goelzer A, Fromion V, Scorletti G. Cell Design in Bacteria As a Convex
Optimization Problem. 48th IEEE Conference on Decision and Control,
Shangai, China, 2009.

[3] Goelzer A, Bekkal Brikci F, Martin-Verstraete I, Noirot P, Bessicres P,
Aymerich S, and Fromion V, Reconstruction and analysis of the genetic
and metabolic regulatory networks of the central metabolism of Bacillus
subtilis, BMC Systems Biology (2) 1-20, 2008.

[4] Marr AG. Growth rate of Escherichia coli. Microbiol Rev. 55(2): 316-
333, 1991.
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To be announced
Jean Weissenbach?

! Institut de génomique, CEA, Evry, France

Abstract
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To be announced
Vassily Hatzimanikatis'

L EPF Lausanne, Switzerland

Abstract
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Finding relevant paths in the not-so-small world of
metabolic networks

Jacques Van Helden!

! Service de Bioinformatique des Génomes et des Réseaux (BiGRe).
Université Libre de Bruxelles. Belgium

Abstract

Metabolic networks can be built by interconnecting all known reactions with
their substrates and products. Since 10 years, metabolic and other biologi-
cal networks have been claimed to present universal” properties: power-law
degree distribution, small-world, scale-freeness, resistance to random errors
and vulnerability to targeted attacks. In the first part of this lecture, we will
present a critical review of the topological properties of biochemical networks,
showing that the most popular publications in network biology are based on
myths rather than facts [1].

The claim that the degree (number of links) follows a power law distribu-
tion relies on a rough inspection of binned plots, but fades out as soon as the
data sets are displayed in full detail, and is contradicted by statistical fitting
tests. The small-world property was established by measuring the average
length of the shortest paths between any pair of compounds in metabolic net-
works. However, the algorithms used to measure path lengths return irrelevant
paths, where pool metabolites (H2O, HT, O, etc.) are used as intermediate
links between reactions. The small-world measure is thus an artefact com-
ing from the application of general graph statistics that are inadequate for
metabolic networks. The properties of tolerance to random deletions and
vulnerability to targeted attacks were postulated by analogy with computer
networks (Internet). Tolerance of metabolic networks to random errors is
however contradicted by the hundreds of auxotrophic mutants that were gener-
ated during 50 years, and allowed biochemists to isolate most of the currently
known enzyme-coding genes. The concept of vulnerability to targeted attacks
is simply devoid of sense as soon as one considers that removing a single
“hub” (e.g. H20) from any organism would require deleting several hundreds
of enzyme-coding genes, an event that can be realized neither in nature, nor
even in laboratory-controlled conditions.

Despite the weaknesses of these foundations, topological analysis of meta-
bolic networks can provide insight into metabolism and its evolution, but this
requires the development of dedicated methods, taking into account the bio-
chemical properties of reactions and compounds. In the second part of the
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lecture, we will present various graph-based algorithms that were designed
to discover relevant pathways in metabolic networks: filtering out of pool
metabolites [2], weighting of compounds according to their degree [3], de-
composition of reactions into reactant pairs [4], multiple-end sub-network ex-
traction [5]. We will show a quantitative evaluation of the respective accuracy
of those methods, and illustrate their practical value on the basis of selected
study cases.

References

[1] Lima-Mendez, G. and van Helden, J. (2009). The powerful law of the
power law and other myths in network biology. Mol Biosyst 5: 1482-93.

[2] van Helden, J., Wernisch, L., Gilbert, D. and Wodak, S. J. (2002). Graph-
based analysis of metabolic networks In al., M. H.-W. e. (Ed), Ernst
Schering Res Found Workshop, Springer-Verlag, pp. 245-74.

[3] Croes, D., Couche, F., Wodak, S. J. and van Helden, J. (2006). Infer-
ring meaningful pathways in weighted metabolic networks. J Mol Biol
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Modeling intracellular cargo transport by several molecular
motors

Melanie Mueller!

L MPIKG Postdam, Germany

Abstract

The complex internal structure of cells depends to a large extend on active
transport by molecular motors. These molecular motors are "nano-trucks’ that
transport various cargoes, like vesicles, organelles or mRNA, along cytoskele-
tal filaments, the 'roads’.

Many cargoes are transported by small teams of about 1-10 motors. Some
cargoes make use of just one team of motors of the same kind, while other
cargoes are propelled by two different motor teams. These teams might move
into opposite directions on the same filament, or move on different types of
filaments.

In this talk, we will describe systematic stochastic models for cargo trans-
port by one or two small teams of molecular motors. These models are based
on single motor properties as determined in single molecule experiments, and
can be used to explain and predict various properties of the movements of
cargoes inside of cells. By providing a direct connection between the behavior
of single motors and intracellular transport, the models lead to an improved
understanding of this transport and its biological functions.
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Physical and Mechanical Inputs into Chromosomal
Processes

Nancy Kleckner!
! Harvard University, Department of Molecular and Cellular Biology

Cambridge, MA. USA

Abstract

Our laboratory is interested to understand chromosomal processes through
the lens of physics and engineering. Most especially, we suppose that the
phyiscal and mechanical properties of chromosomes are of central functional
significance, i.e. that they play governing roles in fundamental processes. We
came to this problem by considering spatial patterning of crossovers along
meiotic chromosomes, which exhibits features explainable by a stress/stress
relief/stress redistribution mechanism. Additional considerations led to the
proposition that chromatin expansion generates inter-chromosomal pushing

forces”. Recent work to be discussed involves several approaches:

i We have developed a magnetic micropiston system in which we can an-
alyze chromatin expansion and the effects such expansion under spatial
confinement (J. Fisher, unpublished).

ii Molecular dynamics analysis of the HEAT repeat scaffold of protein
phosphatase PP2A, and of the full heterotrimeric PP2A enzyme, points
to the possibility that catalytic activity can be governed by externally-
imposed force (Grinthal et al., 2010).

1ii High resolution visualization of the E.coli nucleoid in 3D in living cells
over time in the cell cycle is studied in combination with precision def-
inition of individual loci and complexes with respect to the nucleoid.
Mechanical properties of the nucleoid (which is stiff and springy) are re-
vealed along with other properties, notably porosity. These findings lead
to a model for development of structure by repulsion between negatively
supercoiled plectonemes under confinement. Potential solutions to other
problems of chromosome dynamics, in E.coli and in eukaryotic cells
emerge (A. Bourniquel and Z. Liang, unpublished). Project (2) is car-
ried out in collaboration with Prof. Martin Karplus, Harvard University
Department of Chemistry and Chemical Biology. All of these projects,
and others, including analysis of the mechanism of direct DNA/DNA
pairing (Danilowicz et al., 2009) and its in vivo roles, are carried out in
collaboration with Prof. Mara Prentiss, Harvard University Department
of Physics.
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iv. Another problem of current interest is the way in which, during meiosis,
homologous chromosomes recognize one another and come together
in space, with concomitantly generating entanglements (Koszul et al.,
2008; Koszul and Kleckner, 2009; Storlazzi et al., 2010).

These and other projects are carried out in collaboration with Prof. Denise
Zickler, U. Paris-Sud, Orsay, France and Dr. Aurora Storlazzi, IGB, Napoli,
Italia.
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To Be Announced
Eshel Ben Jacob!

I Tel-Aviv Univ., Israel

Abstract
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Algorithmic Aspects of Analysis and Control of Boolean
Networks

Tatsuya Akutsu’

I Bioinformatics Center, Institute for Chemical Research, Kyoto University

Abstract

The Boolean network is known as a discrete model of genetic networks. In
this article, we focus on detection/enumeration of attractors and computation
of control actions for Boolean networks. We give a brief introduction of these
problems and review algorithmic results on these problems with focusing on
works by the author and collaborators. For detection of attractors, we review
SAT-based algorithms and simple recursive algorithms. For control of Boolean
networks, we review dynamic programming algorithms for general BNs and
tree-structured BNs. We also review a general approach for both problems that
are based on integer linear programming.

1 Introduction

Analysis of biological information networks is an important topic in bioinfor-
matics, computational biology, and systems biology. In order to analyze these
networks, various kinds of mathematical models have been proposed. Among
them, the Boolean network (BN, in short) has received much attention [15].
BN is a very simple model of genetic networks: each node corresponds to a
gene and takes either O (inactive) or 1 (active), and the states of nodes change
synchronously according to regulation rules given as Boolean functions. Thus,
it is easily seen that a BN with n nodes has a total of 2" possible global states.
Since each global state deterministically transits to the same or another global
state, beginning from any initial global state, the system will eventually evolve
into a limited set of stable states called attractors. An attractor consisting of
only one state is called a singleton attractor or a fixed point. Otherwise, it is
called a cyclic attractor.

Since it is considered that attractors correspond to distinct cell states, ex-
tensive studies have been done on the distribution of attractors [9, 15, 22].
However, no conclusive results have not yet been obtained. From a compu-
tational viewpoint, not so much attention had been paid for detection and/or
enumeration of attractors. However, due to the need for analyzing real genetic
networks, extensive studies have recently been done on detecting and enumer-
ating attractors.
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Akutsu et al. showed that deciding existence of a singleton attractor is NP-
complete and counting the number of singleton attractors is #P-complete [1].
Tosi¢ showed that the counting problem remains #P-complete even if graphs
are restricted to be planer bipartite graphs [27]. Kosub showed that the ex-
istence problem can be solved in polynomial time for several special cases
relating with bounded treewidth [16]. Several heuristic methods have also
been proposed for enumeration of fixed points and/or cyclic attractors [8, 10,
12, 19].

In addition to attractor problems, control problems for Boolean networks
are becoming important because development of control theory/methods for
biological networks is a one of the major goals of systems biology and has
potential applications of systems-based drug discovery and cancer treatment
[14]. Datta et al. proposed a method for finding a control strategy for Prob-
abilistic Boolean Networks (PBNs, in short) [7] from which many extensions
and variants followed [21], where PBN is a probabilistic extension of BN.
In their approach, it is assumed that states of some nodes can be externally
controlled and the objective is to find a sequence of control actions with the
minimum cost that leads to a desirable global state. Their approach is based
on the theory of Markov chains and makes use of the classical technique of
dynamic programming. However, it is required in their methods to handle
exponential size matrices and thus their methods can only be applied to small
biological systems. Therefore, it is reasonable to ask how difficult it is to
find control strategies for BNs. Akutsu et al. showed that finding control
strategies for BNs (and PBNs) is NP-hard [2]. On the other hand, they showed
that this problem can be solved in polynomial time if BN has a tree structure.
Cheng and Qi proposed control models and methods of BNs using the concept
of semi-tensor product [5]. Langmead and Jha developed a practical method
based on model checking and successfully applied the method to finding of
control policies to an existing model of fruit fly embryo development [18].
Recently, Akutsu et al. developed practical integer linear programming-based
methods that can be applied to for both control and attractor detection prob-
lems [4]

In this article, we review algorithmic results on attractor detection and
control problems on BNs, with focusing on works by the author and collab-
orators. In Section 2, we introduce BN and give problem definitions. Next, we
review algorithms for the attractor detection problem and the control problem
in Sections 3 and 4, respectively. Then, we review integer linear programming
methods for both problems. Finally, we conclude with future directions.
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2 Preliminaries

2.1 Boolean Network

A BN is represented by a set of nodes and a set of regulation rules for nodes,
where each node corresponds to a gene. Each node takes either 0 or 1 at each
discrete time ¢, where 1 (resp. 0) means that the corresponding gene is active
(resp. inactive) at time ¢. A regulation rule for each node is given in the form of
a Boolean function and the states of nodes change synchronously. Formally,
a BN G(V, F) consists of a set V' = {v1,...,v,} of nodes and a list F' =
(fis..., fn) of Boolean functions, where a Boolean function f;(v;,,...,v;,)
with inputs from specified nodes v;, , . .., v;, is assigned to each node v;. We
use /N (v;) to denote the set of input nodes v;, , . . ., v;, to v;. The state of node
v; at time ¢ + 1 is determined by

it +1) = fi(viy (), -, v, (1))

We let v(t) = [vi(t),...,vn(t)], which is called a global state or a Gene
Activity Profile (GAP) at time t. We also write v;(t + 1) = f;(v(¢)) and
v(t + 1) = f(v(t)) to denote the regulation rules for v; and the whole BN,
respectively. We define the set of edges E' by E' = {(v;;,v;)|vi; € IN(v;)},
and then G(V, FE) is a directed graph representing the network topology of
a BN. The number of input nodes to v; is called the indegree of v;. We
use K to denote the maximum indegree of a BN, which strongly affects the
computational complexities in many algorithms.

An example of BN is given in Fig. 1. In this example, the state of node vy
attime ¢ + 1 is determined by the state of node vs at time ¢. The states of node
v9 and vs at time ¢ + 1 are determined by logical AND of the state of node v,
and negation of the state of node v3 at time ¢ and by logical AND of the state
of node v; and negation of the state of node v, at time ¢, respectively. We use
ANy, zVy,x Py, T to denote logical AND of z and y, logical OR of x and
1y, exclusive OR of x and y, and logical NOT of x, respectively. Dynamics of a
BN is well-described by a state transition table and a state transition diagram
shown in Fig. 1. For example, the second row of the table means that if the
state of BN is [0,0, 1] at time ¢ then the state will be [1,0, 0] at time ¢ + 1,
which is also represented by an arc from 001 to 100 in the diagram.

2.2 Attractor

Starting from an initial global state v(0), a BN will eventually reach a set of
global states, called an attractor, which forms a directed cycle in the state tran-
sition diagram. An attractor consisting of only one global state (i.e., v = f(v))
is called a singleton attractor or a fixed point. Otherwise, it is called a cyclic
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(A) Vi (B) time f time 7+1 (C)
Vi Vo V3 Vi V» V3
0O 0 00 0 O 110 111 001
00 1|1 00
01 0l0 0 O
100
%\—/W 01 11 00 010
1 0 0/0 1 1
vi(t+1) = v3(0) o 10 1 1 0 1 m
va(t+1) = vi(H) Avs(D) 1 1 0 01 0
vi(t+1) = vi() Ava(D) 11 111 0 0

Figure 1: Example of a Boolean network. Dynamics of BN (A) is well-
described by a state transition table (B) and by a state transition diagram (C).

attractor with period p if it consists of p global states {v',v2,...,vP}. For
example, in Fig. 1, 000 and 101 are singleton attractors, whereas {011, 100} is
a cyclic attractor with period 2.

2.3 Problem Definitions

Based on the above definition of attractors, the attractor detection problem is
defined as follow.

Definition 1 [Attractor Detection]

Instance: a BN and the maximum length of period pmaz,

Problem: find an attractor with period at most Ppqy. If there does not exist
such an attractor, “None” should be output.

In this article, we mainly consider the case of p = 1 because it is most
fundamental and there is no good way to cope with the cases of non-small p.

Akutsu et al. introduced the problem of control of BN [2], by special-
izing the control problem for PBN [7]. In control of BN, nodes are divided
into two types, internal nodes and external nodes, where internal nodes cor-
respond to usual nodes in a BN and external nodes correspond to control
nodes for which we can arbitrarily specify the states at any time step. Let
V =A{v1,..., 00,41, - Untm}, Where vy, ..., v, are internal nodes and
Un+1, - - - » Untm are external nodes. For convenience, we use u; to denote an
external node v, ;. Then, states of internal nodes (v;(t + 1) fori = 1,...,n)
are determined by

Ui(t + 1) = fi(vh (t)v s 7vik~i (t))’
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where each v;, is either an internal node or an external node. Here, we let
v(t) = [v1(t),...,vp(t)] and u(t) = [uy(t),. .., un(t)]. We can describe the
state transition rule of a BN by

v(t+1) = £(v(t), u(t)),

where u(t)s are determined externally. Then, the control problem is defined as
follows (see also Fig. 2).

Definition 2 [Control of BN]

Instance: a BN, an initial state of the network for internal nodes v0, and the
desired state of the network for internal nodes v at the M-th time step,
Problem: find a sequence of 0-1 vectors (u(0),...,u(M)) such that v(0) =
v0 and v(M) = vM. If there does not exist such a sequence, “None” should
be the output.

U W initial (¢==0) | 0 0 O
desired (=3)| 0 1 1

NoT ﬂ
AND

Vi 1%) v v V3| U Wy
000000

OR 1|1 00/01
201 1 11 1

V3 301 1100

Figure 2: Example of control of a Boolean network. In this problem, given
initial and desired states of internal nodes (v, v2, v3), it is required to compute
a sequence of states of external nodes (u1, u2) leading to the desired state.

3 Algorithms for Attractor Detection

Since there are 2" global states for a BN of n nodes, the attractor detection
and enumeration problems can be solved in O(2"poly(n)) time (under the
assumption that the value of each Boolean function can be calculated in a
polynomial time) by constructing a transition diagram. Therefore, we are
interested in developing o(2") time algorithms for attractor problems. Though
it seems quite difficult to develop such an algorithm for the general case, it is
possible in some reasonably restricted cases. In this section, we review such
algorithms.
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3.1 Simple Reduction to SAT

Since BN is based on predicate logic, it is reasonable to try to apply existing
algorithms developed for predicate logic to attractor detection and enumera-
tion problems. In particular, it would be useful to apply algorithms for SAT
(Boolean satisfiability problem) because extensive studies have been done and
a number of algorithms have been developed for solving SAT [6, 13, 17, 28].

Based on the observation in [19], Tamura and Akutsu showed that the
singleton attractor detection problem for BNs with maximum indegree K can
be transformed into (K + 1)-SAT with n variables [24] in a simple manner.
k-SAT is a well studied problem in theoretical computer science and is defined
as: given a set of clauses (i.e., a set of disjunctions of literals) over a set of
Boolean variables, decide whether or not there exists a 0-1 assignment to
variables that satisfies all the clauses, where each clause consists of at most
k literals.

Here, we only show a reduction procedure for the cases of BNs with
maximum indegree 2. Let v be a global state of a BN. Recall that v is a
singleton attractor if v; = f;(v) holds for all i = 1,...,n. Here, we also use
v; to denote the state of v; because v;(t) = v;(t + 1) = v;(t +2) = - - - holds
in a singleton attractor. In the following, /; denotes either v; or 7;. We begin
with the empty set. For ¢ = 1 to n, we add clause(s) to the set according to the
following rules (we omit the cases of constant and unary functions)

UiZZj\/lk = (7 \/l Vig) A (v \/l lk)
= @VELVI) A (0 V(I AL))
= @VLVI) A VI A (v Vi),
’l)z':lj/\lk <~ (’U (l /\lk)) (Ui\/(lj/\l))
= @Vl) A @V A (0 VIV,
vi=1ldl <= @OV VI)AGVIE) A (VG VIE) AV IE))
— VLV AN @VIEVi)
A V(G V) V(1 V)
— WVLVi) AN @VIEVi)

AW VI VIE) A (v VI V).

Then, we can see that a regulation rule for a node v; is transformed into at
most four clauses in 3-SAT. Therefore, the singleton attractor detection prob-
lem for BNs with maximum indegree 2 is reduced to 3-SAT with n variables
and at most 4n clauses. This transformation can be generalized to arbitrarily
fixed K.
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Proposition 1 [24] Any instance of the singleton attractor detection problem
for a BN of maximum indgree K with n nodes can be reduced in polynomial
time to an instance of (K + 1)-SAT with at most 25%1 - n clauses and n
variables.

This result can be extended for the cyclic attractor detection problem with
period p by encoding f”(v) using (KP 4 1)-SAT clauses.

Theorem 1 [3] Any instance of the cyclic attractor detection problem with
period p for a BN of maximum indgree K with n nodes can be reduced in
polynomial time to an instance of (KP +1)-SAT with at most (Z;If:l 2K"+1y .y
clauses and n variables.

Combining this result with o(2") time algorithms for k-SAT [6], we can
see that the attractor detection problem can be solved in o(2") time for fixed p
and K.

3.2 Algorithms for AND/OR BNs

In the above, we considered BNs with bounded maximum indegree. However,
SAT algorithms can be used for developing algorithms for other special cases
of BNs. Indeed, o(2") time algorithms were developed for AND/OR BNs
[24, 25], in which each Boolean function is limited to AND or OR of literals
whereas there is no restriction on the maximum indgree [24, 25]. Here, we
briefly review the basic idea used in these algorithms.

Suppose that the following Boolean function is assigned to a node v;:

vi(t+1) =v1(t) Ava(t) A= Aop(t).

Among four possible assignments (0,0), (0,1), (1,0) and (1, 1) for (v1, v;),
three satisfy the condition of a singleton attractor whereas one (i.e., (0,1))
does not. Therefore, we can eliminate two nodes by examining these three
assignments. If we could continue this procedure until there is no remaining
node, the complexity of O(3("/2)) ~ O(1.733™) would be achieved by solving

9(2) =3, g(k) =3 g(k-2).

However, we cannot continue the above mentioned procedure if there is no
remaining edge and only singleton nodes are left. In order to cope with such a
case, the following algorithm was developed [24] by utilizing an algorithm for
SAT with m clauses [28].
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1. Let all the nodes be non-assigned.

2. While there exists a non-assigned node pair (u,v) € F, examine all
possible 3 assignments on (u.v) recursively.

3. Let U be the set of nodes whose values were already assigned.

4. If |U| > an, examine all possible assignments on the remaining nodes
and then check the condition of a singleton attractor. Otherwise, com-
pute an appropriate assignment using [28] and then check the condition
of a singleton attractor.

By letting o = 0.767, it is shown that this algorithm works in O(1.792") time
[24]. This result is improved as below.

Theorem 2 [25] The singleton attractor detection problem for AND/OR BNs
can be solved in O(1.757").

3.3 Simple Recursive Algorithms

Though SAT-based algorithms might be useful for attractor detection prob-
lems, these might not be so useful for attractor enumeration problems. There-
fore, several algorithms have been developed [29] for enumerating singleton
attractors and cyclic attractors with short periods, which do not use SAT al-
gorithms. In this subsection, we briefly review a basic version (called basic
recursive algorithm) of these algorithms.

The number of singleton attractors in a BN depends on the regulatory rules
of the BN. If the rules are v;(t + 1) = v;(¢) for all 4, the number of singleton
attractor is 2". Thus, it would take at least O(2") time in the worst case if we
need to enumerate all the singleton attractors. On the other hand, it is known
that the average number of singleton attractors is 1 regardless of n and K [11].
The basic recursive algorithm was designed based on these facts. It examines
much smaller number of global states than 2" on the average.

In the algorithm, a partial global state (i.e., [v1,...,vy] for m < n) is
extended one by one towards a complete global state (i.e., singleton attractor),
according to a given ordering of nodes (i.e., a random ordering). As soon as it
is found that a partial global state cannot be extended to a singleton attractor,
the next partial global state is examined. The pseudocode of the algorithm [29]
is given below, where it is invoked with m = 1.

Procedure EnumerateSingletonAttractor(v, m)

if m = n + 1 then Output [v1,vs, - --,v,] and return;
forb =0to 1 do
U = b;

if it is found that f;(v) # v; for some ¢ < m then continue
else EnumerateSingletonAttractor(v,m + 1);
return
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Table 1: Average case time complexities of basic, outdegree-based, and BFS-
based algorithms for singleton attractor detection [29].

K 2 3 4 5 6 7 8

basic 1.35"  1.43™ 1.49™ 1.53" 1.57" 1.60™ 1.62"
outdegree-based | 1.19™ 1.27" 1.34" 1.41™ 1.45™ 1.48™ 1.51"
BFS-based 1.16™ 1.27" 1.35™ 1.41™ 1.45™ 1.50™ 1.53"

Here we briefly analyze the average case time complexity. Assume that we
have tested the first m nodes, where m > K. For all i < m, f;(v) # v; holds

with probability
m
k;

nN'n = Ay
k;

where we assume that Boolean functions of |[I N (v;)| (< K) inputs are selected
at uniformly random. If f;(v) # v; holds for some ¢ < m, the algorithm
cannot proceed to the next recursive level. Therefore, the probability that the
algorithm examines the (mm -+ 1)-th node is no more than

P(fi(v) #vi) = 05

1= P(f(v) A o))" = L= 05-(2)F]™.

By means of numerical calculation for estimating the maximum of this expres-
sion, the average case time complexities are estimated for K = 2,...,7 as in
the first row of Table 1.

Several variants of this basic recursive algorithm are proposed in [29], by
changing the order of sorting nodes before invoking the recursive procedure.
For the orderings based on the outdegree and BFS (breadth-first search), theo-
retical estimates of the average case time complexity are obtained as in Table
1. Computational experiments were performed in order to verify these theo-
retical results, and good agreements were observed [29]. The basic recursive
algorithm was extended for enumeration of cyclic attractors with short periods
[29].

4 Algorithms for Control of Boolean Networks

Datta et al. proposed a dynamic programming based method for finding a
control strategy for PBN [7]. Since their method can also be applied to BN.
we briefly review it in the context of BN.
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We use atable Diby,...,by,t], where each entry takes either 0 or 1.
Diby,...,by,t] takes 1 if there exists a control sequence (x(t),...,x(M))
leading to the target state v/ beginning from the state [by, ..., b,] at time t.
This table is computed from ¢ = M to t = 0 by using the following dynamic
programming procedure:

L if by, be] = VM,

1
Dilby,...,bp, M] = {07 otherwise,
1

, if there exists (c, u) such that
Dby, ...,bp, t —1] = Dicy,...,cn,t] =1and c = f(b,u),
0, otherwise,

where b = [by,...,b,] and ¢ = [cy, ..., ¢, ]. Then, there exists a desired con-
trol sequence if and only if Dlay, ..., a,,0] = 1 holds for v¥ = [a1, ..., a,)].
Once this table is constructed, a desired control sequence can be obtained using
the standard traceback technique.

Now, we estimate the time complexity. The size of table D[by, ..., by, t] is
clearly O(M -2™). Since we should examine pairs of O(2") internal states and
O(2™) external states for each time ¢, it requires O (M - 2"*™) time excluding
the time for calculation of Boolean functions. This time complexity is not
practical even for medium size BNs (e.g., n +m > 30).

Since control of BN is NP-hard [1], exponential time is almost inevitable
for the general case. However, it may be possible to develop polynomial time
algorithms for special cases. Akutsu et al. developed such an algorithm for the
case where the network has a tree structure (i.e., the graph is connected and
there is no cycle) [2]. Since that algorithm is a bit involved, we review here a
simplified algorithm for the case where the network has a rooted tree structure
(i.e., all paths are directed from leaves to the root).

In order to compute a control strategy, we employ dynamic programming
in a different way than in [7]. We define a table S[v;, t, b] as below, where v;
is anode in a BN, ¢ is a time step and b is a Boolean value (i.e., 0 or 1). Here
S[vi, t, b] takes 1 if there exists a control sequence (up to time ¢) that makes
vi(t) = b.

Sfvs,t,1] = 1, if there exists (x(0),...,x(t)) such that v;(¢t) = 1,
Yis s H = 0, otherwise.

‘ _ [ 1, ifthere exists (x(0),...,x(t)) such that v;(t) = 0,
Stoirt,0] = { 0, otherwise.

Then, S[v;,t,1] can be calculated by the following dynamic programming
procedure.
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1

1, if there exists [b;,, ..., b;, | such that f;(b;,, ..., b;,)
Slvi, t +1,1] = holds and S[v;;,t,b;;] = 1 holds forall j = 1,...,k,
0, otherwise.

Slvj, t,0] can be calculated in a similar way. It is to be noted that each leaf
is either a constant node or an external node. For a constant node, either
Slvi,t,1] = 1 and S[v;,t,0] = 0 hold for all ¢, or S[v;,¢,1] = 0 and
Slvi,t,0] = 1 hold for all t. For an external node, S[v;,¢,1] = 1 and
Slvi, t,0] = 1 hold for all ¢. Since the size of table S[v;, ¢, b] is O((n+m)M),
this dynamic programming algorithm works in polynomial time where we
assume that the value of each Boolean function can be computed in polyno-
mial time. A desired control sequence can also be obtained from the table in
polynomial time using the standard traceback technique. This algorithm was
extended for BNs with general tree structures.

Theorem 3 [2] Control of BN can be solved in polynomial time if BN has a
tree structure.

5 Integer Linear Programming-Based Approach

We have discussed so far theoretical approaches to attractor detection and
control of BN. However, practical methods should also be developed. In
this section, we briefly review a general approach based on integer linear
programming (ILP) [4]. ILP is to optimize (maximize or minimize) a linear
function under a set of linear constraints (linear inequalities) and the condition
that specified variables must take integer values.

Here, we review the key idea of the approach using a simple example. Suppose
that the regulation rule for a node vs is given as v3(t+1) = f3(v1(¢),v2(t)) =
v1(t) Dva(t). Let v} and v; be 0-1 variables denoting the states of v;(t+ 1) and
v;(t), respectively. Then, this regulation rule is transformed into the following
Boolean formula

f3(v1,v2) = (£3(0,0) ANTTAT2) V (f3(0,1) AT Awg) v (f3(1,0) Aoy AT3)
V(f3(1,1) Avr Awg)
= (U1 Aw2) V (v1 AD2).

This Boolean formula is further transformed into the following inequalities

vzoo = 0,
v301 > (
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1
v301 < 5(1 — vy + v2),
v310 > v+ (I—v2) =1 = v; — o,
1
v310 < 5(1)1 + 1 —wy),
v31n = 0,
vh < wsgo + U301 + U310 + U311,
1
vh > —(v3,00 4 V3,01 + V310 + V3.11),

4

where all of v3;; are 0-1 integer variables. In the case of single attractor
detection, we let v; = v; because v(t) = v(0) holds for all ¢.

The results of computational experiments suggest for both singleton attrac-
tor detection and control of BN that this ILP-based approach can be applied to
large-size BNs if K < 2 whereas it can only be applied to BNs with several
tens of nodes if K = 3 [4].

6 Concluding Remarks

We have reviewed algorithms developed for attractor detection and control of
Boolean networks with focusing on works done by the author and collabora-
tors. For attractor detection, we reviewed o(2") time algorithms. However,
these algorithms are not necessarily optimal and it seems that there exists
much room for improvements. Therefore, improvement of these algorithms
is left as an open problem. In particular, development of much more efficient
algorithms for cyclic attractor detection is left as an important open problem.
For control of BN, there exists only a few complexity results (especially, a very
few positive results). Therefore, development of polynomial time or o(2")
time algorithms for wider classes of BN is left as an open problem.

In this article, BNs are regarded as a model of genetic networks. However,
BN and its variants can also be used as models of other types of biological
networks. Recently, BN-like models were proposed for modeling metabolic
networks [20, 23, 26], in which chemical compounds and chemical reactions
are regarded as OR nodes and AND nodes, respectively. Using these models,
problems of deciding the minimum number of chemical reactions/enzymes
to be inactivated for preventing production of specified chemical compounds
were studied, which may have potential applications to identification of mul-
tiple drug targets. ILP-based methods were also developed for these problems
[20, 26].

There is a criticism that BN is too simple as a model of genetic networks,
metabolic networks, and/or other types of biological networks. However, stud-
ies on BNs may provide some insights into other models. At least, hardness
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results should hold for more general models. Some ideas in theoretical and/or
practical algorithms for BNs might also be useful for design and analysis of
algorithms for more general models. Therefore, extension of BNs along with
efficient practical and/or theoretical algorithms is an important future direction.
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Abstract

It is becoming a routine task to build models of increasing complexity about
a given gene network. While available data on the connectivity between el-
ements of the network are more and more numerous, the kinetic data of the
associated interactions remain difficult to interprete in order to identify the
strength of the gene activations or inhibitions. This parameter identification
problem constitutes the cornerstone of the modelling processes. In this article,
we show that some information about the elapsed time that takes a trajectory
between two points (and that can be experimentally measured) can be of great
interest for constraining the parameters of the model. It brings us to set out
various frameworks of hybrid modelling (where a model is defined as a combi-
nation of a qualitative model with additional continuous variables) in which it
is possible to compute elapsed time of trajectories while maintaining powerful
automated reasoning capacities. This chapter is an overview of the main formal
frameworks able to treat activation or inhibition delays between genes.

1 Introduction

Computational modelling of gene regulatory networks aims at deep under-
standing of how their components are controlled, thus allowing the prediction
of a set of non-obvious behaviours that can be experimentally tested. Unfor-
tunately, while available data on the interaction graph between genes are more
and more numerous, the kinetic data allowing us to identify the sensible param-
eter values are difficult to obtain experimentally and they require many indirect
reasonings. This parameter identification problem constitutes the cornerstone
of the modelling activities. More precise the available information about the
dynamics of the system, more precise can be the model. But precision is
not the main criterion. If the precision of the model is higher than the one
of the knowledge of the biological system, the precision given by computer
simulations is only a consequence of an arbitrary choice of parameter values.
Qualitative models where parameters are easier to identify constitute the good
compromise.
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This comment motivated some researchers to develop methods where this
identification problem is tractable. In particular René Thomas’ discrete mod-
elling [26] of gene regulatory networks (GRN) is a well-known approach to
study the dynamics resulting from a set of interacting genes. It deals with
some discrete parameters that reflect the possible targets of trajectories. Those
parameters are a priori unknown, but they can generally be deduced from a
well-chosen set of biologically observed trajectories.

Besides, it neglects the time delay necessary for a gene to pass from one
level of expression to another one, whereas information on the time necessary
for the system to go from one state to another one is often experimentally
available. For example, time used by the system to cover a whole turn of
a periodic trajectory (e.g. circadian cycle) is often available. Time can also
be an abstract time such as the current state of accomplishment within a phase
(e.g. cellular cycle where “time” is connected to the measure of the mass of the
cell). Such an information is not used to face up to the parameter identification
problem in the “standard” Thomas’ framework without delays. Such kind of
information motivates several researchers to propose formal frameworks where
time is explicit.

Hybrid extensions of the discrete approach of R. Thomas make time ex-
plicit: New parameters, i.e. delays mandatory for a gene to go from a discrete
abstract level to another one, allow the determination of time along a trajectory.
Hybrid modelling frameworks preserve powerful computer-aided reasoning
capabilities. Adding delays, the identification problem is more difficult be-
cause of the increased number of parameters. Nonetheless computer is able to
reject a large class of parameter values.

So, hybrid models (where the levels of expression of each gene remain
abstracted into a finite number of possible values but where the delays elapsed
inside each discrete level are continuous real numbers) seem to be the best
trade-off between precision and automated reasoning capabilities :

o Differential equations give a full continuous precision both on the con-
centration level of the gene products and on the time along a trajectory,
but parameter values are almost impossible to identify precisely with
respect to the experimental and measurement capabilities in biology,
and computers are unable to perform proofs on these models, they only
perform simulations.

e The discrete approach (so called “logical approach”) of René Thomas
provides an easy way to identify, exhaustively and using computer proofs,
the sensible parameter values, but the discrete models give rise to some
trajectories which cannot be observed biologically because the in vivo
delays make them impossible.
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1 +

b

Figure 1: The incoherent type 1 feedforward loop (I1-FFL)

e [n vivo cell models are somehow “in between” the differential equation
models and the discrete models:

— The number of molecules produced by a gene is finite and it can
sometimes be very low, thus, the continuous differential models
induce an abuse of precision (which can exhibit some limit be-
haviours that do not exist in vivo)

— The number of molecules produced by a gene is most of the time
much higher than the number of discrete levels in the Thomas’
models, thus, discrete modelling is a rough approximation.

It appears to be possible to define adequate hybrid frameworks for the mod-
elling of gene networks, but the task is not so easy. Many obstacles have been
encountered by us and our colleagues. This chapter is an overview of the main
techniques that have been proposed; it shows the main obstacles and gives a
picture of the current state of the art in hybrid modelling of gene networks.

In this chapter we first present in Section 2 the basic discrete modelling
framework of gene regulatory networks without delays due to R. Thomas and
an extension based on formal methods from computer science which allow
the automation of the search of parameter values from experimentally known
behaviours. Section 3 focuses on the now classical framework of piecewise
linear differential equations and their relationships with discrete models. In
Section 4 we present the first hybrid approach due to R. Thomas consisting
in completing a discrete model by a set of clocks which measure the time
necessary to pass through a transition. Another dual approach has been also
proposed by Bockmayr and Siebert [23] and is sketched in Section 5. An
alternative hybrid framework is then proposed in Section 6 in which the delays
introduced in the hybrid models are coherent with the underlying piecewise
linear differential equation systems. Finaly we discuss in Section 7 some
parameter identification issues when considering hybrid models with delays.

In order to evaluate the consequences of introducing delays into the mod-
elling framework, we consider in the sequel some examples all based on a
particular graph pattern [22]: the feedforward loop - incoherent type 1 (I1-
FFL), see Figure 1, which is one of the most common network motifs. The
dynamics of such a pattern of interaction graph have been largely studied [20].
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The feed-forward loop is composed of a transcription factor a that regulates
a second transcription factor ¢ and both a and c regulate a gene b. So, a
regulates b via two paths. When the signs of both paths (that is the product
of signs of each interaction along the path) are not equal, the feed-forward is
said incoherent [3].

Intuitivelly, it is straightforward to comprehend that when a is switched on,
both b and c are subject to change. If the delay mandatory for b to come on is
less than the one associated with ¢, then one can observe a transitory presence
of b before the presence of c inhibits b. We will also see that the situation is
complex when a oscillates.

2 Discrete modelling of gene regulatory networks

René Thomas has introduced in the 70’s a qualitative approach [26] in order
to model gene networks and to predict their dynamics. Three main ideas
constitute the foundation of this qualitative approach.

2.1 Firstidea

The criterion to abstract the qualitative concentration levels of a gene product
is the number of other genes on which it acts in the network.

Such a criterion is based on the fact that, when a gene acts on another one,
the curve that represents the production rate of the target gene with respect to
the concentration level of the source gene is a sigmoid. For example, assume
that = is a gene that activates a gene y and inhibits a gene z as in Figure 2,
then the corresponding sigmoids allow us to consider two thresholds inside the
interval of all possible real concentrations levels of the x product: 71 and 7».

These two thresholds delimit three intervals within which the gene x be-
haves uniformly. Each interval is conventionaly identified by an integer, which
is the number of genes on which x has an action. If we know the order between
the thresholds, then we can additionally label the action of z on a gene by the
number of the first interval that activates this action (lower left drawing of
Figure 2).

So, the interaction graph contains variables that mostly represent genes
(sometimes they represent abstract phenotypes or environmental conditions)
and it contains edges between variables that can be labelled by a sign (+ for
activation, — for inhibition) and by an integer threshold.

2.2 Second idea

At a given global state of the network, the concentration toward which a
gene product tries to go depends only on the inventory of the activations and
inhibitions that act on this gene.
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For example, if u is an activator of « and v is an inhibitor of z and if we
assume that x has no other activator or inhibitor in the network, as in Figure 3,
then four cases have to be considered:

K, is the number of the interval toward which x tends to go when it has no
help at all from the considered network. It means that « does not activate
x, thus the current state of w is strictly less than the threshold of (u — x),
and v inhibits x, thus the current state of v is greater or equal to the
threshold of (v — z).

K, is the number of the interval toward which x tends to go when it benefits
only from the help of u. It means that the current state of w is greater or
equal to the threshold of (u — x), and the current state of v is greater or
equal to the threshold of (v — x).

K, is the number of the interval toward which x tends to go when it benefits
only from the help of v. It means that the current state of w is strictly
less than the threshold of (u — z), and the current state of v is strictly
less than the threshold of (v — x).

K 4o 1s the number of the interval toward which « tends to go when it benefits
both from the help of u and from the help of v. It means that the current
state of u is greater or equal to the threshold of (v — z), and the current
state of v is strictly less than the threshold of (v — x).

It is also possible that a gene influences itself in a given network, neverthe-
less auto-regulations do not change the approach at all. For each state, the
parameters k... define the vector state toward which the system tends to go.
Figure 4 gives a small example of gene network where we have arbitrarily
chosen the parameters as follows: K, = 0, K, , = K, , = K; 4y, = 2 and
Ky,=Ky,=1

P
T2
x\ 0 _'1 2

2— Z \ T X

Figure 2: Multivalued regulatory graph
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\ No help for z: K,
X The presence of u helps z: K 4,

/ The absence of v helps z: K ,,
v - Both help z: Ky 0

Figure 3: Parameters
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Figure 4: Table of focal points

2.3 Third idea

The variables of a network are asynchronously updated toward their parame-
ters, crossing at most one threshold.

The asynchronous updating is motivated by the fact that a threshold rep-
resents a very thin region of the real concentration space for each variable,
thus, the probability that several variables cross their thresholds exactly at
the same time is negligible. Consequently, when the network is in a state
such that several variables can change (i.e., such that several variables have a
concentration level belonging to an interval which is different from the interval
pointed by the current parameter K ...), there are as many possible next states
as such variables. From such a state, the system can choose to modify any one
of these variables.

For example, Figure 5 shows the state graph extracted from the network
given in Figure 4. The left hand side of the figure shows what would happen if
we followed a naive synchronous updating that would reflect the table of focal
points: the situation would be biologically incredible for two reasons. The first
reason, as already mentioned, is that x and y would be updated at the same time
for example from the state (1,0). The second reason is that from the state (0,0),
the variable x would cross two thresholds, which is contradictory with the fact
that we are modelling a continuous change of concentration levels. The right
hand side of the figure provides the correct abstract behaviours of the system.
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It shows in particular that it is possible to reach the stable state (0,1) from the
initial state (0,0).

2.4 The boolean framework

The boolean framework was the first framework introduced by René Thomas.
It modifies the first idea as follows: the product of a gene can be “present”
or “not present” in the cell. It means that there is only one threshold for each
gene; the two other ideas (the parameters K and the asynchronous state graph)
remain unmodified.

Let us consider the “type 1 incoherent feedforward loop” introduced in
Figure 1. As we are in the boolean framework, every threshold is equal to 1.
Moreover, if we want that b needs the presence of its activator a and the
absence of its inhibitor c to be synthesized, then a unique choice is possible to
make all the interactions of the graph functional, see the parameter valuation
in Figure 6. Remember that, in the K}... parameters, the subscript ¢ means that
¢ does not pass the threshold, as it is an inhibitor of b. Lastly, the variable a
being the entry point of the feedforward pattern, we do not consider K, yet.

The question that we will address on this example all along the article is
the following: what shall be the behaviour of b in response to the input signal
offered by a ?

Obviously, if a is equal to O for a sufficiently long time, both b and ¢ will
also be equal to 0, because b and ¢ need a as a resource in order to reach the
state 1; see Figure 7. Let us assume that the signal a goes from O to 1. Then,
the current state will move to (a = 1,b = 0, ¢ = 0): the square situated at the
lower left corner of the plan @ = 1 of Figure 7. The new stable state is b = 0
and ¢ = 1 but, due to the asynchronous semantics, there are two different paths
from the current state: either we go directly to the stable state and b remains
constantly equal to 0, or we follow the other path where b is transitorily equal
to 1, before being inhibited by c.

Under which conditions will b always signal the presence of a via a transi-
tory production ? May-be the conjunction of resources for the variable b is not

y y
| 2 30 | (3 (3
(0,1) (1,1)—:(2,1) O,1) | (I, 1y (2,1)
/T \ \ T
0 (0,{) (1,0{ (2,0) 01 (0,0)(L,0)—+(2,0)
0 1 2 X 0 1 2 X

Figure 5: Synchronous and asynchronous state graphs
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y \ Kb,a =0 Kw:l
a b Kb,c =0
1+

Kb,ac =1

Figure 6: Boolean feedforward

Figure 7: Asynchronous state graph for type 1 incoherent feedforward loop

optimal, e.g., would a disjunction be better ? or any other values for the K...
parameters ?

This is more generally the usual question of identification of the parameter
values, according to some biologically known behaviours or some hypothetical
behaviours. Here, the example would be small enough to enumerate all the
possible parameter values, to generate the state graphs and study for each of
them the answer of b. It is of course not the case when addressing real size
gene networks and so, formal methods from computer science are required to
perform computer-aided identification of parameters.

2.5 Temporal logic and automatic model checking

Temporal logics are languages that allow us to formalize biologically known
behaviours or hypothetical behaviours in such a way that computers can au-
tomatically check if a model exhibits those behaviours or not. The building
blocks of a temporal logic are atoms, connectives and temporal modalities. Let
us here consider the Computation Tree Logic [12, 17], CTL for short, which is
the most common temporal logic:

e Atoms in our case are simple statements about the current state of a vari-
able of the network. For example equalities (e.g., x = 2) or inequalities
(e.g,x <lory>1).

e Connectives are the standard connectives: negation (e.g., =(x = 0) is
the negation of the atom = = 0), conjunction (e.g., (z = 0) A (y > 1)),
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disjunction (e.g., (x = 0) V (y > 1)), implication (e.g., (z = 0) = (y >
1)), and so on.

e Temporal modalities are combinations of two types of information:

— Quantifiers: a formula can be checked with respect to all possi-
ble choices of paths in the asynchronous state graph (universal
quantifier, denoted by A), or one can check if it exists at least one
path choice such that the formula is satisfied (existential quantifier,
denoted by E).

— Discrete time elapsing: a formula can be checked at the next state
(letter X)), in some future state which is not necessarily the next
one (letter F), in all future states (letter G) and a formula can
be checked until another formula becomes satisfied in the future

(letter U).
first character second character
A =for All path choices | X = neXt state
In short: F = for some Future state
E' = there Exists a choice | G = for all future states (Globally)
U = Until

For example, the formula ((z = 0) A (y > 0)) = Al(x = 0)U(y = 0)]
means that, starting from an initial state where x = 0 and y is strictly positive,
there will be a state in the future such that y = 0 and meanwhile, x will remain
equal to 0, whatever the choice of path. More generally, Figure 8 summarizes
the CTL semantics with the following conventions: we start from an arbitrary
initial state that constitutes the root of the tree; a blue arrow means that ¢
becomes true in the target of the arrow; a green arrow means that ¢ is not
satisfied in the target of the arrow; a red arrow means that v is satisfied both in
the source and in the target of the arrow.

One of the main advantages of CTL is that there are very efficient model
checkers, see for example [9]. A model checker is an algorithm that takes as
inputs a CTL formula and a state graph, and furnishes as output the subset of
states that satisfy the formula.

Model checking can be used to identify the parameters that are compati-
ble with the known or hypothetical behaviours [7]. SMBioNet is a software
platform where we can enter the influence graph between genes and where we
can enter CTL formulas that describe the known behaviours: it automatically
computes all the sets of parameter values that are compatible with both the
graph and the behavioural properties. Technically, SMBioNet generates all the
possible state graphs and performs model checking. Then, a model is proposed
if and only if all its states satisfy all the behavioural properties.
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Figure 8: CTL modalities

For our feedforward example, the transitory activation of the gene b can be
formalized in CTL as follows:

(b=0Ac=0AAG(a=1)) = AF(b= 1A AXAG(b = 0))

It means that if the signal a becomes active when b and c are inactive, then b
will become active in the future, and then it will become inactive.
We have also assumed that a is able to control c:

(a=1ANc=0)= EX(c=1)
(a=0ANc=1)= EX(c=0)

It means that when a = 1 (resp. @ = 0) ¢ can increase (resp. decrease). We use
E X and not AX because the asynchrony can allow another variable to cross a
threshold before c.

When submitting the formula to SMBioNet, we discover that there is no
parameter values such that b always signals the switch of a by a transitory
change of value: the direct path from (@ = 1,0 = 0,¢ = 0) to (a = 1,b =
0,c = 1) seems unavoidable whatever the values of the parameters.

Nonetheless, if we assume for instance that the delay for a gene to act on
another gene is identical for all interactions in Figure 6, then a would start both
the expression of b and ¢ almost at the same time, and only after another delay,
c will switch b to 0. So, b will always signal the switch of a.

The paradox comes from the fact that the standard Thomas’ approach does
not take delays into account. The parameters K ... control only the function-
ality of combined interactions, not the delays. So, the asynchrony of variable
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updates always gives the possibility for a to activate ¢ and then for c to inhibit
b before the direct activation of b by a will take place. More generally, it may
also depend on the real initial state inside the square (¢ = 1,b = 0,¢ = 0)
and it may also depend on the relative production speeds of b and c. Indeed
the standard Thomas’ framework has a rough notion of time: it is reduced to
the random scheduling of variable changes. This motivates the introduction of
delays into the modelling framework.

2.6 Logic programming with constraints

Before discussing the different ways to introduce delays into the Thomas’
framework, let us mention the importance of constraint solving for the pa-
rameter identification problem. The current platform SMBioNet exhaustively
generates the possible state graphs and checks on them the temporal properties.
When time delays will be introduced, they will of course constitute additional
parameter values which will need to be identified as well. Delays shall be real
numbers because time passes continuously, and consequently, an exhaustive
enumeration of all the possible behaviours will become impossible. Temporal
properties will induce constraints on both the Thomas’ parameters and the time
delay parameters, in such a way that the set of solutions will involve intervals
of real time delays containing an infinity of points.

In the standard discrete framework of R. Thomas, L. Trilling has already
proposed to use logic programming with constraints in order to identify the
K... values [13]. More precisely, the method extracts all the parameter values
that make possible a given set of observed paths in the state graph. The
method has also been extended and implemented by F. Corblin [10] in the
same research team, and the results are impressive. Provided that the temporal
properties under consideration can be expressed via a finite number of paths of
fixed length, a few seconds of computing time are needed for problems where
SMBioNet needs several hours.

The idea is to specify, in the PROLOG language, the Thomas’ asynchronous
construction of the state graph, according to symbolic representations of the
K... parameters. Then, by specifying that a given path exists in the state
graph, PROLOG will generate the constraints on the parameters that permit
each transition of the path. Lastly, constraint solving algorithms try to exhibit
parameter values or to prove inconsistencies.

As an example, let us consider the path (b = 0,¢ = 0) — (b = 1,¢ =
0) - (b=1c=1) — (b=0,c =1) in the plan a« = 1 as in Figure 7.
The first transition of the path generates the constraint (K3 ,. > 0) because
the variable b goes from O to 1 when a and (the absence of) c are resources
of b. The two other transitions generate similarly (K., > 0) and (K3, < 1)
respectively. In order to ensure that b will always signal the presence of a via
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a transitory switching on, one has to negate the existence of the path (b =
0,c = 0) — (b = 0,c = 1), which generates the negation of (K., > 0).
Lastly, constraint solving will trivially prove that the resulting global set of
constraints is inconsistent. The same computations must be done for all the
paths that exhibit a transitory production of b.

Of course, both constraint programming methods and model checking meth-
ods give the same result and they both raise the same “delay paradox” men-
tioned previously. The simple chronologic notion of random scheduling of
variable changes is not sufficient; we need an explicit notion of chronometric
delays in the modelling framework.

3 Piecewise Linear Differential Equations

Since chronometric information is of great importance in the dynamics of the
modelled system, it seems natural to come back to the framework of differen-
tial equations because differential systems make the time explicit. Moreover
in this modelling framework, the trajectories are deterministic: from an initial
state, the whole trajectory can be computed.

Nevertheless, parameters of the differential equations are generally not
known and have to be determined. If we want to use knowledge on the time
that takes a particular trajectory between two points, in order to determine
unknown parameters, one has to explicite the relationship between elapsed
time along a trajectory and parameters. Thus the differential equation system
has to be solved. Generally, if the differential system has no particular shape,
the symbolic solving of the differential system is not possible and the large
number of variables makes appear additional difficulties. The computer tools
which are useful for simulations of such systems are nevertheless not well
adapted for this difficult task.

3.1 Piecewise Linear Differential Equations

To simplify this task, we can restrict the form of the differential system.
Snoussi [24] proposed to construct a piecewise linear differential equation
system: with each qualitative situation (that is when interactions does not
change) is associated a differential system which is easy to solve symbolically.
The way to construct such a system of differential equations can be sketched
as follows:

e With each node of the interaction graph is associated a variable of the
differential equation. This variable represents the concentration of the
associated protein.

e Each variable has a particular degradation rate. The degradation is sup-
posed to be proportional to the concentration of the protein (greater the
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concentration, greatest the degradation).

e Each variable has a synthesis rate which depends on the activity of its
regulators (greater the number of activators, greatest the synthesis rate).

e Each predecessor of a variable (in the interaction graph) has an influence
on the synthesis rate of the considered variable: if it is an activator, the
synthesis rate is increased when the regulator has a concentration greater
than the threshold associated with the interaction; if it is an inhibition,
the synthesis rate is increased when the regulator has a concentration
smaller than the threshold, see Figure 9.

A

Figure 9: Example of a gene regulated by two activators and by one inhibitor.

The previous outline leads to the following differential equation system:

d ,- i i
G = | Kot 2 K x Lasa g+ D K x Lgco,) | = i
JEA(@) GEI(E)

where A(i) (resp. I(7)) is the set of activators (resp. inhibitors) of ¢, and

]].[Condition] is equal to 1 if the condition is satisfied and equal to O otherwise'.

The first term is the synthesis rate which can be decomposed into three part:
e k! which is the basal synthesis rate,

o the contribution of activators (each activator contributes to the synthesis
rate when its concentration is greater than some threshold) and

o the contribution of inhibitors (each inhibitor contributes to the synthesis
rate when its concentration is less than some threshold).

"Let us remark that when a concentration is on a threshold, the contribution of the associated
action is not taken into consideration. It would be better to consider that the differential equation
is not defined on thresholds: one does not know whether the regulation takes place or not. If
one is interested in the precise behaviour of the system on thresholds, one has to embed such a
differential equation into the framework of differential inclusions [14]. This work has already
been done in the context of gene regulatory networks [11].



26/3/2010- page #74

74 MODELLING COMPLEX BIOLOGICAL SYSTEMS

Finaly v;x; represents the degradation. Such a differential system is called a
Piecewise Linear Differential Equation system, PLDE for short.

The previous differential equation system is based on the qualitative contri-
bution of each regulator. Unfortunately, even if the additivity of contributions
is not put into question, the contribution of a regulator is not a discontinuous
step function. To improve the model, the set fonction 1,4 (resp. 1, ) can
be replaced by a Hill function:

" or
Hi@w) = g m (P H-(z) = 9+)

where n is the parameter of the Hill function which controls its roughness.

3.2 Coherence between PLDE and discrete models

Such a differential equation system has a deep relationship with the discrete
models of Section 2. Let us first remark that the thresholds allow a discretiza-
tion of the phase space: ranking the thresholds {6 ;|4 is a possible target of j}
for each variable j allows one to split the concentration space of j into different
subdomains numbered from O to b;. The discretization of the continuous
phase space is then defined by associating with each concentration state s, the
discrete vector characterizing the subdomain of s. Thus the parameter of the
discrete model K , is the discretization of the coordinate ¢ of the equilibrium
point of the differential system associated with the situation where w is the set
of regulators contributing to the synthesis rate:

it" coordinate of the ko + 2 jeAG)Nw k; + 2 jer)nw k;
equilibrium point ¥i

If each contribution to the synthesis rate k;, is positive and if, for each i
and each w, K;, is equal to the discretization of the i" coordinate of the
equilibrium point, then there exists a transition from discrete state s; to sg if
and only if there exists a trajectory of the differential system starting from the
domain associated with s; and going to the threshold separating this domain
from the domain associated with so [24].

3.3 A feedforward loop controled by a positive auto-regulation

To study the behavior of an incoherent type 1 feedforward loop, we first con-
sider that the action of the transcription factor a does not change, that is, that
its level of concentration does not cross the threshold of one of its interactions.
The simplest way to study such a system is to consider that the transcription
factor a is also a regulator of itself, see Figure 10. This positive auto-regulation
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Figure 10: Incoherent type 1 feedforward loop combined with a positive auto-
regulation of a.

leads to multi-stationarity [28] of a: if a is present (resp. absent), it remains
present (resp. absent). As in Section 2.4 we suppose that b needs the pres-
ence of its activator a and the absence of its inhibitor ¢ to be synthesized.
Mathematical modelling suggested that the I1-FFL can show two dynamical
features [20] amongst whose a transient pulse of expression of b. To verify this
possible behaviour, let us build the corresponding differential equation system:

~—~
~
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k§ + kaliase, ) — Ya-a(t)
ko + ko Lasa, ) + ko lie<q, ) — W-b(t)
kG + kg Lias, ) — Ye-c(t)
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Nevertheless this differentential system does not express that b needs the pres-
ence of its activator a and the absence of its inhibitor c to be synthesized. It has
to be modified to take into account the condition under which the activation of
b is effective: [(a > 0,p) A (¢ < Ocp)]:

(t) = k§+EkLase,, — Ya-a(t)
kG + Kb L (050, A (c<t,)] — o-0(1)
kG + kglig>, ) — Ye-c(t)
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~
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|

where k% is the contribution to the synthesis rate of b due to the presence of a
and the absence of c.

The global behaviour of such a system is driven by the values of parame-
ters. For example, for some values of parameters, the protein b is synthesized
before the action of the inhibitor takes place, see Figure 11-left, whereas for
some other values of parameters, the synthesis of b is not so visible, see Fig-
ure 11-right. Let us remark that in both cases, the equilibrium point of variable
b when a is present and c absent is then same: % = % = % = 20. Both
models lead to the same discrete model. ‘

Thus the identification of parameters becomes a crucial step also in the
PLDE modelling framework, because a variation of parameters can lead to
different qualitative behaviours, see Figure 11. Moreover the values of kinetic
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Figure 11: Feedforward loop controled by a positive auto-regulation: accord-
ing to kinetic parameters, b can be activated before the effect of the inhibition
of c or not. Left: v, = 2 and kY. = 40 Right: v, = 0.25 and k%, = 5.
Other parameters are identical for both simulations: 6, , = 10.0, 0,5 = 21.0,
Oac = 20.0, 0.p = 10.0, 74 = 7 = 2, k§ = k) = k§ = 0.0, k¢ = 50.0,
k¢ = 25. Initial state is (15, 2, 2).

parameters k' are mandatory to deduce the sequence of domains the trajectory
passes through, which are also necessary to compute the time that takes a
trajectory passing through such a sequence of domains.

The first idea to overpass the parameter identification problem is to grope
for parameters until a set of parameters leads to a behaviour compatible with
available information about the trajectories. After having found a valuation of
parameters, simulations of the mathematical model are performed (several of
them under perturbations) in order to evaluate its robustness, that is its ability to
maintain its functions against internal and external perturbations [18]. Indeed,
since robustness is one of the fundamental characteristics of biological systems
and has been demonstrated many times experimentally [19], the evaluation of
the robustness of the PLDE model is a indicator of its validity. Nevertheless the
evaluation of the robustness of the PLDE model does not validate completely
the model.

3.4 A feedforward loop controled by a negative loop

We now study the behavior of the incoherent type 1 feedforward loop when the
transcription factor a oscillates. The simplest way to study such a system is to
consider the interaction graph made of the incoherent type 1 feedforward loop
and of the negative loop (¢ = «’) containing the transcription factor a, see
Figure 12. The negative feedback loop leads to oscillations of a and a’ under
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Figure 12: Incoherent type 1 feedforward loop combined with a negative loop.

some conditions, in such a case, we say that the circuit is functional. When the
period of oscillation of a and a’ is sufficiently small, neither b nor c is able to
switch-on during a unique period. But if degradation rate is also sufficiently
weak, several period can lead to the activation of b, ¢ or both b and c¢. The
PLDE model can be easily written:

() = k§+ k<o, ) — Va-alt)

L) = K+ R N, )~ Yard (1) W
D) = K+ koD (50, ,)A(c<00y)) — V-(t)

Le(t) = k§+ kS ase, ) — Yeclt)

This differential system can lead to subtile behabiors. Let us first suppose
that oscillations of a and a’ are much faster than the increasing of b and c. Thus
the order of activation of genes b and c, is intermittent and several behaviours
can be obtained according to relative values of the synthesis and degradation
rates:

neither accumulation of b nor accumulation of ¢
accumulation of b but no accumulation of ¢

no accumulation of b but accumulation of ¢
accumulation of b and ¢, but ¢ is activated before b
accumulation of b and ¢, but b is activated before ¢

O O R

Table 1: The different possible behaviours of the feedforward loop controled
by a negative loop.

Figure 13 shows the evolution of concentrations of 4 variables for some
parameter values. It is clear that this choice of parameter values corresponds to
the situation where both variables b and c increase because of the intermittent
order due to a: synthesis rate of b (resp. ¢) when a does activate b (resp.
c) is sufficiently high to allow, after a total oscillation period of a, a little
accumulation even after the second phase of the cycle when the activation
order is off. In other word, during each oscillation cycle of a, the system
creates more b than it degrades b. Such an accumulation of b and ¢ are due to
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low degradation rate but such values are nevertheless credible: the permease in
the lactose operon system is known to be degradated very slowly. Moreover,

concentration of ¢
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Figure 13: Incoherent type 1 feedforward loop combined with a negative loop:
the negative loop generates oscillations which allow b and ¢ to accumulate.

in Figure 13, b increases faster than c. Thus b becomes present but when
¢ becomes greater than the threshold of its action on b, variable b begins to
decrease and will no more be activated. Such a behaviour corresponds to the

situation 5 of the previous table.

Unfortunately, as said in the introduction, there does not exist an automated
method to extract properties of kinetic parameters which have to be fullfiled to
allow the system to present any known dynamical property. We then set out in
the next section a hybrid framework based on the discrete one which tries to
mimics the different behaviours of PLDE systems.

4 First hybrid modelling approach due to R. Thomas

To try to automate the parameter identification step for a timed model of a
gene regulatory network, it seems natural to propose to build a timed version
of the discrete approach since this discrete framework can be viewed as a
discretization of the PLDE framework. The refined modelling is based on
the use of delays of activation / inhibition to specify which variable is faster
affected by a change of its regulators. To be more precise, when an order of
activation / inhibition rises, the biological machinery starts to increase or to
decrease the corresponding protein concentration, but this action takes time.
Thus the differences between the values of delays of activation / inhibition

lead to decrease the non-determinism.
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4.1 Qualitative states and clocks

This idea dates back to the book of Thomas and d’Ari [27]: with each variable
is associated a clock which measures the elapsed time, and each transition
needs some delay to be passed over. The simulation of such a model can then
be sketched as follows:

1. The initial state is made of a discrete state and a initialisation of clocks
(generally each clock is set to 0).

2. According to the current discrete state, the clocks associated with vari-
ables whose focal point allows them to evolve (that is whose focal point
is placed outside the domain), run simultaneously at the same speed.

3. The next fired discrete transition is given by the clock which first reaches
its associated delay. If two delays are equal, that is if two clocks reach
their delays at the same time, non-determinism remains and several dis-
crete transitions can be fired. In such a case, choose at random a possible
transition.

4. In the new state, some clocks are reset: the clock which allowed the
transition is reset to zero, but also each clock for which the order has
changed. For example, if in the previous state, the variable a was subject
to an decreasing order, but in the new state, it is subject to an increasing
order, its associated clock is reset also to O.

5. Repeat steps 2, 3 and 4.

4.2 A feedforward loop controled by a positive auto-regulation

Depending of the delays associated with transitions, two behaviours can be
simulated: the first one allows the switch-on of variable b, while the second
does not allow it. Let us consider the boolean network described in Section 2.4
completed by the auto-regulation of a. The functionality of the auto-regulation
of a, which does not allow a to evolve from its initial state, leads to following
values of parameters concerning variable a:

Ko=0 Kua=1

Other parameters are the same, see Figure 6. Because a is not able to evolve
from its initial state, the state graph is the one of Figure 7. The initial state
is the boolean state (a = 1,b = 0,c¢ = 0) combined with an initialization of
clocks where each clock is set to zero. On one hand, if the delay mandatory
to activate c is less than the delay mandatory to activate b, then b will never
be switched on because the inhivitor ¢ becomes rapidly effective. On the other
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hand, if the delay to activate c is greater, ¢ gives b the time to be switched on
before becoming an effective inhibitor.

We proposed in [2] a formalisation of such a modelling approach which is
based on two types of parameters, d; (x) and d,, (), which represent the time
delays required to change the expression level of a variable v from level z to
z + 1 and from level = to x — 1, respectively, as shown in Figure 14. Then,

v v hy
af (x) d,(x+1) df (z) d,(z+1) df(x) d, (z+1)
A N
z+1 -~ +1 > -— o
P N
K 28
> > >
A A A ¢ A
activation order  inhibition order activation order  inhibition order activation order  inhibition order
(a) (b) (©)

Figure 14: Evolution of a gene’s expression (a), its schema in the discrete
model (b) and in its extension with time delays (c).

we add to each variable v a continuous clock h, whose speed at state y is 1
(when variable v can evolve) or O (if it cannot). At a given qualitative state u, if
the concentration of v is increasing (resp. decreasing), then, when h,, reaches
d (u(v)) (resp. dy, (11(v))), the level of v becomes p(v) + 1 (resp. p(v) — 1)
and the clock h,, is reset.

The temporal model described above belongs to the class of the so-called
stopwatch automata [8] which is a specific type of linear hybrid automata [4,
5], LHA for short. LHA are finite state automata augmented with real variables
whose values evolve continuously in a discrete state. Whereas the values of the
continuous variables can be affected by discrete transitions between discrete
states, evolutions of continuous variables are lines inside a discrete state. Lin-
ear hybrid automata can be subject to a reachability analysis. However, in gen-
eral, the reachability problem for linear hybrid automata is undecidable [25].

In such a modelling framework, the parameter identification problem still
remains the cornerstone of the approach. The determination of discrete pa-
rameters (the K, .,) can be driven by model checking as shown in section 2.5.
It then remains to identify the delays. Since time delays are real numbers, it
cannot exist any enumeration method (SMBioNet-like) which tries all possible
combinations of delay values and retains only those which are coherent with
knowledge about the behaviour. One then have to turn to constraints in order
to express the conditions under which the known properties are satisfied by the
model.
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Let us focus on the example of the feedforward loop controled by a positive
auto-regulation.

1. Let us suppose that available knowledge about the system allows one
to state that when a is on, b is switched on before c. Afterwards b is
switched off (because ¢ becomes present) n minutes after the switch-
on of a. In other words, the discrete path (1,0,0) — (1,1,0) —
(1,1,1) — (1,0, 1) has to be possible in the model with delays.

e (1,0,0) — (1,1,0) leads to the constraint
5, (0) < 32(0)

e Moreover the time that takes a trajectory from discrete state (1, 0, 0)
to (1,0,1),is &; (0) + (65 (0) — 8,7 (0)) + (8, (1)). Then we also
have the following constraint:

65(0) + 6, (0) = n minutes.

2. Let us now consider that the switch-on of b does not occur. The deduced
constraint becomes:
57(0) < 6,7 (0)

Such kind of constraints can be automated by the use of some computer science
tools dedicated to analysis of linear hybrid automata. For example we used
HyTech [16] for two purposes: (1) to find automatically all paths from a
specified initial state to another one and (2) to synthesize constraints on the
delay parameters in order to follow any specific path.

This modelling framework then seems to allow the modeller to take into
account information about observed time. Indeed the parameter identification
can be decomposed into two parts: the valuation of discrete parameters can be
found using an exhaustive approach like SMBioNet, and, the delay parameters
can be found using HyTech which allows the building of constraints.

Nevertheless, such a modelling framework present a little drawback: the
succession of intermittent orders of synthesis of a variable cannot lead to its
global increase. This drawback is explicit in the following example.

4.3 A feedforward loop controled by a negative loop

Let us recall that a and o’ oscillate with a period which is much less than
the delays mandatory for the swich-on of variables b and c. Concentrations
of b and c are then increasing but at each cycle of a, the counter-order of
decreasing of b (resp. c) resets the clock Ay (resp. h.) before the clock has
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reached the threshold 6, (0) (resp. 6, (0)). Then neither hy, nor h. will reach
the threshold leading to the switch-on of the corresponding variable. This
modelling framework can only represent the situation where neither b nor ¢
can switch-on, case 1 of Table 1.

Thus this modelling framework makes possible the automation of parame-
ter identification, and allows the distinction of two different behaviours (b can
be switched-on or not) amongst the 5 possible ones. Nevertheless, it does not
allow the representation of accumulation.

5 Product of automata: an alternative approach

The HyTech model checker performs symbolic model checking on automata
and we have shown that this extension of model checking allows for the ex-
traction of parameter constraints from some given paths. Another way to use
symbolic model checking in order to identify the parameters and the delays of a
gene regulatory network is to perform products of automata. The advantage of
this kind of approach is that the computation of a product of automata does not
only furnish a resulting automaton; it also systematically labels the states and
the transitions of the automaton by some formulas that define the conditions
under which the transitions can be fired. Then, provided that we adopt an
adequate “hybrid” temporal logic, there are model checking algorithms able to
manage symbolic values for some parameters. They compute the constraints
under which a given temporal formula is satisfied.

Using the UPPAAL model checker

In [23], Heike Siebert and Alexander Bockmayr made use of products of
automata in order to formalize a hybrid modelling framewok for delays in-
spired by the approach of René Thomas. The automata that play the role
of state graphs in this framewok are rather heavy, but they should be con-
sidered as purely technical mathematical objects, which will be submitted to
UPPAAL [6].

The main idea is the following. For each variable v of the network, there
is a clock called h,, and for each possible discrete state of this variable, there
are three possible behaviours with respect to delays:

e cither the parameter K, ., (Where w is the set of resources of v according
to the current state of the system) is greater than the current value of v,
in which case the clock h, measures the time of increasing of v;

e cither the parameter K, ,, is lower than the current value of v, in which
case the clock h, measures the time of decreasing of v;
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Figure 15: Timed automaton for one level

e or the parameter K, , is equal to the current value of v, in which case
the clock h,, is off.

This principle is reflected by an “atomic” automaton structure containing three
discrete states (called locations in the timed automata framework), as shown
in the bold part of Figure 15. The central location is intuitively the default
location for the state v = z and every transition that changes the value of the
variable v goes to this central location. Then, if K, ,, = v is false, the suitable
bold transition goes immediately to the consistent location (either K, ,, < v or
K, ., > v) and the clock h,, starts from 0.

The product of these atomic automata is managed in such a way that the set
of resources w is properly computed in the product automaton. The formulas
are rather complex, but they simply reflect the formal definition of the Thomas’
framework. Lastly, as shown in the figure, if the clock h, reaches its limit delay
d; (z) (resp. d;, (z)) then the transition to v = z + 1 (resp. v = = — 1) is fired,
and similarly, if some other variable change induces a different comparison of
K, ., with respect to x, then the location is pulled back to the central one.

This technical stuff being done, UPPAAL can be used in order to extract
the constraints generated by some temporal formulas, which can for example
reflect knowledge on the biological system about time delays to go from one
state to another state. Let us remark that this framework still does not treat
accumulation, because when the location is pulled back to the central one, it
resets automatically the clock to O.

6 Hybrid models inspired by PLDE

We saw that situations where accumulation plays a crucial role for the global
behaviour are difficult to take into consideration. Nevertheless we want to
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overpass these difficulties and propose a new hybrid modelling framework
which takes into account accumulation.

The first attempt to propose such a hybrid modelling framework [1] was
based on the discrete model. With each discrete state, is associated a temporal
zone, which makes hybrid the models. The temporal zone is defined as a
hypercube whose dimension is the number of variables. The length of the
hypercube associated with state 4 in the direction v is dj, (1) + df (u): it
corresponds to the sum of the time mandatory to pass to the level i, + 1 under
increasing order and the time mandatory to pass to the level p,, — 1 under
decreasing order. Because of the presence of two delays associated with a
same domain and a same variable, accumulation can be represented but the
decreasing and the decreasing of a variable subject to accumulation take place
at the same speed, this drawback has been discussed in [1], see Figure 13
inside.

6.1 From PLDE to hybrid models

Since PLDE modelling framework is able to represent such accumulations,
we present in this section yet another hybrid modelling framework based on
PLDE which partially allows the building of constraints leading to a particular
behaviour. The only new fundamental idea is to express a relationship between
delays of the hybrid model and the PLDE model: the delay d,f (u) (resp.
d,, (p)) is an approximation of the time necessary to variable v to cross the
domain from the lower bound to the upper bound (resp. from the upper bound
to the lower one).

In other words, if the PLDE is known, it becomes easy to build the hybrid
model since

e the thresholds defining the discretization of the PLDE are given,
e the parameters K are the discretization of equilibrium points,
e the delays parameters are deducible from the PLDE.

More interesting is the inverse translation: If a hybrid model is supposed to
represent a system, is it possible to construct a PLDE system whose behaviours
are coherent with the possible paths in the hybrid model ? To answer this
question, the work of Snoussi [24] has to be done again in the hybrid context:
Snoussi has shown that it is possible to build from a discrete model, a PLDE
system whose discretization is the discrete model.



26/3/2010- page #85

MODELLING COMPLEX BIOLOGICAL SYSTEMS 85

Intuition. Let us consider the differential system modelling the feedforward
loop controled by a positive auto-regulation:

%(t) = 50 x ]1[a>10] —2 x a(t)
%(t) = 40 x Ljasanae<ioy) —2 x b(t)
%(t) = 25X ]1[a>20] -2 x ¢(t)

A simulation of this differential system is shown in Figure 11-left. In order to
consider two different qualitative level of b, we introduce a threshold 6, = 10:
if concentration of b is less than 6, b is said absent, otherwise it is said present.
Let us suppose that a is greater than the threshold 6, ,. 16 domains have to be
considered since a can take 4 qualitative values (less than 6, , = 10.0, between
0a,q and 0, . = 20.0, between 6, . and 0, ; = 21.0, or greater than 0, ), b and
c can take 2 qualitative values (greater or less than ¢, and 0. ).

1. In the domain (1,0, 0), a is increasing towards 50/2 = 25

dapy = 50 —2xaf(t)
gf(t) = —2 x b(t)
de(py = —2 x c(t)

The delay d} ((1,0,0)) is deduced from the solution of the differential
equation: a(t) = 32 — (2 —a(0))e’. The delay is the time necessary
for the solution to go from the left boundary of the domain to the right

one. Then a(0) = 6, , = 10, and a(t) = 6, = 20.

1 50 _ g 1. 1
+ — [ 72 a.c = —— — ) =
dF((1,0,0)) = - In (50 ) 5 ln(3) 0.55 (2)

2 a,a

Both other variables stays in the domain, then delays are not significant.

2. In the domain (2,0, 0), a and c are subject to increasing order towards
50/2 = 25 and 25/2 = 12.5 respectively.

%(t) = 50 —2xaf(t)
@) = —2 % b(t)
%(t) = 25 —2xc(t)

The delays d. ((2,0,0)) and d} ((2,0,0)) are deduced from the solution
of the differential equation: a(t) = 2 — (2 — a(0))e 7" and ¢(t) =
% — (2 — ¢(0))e . The delay is the time necessary for the solution
to go from the left boundary of the domain to the right one.
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e for variable a: a(0) = 0, = 10, and a(t) = 6, = 21.

1 % —Oab
+ — @2l =
da ((27070)) - _jln % ~0,. =0.11 (3)
e for variable c: ¢(0) = 0, and ¢(¢t) = 6. = 10
1 (-0,
dr((2,0,0)) = ——1In <225_0"> =084 (¥
c 2

Then in the hybrid model, unless if ¢ has accumulated before, a will pass
the threshold 6, before ¢ will cross 0.

3. In the domain (3,0,0), b and ¢ are subject to increasing order towards
40/2 = 20 and 25/2 = 12.5 respectively.

?—g(t) = 50 —2xaf(t)
by = 40 —2xb(t)
%a): 25 —2 x c(t)

The solutions of the differential equation system are:

b(t) = % — (470 — b(0))e~"! and c(t) = % — (22—5 — ¢(0))e e,
The delays are the times necessary for the solution to go from the left
boundary of the domain to the right one.

e for variable b: b(0) = 0, and b(t) = 0, = 10.

d;((3,0,0)) L (220 _ s (5)
s Yy = ——1n = VU
b Vb 470 -0
e for variable c: ¢(0) = 0, and ¢(t) = 6., = 10.
1 L0,
e 2

Other delays are deduced similarly.

6.2 Sketch of the hybrid model

To go further, one needs to describe the evolutions of the hybrid model. In
fact, with each domain is associated a temporal zone which is also defined as
a hypercube whose dimension is the number of variables. According to the
position of the focal point, we split the temporal zone into several subzones.
Let us consider a discrete state 1 = (i;)iev:
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o if K;,. () = M, the coordinate ¢ of the temporal zone is divided into
3 parts: the part where the concentration of ¢ has to increase in order
to reach the coordinate ¢ of the focal point (the clock associated with
¢ continues to increase until a delay denoted df(n)), the part where the
concentration of 7 has to decrease in order to reach the coordinate 7 of the
focal point (the clock continues to decrease until a delay denoted d; (7)),
and the part where the concentration of ¢ has reached the coordinate 7 of
the focal point (the clock is stopped).

o if K, (5 > i (resp. < p;), the coordinate ¢ of the temporal zone is not
divided, since in all cases, the concentration of ¢ has to increase (resp.
decrease). The delay d; (n) (resp. d; (1)) is set to 0.

The states of the hybrid model are couples (7, (¢;);cy) where 7 is a qual-
itative state and ¢; < d; (n) + d; (n). Evolutions inside a qualitative state are
easy to describe: the system evolves linearly until a boundary is reached: if the
reached boundary corresponds to a subzone where variable 7 does not evolve
anymore, then the clock associated with variable ¢ stopped.

The description of the transition between two temporal zones is a little
more tricky. If the reached boundary is a external face of the temporal zone,
there is a qualitative jump from the current discrete state to the next state. The
clock of the variable which has changed is reset in order to be coherent with the
new qualitative state, and other clocks are modified to preserve the proportion
of the concentration space which has already been crossed. Some particular
situations lead to tricky rules explaining, for example, what is the trajectory
when one successor of state p; is p2 and one successor of state uo is g (see
the notion of black wall in [11]). The precise definition of this hybrid model
can be found in [15].

Let us notice that delays associated with ¢ seem to depend on the current
qualitative state. Nevertheless for all qualitative states where the regulators of
1 are identical, the differential equation for variable i is the same. Thus, delays
associated with 7 depends in fact on the set of active regulators, denoted in the
sequel by w;.

6.3 Constraints on delays

More generally, it is possible to construct constraints on delays in order the
system to follow a given sequence of domains. The principle of the construc-
tion of these constraints relies on the enumeration of constraints due to paths of
length 2: g — @1 — pe. For a longer path, the constraint is the conjunction
of constraints due to each sub-path of length 2.

We describe here only one situation among twelve. Let us consider the
path uo — @1 — po where the first (resp. second) transition is due to a
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qualitative increasing of variable ¢g (resp. ¢1). Let us suppose moreover that
the vector (c¢;);cy represents the clocks when entering into u; and that there
exists in p; a variable i) which can also increase. In order to allow the global
path po — @1 — o, the following relation has to be satisfied:

(df (1) —¢iy) < (dZ(Ml) —cy)

The twelve cases are exhaustively treated in [15].

6.4 Construction of constraints on FFL with auto-regulation

Let us consider the path allowing b to be switched-on before c. The sequence
of domains is (1,0,0)—(2,0,0) —(3,0,0)—(3,1,0) —(3,1,1)— (3,0, 1).

1. From (1,0,0), there exists a unique successor domain: (2,0,0). No
constraint.

2. From (2,0, 0), there exists two possible successors: (3,0,0) or (2,0, 1).
Then, considering that clocks are reset to 0 when entering into (2,0, 0),
we have:

di((2,0,0)) < df((2,0,0))  see, Figure 16-left

3. From (3,0, 0), it is possible to reach either (3, 1,0) or (3,0, 1). Then we
have

di((3,0,0)) < df((3,0,0)) —dF((2,0,0))  see, Figure 16-right
since during the crossing of the domain (2, 0, 0), ¢ has begun to increase.

4. From (3,1,0) (resp. (3,1, 1)), there exists a unique successor: (3,1, 1)
(resp. (3,0, 1)). No constraint.

Let us just remark that the delays deduced from the PLDE system of Figure 11-
left (see equations 3, 5 and 6) does satisfy the previous contraints, whereas
the delays deduced from the PLDE system of Figure 11-right does not satisfy
them. Indeed taking into account parameters values of Figure 11-right, the
analytic expression 5 gives d; ((3,0,0)) = 2.77 whereas expression 6 gives
d¥((3,0,0)) = 0.84.

In a similar way, it is possible to build a set of constraints on delays which leads
to trajectories along which the variable b is not switched on because of the fast
increasing of c. The delays deduced from the PLDE system of Figure 11-left
does not satisfy the contraints, whereas the delays deduced from the PLDE
system of Figure 11-right does satisfy them.
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Figure 16: Illustration of the construction of constraints

6.5 A feedforward loop controled by a negative loop

We consider the boolean model, see Figure 17, of the feedforward loop con-
troled by a negative loop which has been presented in Section 3.4: in order to
build a boolean model thresholds of a on a’, b and ¢ are considered as equal.
We would like to construct an hybrid system based on this boolean model

Figure 17: Boolean model of the FFL controled by a negative loop.

whose trajectories pass through the following sequence of domains:

(1000 — 1100 — 0100 — 0000 —)1000 — 1100 —
(1110—0110— 0010 — 1010 —)?1110— 1111

This path expresses that more than one period of oscillation of a and o’ are
mandatory to imply the qualitative increasing of b. Two other periods are
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necessary to allow the qualitative activation of ¢ which will be responsible
of the degradation of b.

The expression of the corresponding constraints is very unreadable but
is satisfiable. Figure 18 shows a set of values of parameters leading to the
considered path.

+ _ + _ z
da,O,{a’} =4 da”O,{a} =4 E
dt =1 | df, =1 Z
a,0,0 a’,0,0 =
d?FO’@ =1 d_a"_’,O,(D =1 w
donqay =1 | dongey =1 2
dorqay = dorifay =1 ;
d- =4 d =4
j:l,@ i’»l,@ 2 ig T T T T T
= = | F Qualitive state of b
dlio,{a,c} 7 dio’{a} 10 5 :3 E —— Continuous delay of b
db,O,G) =2 dc,o,m =4 RS | 1 ) .
. _ 2 _ o . L n
db,07® =2 dC,O,@) =16 o 30 ; r - T T
d,” =2 | aF =4 § nf ' | ' '
b,1,{a,c} ¢1,{a} £ 2E Qualitative state of ¢
db,l,{a,c} = dc,l,{a} =4 ERTS —— Contiunous delay of ¢
_ _ — _ > S
db,l,@) =80 dc,l,w =10 & . I LA 7 7

(=}
[
(=1
N
=

60 80 100
time

Figure 18: Simulation of a hybrid model for the FFL controled by a negative
loop. The qualitative part of the initial state is (1,0, 0,0), and its delay’s part
is (2.,0.,0.,0.). Delays are denoted by the involved variable, its qualitative
level and by the set of its effective regulators, see the description of the hybrid
model.

7 Identification issues with delays

Let us remind that the cornerstone of the modelling activity is the parameter
identification step. For the construction of a hybrid model based on the dis-
crete modelling framework of R. Thomas, one has to identify both discrete
parameters K and delays d* and d~ which correspond to approximations of
times mandatory to pass through the involved domain.

In order to determine the values of delays, the modeller is going to rely on
the measured elapsed time during experiments between two particular states.
This global measured time has to be equal to the sum of delays of visited
qualitative states. Thus, building the constraints associated with the measured
elapsed time requires to know the sequence of visited qualitative states.

The parameter identification step can then be split into two subparts:

e To identify discrete parameters K of the underlying discrete model.
This step can be automated using model-checking or other formal meth-
ods (see sections 2.5, 2.6 and also [21, 13]).

e To identify the delays of the hybrid model. Here the built constraints on
delays express relationships between a real number (the measured time)
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and a combination of delays. The resolutness of constraints on delays is
unavoidable.

Let us mention some other approaches which do not consider a continuous
time. The first way consists in discretizing the time in order to remain in a
completely discrete modelling process. The underlying idea is to construct
an approximation so fine as necessary as in the integral calculus. The second
way consists in focusing on the duality between probabilistics approaches and
models based on delays: greater the probability to fire a transition towards a
particular qualitative state, smaller the associated delay. Thus all the scientific
corpus of Markov chains can be useful to evaluate the probabilities of the
model.

Conclusion

We have shown that different modelling frameworks for gene regulatory net-
works have been introduced. For all of them, the parameters have to be val-
vated. Fortunately this parameter identification step can be computer-aided
when the modelling framework is formal and when it makes use of formal
tools from computer science: for the purely discrete approach of R. Thomas,
model checking, constraint programming or symbolic execution have been
used to automate this stage. In order to take into consideration elapsed time
and delays, it would be interesting to develop a tool that would take as inputs a
PLDE system and a set of observed trajectories (and associated elapsed times)
and that would give all possible valuations for parameters. Unfortunatelly such
a tool is not conceivable for PLDE models. Thus, formal hybrid modellings
seem to be the best candidates in order to fill up the gap between purely discrete
models for which the parameter identification step can be automated and the
differential models.

With such hybrid frameworks, systems biology should take advantage of
the whole corpus of formal methods from computer science which opens a
large horizon of research perspectives. Let us mention for instance,

o Algorithms that compute the set of parameter valuations that are com-
patible with reachability properties or with a known qualitative path.

e Continuous-time temporal logics adapted to the specificities of the bi-
ological application domain, and then model checking algorithms to
confront a real-time temporal property to a hybrid model.

e Formal or symbolic languages to describe transition paths, taking into
account populations of networks whose states are not synchronized.
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e Since our aim is also to link modelling to experiments, tools to extract
from the considered hybrid model several experiments which are able to
refute the candidate models.

Indeed, the hybrid modellings are not the ultimate aim, they are only a guide
for predictions that, in turn, suggest biological experiments whose success will
be in fine the discriminent criterion. Thus a hybrid modelling framework will
be largely adopted only if it is able to help biology toward comprehending
the biological processes through the ability of the hybrid framework to pro-
pose experiments or through its capability of refuting hypotheses. Hybrid
approaches could constitute a trade-off between expressiveness and compu-
tational tractability.
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Abstract

In the cytoskeletal sensor hypothesis proposed here, the cytoskeleton senses
and integrates the general metabolic activity of the cell. This activity depends
on the binding to the cytoskeleton of enzymes and, depending on the nature of
the enzyme, this binding may occur if the enzyme is either active or inactive
but not both. This enzyme-binding is further proposed to stabilise microtubules
and microfilaments and to alter rates of GTP and ATP hydrolysis and their
levels. These physical and chemical effects would have major consequences
on cell shape, dynamics and cell cycle progression. Evidence consistent with
the hypothesis is presented in the case of glycolysis and testable predictions
are made.

1 Introduction

Cells face the enormous challenge of generating a single phenotype that must
be coherent with a myriad internal and external conditions from hundreds of
thousands - if not millions - of different constituents. Ensuring this coherence
entails sensing and integrating a wide diversity of chemical and physical infor-
mation so as to converge onto a few outputs. These outputs must affect many
of the systems and hence must be extremely well-connected. Just how cells
achieve this is far from clear.

One evident possibility is that metabolism and signalling are tightly linked.
The concept of “functioning-dependent structure” (FDS) was developed to
describe either those structures that only form when their constituents are
performing a task (and that disappear when that these constituents cease per-
forming the task) or the inverse, namely those structures that only form when
the constituents are not performing their task [32]. A metabolic FDS comprises
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enzymes that, for example, assemble into the higher order structure only when
these enzymes are catalysing their reactions; in the absence of substrate these
enzymes are therefore free [19]. Modeling the behaviour of such enzymes has
revealed that they may be able to generate waves of metabolites and hence play
a role in signaling [31]. A related concept is that of “ambiquitous” enzymes
which can occupy two different positions in the cell, for example, free or
associated with the cytoskeleton [18]. Here we bring together the concepts of
FDS and ambiquity to explore the possibility that metabolism and signalling
are linked via enzyme association with the cytoskeleton. We propose that a
functioning-dependent co-assembly of metabolic enzymes plus cytoskeleton
- a type of enzoskeleton [20] - could help solve the problem of generating a
coherent phenotype.

2 The cytoskeletal sensor hypothesis

The binding to microtubules and to actin microfilaments of enzymes respon-
sible for catalysing different metabolic pathways allows the cytoskeleton to
sense and integrate metabolic activity. The transduction of this information
occurs via alterations in the physical stability of cytoskeletal filaments and in
the rates of hydrolysis of GTP and ATP.

2.1 The mechanism

1. Enzymes stabilise the cytoskeleton by binding to it. Certain enzymes
may bind to the cytoskeleton when active, that is, catalysing their reac-
tions, whilst others may only bind when inactive. The entire cytoskeletal
hyperstructure or rather enzoskeletal hyperstructure is therefore an FDS.

2. Since the cytoskeleton and GTP and ATP are central players in cell
structure and in most reactions, alterations in cytoskeletal dynamics due
to enzyme binding and differential rates of GTP and ATP hydrolysis
(and consequent levels) then alter cell structure and dynamics.

2.2 The evidence

Over a hundred proteins, including many involved in metabolism, change their
distribution in the yeast, Saccharomyces cerevisiae, in response to altered meta-
bolic conditions, moreover, association and dissociation of enzyme foci can
be controlled by availability of specific metabolites, leading to the suggestion
that metabolite-specific, reversible protein assemblies are common [17]. The
actin cytoskeleton in S. cerevisiae also undergoes a major change as cells go
from a quiescent state to growth. In the quiescent state, actin is in the form
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of immobile bodies; on resumption of metabolic activity following refeeding,
actin again forms the dynamic network [25].

2.2.1 Enzyme-binding to cytoskeleton

An extensive body of literature attests to the interactions of metabolic en-
zymes with microfilaments of actin and with microtubules. Interactions with
microtubular proteins have been observed for the glycolytic kinases, hexok-
inase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) as well
as aldolase (for references see [22]). These interactions between tubulin and
metabolic enzymes lead to the formation of distinct hyperstructures (Figure 1
in [22]). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) also binds to
MT to cause MT bundling. A wide variety of enzymes, including translation
factors, RNA-binding proteins, signalling proteins and metabolic enzymes -
also interact with microtubules in plant cells [3]. Interactions between enzymes
and MTs can be extended to interactions between MT motor proteins and
enzymes. For example, the likely colocation of glucose-6-phosphate dehy-
drogenase with dynein has led to the proposal that microtubule motor proteins
participate in hexose monophosphate shunt enzyme transport within leuko-
cytes [11].

Interaction of glycolytic enzymes with actin microfilaments led, in the case
of studies on muscle, to the conclusion that, in general, ”actin binds enzymes”.
Even filamentous actin from yeast binds enzymes, albeit more weakly and such
microfilaments bind aldolase and GAPDH [34].

2.2.2 Functioning-dependent binding to the cytoskeleton

The essence of our interpretation of the following results is that if the bind-
ing of an enzyme to the cytoskeleton increases the probability of catalysis
(via for example its affinity for its substrate), reciprocally, an enzyme that is
active in catalysis might well have a higher probability of associating with
the cytoskeleton. In other words, if being bound to a cytoskeletal filament
confers a conformation on an enzyme that allows it to bind its substrate then
the activation of the free enzyme by substrate might promote the binding to
this enzyme to the filament.

The binding of glycolytic enzymes to microtubules alters the catalytic and
regulatory properties of these enzymes (see Table 1 in [22]). HK activity is
increased by binding microtubules (resulting in enhanced glycolytic flux in
brain tissue) but this does not influence their dynamics and structure. PFK
activity is decreased by binding MTs (induced by enzyme dissociation of the
tetrameric enzyme) and this periodically cross-links microtubules. PK activity
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is unaffected by binding but this impedes MT assembly. The binding of the
individual enzymes to MTs is influenced by enzyme-enzyme interactions. For-
mation of an aldolase - PFK complex prevents the association of PFK to MT or,
put differently, results in PFK’s detachment from the MT. Within this complex,
PFK is stable and maintains its catalytic activity, the allosteric property is,
however, abolished [22].

Results on PFK, GAPDH and aldolase interaction with microfilaments
can also be interpreted as consistent with such interaction depending on the
state of the enzyme. Binding to filamentous actin is known to activate PFK.
Recently, it has been shown that insulin signaling increases the association
of PFK with actin filaments and it was suggested that this association plays
a role in the stimulation of glycolysis by insulin [23]. In serum-depleted
cells, the cytoplasmic GAPDH is colocalised with actin stress fibres whereas
in the presence of serum, this enzyme is distributed homogeneously [26]. In
quiescent cells, aldolase is colocalised along stress fibres whereas in motile
cells it is behind the ruffles at the leading edge of the cell [35].

2.3 Protein binding stabilises cytoskeleton to help determine pheno-
type

There is abundant evidence that proteins binding to the actin and tubulin cy-
toskeletons alter their dynamics. In the case of actin, the unregulated polymeri-
sation of actin filaments is inhibited in cells by actin monomer-binding proteins
such as profilin and Tbeta4 [4]. Nucleators of actin polymerisation include the
Arp2/3 complex and its large family of nucleation-promoting factors (NPFs),
formins, Spire, Cobl, VopL/VopF, TARP and Lmod. These proteins control
the time and location for polymerisation and influence the structures of the
actin networks. Coronin, an important protein in actin dynamics, changes its
activity depending on the nucleotidic state of actin [6]. IQGAPs are actin-
binding proteins that transmit extracellular signals to the actin network so as
to influence mitogenic, morphological and migratory cell behaviour [16, 37].
In the case of tubulin, microtubule-associated proteins, such as tau and tubulin
polymerisation-promoting protein (TPPP), promote MT assembly and stabilise
MT networks with phosphorylation regulating these functions [10, 38]. For
example, process extension in oligodendrocytes during differentiation is cor-
related with the increase in TPPP/p25 levels whilst a reduction in process ex-
tension is correlated with a decrease in TPPP/p25 levels; TPPP/p25, however,
is not only co-localised with the microtubule network but is also found at the
plasma membrane (where it is thought to mediate interactions between myelin
basic protein and tubulin), consistent with TPPP/p25 possessing additional
properties and specific roles depending on its location [36].
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What then of the effects of metabolic enzymes binding to the cytoskeleton?
It has been proposed that the specific cytoskeletal association of aldolase could
play a structural role in cytoplasm and could contribute to metabolic regula-
tion, metabolic compartmentation, and/or cell motility [35]; these authors also
proposed that functional duality may be a widespread feature among cytosolic
enzymes. It has also been proposed that the distribution of PFK activity could
play a role in the metabolic regulation of breast cancer [5]. The importance
of the marriage between metabolic enzymes and the actin cytoskeleton was
shown in cells in which changes in the actin cytoskeleton were accompanied
by changes in energy metabolism and it was proposed that an increased surface
area for association between actin filaments and glycolytic enzymes enhances
enzyme activity so as to supply more ATP [2]. An isotype of PK, pyruvate
kinase M2, is a major regulator of the glycolytic flux in tumor cells and it has
been suggested that M2-PK is a metabolic sensor which regulates cell prolif-
eration, cell growth and apoptotic cell death in a glucose supply-dependent
manner [27].

2.4 Testing the hypothesis

The following corollaries of the hypothesis could readily be tested experimen-
tally or by simulation and modelling:

1. The numerous isotypes of actin and tubulin differ in their capacity to
bind enzymes and, reciprocally, the isotypes of enzymes differ in their
affinities for microfilaments and microtubules. This could be done in
vitro or indeed in vivo using, for example, different fluorescent tags to
distinguish between the behaviour of two different isotypes in the same
cell.

2. There is a relationship between the sites on tubulin and actin that un-
dergo post-translational modification and interaction with metabolic en-
zymes. This could be done as in 1/ and, in addition, use might be made
of mutants.

3. The changes in rates of ATP and GTP hydrolysis that result from the
stabilisation/destabilisation of cytoskeletal filaments are sufficient to al-
ter the levels (and ratios) of ATP and GTP locally and perhaps globally
in the cell and thereby exert important effects on the phenotype. Mea-
surement (and simulation, see 4. below) of the intracellular levels of
ATP and GTP under different conditions of cytoskeletal dynamics (and
hence of nucleotide hydrolysis) should reveal whether the contribution
of cytoskeletal dynamics to intracellular levels of ATP and GTP is suffi-
cient to significantly affect local and perhaps global levels and ratios of
these and related nucleotides.
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4. Non-homogeneous spatio-temporal distributions of metabolites with a
potential for signalling (as well as the distribution of the enzymes them-
selves) should be generated by functioning-dependent association or dis-
association of enzymes from cytoskeletal filaments. Such distributions
could be revealed by simulation with stochastic automata such as HSIM [1].

3 Discussion

The cytoskeletal sensor hypothesis is an attempt to answer the question of how
cells sense and integrate a wide diversity of chemical and physical information
so as to converge onto a few outputs and generate a coherent phenotype. This
hypothesis is in itself insufficient but it can be combined with other, comple-
mentary, hypotheses to give an integrated picture of cell functioning.

One of these hypotheses is based on the possibility of ion condensation
on the cytoskeleton [24]. Positive counterions such as potassium, magne-
sium, calcium and polyamines can condense onto negatively charged linear
polymers [21]. Such condensation leads to the counterions being delocalised
and diffusing in the near region in intimate contact with the polymer or other
surface [15]. Condensation occurs at a critical value of the charge density of
the polymer and resembles a phase transition in that it occurs in an abrupt
fashion (for references see [24]). Since the activity of protein kinases and
phosphatases can be modulated by ions, condensed ions on protein filaments
might play a major role in the phosphorylation/dephosphorylation of a wide
variety of protein filaments by filament-associated kinases/phosphatases. In
this hypothesis, calcium condensation/decondensation on the macromolecular
network creates coherent patterns of protein phosphorylation that transduce
signals [24]. One of the attractive features of this hypothesis is that changes
in temperature and in the tensional state of the macromolecular network cause
changes in ion condensation on this network hence allowing it to integrate
chemical and physical signals. Divalent ion condensation can also occur in
vitro on MTs or actin microfilaments [14, 28, 29, 30, 8]. Since both actin
and tubulin are negatively charged, the possibility exists that ion condensa-
tion on MT and microfilaments occurs in vivo. In the case of magnesium,
condensation of this ion could provide a powerful basis for the activation of
enzymes associated with the cytoskeleton whilst decondensation could activate
enzymes free in the cytoplasm. Note too that cytoskeleton-associated enzymes
could undergo conformational changes due to mechanotransduction by the
cytoskeleton [12, 7] and that such changes can modulate catalysis [9]; This
relationship may be two-way.
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Another integrative hypothesis of relevance here is that of the cell as being
a set of FDSs [33]. One central idea here is that enzymes that are free (i.e.
unbound) are degraded preferentially. There is therefore spatial or configu-
rational control over phenotype. This idea can be incorporated satisfactorily
into the cytoskeletal sensing hypothesis. For example, an enzyme activated
by substrate could bind to the cytoskeleton where it would be safe from pro-
teases. Finally, in the cytoskeletal sensing hypothesis, the activity of numerous
enzymes may be transduced by cytoskeletal dynamics into levels of ATP and
GTP, two simple outputs with a myriad connections to cellular processes.
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Abstract

Through 3D modeling and visualization, a biologist can experience space and
crowding questions. This technique will help to generate new questions and
new testable hypothesis. Another benefit is the creation of realistic images for
scientific publications or funding purposes.

This (optional) practical work proposes an initiation to 3D modeling and
visualization of biological environment containing numerous proteins and large
portions of DNA.

Organization of the course We will first describe data (protein 3D struc-
ture, number, interaction, position, orientation) used to build a 3D scene and
their origin (microscopy, simulation, empirical modeling).

We will then show how to transform these data into a 3D scene. The core
of this process does not require to learn and use any modeler tools. The
contribution of modeling tools to the 3D modeling process will be shortly
addressed.

The biological viewer LifeExplorer (http://www.lifeexplorer.eu)
will be used to navigate in and characterize the biological scenes created during
the seminar. Cryo-EM reconstruction is not in the scope of the seminar.

Applications

e Rendering of the folding of a several thousands Kb DNA portion in
bacterial nucleoid. The global compaction resulting from several states
of folding will be compared as well as the volume accessible locally
to various proteins. We will see how to generate a 3D scene from
simulation data associating the long portion of DNA with compaction
proteins and transcription enzymes. The rendering algorithm used here
is well adapted to the study of viral DNA refolding into phage capside.

e Reconstruction of the FtsZ ring-like structure.

e Reconstruction of a crowded cytoplasm.
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Abstract

Dynamics of metabolic systems can be modelled by systems of differential
equations. Realistic models of metabolism allowing to integrate genome scale
data should have very large size and thus face problems related to incomplete-
ness of the information on their structure and parameters. We discuss how
model reduction techniques that use qualitative information on the order of
magnitude of parameters can be applied to simplify large models of differential
equations.

1 Introduction

In spite of steady advance in the omic sciences (metabolomics, transcriptomics,
proteomics), modelling of large biochemical networks, based on standard math-
ematical approaches, faces obstacles such as incompleteness of network de-
scription (structural and parametric) and lack of exact knowledge of kinetic
parameters. In the particular case of the modelling of metabolic pathways,
although genome scale reaction models are available for certain well studied
organisms[2], complete and reliable information on the kinetic parameters of
enzymatic reactions (V' m, K'm) are not available for such very large models.
Constraint based approaches (such as flux balance analysis FBA [11])
circumvent these obstacles by using optimality principles and replacing the
network by a set of stoichiometric constraints. FBA is well suited for global
studies of perturbations of metabolism. Thermodynamics imposes constraints
that can be dealt with within the same approach. FBA has been successfully
applied to the global study of the metabolism of various organisms to identify
the effects of gene knock-outs in various media, as well as for defining the
concept of minimal supporting growth media. In spite of these successes FBA
has two major drawbacks. It can not deal with time dynamics. Moreover
it can not predict concentrations of metabolites (the predicted variables are
the fluxes), that is a major defect when dealing with metabolomic studies.
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Dynamic effects are particularly important in parmacokinetik when, depend-
ing on the dose time-scenario, the application of a drug could trigger or not
compensatory mechanisms.

Dynamic modelling using differential equations was successfully used to
study small or medium models (usually from ten to several tens of variables)
for which complete sets of kinetic parameters can be measured or reverse-
engineered. In order to study much larger models we could use model reduc-
tion techniques, which is a different way to tame complexity.

Model reduction is now common practice in combustion modelling where
systems of thousands or tens of thousands of chemical reactions are reduced
to much simpler sets of equations (see methods such as CSP, ILDM, invariant
manifold [14, 12, 6, 5, 7, 1]). The feasibility of the reduction is guaranteed by
generic properties of dissipative systems, that after a quick transition converge
to a dynamics with a few degrees of freedom (invariant manifold [6, 5, 7, 1]).
Applied to metabolic pathways such methods give a reduced description of
dynamics in terms of synthetic variables that most of the time are difficult
to interpret. This could be enough for numerical purposes such as stiffness
elimination, but is not always appropriate for metabolic modelling. In this
case we are looking for reduced variables that are easy to interpret and we need
reduction methods that can cope with incomplete kinetic information. A recent
extension of limitation theory [9, 15, 10] satisfies both these requirements. It
can deal with both precise (exact values of constants) and qualitative (order
of constants, such as much slower or much quicker) information. Also, the
reduced models can be deduced from the initial model by simple constructions
such as pruning and pooling.

2 Differential equations models

Continuous dynamical models of metabolism are conveniently represented as
systems of differential equations. In such models, the state of the system
is a vector x € R" containing the concentrations of all metabolites. Each
reaction (elementary step) in the model (indexed by an integer i € 1,...,7)is
described by a stoichiometric vector ¥ = 3’ — o' (3 and a corresponds to
the stoichiometries of products and reactants) and a rate R;.

The rates (or fluxes) R;, which are expressed in units of transformed mass
per unit time, are functions of the concentrations. For reactions with no in-
termediate steps, occurring by random collisions of molecules, one can obtain
the mass action law:

R(x) =k Ha:;l] —k_ Hajjﬁ] (1)
J J
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The set of reactions representing the step by step transformations of the
metabolites is also called reaction mechanism or reaction network. The dy-
namics of a reaction network is given by the following system of differential
equations:

d d :
dit” =3 Ri(a)v 2)
=1

For instance, consider the Michaelis-Menten mechanism for enzymatic
reactions S + F = ES — E + P.
[5] -1
[E] _ |
ES 1 |
[P] 0
0
1
-1
0
The system of differential equations reads:

For this model we have x =

Ry = K [S|[E] — ki [ES], v2 = , Ry = ko ES].

I kis)E + k[ 3
df] — K} [S|[E] + Ky [ES] + ko [ES] )
d[ft S| ISIE] = kT [ES) - ke ES )
d[P] _
u — ky[ES) (©)

3 Traditional rate limiting step theory

In the ITUPAC Compendium of Chemical Terminology (2007) one can find the
following definition of limiting steps: “A rate-controlling (rate-determining or
rate-limiting) step in a reaction occurring by a composite reaction sequence
is an elementary reaction the rate constant for which exerts a strong effect
- stronger than that of any other rate constant - on the overall rate.” Hans
Krebs coined the term “pacemaker” for rate-limiting enzymes, that could play
important role in targeting metabolism with drugs.

Although it is obvious from this definition that a rate-limiting step does
not always exist (among the control functions generically there is a biggest
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one, but this is not necessarily much bigger than all the others), biochemists
tend to believe that each metabolic pathway has a unique limiting step even if
most often do not agree on which one this is. On the other extreme, metabolic
control theorists suggest that pathways rates depend to various degrees on rate
constants of all the reactions, and thus limitation theory has limited utility. This
theoretical prediction (relying on summation theorems for control coefficients
[3]) seem to be verified experimentally. As cited by David Fell, a 3.5-fold
increase of the amount of limiting enzyme phosphofructokinase in yeast have
no significant effect on the anaerobic glycolytic flux [3]. True pacemaker
enzymes allowing flux re-distributions are difficult to find.

However, for the notion of limiting step that is used in practice, there are
important dynamical differences between systems without limiting step and
systems with limiting step. The behavior of the later in terms of dynamics of
intermediates and distribution of fluxes can be understood even if kinetic infor-
mation is only partially quantitative. Finally, metabolic control and limitation
theory can be unified in a common methodology. Limitation based model
reduction can provide simpler models whose control coefficients can be more
easily studied. Removing dominated (inessential) reactions allows to solve the
problem of “sloppy sensitivities” identified in the context of gene networks,
but also valid for regulation of metabolism.

4 Reducing linear networks with separated constants: pruning,
glueing, and restoring

4.1 Linear networks

Linear reaction mechanisms include monomolecular networks or more gener-
ally first order networks.

The structure of monomolecular reaction networks can be completely de-
fined by a simple digraph, in which vertices correspond to chemical species
Aj;, edges correspond to reactions A; — A; with rate constants k;; > 0. In
this case, the stoichiometric vector for the reaction (4, j) has —1, 1 in positions
1, j, respectively and zeros elsewhere. The rate function is proportional to the
concentration of the substrate R;;(x) = kj;x;.

The system of kinetic differential equations is

dx; d

d? = Z kija; — (Z kji)x;, or in matrix form d—f =Kz @)
J J

where K is the kinetic matrix.

Monomolecular mechanisms are conservative, ie the total number of molecules
is a constant of the dynamics ) ,x; = const.. This means that if a single
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molecule is transformed by the mechanism, at each time there will be a single
molecule somewhere in the mechanism.

The methods that we discuss here can be applied more generally to pseudo-
conservative first order mechanisms.

First order reaction networks can contain reactions that are not monomolec-
ular, such as A — A+ B, or A — B + C. There is always a unique
substrate and the rates proportional to the concentration of the substrate. These
mechanisms are not conservative because they allow overall molecule pro-
duction. Pseudo-conservative first order mechanism conserve total number of
molecules of some species of interest that we call internal but can consume or
produce external species. In pseudo-conservative first order mechanism A —
A+ B reactions are allowed, provided that B is external; similarly A — B+C
reactions are allowed, provided that either B or C' is external. Degradation
reactions can be studied in this framework by considering a special component
(sink), that collects degraded molecules.

Metabolic networks (or subnetworks) are rarely monomolecular or first
order. However, when all substrates and cofactors are in excess, except for
one, metabolic reactions can be also considered to be first order because in this
case the rate is proportional to the concentration of the substrate that is not in
excess. Though the general applicability of this method should not be taken
for granted, linear formalism can provide new insights into metabolic network
design.

4.2 Reduction algorithm for monomolecular networks

In [9, 15] we propose an algorithm to simplify monomolecular networks with
total separation of the rate constants. Total separation of the constants means
that either k; << k7 or k7 << kg forall I = ij, I' = ¢'j'. The algorithm,
justified by estimates for the eigenvalues and eigenvectors (inspired, but not
fully covered by Gershgorin theorem) of the kinetic matrix [8], consists of
three stages:

I. Constructing of an auxiliary reaction network: pruning.

For each A; branching node (substrate of several reactions) let us define x;
as the maximal kinetic constant for reactions A; — A;: k; = max;{k;;}. For
correspondent j we use the notation ¢(i): ¢(i) = arg max;{k;; }.

An auxiliary reaction network V is the set of reactions obtained by keeping
only A; — Agy;) with kinetic constants r; and discarding the other, slower
reactions. Auxiliary networks have no branching, but they can have cycles and
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confluences. The correspondent kinetic equation is

¢ = —K;c + Z KjCj, 8)
P(5)=i

If the auxiliary network contains no cycles, the algorithm stops here.

II gluing cycles and restoring cycle exit reactions

In general, the auxiliary network V has several cycles C', Co, ... with peri-
ods 71, 79,... > 1.

These cycles will be “glued” into points and all nodes in the cycle C;, will
be replaced by a single vertex A’. Also, some of the reactions that were pruned
in the first part of the algorithm are restored with renormalized rate constants.
Indeed, reaction exiting a cycle are needed to render the correct dynamics:
without them, the total mass accumulates in the cycle, with them the mass can
also slowly leave the cycle. Reactions A — B exiting from cycles (A € C;,
B ¢ C;) are changed into A* — B with the rate constant renormalization: let
the cycle C" be the following sequence of reactions A1 — Ay — ...A, —
A, and the reaction rate constant for A; — A;y; is k; (k;, for A, — Ay).
For the limiting (slowest) reaction of the cycle C; we use notation kjjy ;. If
A = Aj and k is the rate reaction for A — B, then the new reaction A' - B
has the rate constant Kk, /k;. This rate is obtained using quasi-stationary
distribution for the cycle.

The new auxiliary network V! is computed for the network of glued cycles.
Then we decompose it into cycles, glue them, iterate until a acyclic network is
obtained V".

III Restoring cycles

The dynamics of species inside glued cycles is lost after the second part. A
full multi-scale approximation (including relaxation inside cycles) can be ob-
tained by restoration of cycles. This is done starting from the acyclic auxiliary
network V" back to V! through the hierarchy of cycles. Each cycle is restored
according to the following procedure:

For each glued cycle node A", node of V™,

i
e Recall its nodes A;’f_l — AR ...A;’;‘l — AT~ they form a
cycle of length 7;.

e e . . m—1 m—1
e Letus assume that the limiting step in 47" is A7™" — A
e Remove A" from V™
: -1 -1 -1
o Add 7; vertices A7}, Aly~, . AT o VT

e Add to V™ reactions A;’f‘l — Ag_l — ...Ag’;i_l (that are the cycle
reactions without the limiting step) with correspondent constants from
Vm—l
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o If there exists an outgoing reaction A" — B in V" then we substitute
it by the reaction Az’;:l — B with the same constant, i.e. outgoing
reactions A]" — ... are reattached to the beginning of the limiting steps

e If there exists an incoming reaction in the form B — A", find its
prototype in V™! and restore it in V™

e Ifin the initial V™ there existed a “between-cycles” reaction A;" — A7
then we find the prototype in V"~ !, A — B, and substitute the reaction
by A:ﬁ;l — B with the same constant, as for A" — A7 (again, the
beginning of the arrow is reattached to the head of the limiting step in
A

The result of the algorithm is a reduced network that has no cycles and
no branchings. Some reactions necessarily disappear from the initial model in
order to break cycles and eliminate branchings, so the global operation can be
called pruning. Pruning expresses the domination relations between pathways.
Simple in acyclic networks (the quicker branch dominates, the much slower
branches are pruned), these relations can be quite intricate in the presence of
cycles. Rate constants of some of the remaining reactions are changed into
monomial functions of the initial constants.

For the reduced network the calculation of the dynamics is straightforward.
Solution of the homogeneous linear dynamic equations (7) are:

w(t) =Y r*(1F, 2(0)) exp(Mt) ©)
k=1

n

where )y, 1¥, 7* are the eigenvalues, left and right eigenvectors of the

kinetic matrix K, respectively: [F K = A\, 1%, Kr* = \prk.
Computing eigenvalues and eigenvectors is straightforward for acyclic net-
works with no branching.

The eigenvalues are \; = —x;, one for each node in the network. If a node
1 is a sink (it has no successor) we consider that \; = 0.

Right eigenvectors ' are obtained by recursion, in the forward direction

along the reaction graph. One has 7°§- = 0 for 7 < 4. Starting with the

normalised value rf = 1, the coordinates rék @) (k = 1,2,..) are obtained
by:
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i Kok (i) i i Kgi(4)
Tobtry) = o k) T 11 i —
PRt (4) v §=0 #ITL(3) v

(10)
Ki u R (i)

H¢k+1(i) — K; =1 Ii(bj(i) — K ’

Left eigenvectors are also obtained by recursion, but in the reverse direc-
tion. Thus, l;. = 0 for j > 4. Starting with the normalised value I} = 1, the

coordinates l; are obtained as:

q—1
i Kji Kok ()
(A L — — 11
I Ky =y 20 kl;[o Kgk(j) — Ki (b

In the case of fully separated systems, these expressions are significantly
simplified and do not require knowledge of the exact values of ;. Thus, for
the left eigenvectors I} = 1 and, for ¢ # j,

i _ {1,if¢q(j):iforsomeq>0andm¢d(i) > ks foralld=0,...q—1
j

0, else
(12)
For the right eigenvectors we suppose that x;y = 0 for a sink vertex Ay.
Then r; = 1 and

i _ { —1,1f Ky < ki and Kgm(;y > ki forallm =1, .. k—1
o* () —

0, else
(13)
A monomolecular network with totally separated constants have rate-limiting
step. Supposing that the reduced network is a chain, the rate-limiting step is the
slowest reaction in the chain. However, this is not always the slowest reaction
of the initial network.

Broken cycle The simplest example illustrating this counterintuitive possi-
bility is a cycle of reactions. Consider an isolated cycle with total separation.
The reduced acyclic model is the chain obtained from the the cycle by re-
moving its slowest constant. The rate limiting step in the chain is the second
slowest constant of the cycle. A cycle with total separation behaves like a chain
ensuring transport of the mass to the beginning of the slowest step.
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Interrupted pathway The effect of pruning can also lead to pathway inter-

ruption. For instance let us consider the example in Fig. 1 below.

Network preprocessing

E> (a2) k
- |:> 54
1) 2} )
Obtaining dominant kinetic svstem
() (3)
: k24k35
lf_<k32 m @
ksy I:> I:> m I:> ()
(a1)
3.1.1) 3.1.2) 3.1.3)
. k24-k35
k
k54 32
. =
3.2.1) 3.2.2)  3.23) 3.2.4)

Figure 1: Example of calculation of the dominant approximations for a
monomolecular reaction network with total separation of the constants (from
[15]). The order of kinetics parameters is shown both by integer numbers

(ranks) and the thickness of arrows (faster reactions are thicker).
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The network preprocessing consists in pruning reaction A4y — Ag be-
cause this is dominated by the much faster reaction A4 — As. The resulting
auxiliary network has the cycle (As, A4, A5), that is glued to Aj in the step
3). The reaction Ay — As exiting the cycle is restored with renormalized
kb, = koakss/ksa constant in step 3). This produces a new cycle that is glued
to Ay. Depending on the order relation between the renormalized constant k%,
of the exit reaction and the constant k3o, the limiting step of the glued cycle
Ajg can change. After elimination of cycle limiting step and cycle restoration
3.1.3-4 or 3.2.3-4 there are two possible reduced neworks, both of them chains.
In the case 3.1.4 the limiting step for the transformation of A; into Aj is the
reaction Ay — Ajs, the slowest reaction in the initial mechanism, but in 3.2.4
the reduced mechanism no longer contains this transformation.

Futile cycles and switching Metabolic networks contain many cyclic struc-
tures. As discussed in [3] a futile cycle converts a metabolite into another and
back. It produces no net change but dissipates energy. Among various potential
roles of futile cycles (heat production, increased control coefficients) there is
the possibility of switching the direction of the flux (see Fig.2 below).

K3 Y1
X1 k1
\a/\czkf: 6
Xz‘K2 \k4/ \YZ

k2<<k4,k5<<k3

k4<<k3 k3<<kd 4

v1
X1 k1 ! y
. © /kS k4/k3 N ©
K6 k6
© /é \ Y2 X2 AZk3/k4\ Y2
N /53\ "~ kS/Yl
c1 c2 K6 c1 c2 K6
A ™~ Y2 \k/ ™~ Y2

Figure 2: Futile cycle used as a metabolic switch. The cycling condition reads
ko << kg4, ks << ks.

X2
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5 Quasi-stationarity and quasi-equilibrium: pooling species and
reactions

Quasi-stationarity and quasi-equilibrium are useful concepts that can be used
for model reduction of rather general reaction mechanisms.

Quasi-equilibrium reactions are reversible reactions at thermodynamic equi-
librium. Species involved in quasi-equilibrium reactions bear well defined al-
gebraic relations between their concentrations. A mass action quasi-equilibrium
reaction would imply:

B.
HA;p.J AG
]"L‘éj = Keq = eXp (_ RT) (14)
3

where R is the universal gas constant, 7" is the temperature, AG is the
Helmholtz free energy change, K., = k™ /k™.

Slightly more generally, quasiequilibrium approximation uses the assump-
tion that a group of reactions is much faster than other and goes fast to its
equilibrium. This can be studied by using singular perturbations [18, 19], by
introducing a small positive parameter e representing the ratio of timescales of
slow and fast reactions. Then the dynamics reads:

fl—f =Y ng%% > Rpy/ (15)

s,slow f,fast

To separate slow/fast variables, we have to study the spaces of linear con-
servation law of the initial system and of the fast subsystem:

de 1
— == > Ryt (16)
f,fast

In general the system (15) can have several conservation laws. These are
linear functions b'(x),...,b™(x) of the concentrations that are constant in
time. The conservation laws of the system (16) provide variables that are con-
stant on the fast timescale. If they are also conserved by the full dynamics, the
system has no slow variables (variables are either fast or constant). In this case,
the dynamics of the fast variables is simply given by Eq.(16). Suppose now that
the system (16) has some more conservation laws b1 (x), ..., b (x) that
are not conserved by the full system (15). Then, these provide the slow vari-
ables of the system. The QE equation ) F.slow Rf’yf = 0 serves to compute
fast variables as functions of the slow ones [10].

The quasisteady-state (QSS) assumption was invented in chemistry for
description of systems with radicals or catalysts [20]. In the most usual version
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[16], the species are split in two groups with concentration vectors ¢® (“slow”
or basic components) and cf (“fast intermediates” or QSS species).

The small parameter € used in singular perturbation theory is now the
ratio of small concentrations of fast intermediates to the concentration of other
species. After rescaling ¢® and ¢/ to order one, the set of kinetic equations
reads:

dc’®
— S(pS nf
7 Ws(c*, ¢l) (17)
f
ddit = (1/eW/(c*,¢f) (18)

where the functions W, W/ and their derivatives are of order one (0 <
€ << 1.

The standard singular perturbation theory[18, 19] provides the QSS alge-
braic condition W/ (c*,e¢f) = 0. These equations, together with additional
balances for ¢/ (conservation laws) are enough to deduce the fast variables cf
as functions of the slow variables ¢® and to eliminate them [20, 13, 15]. The
slow dynamics is given by Eq.(17).

However, not all fast species are small concentration intermediates. The
simplest such example is a fast irreversible cycle with a slow exit reaction. This
example does not correspond to the traditional definition of quasi-equilibrium
because it lacks reversibility and can not fulfill detailed balance. A singular
perturbation analysis similar to the one for QE shows that the total mass of
the cycle (this can be arbitrarily big) represents a slow variable, while each
one of the concentrations of species inside the cycle are fast variables. The
algebraic relations for fast species are those for QSS because they express the
steady-state condition for the fast cycle.

The simplest illustration of these two approximation is provided by the
Michaelis-Menten model for enzymatic reaction (see section 2).

One can have quasi-equilibrium if the first equation is fast: kf = k¥ /e,
where e > 0 is small. Then, the quantities conserved by the rapid reaction
form two slow pool global variables, namely C* = [S]+[ES] and bg = [E]+
[ES]. Actually, by is conserved by all the reactions of the mechanism, so it
is a kinetics constant by = const.. The algebraic quasi-equilibrium condition
reads ki (C® — [ES])(bg — [ES]) = ki [ES]. This gives a dependence of the
pool variable [ES] on the pool global variables, namely [ES] = cgs(C?, bg).
The final slow dynamics, obtained from Eq.6 and by adding term by term the
Eqgs.3,5, reads:
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C* = —kocps(C*,bp) (19)
P =kocps(C®,bE) (20)

The reduced QE mechanism is a single reaction transforming the pool C*
into the product P, with a rate law R(C®) = kacps(C?, bg) (the constant by
is the total quantity of enzyme).

The QSS approximation is obtained from the full mechanism when the
enzyme is in much less quantity than the substrate C* >> bg. Under this
condition, & and E'S are fast intermediates (QSS species). bg is conserved
and constant like before. The slow variables are the concentrations of non-
intermediate species, namely [S], [P].

The QSS algebraic condition reads k; [S][E] = (k| + k2)[ES] which
gives a dependence of the fast variables on the concentrations of the other
species:

[ES] = crs([9],br) = ki [S)br/ (kI [S] + kT + k2) (1)

The dynamics of the external (non-intermediate) species reads:

1S] = —kf[S](br — cms([S]) + ki crs([S]) = —kacrs([S],b5) (22)
[P — kocps (], bE) (23)

The reduced QSS mechanism is a single reaction transforming the sub-
strate S into the product P, with arate law Ry (C*®,bg) = kacps(C?,bg) =
Vin[S]/([S]+ K1), where Rz is the well known Michaelis-Menten rate law,
Vin = kabp, Kin = (k +k2) /K.

The single step of the reduced M-M mechanism can be seen as resulting
from merging (considering them to be simultaneous) two steps S+ FE — ES
and £S — E + P of the initial full mechanism. This merged step, or “pool
of reactions”, is a combination of reactions involving the two rapid species E/
and E'S such that the resultant reaction does not change the concentrations of
any of the fast species (these combinations conserve the fast species). Given
a reaction mechanism and a set of fast species, there may be several reaction
pools that preserve fast species (notice that for pool definition, reversible reac-
tions are considered as two steps, one for each direction). There is only one
such pool for the M-M mechanism.

The difference between the QSS and the QE in this example is obvious.
QE corresponds to pooling of species. For QE we first identify pools of
species that are rapidly transformed one into the other by rapid QE reactions.
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The number of pools is given by the number of conservation laws of the set
of QE reactions that are not conservation laws of the full mechanism. Then,
QE conditions allow to express the rates of reactions exiting the pools as
functions of global variables of the pools (conservation laws of QE reactions).
The reduced mechanism is made out of the pools, the remaining species and
reactions with rate laws thus computed.

QSS corresponds to a pooling of reactions. A reaction pool (also called re-
action route [20, 17]) is a linear combination with positive integer coefficients
of reactions in the mechanism (reversible reactions counted twice, one reaction
for each direction). We are interested in those pools (routes) that transform
slow species into other slow species and conserve the intermediate fast species.
In [15] we have also imposed a simplicity criterion for the pools, by choosing
only simple sub-mechanisms. Simple sub-mechanisms are pools (routes) with
a minimal number of reactions, transforming slow species without producing
accumulation or depletion of the intermediate fast species. According to this
definition, simple sub-mechanisms are elementary modes [4] of the set of
reactions involving fast species. The QSS conditions and the internal balances
are used to express the concentration of intermediate species and the rate laws
of pooled reactions as functions of the concentrations of slow species [15].

Coming back to the previous section we would like to relate the reduction
algorithm for monomolecular networks to the general concepts of QE and
QSS.

Monomolecular networks with completely separated constants can not be
considered to be at quasi-equilibrium, because they do not include reversible
reactions (if both forward and reverse fluxes are allowed, then one of them
dominates the other). Although quasi-equilibrium ideas have been used as an
intermediate step of the reduction algorithm (gluing cycles), the reduced model
is a acyclic graph with no pooling of species.

Monomolecular networks with completely separated constants can contain
QSS species. These can be easily identified in the reduced model which is a
chain or a set of chains with confluences. For instance, if the reduced model is
a chain, the QSS species are those species that are consumed by fast reactions.
In totally separated chains, QSS species concentrations can be set to zero (they
are consumed by fast reactions). For instance, in the example shown in Fig.1,
case 3.1.4 for timescales of the order of the inverse of the rate limiting step,
three species Ay, Az, A4 are QSS. The reaction pool (Ay — Ag) + (A3 —
Ay) + (A4 — As) gives the reduced mechanism Ay — A5 of constant rate
k32.
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As suggested above, identification of QSS species, QE reactions and lim-
iting steps is not easy in general. The QSS and QE nature of species and
reactions as well as the limiting steps are global properties of the reaction
mechanism that can not be easily obtained by comparing rate constants of
individual reactions. Furthermore, the idea of “rapid reactions” can lead to
very complex kinetic situation and should be used with care in the reduction
of models.

Last but not least, we must emphasize an important difference between
QSS and QE. Contrary to QE, QSS is a purely kinetic concept and has no
relation to equilibrium thermodynamics (it does not have to obey detailed
balance for instance). Thus, in the QSS situation, rate constants can not be
related to thermodynamic potentials. This makes QE a simpler situation from
the point of view of parameter identification.

6 Conclusion

Dynamics of metabolic networks can be studied by systems of differential
equations. Large models with incomplete information are not suited for im-
mediate analysis by traditional approaches and have to be simplified.

We have presented several model reduction techniques allowing to trans-
form large reaction networks into simpler networks, whose dynamics can be
readily studied. These techniques exploit the separation of the timescales of
the complex networks. In the process of simplification, non-critical elements
are removed from the models, and only essential elements are kept.

For monomolecular networks with total separation of the rate constants, we
propose a reduction algorithm allowing to transform any such network into an
acyclic network without branching, whose dynamics is computed analytically.
The global transformation leading to simpler monomolecular networks can
be defined as pruning. This transformation eliminates dominated reactions
and computes a dominant subnetwork. The limiting step, easily identified on
the reduced network, can be different from the slowest reaction of the full
mechanism. Monomolecular models, though not always realistic, can teach us
about design principles of large networks.

More general concepts such as quasi-equilibrium and quasi-steady state
approximation can be applied to simplify non-linear as well as linear networks.
We showed how these approximations can be related to pooling of species and
of reactions.

Pooling of species and of reactions can also result from decompositions
of the Jacobian (matrix defining the linearised dynamics) of nonlinear systems
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of differential equations (2), once all rate constants are known. This method
has been applied in [11] to analyse pooling of a fully parametrized glycolysis
model. However, one would like to obtain the pools without knowing numer-
ical values of all the parameters, using only the order relations between time
scales and/or rate constants.

There is still much to do in this direction to propose simple general rules
allowing for correct identification of limiting steps, QSS species and QE reac-
tions. The next case to study will be the linear networks with partial separation,
that could be approached by a combination of pooling and pruning. QSS and
QE, combined with techniques for dominant solutions of algebraic equations
represent a promising approach to the reduction of non-linear models (see
[15, 13]).
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Abstract

The increasing availability of genomic data offers a new opportunity to search
for specific signals of the coevolution of amminoacids in proteins. When the
amino acid at one site changes, it can alter the selective forces associated with
other sites, thus altering the set of mutations selectively admissible at those
sites. The coevolution between two residues can be estimated thanks to the
mutual information, an attractive metric that esplicitly measures the codepen-
dencies between two random variables. Using multiple sequence alignments
to estimate the distribution of the amino acid in a site, mutual information
quantifies how much uncertainty in the aminoacid state in one site can be
removed by the knowledge at the amino acid state at another site.

The easiest way to estimate the nucleotide or amino acid distribution at one
locus in a functional genomic region is to observe and count the respective state
in a number of species. However these species did not evolve independently
from each other and the frequency count is showing a phylogentic bias.

The main idea of our work is that this bias can be reduced by observing the
same species after they evolved independently for a long time on evolutionary
time scales where information about a common ancestral state is eventually
lost. After this time the distribution of frequency counts will be the stationary
distribution of the Markov process that governs the evolution of this site due
to functional constraints.

A maximum likelihood approach enables us to reconstruct this Markov
process for each site and infer the stationary state, the unbiased estimator
(phylogenetic) for the state distribution. The performance of the algorithm
depends on several parameters as the depth of the phylogeny, the number of
states, the number of leaves, the topology of the phylogeny.

The effectivness of the algorithm has been tested for 2,4 and 20 states case
on several ultrametric phylogenies with a coupled work of analytics and sim-
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ulations and has been compared also to several simple (re-)weighting schemes
to get an unbiased estimate with less computational costs: their performance

is very poor compared to our method.
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Abstract

The aim of our work is to study the effect of geometry variation on nucleation
times and to address its role in the context of eukaryotic chemotaxis (i.e.
the process which allows cells to identify and follow a gradient of chemical
attractant). As a first step in this direction we study the nucleation dynamics
of the 2d Ising model defined on a cylindrical lattice whose radius changes as
a function of time. Geometry variation is obtained by changing the relative
value of the couplings between spins in the compactified (vertical) direction
with respect to the horizontal one. This allows us to keep the lattice size
unchanged and study in a single simulation the values of the compactification
radius which change in time. We show, both with theoretical arguments and
numerical simulations, that squeezing the geometry allows the system to speed
up nucleation times even in presence of a very small energy gap between the
stable and the metastable states. We then address the implications of our
analysis for directional chemotaxis. The initial steps of chemotaxis can be
modelled as a nucleation process occurring on the cell membrane as a conse-
quence of the external chemical gradient (which plays the role of energy gap
between the stable and metastable phases). In nature most of the cells modify
their geometry by extending quasi-onedimensional protrusions (filopodia) so
as to enhance their sensitivity to chemo-attractant. Our results show that this
geometry variation has indeed the effect of greatly decreasing the timescale
of the nucleation process even in presence of very small amounts of chemo-
attractants.
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Abstract

We know that some proteins can regulate the expression of genes in a living
organism. The regulation of gene expression occurs through networks of reg-
ulatory interactions in a non linear way between DNA, RNA, Proteins and
some molecules, called genetic regulatory networks. It is becoming clear that
mathematical models and tools are required to analyse these complex systems.

In the course of his study on gene regulatory networks R. Thomas proposed
a discrete framework that mimics the qualitative evolution of such systems.
Such discrete models are of great importance because kinetic parameters are
often non measurable in vivo and because available data are often of qualitative
nature. Then Snoussi proved consistency between the discrete approach of R.
Thomas and Piecewise Linear Differential Equation Systems, which are easy
to construct from interaction graph and thresholds of interactions. There exists
a transition between two qualitative states (in the discrete model) if and only if
there exists a trajectory of the differential model that goes from a point of the
domain corresponding to the first qualitative state to the boundary separating
this domain to the one corresponding to the second qualitative state.

Our work focuses also on the relationships between both approaches: we
would like to extend the result due to Snoussi. Can we give some conditions on
the model or on the trace of the qualitative state space which ensures that it is
possible to construct a trajectory of the differential model that passes through
the same sequence of domains ?

Our main result consists in a theorem stating that, considering a continuous
model, for which the associated discrete model has a finite path s9 — s7 —
. — Sp such that for all ¢ € [1,...,n — 1], 8,1 # s;+1, then, under some
hypotheses, trajectories of the differential system starting from the domain
associated with sg pass successively through each domain associated with the
states of the path. The used hypotheses have been introduced by Jean-Luc
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Gouze and Farcot in a previous work concerning limit cycles. The proof is
done by induction and sketch of the proof is given.

Finally, several well chosen examples will illustrate the use of the theorem
as well as its limitations due to the stated hypotheses.
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Abstract

The techniques most frequently used in biology for the study of metabolism
(nuclear magnetic resonance (NMR), mass spectrometry (MS), chips, etc) only
provide partial information about networks. Then the expert has to reconstruct
networks between metabolites for which he has information. In addition,
each of these techniques has its limits and only studies a particular aspect of
metabolism. By combining the results of these different techniques, we hope
to overcome these limits and to derive new and more comprehensive results.

Our goal is to develop a new innovative software to merge data from ex-
ploration techniques for the largescale cellular metabolism. This strategy will
model the evolution of cellular metabolism as a result of pathology or a par-
ticular physiological environment. The data that we have are of four types:
Promotology, Transcriptomics, Metabolomics and Proteomics. The intersec-
tion of the results of these techniques should help us to overcome some of
their limits and to derive the new information. This software will allow to
rebuild all possible reactions between the metabolites of interest (identi?ed
by NMR spectra or MS, DNA chips, or promotology). The software will be
based on the public database KEGG. The database will also record the results
of simulation. These results will be then exported in the standard file formats
used in modeling : SBML (Biomodels public database) or BioPax (Online
database Biological Pathway Exchange).

From the complex metabolic network established by the software, the sys-
tem of ordinary differential equations which corresponds to this network is
automatically created and solved using scilab. The user may choose the bio-
chemical laws which will be used for the construction of this system. One can
also enter the parameter values which are known . The unknown parameters
are predicted by the software with the numerical methods and will be presented
in a table. The results of the simulation of systems and different analyses
are presented as diagrams: changes in metabolite concentrations over time,
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evolution of concentration of a metabolite in relation to another, phase spaces,
stability curves of the system, rate of reaching the steady state for each of the

metabolites, etc.

We plan to include other simulation methods or study of biological networks
such as calculating elementary flux modes or such as Petri nets.
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Abstract

Transcriptional interactions, occurred between transcription factors (TFs) and
their target genes, control many important processes, such as critical steps in
development and responses to environmental stresses, and their defects can
result in various diseases. To have a deeper understanding of these interac-
tions, the accurate computational prediction of the location of DNA binding
sites is therefore a highly desirable research goal, and a key step towards the
ability to reverse engineer genetic regulatory networks at a genomic scale.
Thus, many algorithms have been developed to exploit the various sources
of experimental information available and the various statistical properties that
appear to distinguish regulatory regions from the genome in general. However,
all these approaches looked for improvement of methods which all rely only on
local sequence information, while, to achieve a qualitative jump in the area of
binding site prediction would require essentially information of a conceptually
novel type. As chromosomal architecture is an essential ingredient for proper
transcriptional function [1], it could potentially be used for transcriptional
network inference.

Sequence classifier. Recurrent binding sites, in a collection of DNA sequences
(promoter region of target’s genes), are most commonly modeled by position
weight matrices (PWMs). The sequence patterns are simply strings over the 4-
letter alphabets [A, C, G, T'] that form the DNA. So an L-long sequence motif
can be represented by a 4 x L matrix with weights giving the frequency of
the four DNA bases in each of the L positions [3]. Discovery of a PWM in
sequence data was an early problem to be addressed in computational biology.
The challenge is to find the location of the sites and the representative PWM
using only the sequence data, without any assumptions on the statistical distri-
butions of patterns in the sequences. Many alignment driven algorithms have
been developed.Given a new sequence s and a learned PWM, one can score
any subsequence in that input.

Positional classifier. Recent post-genomics studies have unrevealed regular
patterns in the position of some genes along the DNA [1]. Two types of
patterns have been identified for genes that are regulated by a common TF:
they tend either to be clustered along the DNA, hereafter referred to as 1D
clustering, or to be placed all along the genomes according to a periodic or-
ganization. As a consequence, the position of the genes shall be seeing as an
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expedient classifier for the prediction of TF binding sites. Here, we propose
to use both the 1D clustering information and the periodic trends to generate
positional score as an additional classifier. Within this scope, authors of this
paper have recently developed a tool for analyzing the periodic trends in small
sets of positional data points (discrete one-dimensional signal). The tool aims
i) to detect the presence of a periodic pattern and ii) to allocate to each point
(gene) a positional score, which reflects the tendency of the point to participate
to the periodic trend.

Classifier fusion using boosting. In principle there are two approaches to
combining classifiers, namely classifier fusion and classifier selection. But,
only classifier fusion methods were explored in our model seen that he in-
dividual classifiers described above were designed to be global experts. In
this paper we propose a slight variation of the AdaBoost algorithm [2] for our
classifier fusion problem. AdaBoost has been shown to improve the prediction
accuracy of weak classifiers using an iterative weight update process. The
technique combines weak classifiers (classifiers having classification accuracy
slightly greater than chance) in a weighted vote fashion giving an overall strong
classifier. Our variation to the regular form of AdaBoost consists in allowing
the algorithm to choose, in each iteration, among weak classifiers trained on
different views (sequence and position in our case) of the training data. The
combination weights for the final weighting rule are obtained using a shared
sampling distribution. In each iteration, a weak classifier is greedily selected
from the pool of weak learners trained on disjoint views. This results in a min-
imization of the training error for the final hypothesis. Notice that while this is
not the regular procedure for training AdaBoost, we are not modifying any of
the assumptions that the algorithm is based on; we only extend its hypothesis
space. As a result, all the convergence proofs that apply to AdaBoost also
apply to our version of the algorithm.

Results. In order to assess the performance of the proposed method, and com-
pare it with other existing methods, we test it on a various transcription factors
of E. coli (from RegulonDB) and B. Subtilis (from DBTBS) using a cross-
validation procedure. The results show that our method tends to improve the
prediction of target and non-target genes compared to the individual classifiers.
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Abstract

The plasticity mechanisms that make catalytic active sites able to process dif-
ferent biochemical reactions, and to accommodate different substrates, are at
present not fully understood [1]. In this work, we will present recent advances
in the use of a graph-based representation known as molecular signature [2].
Molecular signatures provide a description of the atoms and their environment
in the molecule. This characterization fully identifies chemical species in order
to explore the chemical space at both sides of the enzyme-substrate binding
process [3]. Thus, this technique characterizes both chemical species and their
reactions within a common framework, allowing us to study the relationship
between properties of chemical structures such as stereochemistry or molec-
ular similarity, and the process of substrate recognition, catalytic specificity
efficiency of the reaction, as well as biological activity.

Performing this study for the entire KEGG metabolic database [4] brings
insights into evolutionary relationships between different metabolic pathways,
and how new catalytic functions are acquired. We show here enzyme engineer-
ing applications of this method to the directed evolution of natural occurring
protein scaffolds with latent catalytic activities.
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Abstract

Trypanosoma brucei is a parasitic protist of vertebrates that causes sleeping
sickness in Africa. A part of its energetic metabolism, including 7 of the early
stages of glycolysis, occurs in an organelle called glycosome. A metabolic
pathway for the glycosome had been built by exploiting genomic, proteomic
and metabolomic data [1].

Some known biological constraints, such as the ATP/ADP and NADH/NAD+
balances, are not considered in the model. We propose a modelling approach
including structural pathway and metabolic flux analysis to help in the under-
standing of the system’s structure and its semi-quantitative behaviour.

We model known biological information with a stochastic Petri net (where
transitions are given for the reaction and places for metabolites) where delays
can be assigned to transitions given a probability distribution. From a given
set of probability distribution representing the flux amount of reactions (the
input set of parameters), the simulation of the Petri net allows the exploration
of the possible behaviours of the system. At the end of a run, if all input
metabolites are consumed, we get concentration for intermediate and output
metabolites. We integrate expected metabolites concentrations revealed by bi-
ological experiments within an objective function, and use simulated annealing
and simplex minimization approach for its global optimization. Therefore,
simulations are carried out by fitting the set of input parameters until the
system reach the best optimization of the objective function. To explore a large
set of possible behaviour of the system, several run of simulations combined
with the simulated annealing approach are made. A set of solutions is given
by different groups of fluxes distributions (that best fit expected metabolites
concentrations), and are helpful to make some assumptions and analysis for a
given metabolic system.
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MetaboFlux was developed to this purpose and applied to 7. brucei. Resulting
scenarios strongly argue in favour of an unrealistic NADH/NAD+ imbalance
and suggest adding to the model new metabolic pathways. A realistic solu-
tion may be to integrate the pentose phosphates to the previous model. The
resulting new model was tested with Metaboflux and shows relevant fluxes
scenarios.
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Abstract

There is increasing evidence that the overall regulation of genetic expression
relies on a proper spatio-temporal organization of chromosomes inside the
cells. This can be seen in particular from the transcription machinery: in
some eukaryotes and bacteria, transcription of highly active (co-functional
or co-regulated) genes occurs within discrete foci called transcription facto-
ries, where RNA polymerases, transcription factors and their target genes co-
localize [1] . In my work, I will show that DNA inter-gene distances can be
used to efficiently work out functional links between genes. In particular, I
will present a network — the closome — that reflects the tendency for COGs
(cluster of orthologous genes) to be close to each other along the DNA. It
has been obtained by analyzing the genomic organization of more than 800
different bacteria. Various properties like degree distribution, betweenness and
community structure [2] are revealed and discussed.
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Abstract

DNA synthesis is coupled to the growth rate afforded by nutrients by an un-
known mechanism. To evaluate the involvement of metabolic reactions in this
process, we investigated the relationship between growth and replication in
Bacillus subtilis metabolic mutants. For this, the ratio of origin to terminus
chromosomal sequences was plotted against the number of cell doublings per
hour. In AptsG, Apgi, pfk — 1, AcitC, Amdh, ApdhB and ApdhC, a
WT relationship was observed and an increase in origin sequences occurred
in AgapA, pgk — EP and ApykA strains. Flow cytometry analysis showed
that the increase is due to a defect in replication control. A similar phenotype
was observed in cells deleted for genes playing moderate (pycA) or no known
metabolic function (gapB, pckA) in LB and in cells deleted for the regulators
of polarity and intensity of the flux travelling terminal reactions of glycol-
ysis (cepN and yqfL). However, no replication phenotype was observed
in mutants of global metabolic transcriptional regulators (ccpA and codY).
Results also showed that some combination of carbon sources can deregulate
replication in ApykA and Apck A mutants.

We conclude that (i) coupling is driven by the carbon flux passing through
terminal reactions of glycolysis, (ii) side reactions connecting the bottom part
of glycolysis to surrounding paths (pycA, gapB and pck A in glycolytic nutri-
ents and pyk A in neoglucogenic regimen) balance glycolytic flux by carrying
out anaplerotic or cataplerotic reactions and that (iii) unbalanced flux alters
coupling and deregulates replication. These results support our previous ob-
servations (PLoS ONE (2007) 2(5): e447).
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Abstract

The biochemical abstract machine BIOCHAM is a modelling environment
based on two languages for formalizing respectively, the elementary interac-
tions between compounds, and the system behaviour under different condi-
tions. The Biocham GUI is its graphical user interface that gives richer user
experience, making it more easy, effective and animated. It implements all
the functional features that the modelling environment Biocham offers and
more others, including: the comparison section for results from multiple dif-
ferent numerical simulations or traces; customizing results preview features,
automatic creation of LTL queries by giving data file input, etc...Biologists
use diagrams to represent interactions between molecular species, and on the
computer, diagrammatic notations are also more and more employed in inter-
active maps. Therefore, the Biocham GUI is being enriched with a graph-
ical reactions editor for constructing and editing biochemical reactions, and
systems of biochemical reactions, with kinetic expressions, as written in the
Systems Biology Markup Language SBML, and interpreted by a system of
Ordinary Differential Equations over molecular concentrations. The Biocham
reactions graphical editor supports the SBGN specification for a graphical
notation. Today, we are discovering different graph layouts that will make
the complex reactions graphs readable for the users and that will enable the
users find the necessary information from the graphical representation of the
molecular interactions more quickly and precisely.
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Abstract

The technology of DNA chips allows the quantification of the expression level
of thousands genes in the same organism at the same time. Nevertheless,
analysis of data from DNA chips requires development of adapted methods.

We propose a path language that allows the description, in an abstract way,
of the concentration level variations from temporal data like temporal profiles
of gene expression. When concentration level variations have been expressed
through a program of the path language, it becomes possible to apply some
methods from computer science like Hoare logic.

Hoare logic is made of a system composed of axioms and rules. It permits
one to prove if a program is correct in comparison to its specification that is
described through assertions, that is, logical formulas, that define properties on
the program. The precondition specifies the initial state before the execution of
the program and the postcondition specifies the final state after the execution
of the program. A program is said (partially) correct if it is possible to prove
that from an initial state satisfying the precondition, the program leads (if the
program terminates) to a final state satisfying the postcondition.

To model gene regulatory networks, the main difficulty remains in the
parameter identification problem, that is, the search of parameter values which
lead to a model behavior that is consistent with the known or hypothetical
properties of the system. So, we apply a Hoare-like logic designed for the
defined path language. The axioms and rules of this Hoare-like logic are
adapted to gene networks and permits us to prove that the path described by
the program exists in the dynamics. Given a path program and a postcondition,
we can apply calculus of the weakest precondition, based on this Hoare-like
logic. Calculus of the weakest precondition, thanks to defined axioms and
rules, permits us to constrain parameters associated with the program and the
postcondition. Although Hoare logic is well known, its application to constrain
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parameter values of gene networks appears to be brand new and helpful in
order to select consistent models. Moreover, expressing DNA profiles into

programs gives another way to process such data.
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Abstract

Since 1993, Petri Nets have emerged as a promising tool to describe and
analyze biochemical networks combining the qualitative and the quantitative
approaches.

In our work, we explore Petri Nets structural properties to conclude about
the biochemical system evolution and its dynamics especially in steady state
conditions.

Our motivation to study structural properties is due to the fact that they
can represent the unique way to extract some information about the dynamics
of the biochemical system because of the lack of the kinetic data necessary to
establish ODE:s of certain big biochemical networks.

T-invariant computation is already frequently used in flux distribution anal-
ysis since minimal T-invariant correspond to elementary modes that are defined
as the minimal set of reactions that can occur at steady state.

In our case, in addition to flux distribution, we are also interested in a
less abstracted view of models and we search a way to compute the chemical
components concentrations at steady state. In this field we achieve some results
concerning the computation of some steady states based on T-invariant search
of the underlying Petri Net.
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Abstract

NFkB signalization pathway is a key component of our immune system, that
can be activated by various stimuli such as bacterial or viral products, or stress.
Activation of this pathway can induce expression of more than 500 genes in a
temporally controlled manner. This pathway is an important intermediate, and
his regulation remains unclear despite years of research.

We model the dose-dependent induction of epithelial-mesenchymal tran-
sition (EMT) in response to a TGF( treatment. An experiment with NFxB
overexpressing cells proves that NFxB plays a key role in this dose-dependent
response. The purpose of this study is to test mechanistic hypothesis about how
TGFS acts on NFxB pathway, and to propose experiments to help biologists
investigating this crosstalk.

Using the mathematical framework we showed that several biochemical
mechanisms involving simple and multiple acetylation of NFxB allow to ex-
plain the dose responding behavior and we propose the following experimental
tests to discriminate between mechanistic hypothesis:

e Measuring acetylation status of p65 on lysine 211 and 310 and its influ-
ence on [kBa - NFxB binding reaction

e Probing IkBa, A20 and IkBa kinase activity

These results are important for understanding pathway cross-talk in cancer.
Future experimental and theoretical work should elucidate how different NFxB
nuclear signals can trigger different gene responses. A possible simple hy-
pothesis is based on very different time scales of genes. Slower genes respond
to the average NFxB level which is lower in the oscillation with respect to
the non-oscillating signal, while rapid genes respond to the transient peak of
activity.
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Abstract

MicroRNAs are endogenous non coding RNAs that play important gene regu-
latory roles in animals and plants by pairing to the messenger RNAs of protein-
coding genes to direct their post-transcriptional repression. Transcriptional
and miRNA regulations are interlinked in a complex network in which the
microRNA-mediated feed forward loop seems to be a motif (an overrepre-
sented regulatory circuit). We show analytically and through simulations that
the incoherent version of this circuit can couple a fine-tuning of the target
protein level with a noise buffering. In particular it can confer robustness
to the gene expression of the target with respect to fluctuations in upstream
factors. Moreover our model predicts that the optimal attenuation of fluctua-
tions coincides with a modest repression of the target expression. This feature
is coherent with a fine-tuning function and in agreement with experimental
observations of the actual impact of a wide class of microRNAs on the protein
output of their targets.
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Abstract

In the available databases, biological processes are described from molecular
and cellular points of view, but these descriptions are represented with text
annotations that make difficult to handle them for computation. Consequently,
there is an obvious need for formal descriptions of biological processes. A
formalism that uses the Bio¥ concepts to model biological processes from
molecular details to networks will be presented. This computational approach,
based on elementary bricks of actions, allows us to calculate on biological
functions (e.g. process comparison, mapping structure-function relationships,
etc.). Its application will be illustrated with the functional description of the
central carbon metabolism network. This computational approach is compat-
ible with detailed biological knowledge and can be applied to different kinds
of systems of simulation.
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Abstract

We introduce a framework, the Process Hitting [1], allowing to model and
analyse efficiently Gene Regulatory Networks (GRNs) in their temporal and
stochastic aspects.

Starting from a GRN without any other parameters, its largest dynamics (or
generalised dynamics) are expressed in Process Hitting and then are refined to
match the expected behaviour. Such a refinement is achieved by constructing
cooperativity between genes and by creating stable states. The analysis of
stable states and inference of René Thomas’ discrete parameters derives from
this logical formalism.

This framework comes with a natural translation to the Stochastic m-Cal-
culus bringing time and stochasticity into the models. Efficient simulations
through SPiM [2] and probabilistic model checking using PRISM [3] are then
possible. The merits and scalability of our framework is illustrated on the
control of the differentiation in a GRN generalising metazoan segmentation
processes [4], and on the analysis of stable states within a large GRN studied
in the scope of breast cancer researches [5].

References

[1] Paulevé, L., Magnin, M., Roux, O.: Refining Dynamics of Gene
Regulatory Networks in a Stochastic w-Calculus Framework. Research
Report hal-00397235 (June 2009)

[2] Phillips, A., Cardelli, L.: Efficient, correct simulation of biological
processes in the stochastic pi-calculus. In: Computational Methods in
Systems Biology. Volume 4695 of LNCS., Springer (2007) 184—-199

[3] Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool
for automatic verification of probabilistic systems. 12th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’06). Volume 3920 of LNCS., Springer 441-444



26/3/2010- page #154

154 MODELLING COMPLEX BIOLOGICAL SYSTEMS

[4] Francois, P., Hakim, V., Siggia, E.D.: Deriving structure from evolution:
metazoan segmentation. Mol Syst Biol 3 (Dec 2007)

[5] Sahin, O., Frohlich, H., Lobke, C., Korf, U., Burmester, S., Majety,
M., Mattern, J., Schupp, 1., Chaouiya, C., Thieffry, D., Poustka, A.,
Wiemann, S., Beissbarth, T., Arlt, D.: Modeling erbb receptor-regulated
g1/s transition to find novel targets for de novo trastuzumab resistance.
BMC Systems Biology 3(1) (2009)



26/3/2010- page #155

MODELLING COMPLEX BIOLOGICAL SYSTEMS 155

GraMoFoNe: a Cytoscape plugin for querying motifs
without topology in PPI networks

Guillaume Blin, Florian Sikora and Stéphane Vialette

Université Paris-Est, LIGM - UMR CNRS 8049, France
{gblin, sikora, vialette} @univ-mlv.fr

Abstract

During the last decade, data on Protein-Protein Interactions (PPI) has increased
in a huge manner. Searching for motifs in PPI Network has thus became a
crucial problem to interpret this data. A large part of the literature is devoted
to the query of motifs with a given topology. However, in some situations,
the topology is not known or is irrelevant, which leads to searching functional
motifs instead of ropological ones.

In this setting, we still ask for the conservation of the node labels, but we
replace topology conservation by the weaker requirement that the subnetwork
should form a connected subgraph of the target graph. This approach was
advocated by [2] and led to the definition of the GRAPH MOTIF problem:
given a vertex-colored graph G = (V, E) and a multiset of colors M, find
a set V! C V such that the induced subgraph G[V’] is connected, and the
multiset of colors of the vertices of V' is equal to M. In our context, the graph
G represents the PPI network where vertices are the proteins and edges the
interactions. The motif is completely defined by adding a color in M for each
different requested proteins. A node v € G is colored by a color ¢ € M if the
protein represented by v is homologous to the protein represented by ¢

Despite the NP-completeness of the problem [2], a lot of theoretical results
exists. In this contribution, we present GraMoFoNe, a plugin to Cytoscape
based on a Linear Pseudo-Boolean optimization program (i.e., as a linear pro-
gram whose variables are boolean) which handles GRAPH MOTIF and some
of its extensions (to be published in [1]).

Moreover, for a large scale test purpose, we also provide a batch mode
of our plugin. We used this last to retrieve motifs (protein complexes) of six
different species in three large different PPI networks. Comparisons between
our plugin GraMoFoNe and Torque were computed. For most experiments, our
plugin finds more feasible motifs and also more “true solutions” than Torque.
The GraMoFoNe plugin are available at
http://igm.univ-mlv. fr/AlgoB/gramofone or through Cytoscape plu-

gin page.
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Abstract

Multi-Agent Systems (MAS) are systems composed of multiple autonomous
entities (agents) which can collaborate. Applied to biological issues, they
were used to model ecological systems such as insect colonies where agents
can easily model the simple relationships between entities and the complex
behaviour of the entire system. In the field of cellular and molecular biology,
an agent is often a cell but rarely a single molecule. Moreover, these kinds of
agents are not influenced by their shape or their physical features as they gen-
erally are non-physical agents. To model biological processes at the molecular
level, especially enzymatic reactions, we have to take into account physical
properties and explicit three-dimensional representation of molecules. Thus,
we have defined a type of reactive agents composed of rules which correspond
to the behaviour of agents to model enzymatic reactions and of a body which
consists in the three-dimensionnal representation and the rules for physical
interactions and internal movements. In our model, we also have two subtypes
of reactive agents: active agents and passive agents which are respectively
enzymes and substrates because they do not have common rules regarding
to enzymatic reactions and their spatial representations are extremely differ-
ent. For enzymes, three-dimensionnal structures are given by structural data
extracted from the Protein DataBank (PDB). To determine possible internal
movements, we have analyzed these data with hinge determination algorithms
and elastic network models to identify rigid parts of macromolecules and thus
the possible conformational changes. The first application to respiratory chain
complexes allows us to split these macromolecules in few parts (3 or 4) and we
obtained a simple yet realistic representation. From this model, we are able to
create simulations of electron chain transport which include both information,
those from the movements of the enzyme body and those from the biochemical
reaction. Moreover the influence of the movements on the reaction efficiency
is directly available in this kind of simulations. In future works, models will
have to take into account interactions between molecules which have not the
same size like enzymatic complexes and phospholipids. To work, our model
would be able to adapt the physical interactions to multi-scale modelling.
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