ALGEBRAIC SEMANTICS OF

EXCEPTION HANDLING

Gilles BERNOT , Michel BIDOIT ", Christine CHOPPY "

ABSTRACT

In this papera rew emantics for exception handling in algebraic specifications gidged. Our formalism allows all
forms of exception and error handling\{gel error messages, implicit error propagation rule, exceptiorvegcpolicy),
while preserving the existence iaitial models It handles compbeexamples where various exceptional cases (leading to
different processings) can be specified. The main concept of our approach is the distinction éretptienanderror.

This formalism allows use afongruencesn a similar manner as in the classical abstract data type thidorgover, we
shav how a unctorial semantics @nrichmentan be carriedwer to our framevork, and we shw how hierarchical con-
sistencyand suficient completenessan be redefined. These resultsvyte a firm basis for writing modulastructured
specifications with exception handling features.

i Laboratoir e de Recherche en Informatique
Bat 490, Unversite PARIS-SUD
F-91405 ORSX CEDEX
FRANCE

1. INTRODUCTION

Since the pioneer work of [ADJ 76], specifying abstract data types wittpton handling has turned out to be an espe-
cially difficult problem. Various solutions hae keen proposed, that range from #igorithmic appoach[Loe 81, EPE
81] to thepartial approach[BW 82]. But most approaches may be more or less related &rtfrealgebia approach i.e.
the algebra carrier sets are split into okay and erroneous values [ADJ 76, Gog 77, Gog 78, Pla 82, GDLE 84, Bid 84].

[Bid 84] shaws that none of these approaches is completely aetiisf; and presents a meapproach allowing all forms
of error handling (error declaration, error propagation and erroveego Unfortunately even if the approach described
in [Bid 84] seems to be promising, it does not edhe whole problem, since thgistence of initial models is not guaran-
teed.

Although recent delopments in algebraic specification language# B¥, SW 83,Wir 83] propose an etgnt algebraic
semantics without requiring the existence of initials models, our claim is that initiality is a major togiréssethe
semantics of maost specification-building prives, at least if one wants to state the results in a categoricalvitrkne
Such an approach has been used in [A®JADJ 80], [Bid 82] and [EKMP 80] to describe the semantiosnoichment
parameterizatiorandabstract implementation

An interesting formalism is described in [GDLE 84] thatajs provides initial objectsthe signature of a specification is
divided intosafeoperations that cannot add erroneous values (susbca®r + in natural numbers) anthsafeopera-
tions (such apredor —). Unfortunately dl operations are unsafe in most cases (®ugcfor bounded natural numbers)
and therefore the ok-part of the initial algebra is reduced to safe constants (e.g. 0).

In this paperwe popose a n& semantics for gception handling in algebraic specifications. Our formalism allows all
forms of exception handling, including specification ofesal error messages, implicit error propagation and erronreco
ery, while preserving the existence of initial objects at the semantiahl Moreover, the concepts oénrichmentparam-
eterizationandabstract implementatioran easily be extended to our exception handling frame as our semantics is
entirely functorial.

In the next section, we explain theykideas of our approach. In sections 3 through 7, we describe our formalism. The
existence of an initial object is pred in Section 8; and Section 9 defines enrichment with exception handling. W
assume that the reader is familiar with elementary results afargtéheory and the standard (ADJ) approach to abstract
data types.

2. THE KEY IDEAS OF OUR APPROACH

Several criteria are very useful in defining a true exception handlingypolic
O In order to &oid a large number of exception declarations, it is of first interestue ihglicit exception and
error propagation rules We will show that implicit exception propagation and implicit error propagation are semanti-
cally encoded in ouexception-algebras
O In most realistic examples, it is necessary to be ablectivervarious exceptions. Thus, realistic exception han-
dling formalisms must provide error ra@y features. In our formalism, error ra@ies are specified by means of
generalized axiomdn particular we an specifynon strict operations
O Moreover, we have the possibility to specify seral error messges, by means ofexception labelling For
instance, distinct error messages are associatedoweitti0)and & div 0) ; and there are different regeries as well.
This feature is not provided for inyaof the previous works, Ui is essential for a realistic exception nesg policy.

In addition to these ideas, our formalism is based anrtain concepts the okay standat formsand the distinction
betweenexceptional caseanderroneous valuesThese tw concepts can be handled due to the fact that for eaxdpe
tion-algebra, A, the semantics is handled using the free alge@ra o Ty 4. In the following subsections, we explain the
reasons wi these tw features are needed irception handling and we sketch out the reasonswihe use off 54 is
crucial for our purposes.

2.1. Exceptions and errors

As in most formalisms already put forward, we make of Ok-axiomswhich describe the okay cases, and we also use
another set of axioms for the erroneous andvargacases. But resery cases and okay axioms often lead to inconsisten-
cies. for instance, let us specify the bounded natural numbers with the oper@tisnscand pred Let Maxint be the
upper bound.We havethe Ok-equation pred(succ(n)) =n Assume that we want to re@ all values greater than
Maxint with the receoery axiom: succ(Maxint) = Maxint The termpred(succ(Maxint))s then equal tdlaxint, but it is

also equal tred(Maxint); which results to inconsistencies.

In fact, it is necessary to distinguish betweenténm succ(Maxint)that isexceptional(thus, Ok-equations should not be
applied), and itglasswhich is anokay valugMaxint).

This problem may be solved in the ground term algebra (and in the finitely generated algebras) by using the Ok-axic
beforethe recoery axioms are applied (asicc(Maxinthas not been regered, it is not yet okay). But finitely generated
algebras are not powerful enough to cope with enrichment, parameterization or abstract implementation.

In our approach, this di€ulty is avoided as follavs : for eachexception-algebra A, we work in the free algebra of
2-terms with variables i, instead of wrking directly inA. We denote byTs, this Z-algebra. Constructions that can
usually be done at the ground termadecan also be done at tfig) level, since we can consider the elementf\afs
additional constants. Then the morphieval (which evaluatesthe terms off’5) into A) carries the constructions made at
the Ty(x) level over to A.

2.2. The okay standard forms
Since Ok-axioms only concern okay terms, it is necessary to characterize these terms. But it is not possible to charact
all the okay termssucc(0), 0+1, ped(succ(succ(0))).). We can only characterize some reference terms. These reference
terms may be chosen in different manners. In most examples, normal forms guide the appropriaté)ofmicmately
normal forms are notahbys unique (e.g. inteers :pred’(0) or Op(succ'(0))). Therefore this choice must be declared in
the specification.
Since our axioms are notways equvalent to canonical term waiting systems, we call our reference terstandard
forms It is not necessary for these standard forms to be canonical eeasf #his is true in most examples. In our frame-
work, the standad forms are characterized by means of recwgsteclarations. For instance, we declare the standard
forms of integers in the following manner :
0 and succ(0) a& ¢andad forms

if succ(z) is a standdrform then succ(succ(z)) is a standldwrm

if succ(z) is a standdrform then Op(succ(z)) is a standdorm
another possibility would be

0, succ(0) and pred(0) adandad forms

if succ(z) is a standdrform then succ(succ(z)) is a standldwrm

if pred(z) is a standarform then pred(pred(z)) is a standdorm
We havenow standard forms, but there are still some exceptional standard forms ssiebdd¥"*10. Theokaystandard
forms are the nonxeeptional ones. Thus, we declare in a similar way the exceptional standard forms (caltaddhel
exception$. The okay standat formsare obtained from the standard forms by removing the standard exceptions (Sec
tion 4, Definition 8).
This construction can be done in the ground term algebeagdferalize it for the non finitely generated algebras by
working in the free algebraver A, Tx(a).

The following sections describe our formalism. éaeption specificatiowill be defined by :
| SPEC=<S, 3, L, St-Frm , St-Exc, Ok-Ax , Lbl-Ax , Gen-Ax > |

where §,2,L> is an exception signatwg, St-Frm is astandad form declaation, St-Excis astandad exception declaa-

tion, Ok-Ax is a set obkay axiomsLbl-Ax is a set ofabelling axiomsandGen-Ax is a set ofyeneralized axiomsAll

these parts are succesby defined in sections 3 through 7.

Such a syntax may seem complicated, but this codtpleeflects the complexity of the various examples that we can
modelize, and is not inherent to our formalisror khstance, if we are not interested with error messages (as in-all for
malisms already put forward), we specifgd andLbl-Ax =00 ; if we are not interested with “bounded” data structures
(as in [GDLE 84]), we specif$t-Exc=0 ; and if we are not interested with re@py features (as in all the partial algebra
approaches), we specien-Ax=0. Then, we obtain a syntax which looksdil dassical one (ADJ) together wigtan-

dard forms (St-Frm) ; howeva, dl our properties remain true (existence of initial object and functorial aspect of our
semantics). Thus, our approach generalizes all theeabentioned ones.

In the same &y, an eception specification whelle, St-Frm, St-Exc, Ok-ax andLbl-Ax are empty is equélent to a
classical (ADJ) specification, because the semantieofAx is exactly the same as the usual semantics of classical
(positive oonditional) axioms.

3. EXCEPTION SIGNATURE

Definition 1 : An exception signatwis a classical signature together with a sebogption labels >-Exc=<SZ,L>
whereSis a finite set oorts; 2 is a finite set obperationswith arity inS; andL is a finite set oéxception labels

Intuitively, these exception labels correspond to the “error messages” of the dataotypestdhce, the exception signa-
ture of bounded natural numbers will contain theLset{ NEGATIVE, TOO-LARGE

Definition 2 : An exception algbra over the exception signaturE-EXxc, is a dassical (heterogeneouX}algebra,A,
together with a family of subsetsAf}, indexed by LI{Ok} : A=(A,{A}) .

The subsey, is the set of albkay value®f A. The subsetgy arenotnecessarily disjointed, and thean intersect se
eral sorts.

Example 1 : Let Z-Excbe an exception signature of bounded natural numbi{E, The algebraN, with pred(0)=0
and with Ng=[0,Maxin] Nyecative={0} and Ntooarce=]Maxint,+oo[, is an @ample ofZ-Excalgebra. The intu-
itive meaning of this algebra is thatesy value greater thaMaxintis erroneous with th&# OO-LARGEexception label,
while the ngative values are rea®red into the constant 0.

Definition 3 : Let A and B be tw >-Excalgebras. Arexception morphisnfirom A to B is a classica&-morphism, u,
that preserves the labeled subsets. This means that for allllabels{Ok}, x(A) is included inB;.

Ouir first result is quite easythe category ok-Excalgebras has final and initial objecthe trivial algebraS, together
with § equal toSfor all labels, is a final algebrahe ground term algebray, together withTs, equal toll for all labels,
is initial. We denote this initial algebra bys.g,... There is no labeled ground term and no okay ground terfg.i., as
nothing is specified about labels in the signature.

4. CHARACTERIZATION OF OKA Y STANDARD FORMS

Definition 4 : A standad form declaation over Z-Exc, denoted bysSt-Frm, is a finite set of elementary declarations as
follows :

[t;OSt-Frma - - - A t, OSt-Frm oA vy =wy A A V=W,] = t OSt-Frm
wheret;, vj, w; andt areZ-terms with variables [*].

Each variable occurring inmust also occur in one (at least) of thé€n or mmay be equal to 0).

Example 2 : A standard form declaratiorver NAT can be specified by means obtdementary declarations :
0 O St-Frm
n OSt-Frm => sucqn) O St-Frm

As outlined abuwe, the semantics dbt-Frm is provided inTy(,), in order to cope with the non-finitely generated algebras.

Definition 5: The set of standard forms ©f), denoted bySt-Frm, , is the smallest subset @§) such that :
O StFrmy containsAgy (sinceAgy is a subset oA, its elements are constantsigfa)).
O For each elementary declaration 8f-Frm of the form :
[t;OSt-Frma - - - s 1, 0St-Frm oA vy =wy A A v =W,] = t OSt-Frm
and for each substitution, with range inTs(,) , the following holds :
if o(t) OStFrm, foralli=1..n, and evalo(v;)] = evalo(w;j)] forall j=1..m, then o(t) belongs toSt-Frma.

The second condition defines exactly the regargharacterization of the standard forms. The first condition means that,
since okay standard forms are in particular standard forms, alblies/of A must be (constant) standard formgsa,.

For instance, ifA=N is the algebra of integers, the tersuicc(succ(succ(0))}s a standard form ifsy, ; but we would

also like the termssucc(2) or 3 to be standard formshis is obtained from the first condition. Notice that tkistence

of StFrmy is clear.

[*] for eachj, v; andw; must belong to the same sort, of course.

Our next goal is to renve the exceptional standard forms (eqgicc(Maxint).

Definition 6 : A standad exception declaation over Z-Exc, denoted bySt-Exc, is a fhite set of elementary declara-
tions as follows :

[ty OSt-Exc & --- A t, OSt-Exc] = t OSt-Exc
wheret; andt areZ-terms with variables. Each variable occurring in one ot;theust also occur i

Example 3: In the bounded natural numbers, our standaoggtion declaration is reduced to one elementary declara-
tion :

sucd®®™ntl0) [St-Exc
It is not necessary to declare exceptional forms greater(Maxint+1). These exceptions are automatically handled by
implicit exception propagatioancoded in the semantics.

The semantics of standard exceptions is providdgig. The set of standard exceptions is defined via three main proper
ties :the recursie dharacterization associated wiit-Exc, the implicit exception propagation rule, and the stability under
partial evaluations

Definition 7 : The set of standard exceptionsTgf,), denoted byStEXG, , is the smallest subset @f) such that :
o for each elementary declaration@tfExc of the form :
[t; OSt-Exc & --- A t, OSt-Exc] = t OSt-Exc
and for each substitutiom;, with range inTs() , if o(t;) belongs toSt-Exc, for all i=1..n, theno(t) belongs to
StEXcy
O if u is aterm ofTs,) that belongs t&HEXC, , then eery term t of Ty, that containgl as a subterm belongs to
StEXCy
o for each termt in StEXxc,, and for each strict subtermof t, the termt’ , obtained by substituting the constant
ewval(u) for u int,is gill an element ofStEXc, .

We ae then able to define the okay standard formg;@f, and the validation o6t-Frm andSt-Excfor A.

Definition 8 : The set obkay standat formsof Tsa) , Ok-Frm,, is defined by :

Ok-Frmp = StFrmp — St-EXC, .
Moreover, the exception algebra RalidatesSt-Frm and St-Exc iff evalOk-Frmy,) O Agy . This means that
each okay standard form ©f , must hae an okay value in A, after thevaluation is done. [*]

Example 4 : The okay standard forms ®f, are the terms of the forsucc'(m) where 0sn+m<Maxint. The evalua-
tion of such terms is equal to tivalue (n+m) Thus, the eauation of each okay standard form B, belongs to
Nok=[0,Maxinj. ConsequentlyN (Example 1) validateSt-Frm andSt-Exc.

5. OKAY AXIOMS

Our okay axiomarepositive conditional axiomswe denote a finite set of okay axioms Gk-Ax. The associated seman-
tics is described by means of (classicahgruencesBut since the distinction betweenceptional caseanderroneous
valuescannot be made in A, we define the congruence associafddAa in Ty, ; and then, we define the validation of
Ok-Ax viaewal.

Proposition 1 : Given Z-Exc, St-Frm, St-Exc, and Ok-Ax, consider aZ-Exc-algebra A. There is a least congruence
over Tx(a), denoted by=qy, satisfying the following “IF.. THEN” condition :
For each substitutiong, with range inTs) , and for each axiom oDk-Ax,
[Vi=Wp Ao AV =W = v=w [,
(leta(v) = op(ty, ... ,ty), IF the three following conditions holds :
o evalo(v)] =evalo(w;)] forall i=1..n
O there are okay standard forms,, ...,an, (OOk-Frm,) such that t; =o a; and op(ay, ...,am) O SEEXG

[*] Notice that the reerse inclusion is alays satisfied.
[**] or w=v, our axioms are not oriented.

O there is an okay standard form (0 Ok-Frmy,) such thato(w) =g a.
THEN (V) =g a(w) .

Proof : given in gppendix.

The three premisses included in the IF statement are explained as follows :
O the first condition is the validation of the premisses of our okay axiom
O the second condition reflects amermost ealuation: to goply the okay axiom,\ery subterm ofg(v) must
already hge an okay standard form, and the resulting teop(a, . .. ,a,) must not be exceptional
O the third condition limits the effect of the okay axiom to the okay terms only.

Thus, =g, has tvo purposes it deduces thekay termsof Ty, from the reference terms @k-Frm,, and it creates the
“okay equvalence class” corresponding to each okay standard form. Okay axioms only handle the normal cases of
data type.

Example 5: Okay axioms of bounded natural numbers are specified as usual :

pred(succ(n)) = n

n+0 = n
n+succ(m) = succ(n)+m

n-0 = n
n-succ(m) = pred(n)-m

Assume that we want tovauate the term sucd pred(such'aX‘”t(O))) . We first must gauate the subterm
pred(sucd®"(0)). Its okay standard form sucd'®"1(0) (first axiom), and thus we can apply the first okay axiom
over sucd pred(sucd'®(0))), which gves sucd'®(0), and sincesucd'®™(0) is also an okay standard form, wevéna
sucdpred(sucd'®"(0))) =¢, sucd'®n(Q).

On the other hand, assume that we wantvaetuate the term pred(succ(Maxint)) We nust first ealuate the subterm
succ(Maxint) But our okay axioms cannot associatg akay standard form tsucc(Maxint)(this term is gceptional).
Thus, the first axiom cannot be applied, and the clagsedisucc(Maxint)yvia =qy is reduced to gred(succ(Maxint})
Nevertheless, generalized axioms (Section 7) may handleviheadion of such terms.

Definition 9 : An exception algebra, A, validat@k-Ax iff the morphismeval is compatible witleg,. This means :
-Yt DTz(A) ,—Yt' DTz(A) s [t =ok t = eval(t) = evaKt’)]

6. GENERALIZED LABELLING

Definition 10 : We denote byLbl-Ax, a finite set of labelling axiomsver >-Excas follows :
[t10 st Oy A V=W oA oA V=W,] = t O
wheret;, v;, w; andt areZ-terms with variabled; are members df 1{Ok}, and|l is a member of [*].

Example 6 : Labelling axioms of bounded natural numbers can be specified as follows :

sucA'®int1g 1 TOO-LARGE
n OTOO-LARGE == succ(n)dTOO-LARGE
n OTOO-LARGE = n+0 OTOO-LARGE
(succ(n) + MO TOO-LARGE == (n + succ(m))dTOO-LARGE
pred(0) 0O NEGATIVE
n ONEGATIVE == pred(n)dNEGATIVE
(n—succ(n))dNEGATIVE
(n-m) ONEGATIVE == (n-succ(m))OJNEGATIVE

Equations in the premisses are useful ; for instangen ¢hie operation _ <_, the following labelling axiom is specified :
n<m=True => (n-m)ONEGATIVE
instead of the tev last axioms.

[*] The I;'s are notnecessarily distinct.

Notice that gen if exceptionspropagatelabelsmust not (implicitly) propagate. For instanpeed(0)is exceptional
andNEGATIVE thus the ternsucc(pred(0))s also exceptional (implicit propagation of standard exceptions)jsmot a
NEGATIVEvalue.

The semantics dibl-Ax works directly on thevaluesof A, in a straightforward manner.

Definition 11 : An exception algebra A#, {A}) validates_bl-Ax iff for each axiom oltbl-Ax
[tyO Aot Oy A V=W A oA V=W, =t Ol

and for each substitution,, with range inA, the following holds :

if o(t;) belongstoA, forall i,and o(v;) = a(w;) forall j, theno(t) belongs toA.

Although the specifier is free to include whateaxioms (s)he wants ihbl-Ax , it should be noted that labelling axioms
have been designed in order to formaligeeconditiongintroduced by Guttag in [Gut 79]).

Remark 1 : Lbl-Ax does not create exceptions. The subsetare not necessarily disjointed frofq,. For instance,
even if Lbl-Ax contains an axiom of the formdfIANY-LABEL, 0 is still an okay standard form (and thus an okalye).
In other words, okayalues labeled bibl-Ax are automatically reeered. More preciselyerroneous valueare defined
as follows :

Definition 12 : We denote by A,, the smallest subset of AA({A}) such that :
O Agy contains P\ — Ag] for all labeld OL.
o for each operatiomp 00X and for all waluesv; - - -v, (according to the arity obp), if (at least) one of ths;
belongs to A, and ifop(vy, . . .,V,) is not a member ofy,, thenop(vy, . ..,v,) belongs to A .

The intuitve meaning of this definition is the follng : the first condition states that exception labels generate errors
except if they are recavered ;the second condition means that errors prapmgxcept if theare recovered. The second
condition is called thanplicit error propagation rule

Notice that &rr” is not a label. It is not compatible with exception morphisp(@\(,,) is not aways included in B,).
7. GENERALIZED AXIOMS

Definition 13: We denote byGen-Ax a finite set oigeneralized axiomas follows :
[t]_DIl.-"\"'.-‘“xtnDIn Pt V1=W1A---hvm:Wm] = Vi1 = Wt
wheret;, v; andw; areZ-terms with variables, anlgare members df [{Ok} [*].

Example 7 : Terms such agMaxint+3)-4 can be receered into their final &lue ; andht the same timae can amalgr
mate all terms that contain agasive subterm wer an alditional constanCRASH:

n ONEGATIVE = n = CRASH
succ(CRASH) = CRASH
pred(CRASH) = CRASH

CRASH-n = CRASH
n-CRASH = CRASH
CRASH+n = CRASH
n+m = m+n
n O TOO-LARGE = n+0 = n
n+succ(m)] TOO-LARGE = n+succ(m) = succ(n+m)
succ(n) TOO-LARGE == pred(succ(n)) = n
n O TOO-LARGE == n-0 = n
n OTOO-LARGE = n-succ(m) = pred(nym

Each term that contains agaive \alue in its subterms is equal@RASH Every other term is amalgamated with its nor
mal form succ(0)), (even if this form is not an okay one).

[*] The I;'s are notnecessarily distinct.

The semantics dben-Ax works directly on thesaluesof A, in a straightforward manner.

Definition 14 : The algebra A validategSen-Ax iff : for each axiom oGen-Ax,

[t10g om0y A ViSW A A V=W, = V=w,
and for each substitutian with range inA, the following holds :
if o(t) belongsto A, forall i,and o(v;) = o(w;) forall j, thena(v) = a(w) inA.

Example 8: We haveshavn (Example 5) that thevdluation of the termpred(succ(Maxint))fails via the okay axioms,
this term is exceptional. Nertheless pred(succ(Maxint))is recovered via our generalized axioms of Examplausing
the axiom :

succ(n)J TOO-LARGE => pred(succ(n)) =n
It suffices to sha thatsucc(Maxint)is labeled withTOO-LARGE; which results from the first labelling axiom of Exam-
ple 6. Thus, the ternpred(succ(Maxint))is recavered into the class dflaxint

Definition 15 : Let SPEC=<X-ExcSt-Frm,St-Exc,0k-Ax,Lbl-Ax ,Gen-Ax> be an &ception specification. A-EXc
algebra, A, is &PECalgebra if it validates all parts &8PEC. We denote the full subcategory of AB{ExXC) containing
the SPEG-algebras by AIBPEC).

8. INITIALITY RESULTS

In this section, we shwthat AIgSPECQC) has an initial object. Our main result is more gengitagxtends the major tech-
nical result of the classical abstract data type theory [ADJ 76].

Theorem 1: Let SPECbe an exception-specificationan Z-Exc. Let A be a-Exc-algebra, and |eR be a binary rela-
tion over A compatible with the sorts di-Exc. There is a least congruenceepA, denoted by=specr, and there are
least subsets of (AEgpecr), denoted by {(A=specr)i}, such that (X =gpecr) is aSPEC-algebra anéspecr contains
R.

Proof : given in gppendix.
Corollary 1: The category AlgSPEQC) has an initial object, denoted Bypgc.

Proof : From the definition of exception morphisms, it is clear thatSR&GalgebraTgpgc, Obtained by Theorem 1
with A=Ts_g,. andR=[1, gives the answer (SinC&s_g,. is already initial in AlgE-Exc)). O

Example 9 : With the specificatioSPEC of bounded natural numbers/gn in sections 3 through 7, the initial algebra
is defined as follows :

Tspec = {CRASHON, with operations0 succ ped + and — as usual. Every mgtive value is amalgamated with
CRASH and every operation appliedver CRASHgives CRASH Moreover, NyegaTiveis equal to CRASH, Ntoo.LArGE

is equal to]Maxint,+co[andNgy is equal td0,Maxint].

9. STRUCTURED EXCEPTION SPECIFICATIONS

9.1. Forgetful functors
Definition 16 : Let Z-Exc =<S;,%;,L; > and X-Exc, =< S,,2,,L, > be Wwo exception signatures such that
2-Exc, O Z-Exc,. We define theforgetful functor U from Alg(Z-EXc,) to Alg(Z-Exc;) in a Smilar manner as in the clas-
sical abstract data type theory :
o for eachX-Exc,-algebra B=B,{B,}), U(B) is theZ-Exc-algebra A=@,{A;}) such thatA (resp.A for each
I 0L, 0{Ok}) is the subset oB (resp.B,) corresponding to the sorts 8f (i.e. we remae the subsets associated with
the sorts o5, — S,). TheX;-operations work wer A as they do over B.
O for eachZ-Exc,-morphism u: B - B’, U(u) is the Z-Exc,-morphismy, restricted toJ(B) and corestricted to
u(B).

Unfortunately given two ecificationsSPEC, 0 SPEG,, if B is aSPEG,-algebra, thetJ(B) is aZ-Exc;-algebra but is

not alvays aSPEC;-algebra. This is due to the folling fact : if SPEGC, adds some standard exceptions to the operations
of SPEC,, then it is possible that it remes smeSPEC, okay standard forms. Thus,veeal occurrences ddPEGC;-okay
axioms are inhibited. There are thenesal SPEG,-algebras that do not validaBk-Ax ;.

9.2. Presentations
Definition 17 : A presentatiorover the exception specificatid®PEC, is a tuple
PRES=<S, X, L, St-Frm, St-Exc, Ok-Ax , Lbl-Ax , Gen-Ax >
such that SPEG, = SPEC, + PRES is an exception specificatiorS,, o> n <S,2> is enpty, and for all SPEG,-alge-
bras, A, thex-Exc;-algebral(A) is aSPEC,; -algebra.
The specificatiolBPEC, is called theredefinedspecification.

This definition is not a very construati ne. Nevertheless, we shall ge a sifficient condition under whicRRESis
a presentation.

Proposition 2 : If, for each elementary declaration®fExc of the form

[ty OSt-Exc & --- A t, OSt-Exc] => t OSt-Exc,
the leading operator symbol bbelongs ta&, thenPRESis a presentationver SPEC, .
This means that the standard exceptions addétRBS are only preconditions on thew@perations. There must not be
ary new gandard exceptions with a predefined operation at the top.
Proof : Standard exceptions are closed under partialuations, but this aluation only concernstrict subterms. The
leading operator is ner avoided. Thus, each mestandard exception contains anneperation at the topand the presen-
tation cannot reme pedefined standard formg£Consequentlyit cannot remwee any @currence of a predefined okay
axiom.O

Example 10 : We define the following presentatidARES over SPEC, = NAT + BOOL, in order to specify bounded
arrays of natural numbers :

S={ ARRA'}
2={create, _[_]=_,_[_1} (with usual arities)

L ={ OUT-OF-RANGE , NOINITIALIZED }

St-Frm : created St-Frm
t OSt-Frm .~ n OSt-Frm U

tli:=n OSt-Frm
A 1 OSt-Frm ~ Maxrange<i =Falseg 1]

St-Exc=0 [becauset-Frm already containsMaxrange<i = Falsé in the premisses]

(tfl:=m)[i]:=n
t[jl:=m

Ok-Ax : eq?(i,j) =False = (t[i]:=n)[j]l:=m
i=j = (]=n)i]:=m

Lbl-Ax : create[i] ONOT-INITIALIZED

tfi] ONOT-INITIALIZED ~ eq?(i,j) = False == (t[j]:=n)[i] ONOT-INITIALIZED
sucdt@angely «j =True == t[i] O OUT-OF-RANGE
i ONEGAT == t[i] OOUT-OF-RANGE
sucdt@rangely «j =True == t[i:=n O OUT-OF-RANGE
i ONEGAT = t[i;=n OOUT-OF-RANGE

Gen-Ax: 0O [... for simplicity, but we can specify reeeries, ad libidum]

Proposition 2 ensures thARES s a presentationver NAT andBOOL Notice that this specification is an example where
standard forms are not normal forms.

9.3. Synthesis functors
Definition 18 : The synthesis functoassociated with the presentatiBRES is the functorF, from Alg(SPEG) to
Alg(SPEG,), defined by means of Theorem 1 as follows :
o for eachSPEG;-algebra, A, the morphisneval Ts 5 -~ A defines a binary relation ifis, () by :
XRy => eval(x)=eval(y) forallx andyin T [*].

From Theorem 1, we kmo that there is a least congruenceeroTs,) , =spec,r, geNerated byR, such that
F(A)=(Tx,a/ =spec,r) [together with smallest subset§;(A);, containing A] is a SPEG-algebra. The
SPEG,-algebraF(A) is called thesynthesi®f A.
o for eachSPEC;-morphism,u: A — A, F(u) is the SPEG-morphism fromF(A) to F(A') deduced in a unigue
way from theZ,-morphism . Ts,n) — Ts,a) -

Example 11 : Let A={CRASHUON O {True,Fals¢ be a NAT+BOOL)-algebra, as in Example 9. LBRES be the
presentation of bounded arrays from Example 10. The synthesized digabessociated wittPRESis described as fol-
lows :

Every array that contains only okay natural numbers in the ranigaxranges an okay one. Every array that contains an
operation using an indein { CRASH [J]Maxrange+oo[is erroneous QUT-OF-RANGIE Every array that contains an
erroneous hatural number { CRASH [O]Maxint +eo[) is erroneous (by implicit error propagation rule).

Moreover, the predefined sorts containwerroneous ®lues :those obtained by taking a value from outside of the range
0..Maxrange those obtained by taking alue from a non initialized inete and those obtained by taking a value from an
erroneous array (implicit error propagation rule). These melues are not predefined onescept if the generalized
axioms ofPRESamalgamates them witbRASH or recovers them.

Notice that the labeled subgeA)out-or-rancE CONtaINS both numbers and arrays. This is an example ofcapten-
algebra where a labeled subset intersestxaksorts.

Theorem 2 : The synthesis functdf is a left adjoint for the forgetful functdd. This means that for ea@PEC, -alge-
bra, A, and for eacBPEG,-algebra, B, HoRgpec,(F (A), B) is isomorphic to Horgeec (A, U(B)).

Proof: Letl, be theSPEC,-morphism from A tdJ(F(A)) deduced from the identityver A in a unique way. The pair
(A,1,) is a wniversal arrav from A to U, resulting from the definition ofF(A) (Theorem 1). Thus, the Yoneda lemma
([McL 71], 1l.2) proves aur theorem. Notice that the family, for A in Alg(SPEC,), is then the unit of adjunctionl

9.4. Hierarchical consistency

In the classical abstract data type thebigrarchical consisteycmeans thaPRES does not amalgamate predefined- v
ues. This means that the unit of adjunctioinjective With exception handling, we must alserify that PRES do not
add predefined labels to some predefined values :

Definition 19 : Let| be the unit of adjunctiorl: Tspgg, — U(F(Tspeg) =U(Tspeg,). ThepresentatioPRES s hier-
archically consistentff | is injectve and for all predefined labelsJ L, we have: 1(Tgpec, 1) =U(Tspeg)in 1 (Tspec)-
In the categorical framgork, this means thdtis partially retractable[**].

Example 12 : The ARRAYpresentation specified in Example 10 is hierarchically consistent. But if we add the: axiom
0 O TOO-LARGE, PRES:is not hierarchically consistentyamore, since the predefinediue 0 becomes labeled with the
predefined labeTOO-LARGE

9.5. Sufficient completeness

In the classical abstract data type theauyficient completeness means tR&RES does not add mevalues to the prede-
fined sorts. This means that the unit of adjuncticsuigective In exception handling, such a definition is too restvieti
Sufficient completeness should allgpresentations to add erroneous values into the predefined Bortmstance, each
value of the formt[i] , with i>Maxrange is a rew predefined glue ;but the presentation is sufficiently complete, sitjde
is erroneous (labeled withUT-OF-RANGE

Definition 20 : The presentatioRRESis sufficiently complet#f the unit of adjunction satisfies :

U(Tspec, = Tspegerr) O 1(Tspeg)
This means that the presentatPRES must not add e non erroneous values to the predefined sorts.

Example 13: The ARRAYpresentation specified in Example 10 is sufficiently complete. But if wevethe axiom:
create[i] ONOT-INITIALIZED , thenPRES s no longer stiiciently complete, sincereate][i] is not erroneous gmmore
and is not amalgamated with a predefined vatteafe][i] is then incompletely specified).

[*] recall thatTs, (n O Ts,a)

[**] In the classical abstract data type theanjective norphisms, monomorphisms and partially retractable morphisms are the same. In our
exception handling formalism, monomorphisms are injectiorphisms, but are notwbys partially retractable.

10. CONCLUSION

In this paperwe haveshavn how exception handling can be integrated into algebraic specifications without losing the use
of congruences, the existence of least congruences and the existence of initial medalist @oint out that to guarantee

the existence of least congruences, we do not need to introdgcestiction on exception specifications. For instance,
even if in most examples, axioms can be transformed into canonical term rewriting systems, this conditieen is ne
required. ¢ do rot introduce ayprestrictions on the class of models taken into account, i.e. we do not restrict ourselves t
finitely generated algebras or to the ground term algebra. This allows our results to hold in a very genevatkirdime
should be noted that thekidea is to distinguiskxceptionsanderrors, and this is made possible by working at theele

of Ts(n). Indeed the formalism described in this paper relies on this simple but powerful idea.

What is especially important is that once the initiality results are guaranteerlctption specifications, the classical
specification-hilding primitives ae easily extended to our framerk. We havecarefully detailed he enrichment carries

over to our exception specifications, andvhdierarchical consistenycand sufficient completeness can be suitably rede-
fined. In the same ay, parameterization may be extended to exception specifications, since it mainly relies on ,initiality
synthesis functors and pushouts (see [ADJ 80]). As a last remark, we want to emphasize the fact that the concep
abstract implementation dgoped in [EKMP 80], and [BBC 86], may also betended to exception specifications (cf.
[Ber 84]and [Ber 86] respeatély). This fact is especially important since realistic examples of abstract implementations
can hardly be designed without exception handling (e.g. the implementation of bounded queues by means of bour
arrays).

ACKNOWLEDGEMENTS
This work is partially supported by CNRS GRECO de Programmation, and by the ESPRIT Projects METEOR and FO
ME-TOO.

11. APPENDIX
This appendix contains the technical proofs omitted in the body of the article.

Proof of Proposition 1 : We follow the usual method for minimality proofs :

O The setC, of dl congruences satisfying the IF. THEN condition is not emjttgontains at least the trivial congru-
ence.

O Now, we how that the congruencey, equal to the conjunction of all the congruence€ins dill in C. Thus, we
want to prove that=g, satisfies the IF.. THEN condition.

Assume thatg, , o and the okay axiom([v; = w; A ---v,, = w,] = v=w) satisfy the three conditions of the IF state-
ment. W& want to pree that o(v) = o(w) for all “=" in C. Thus, since each in C satisfies the IF..THEN condition, it
suffices to pree tat eache in C satisfies these three conditions. The first condition is,d#e it is independent af
(eval is intrinsic to A). The second condition results from the fact #atis the conjunction of ak in C : this implies
thatt; = a; for all i and all=. The same reasoning applies to the third condition, which ends our@roof.

Proof of Theorem 1 :

We will prove a nore general result. Theorem 1 means that there is a3P&3T-algebra, B=(A=specR), finitely gener
ated @er A and compatible withR. We will prove that this result can be extended to the non finitely generated algebras :

Theorem 1b: Let SPECbe an exception-specificationen the exception-signatur&-Exc. Let A be a>-Exc-algebra,
and letR be a binary relationwer A compatible with the sorts &-Exc. There is a leassPEG-algebra, B, and arxeep-
tion morphismu: A - B such that : ifxRy then u(x) = u(y) .

Proof : LetF be the family of allSPEGmorphismsy: A - Z, where Z is &SPEC-algebra and is compatible with
R. F is not empty : it contains at least the trivial morphismA - S.

Let B be the quotient of A such that the surjeett-Excmorphism, iz A — B, is defined by u(x) = u(y) iff
v(x) =v(y) forallvinF;and u(x) OB, iff v(x) OZ forallvinF.

u is clearly an exception morphism sincelalh F are exception morphisms. Thus, it suffices toyedhat B is aSPEG
algebra j.e. thatB validatesSt-Frm, St-Exc, Ok-Ax, Lbl-Ax andGen-Ax. Two lemmas are needed. Notice that, from
the definition of B, there is an exception morphismB - Z, for each algebra Z iR. In the following, for each algebra
ZinF,v: Tyg - Tyz) denotes th&-morphism deduced in a unique way from

Lemma 1: v(Ok-Frmg) is included inOk-Frm;.
Lemma 2: The congruence‘l(EZ,OK) contains the congrueneg o (in Ty(g) XT3 (g))-

For lack of space, we do not ptese lemmas (pved in [Ber 86]). The first lemma results from minimality properties
of StFrmg andStExc;. The second one results from minimality propertiesof.

O The validation ofSt-Frm and St-Exc means thagvallOk-Frmg)[0Bgy. This results from Lemma 1, from thact that
evalOk-Frmz)[Zg, for all Z in F, and from the definition oBg, : X[OBg iff v'(X)0Z, for all Z in F.

O The validation ofOk-Ax means that if =g o t' thenewal(t)=eval(t’) in B. This results from Lemma 2, from thact
that each Z ir validatesOk-Ax, and from the definition of B.

O For the same reasons, the validatiorLbf-Ax andGen-Ax results directly from the definition of B, since the seman-
tics of Lbl-Ax andGen-Ax s directly defined in B (not vidiyg)).

This ends our proofl

12. REFERENCES

[ADJ 76] Goguen J., Thatcher J.,agher E. : “An initial algebra approach to the specification, correctness, and implementa-
tion of abstract data types”, Current Trends in Programming Methoddlobgy, Yeh Ed. Prentice Hall, 1978 (al-
so IBM Report RC 6487, Oct. 1976).

[ADJ 79] Thatcher J., Wagner W., Wright J. : “Data type specification: parameterization andviireopspecification tech-
niques”, Proc. of SIGACT 10th Annual Symposium on Theory of Computing, 1979.

[ADJ 80] Ehrig H., Kreavski H., Thatcher J., Wagner J., Wright J. : “Parameterized data types in algebraic specification lan-
gages”, Proc. 7th ICALRuly 1980.

[BBC 86] Bernot G., Bidoit M., ChoppC. : “Abstract implementations and correctness proofs”, Proc. 3AdCSTJanuary
1986, Springer-Verlag LNCS.

[Ber 84] Bernot G. : “Implenentations de types abstraits ‘dggques en preence d'exceptions”, DEA Report, LRI, Orsay
Sept. 1984.
[Ber 86] Bernot G. : “Une Smantique algbrique pour une spiication différenciee des exceptions et des erreugpplica-

tion al'implémentation et aux primites de gructuration des spéications formelles”, Thee de toisieme oycle,
Université de Paris-Sud, 1986.

[Bid 82] Bidoit M. : “Algebraic data types: structured specifications aidgdresentations”, Proc. of AFCET Symposium
on Mathematics for Computer Science, Paris, March 1982.

[Bid 84] Bidoit M. : “Algebraic specification ofxxeption handling by means of declarations and equations”, Proc. 11th
ICALP, Springer-Verlag LNCS 172, July 1984.

[BW 82] Broy M., Wirsing M. : “Partial abstract data types”, Acta Informatica, Vol.18-1; N382.

[EKMP 80] Ehrig H., Kreowski H., Mahr B., &lavitz P, : “Algebraic implementation of abstract data types”, Theoretical
Computer Science, Oct. 1980.

[EPE 81] Engels G., Pletat.VEhrich H. : “Handling errors and exceptions in the algebraic specification of data types”, Os-
nabruecker Schriften zur Mathematik, July 1981.

[GDLE 84] Gogolla M., Drosten K., Lipeck U., Ehrich H.D. : “Algebraic and operational semantics of specificatiavingallo
exceptions and errors”, Theoretical Computer Science 34, North Holland, 1984.

[Gog 77] Goguen J.A. : “Abstract errors for abstract data typesitnmal Description of Programming Concepts E.J.
NEUHOLD Ed., North Holland, Ne& York

[Gog 78] Goguen J.A. : “Exceptions and error sorts, coercion eetbading operators”, SRl Research Report, 1978.

[Gut 79] Guttag J.V: “Notes on type abstraction (Version 2)”, IEEE Transactions on Software Engineering, 1979.

[Loe 81] Loeckx J. : “Algorithmic specifications of abstract data types”, ICALP 1981.

[McL 71] Mac Lane S. : “Categories for the working mathematician”, Graduate texts in mathematics, 5, SMerilager
1971.

[Pla 82] Plaisted D. : “An initial algebra semantics for error presentations”, Unpublished Draft, 1982.

[SW 83] Sannella D., Wirsing M. :A kernel language for algebraic specification and implementation”, Proc. Intl. Conf. on

Foundations of computation Thegi§pringer-Verlag, LNCS 158, 1983.

[Wir 82] Wirsing M. : “Structured algebraic specifications”, Proc. of AFCET Symposium on Mathematics for Computer

Science, Paris, March 1982.

Wirsing M. : “Structured algebraic specifications: earlel language”, Habilitation thesis, Technischeviesitat
Munchen, 1983.

[Wir 83]

