
ALGEBRAIC SEMANTICS OF

EXCEPTION HANDLING

Gilles BERNOT*, Michel BIDOIT *, Christine CHOPPY*

ABSTRACT
In this paper, a new semantics for exception handling in algebraic specifications is provided. Our formalism allows all
forms of exception and error handling (several error messages, implicit error propagation rule, exception recovery policy),
while preserving the existence ofinitial models. It handles complex examples where various exceptional cases (leading to
different processings) can be specified. The main concept of our approach is the distinction betweenexceptionanderror.
This formalism allows use ofcongruencesin a similar manner as in the classical abstract data type theory. Moreover, we
show how a functorial semantics ofenrichmentcan be carried over to our framework, and we show how hierarchical con-
sistencyandsufficient completenesscan be redefined. These results provide a firm basis for writing modular, structured
specifications with exception handling features.

* Laboratoir e de Recherche en Informatique
Bât 490, UniversitéPARIS-SUD

F-91405 ORSAY CEDEX
FRANCE

1. INTRODUCTION

Since the pioneer work of [ADJ 76], specifying abstract data types with exception handling has turned out to be an espe-
cially difficult problem. Various solutions have been proposed, that range from thealgorithmic approach [Loe 81, EPE
81] to thepartial approach[BW 82]. But most approaches may be more or less related to theerror-algebra approach, i.e.
the algebra carrier sets are split into okay and erroneous values [ADJ 76, Gog 77, Gog 78, Pla 82, GDLE 84, Bid 84].

[Bid 84] shows that none of these approaches is completely satisfactory, and presents a new approach allowing all forms
of error handling (error declaration, error propagation and error recovery). Unfortunately, even if the approach described
in [Bid 84] seems to be promising, it does not solve the whole problem, since the existence of initial models is not guaran-
teed.
Although recent developments in algebraic specification languages [Wir 82, SW 83,Wir 83] propose an elegant algebraic
semantics without requiring the existence of initials models, our claim is that initiality is a major tool to express the
semantics of most specification-building primitives, at least if one wants to state the results in a categorical framework.
Such an approach has been used in [ADJ79, ADJ 80], [Bid 82] and [EKMP 80] to describe the semantics ofenrichment,
parameterizationandabstract implementation.

An interesting formalism is described in [GDLE 84] that always provides initial objects: the signature of a specification is
divided intosafeoperations that cannot add erroneous values (such assuccor + in natural numbers) andunsafeopera-
tions (such aspredor −). Unfortunately, all operations are unsafe in most cases (e.g.succfor bounded natural numbers)
and therefore the ok-part of the initial algebra is reduced to safe constants (e.g. 0).

In this paper, we propose a new semantics for exception handling in algebraic specifications. Our formalism allows all
forms of exception handling, including specification of several error messages, implicit error propagation and error recov-
ery, while preserving the existence of initial objects at the semantical level. Moreover, the concepts ofenrichment, param-
eterizationandabstract implementationcan easily be extended to our exception handling framework, as our semantics is
entirely functorial.
In the next section, we explain the key ideas of our approach. In sections 3 through 7, we describe our formalism. The
existence of an initial object is proved in Section 8; and Section 9 defines enrichment with exception handling. We
assume that the reader is familiar with elementary results of category theory and the standard (ADJ) approach to abstract
data types.

2. THE KEY IDEAS OF OUR APPROACH

Several criteria are very useful in defining a true exception handling policy :
In order to avoid a large number of exception declarations, it is of first interest to have implicit exception and

error propagation rules. We will show that implicit exception propagation and implicit error propagation are semanti-
cally encoded in ourexception-algebras.

In most realistic examples, it is necessary to be able torecovervarious exceptions. Thus, realistic exception han-
dling formalisms must provide error recovery features. In our formalism, error recoveries are specified by means of
generalized axioms. In particular, we can specifynon strict operations.

Moreover, we hav e the possibility to specify several error messages, by means ofexception labelling. For
instance, distinct error messages are associated withpred(0)and (x div 0) ; and there are different recoveries as well.
This feature is not provided for in any of the previous works, but is essential for a realistic exception recovery policy.

In addition to these ideas, our formalism is based on two main concepts: the okay standard forms and the distinction
betweenexceptional casesanderroneous values. These two concepts can be handled due to the fact that for each excep-
tion-algebra, A, the semantics is handled using the free algebra over A : TΣ(A). In the following subsections, we explain the
reasons why these two features are needed in exception handling; and we sketch out the reasons why the use ofTΣ(A) is
crucial for our purposes.

2.1. Exceptions and errors
As in most formalisms already put forward, we make use ofOk-axiomswhich describe the okay cases, and we also use
another set of axioms for the erroneous and recovery cases. But recovery cases and okay axioms often lead to inconsisten-
cies. For instance, let us specify the bounded natural numbers with the operations0, succandpred. Let Maxint be the
upper bound.We hav e the Ok-equation: pred(succ(n)) = n. Assume that we want to recover all values greater than
Maxint with the recovery axiom: succ(Maxint) = Maxint. The termpred(succ(Maxint))is then equal toMaxint, but it is

also equal topred(Maxint); which results to inconsistencies.

In fact, it is necessary to distinguish between theterm succ(Maxint)that isexceptional(thus, Ok-equations should not be
applied), and itsclasswhich is anokay value(Maxint).
This problem may be solved in the ground term algebra (and in the finitely generated algebras) by using the Ok-axioms
beforethe recovery axioms are applied (assucc(Maxint)has not been recovered, it is not yet okay). But finitely generated
algebras are not powerful enough to cope with enrichment, parameterization or abstract implementation.
In our approach, this difficulty is avoided as follows : for eachexception-algebra, A, we work in the free algebra of
ΣΣ-terms with variables inA, instead of working directly inA. We denote byTΣ(A) this ΣΣ-algebra. Constructions that can
usually be done at the ground term level can also be done at theTΣ(A) level, since we can consider the elements ofA as
additional constants. Then the morphismeval (which evaluatesthe terms ofTΣ(A) into A) carries the constructions made at
theTΣ(A) level over to A.

2.2. The okay standard forms
Since Ok-axioms only concern okay terms, it is necessary to characterize these terms. But it is not possible to characterize
all the okay terms (succ(0), 0+1, pred(succ(succ(0)))...). We can only characterize some reference terms. These reference
terms may be chosen in different manners. In most examples, normal forms guide the appropriate choice.Unfortunately
normal forms are not always unique (e.g. integers :predn(0) orOp(succn(0))). Therefore this choice must be declared in
the specification.
Since our axioms are not always equivalent to canonical term rewriting systems, we call our reference termsstandard
forms. It is not necessary for these standard forms to be canonical ones, even if this is true in most examples. In our frame-
work, the standard forms are characterized by means of recursive declarations. For instance, we declare the standard
forms of integers in the following manner :

0 and succ(0) are standard forms
if succ(z) is a standard form then succ(succ(z)) is a standard form
if succ(z) is a standard form then Op(succ(z)) is a standard form

another possibility would be
0, succ(0) and pred(0) are standard forms

if succ(z) is a standard form then succ(succ(z)) is a standard form
if pred(z) is a standard form then pred(pred(z)) is a standard form

We hav enow standard forms, but there are still some exceptional standard forms such assuccMaxint+10. Theokaystandard
forms are the non exceptional ones. Thus, we declare in a similar way the exceptional standard forms (called thestandard
exceptions). Theokay standard formsare obtained from the standard forms by removing the standard exceptions (Sec-
tion 4, Definition 8).
This construction can be done in the ground term algebra. We generalize it for the non finitely generated algebras by
working in the free algebra over A, TΣ(A).

The following sections describe our formalism. Anexception specificationwill be defined by :

SPEC= < S , ΣΣ , L , St-Frm , St-Exc , Ok-Ax , Lbl-Ax , Gen-Ax >

where <S,ΣΣ,L> is an exception signature, St-Frm is astandard form declaration, St-Exc is astandard exception declara-
tion, Ok-Ax is a set ofokay axioms, Lbl-Ax is a set oflabelling axiomsandGen-Ax is a set ofgeneralized axioms. All
these parts are successively defined in sections 3 through 7.
Such a syntax may seem complicated, but this complexity reflects the complexity of the various examples that we can
modelize, and is not inherent to our formalism. For instance, if we are not interested with error messages (as in all for-
malisms already put forward), we specifyL=∅ andLbl-Ax =∅ ; if we are not interested with “bounded” data structures
(as in [GDLE 84]), we specifySt-Exc=∅ ; and if we are not interested with recovery features (as in all the partial algebra
approaches), we specifyGen-Ax=∅. Then, we obtain a syntax which looks like a classical one (ADJ) together withstan-
dard forms (St-Frm) ; howev er, all our properties remain true (existence of initial object and functorial aspect of our
semantics). Thus, our approach generalizes all the above mentioned ones.
In the same way, an exception specification whereL , St-Frm, St-Exc, Ok-ax andLbl-Ax are empty is equivalent to a
classical (ADJ) specification, because the semantics ofGen-Ax is exactly the same as the usual semantics of classical
(positive conditional) axioms.

3. EXCEPTION SIGNATURE

Definition 1 : An exception signature is a classical signature together with a set ofexception labels: ΣΣ-Exc= <S,ΣΣ,L>
whereS is a finite set ofsorts; ΣΣ is a finite set ofoperationswith arity in S ; andL is a finite set ofexception labels.

Intuitively, these exception labels correspond to the “error messages” of the data type. For instance, the exception signa-
ture of bounded natural numbers will contain the setL = {NEGATIVE,TOO-LARGE} .

Definition 2 : An exception algebra over the exception signatureΣΣ-Exc, is a classical (heterogeneous)ΣΣ-algebra,A,
together with a family of subsets, {Al }, indexed by L∪{Ok} : A=(A, {Al }) .
The subsetAOk is the set of allokay valuesof A. The subsetsAl arenot necessarily disjointed, and they can intersect sev-
eral sorts.

Example 1 : Let ΣΣ-Exc be an exception signature of bounded natural numbers,NAT. The algebraN, with pred(0)=0
and with NOk=[0,Maxint] NNEGATIVE={0} and NTOO-LARGE=]Maxint,+∞[, is an example ofΣΣ-Exc-algebra. The intu-
itive meaning of this algebra is that every value greater thanMaxint is erroneous with theTOO-LARGEexception label,
while the negative values are recovered into the constant 0.

Definition 3 : Let A and B be two ΣΣ-Exc-algebras. Anexception morphismfrom A to B is a classicalΣΣ-morphism,µ,
that preserves the labeled subsets. This means that for all labelsl ∈ L∪{Ok}, µ(Al) is included inBl .

Our first result is quite easy: the category ofΣΣ-Exc-algebras has final and initial objects: the trivial algebra,S, together
with Sl equal toS for all labels, is a final algebra; the ground term algebra,TΣΣ, together withTΣΣ,l equal to∅ for all labels,
is initial. We denote this initial algebra byTΣΣ-Exc. There is no labeled ground term and no okay ground term inTΣΣ-Exc, as
nothing is specified about labels in the signature.

4. CHARACTERIZATION OF OKA Y STANDARD FORMS

Definition 4 : A standard form declaration over ΣΣ-Exc, denoted bySt-Frm, is a finite set of elementary declarations as
follows :

[t1∈St -Frm......... tn∈St -Frm v1 = w1 vm = wm] ==> t ∈ St -Frm
whereti , v j , w j andt areΣΣ-terms with variables [*].

Each variable occurring int must also occur in one (at least) of theti . (n or m may be equal to 0).

Example 2 : A standard form declaration over NAT can be specified by means of two elementary declarations :
0 ∈ St -Frm

n ∈ St -Frm ==> succ(n) ∈ St -Frm

As outlined above, the semantics ofSt-Frm is provided inTΣ(A), in order to cope with the non-finitely generated algebras.

Definition 5 : The set of standard forms ofTΣ(A), denoted bySt-FrmA , is the smallest subset ofTΣ(A) such that :
St-FrmA containsAOk (sinceAOk is a subset ofA, its elements are constants ofTΣ(A)).
For each elementary declaration ofSt-Frm of the form :

[t1∈St -Frm......... tn∈St -Frm v1 = w1 vm = wm] ==> t ∈ St -Frm
and for each substitution,σ , with range inTΣ(A) , the following holds :
if σ (ti) ∈ St-FrmA for all i=1..n , and eval[σ (v j)] = eval[σ (w j)] for all j=1..m , then σ (t) belongs toSt-FrmA .

The second condition defines exactly the recursive characterization of the standard forms. The first condition means that,
since okay standard forms are in particular standard forms, all Ok-values of A must be (constant) standard forms inTΣ(A).
For instance, ifA=N is the algebra of integers, the termsucc(succ(succ(0)))is a standard form inTΣΣ(N) ; but we would
also like the termssucc(2) or 3 to be standard forms: this is obtained from the first condition. Notice that the existence
of St-FrmA is clear.

[*] for each j, v j andw j must belong to the same sort, of course.

Our next goal is to remove the exceptional standard forms (e.g.succ(Maxint)).

Definition 6 : A standard exception declaration over ΣΣ-Exc, denoted bySt-Exc, is a finite set of elementary declara-
tions as follows :

[t1 ∈ St -Exc tn ∈ St -Exc] ==> t ∈ St -Exc
whereti andt areΣΣ-terms with variables. Each variable occurring in one of theti must also occur int.

Example 3 : In the bounded natural numbers, our standard exception declaration is reduced to one elementary declara-
tion :

succMaxint+1(0) ∈ St -Exc
It is not necessary to declare exceptional forms greater than(Maxint+1). These exceptions are automatically handled by
implicit exception propagationencoded in the semantics.

The semantics of standard exceptions is provided inTΣ(A). The set of standard exceptions is defined via three main proper-
ties :the recursive characterization associated withSt-Exc, the implicit exception propagation rule, and the stability under
partial evaluations.

Definition 7 : The set of standard exceptions ofTΣ(A), denoted bySt-ExcA , is the smallest subset ofTΣ(A) such that :
for each elementary declaration ofSt-Excof the form :

[t1 ∈ St -Exc tn ∈ St -Exc] ==> t ∈ St -Exc
and for each substitution,σ , with range inTΣ(A) , if σ (ti) belongs toSt-ExcA for all i=1..n , thenσ (t) belongs to
St-ExcA

if u is a term ofTΣ(A) that belongs toSt-ExcA , then every term t of TΣ(A) that containsu as a subterm belongs to
St-ExcA

for each termt in St-ExcA , and for each strict subtermu of t, the term t’ , obtained by substituting the constant
eval(u) for u in t, is still an element ofSt-ExcA .

We are then able to define the okay standard forms ofTΣ(A), and the validation ofSt-Frm andSt-Exc for A.

Definition 8 : The set ofokay standard formsof TΣ(A) , Ok-FrmA, is defined by :
Ok-FrmA = St-FrmA − St-ExcA .

Moreover, the exception algebra AvalidatesSt-Frm andSt-Exc iff eval(Ok-FrmA) ⊂ AOk . This means that
each okay standard form ofTΣ(A) must have an okay value in A, after the evaluation is done. [*]

Example 4 : The okay standard forms ofTΣΣ(N) are the terms of the formsuccn(m) where 0≤n+m≤Maxint . The evalua-
tion of such terms is equal to thevalue (n+m). Thus, the evaluation of each okay standard form ofTΣΣ(N) belongs to
NOk=[0,Maxint]. Consequently,N (Example 1) validatesSt-Frm andSt-Exc.

5. OKAY AXIOMS

Our okay axiomsarepositive conditional axioms; we denote a finite set of okay axioms byOk-Ax . The associated seman-
tics is described by means of (classical)congruences. But since the distinction betweenexceptional casesanderroneous
valuescannot be made in A, we define the congruence associated toOk-Ax in TΣ(A) ; and then, we define the validation of
Ok-Ax via eval.

Proposition 1 : Given ΣΣ-Exc, St-Frm, St-Exc, and Ok-Ax , consider aΣΣ-Exc-algebra A. There is a least congruence
over TΣ(A), denoted by≡≡Ok, satisfying the following “IF..THEN” condition :
For each substitution,σ , with range inTΣ(A) , and for each axiom ofOk-Ax ,

[v1 = w1 vn = wn] ==> v = w [**],
(let σ (v) = op(t1, . . . ,tm)), IF the three following conditions holds :

eval[σ (vi)] = eval[σ (wi)] for all i=1..n
there are okay standard formsα1, . . . ,α m (∈ Ok-FrmA) such that t j ≡≡Ok α j and op(α1, . . . ,α m) ∈/ St-ExcA

[*] Notice that the reverse inclusion is always satisfied.

[**] or w = v , our axioms are not oriented.

there is an okay standard formα (∈ Ok-FrmA) such thatσ (w) ≡≡Ok α .
THEN σ (v) ≡≡Ok σ (w) .

Proof : giv en in appendix.

The three premisses included in the IF statement are explained as follows :
the first condition is the validation of the premisses of our okay axiom
the second condition reflects aninnermost evaluation: to apply the okay axiom, every subterm ofσ (v) must

already have an okay standard form, and the resulting termop(α1, . . . ,α m) must not be exceptional
the third condition limits the effect of the okay axiom to the okay terms only.

Thus,≡≡Ok has two purposes :it deduces theokay termsof TΣ(A) from the reference terms ofOk-FrmA, and it creates the
“okay equivalence class” corresponding to each okay standard form. Okay axioms only handle the normal cases of the
data type.

Example 5 : Okay axioms of bounded natural numbers are specified as usual :

pred(succ(n)) = n
n + 0 = n

n + succ(m) = succ(n) + m
n - 0 = n

n - succ(m) = pred(n) - m

Assume that we want to evaluate the term succ(pred(succMaxint(0))) . We first must evaluate the subterm
pred(succMaxint(0)). Its okay standard form issuccMaxint−1(0) (first axiom), and thus we can apply the first okay axiom
over succ(pred(succMaxint(0))), which gives succMaxint(0), and sincesuccMaxint(0) is also an okay standard form, we have
succ(pred(succMaxint(0))) ≡≡Ok succMaxint(0).
On the other hand, assume that we want to evaluate the term pred(succ(Maxint)). We must first evaluate the subterm
succ(Maxint). But our okay axioms cannot associate any okay standard form tosucc(Maxint)(this term is exceptional).
Thus, the first axiom cannot be applied, and the class ofpred(succ(Maxint))via ≡≡Ok is reduced to {pred(succ(Maxint))}.
Nevertheless, generalized axioms (Section 7) may handle the evaluation of such terms.

Definition 9 : An exception algebra, A, validatesOk-Ax if f the morphismeval is compatible with≡≡Ok. This means :
\/-- t ∈ TΣ(A) , \/- - t′ ∈ TΣ(A) , [t ≡≡Ok t′ ==> eval(t) = eval(t′)]

6. GENERALIZED LABELLING

Definition 10 : We denote byLbl-Ax , a finite set of labelling axioms over ΣΣ-Excas follows :
[t1∈l1 tn∈l n v1 = w1 vm = wm] ==> t ∈ l

whereti , v j , w j andt areΣΣ-terms with variables,l i are members ofL∪{Ok}, and l is a member ofL [*].

Example 6 : Labelling axioms of bounded natural numbers can be specified as follows :

succMaxint+10 ∈ TOO-LARGE
n ∈ TOO-LARGE ==> succ(n)∈ TOO-LARGE
n ∈ TOO-LARGE ==> n + 0 ∈ TOO-LARGE

(succ(n) + m)∈ TOO-LARGE ==> (n + succ(m))∈ TOO-LARGE
pred(0)∈ NEGATIVE

n ∈ NEGATIVE ==> pred(n)∈ NEGATIVE
(n − succ(n))∈ NEGATIVE

(n−m) ∈ NEGATIVE ==> (n − succ(m))∈ NEGATIVE

Equations in the premisses are useful ; for instance, given the operation _ <_ , the following labelling axiom is specified :
n<m = True ==> (n−m) ∈ NEGATIVE

instead of the two last axioms.

[*] The l i ’s are notnecessarily distinct.

Notice that even if exceptionspropagate,labelsmust not (implicitly) propagate. For instance,pred(0)is exceptional
andNEGATIVE, thus the termsucc(pred(0))is also exceptional (implicit propagation of standard exceptions), but is not a
NEGATIVEvalue.

The semantics ofLbl-Ax works directly on thevaluesof A, in a straightforward manner.

Definition 11 : An exception algebra A=(A, {Al }) validatesLbl-Ax if f for each axiom ofLbl-Ax
[t1∈l1 tn∈l n v1 = w1 vm = wm] ==> t ∈ l

and for each substitution,σ , with range inA, the following holds :
if σ (ti) belongs to Al i

for all i, and σ (v j) = σ (w j) for all j, thenσ (t) belongs toAl .

Although the specifier is free to include whatever axioms (s)he wants inLbl-Ax , it should be noted that labelling axioms
have been designed in order to formalizepreconditions(introduced by Guttag in [Gut 79]).

Remark 1 : Lbl-Ax does not create exceptions. The subsetsAl are not necessarily disjointed fromAOk. For instance,
ev en if Lbl-Ax contains an axiom of the form “0∈ANY-LABEL”, 0 is still an okay standard form (and thus an okay value).
In other words, okay values labeled byLbl-Ax are automatically recovered. More precisely, erroneous valuesare defined
as follows :

Definition 12 : We denote by Aerr the smallest subset of A=(A, {Al }) such that :
Aerr contains [Al − AOk] for all labelsl ∈ L .
for each operationop ∈ ΣΣ and for all valuesv1

. . .vn (according to the arity ofop), if (at least) one of thevi

belongs to Aerr and ifop(v1, . . . ,vn) is not a member ofAOk, thenop(v1, . . . ,vn) belongs to Aerr .

The intuitive meaning of this definition is the following : the first condition states that exception labels generate errors
except if they are recovered ; the second condition means that errors propagate except if they are recovered. The second
condition is called theimplicit error propagation rule.

Notice that “err” is not a label. It is not compatible with exception morphisms (µ(Aerr) is not always included in Berr).

7. GENERALIZED AXIOMS

Definition 13 : We denote byGen-Ax a finite set ofgeneralized axiomsas follows :
[t1∈l1 tn∈l n v1 = w1 vm = wm] ==> vm+1 = wm+1

whereti , v j andw j areΣΣ-terms with variables, andl i are members ofL∪{Ok} [*].

Example 7 : Terms such as(Maxint+3)−4 can be recovered into their final value ; andat the same timewe can amalga-
mate all terms that contain a negative subterm over an additional constantCRASH:

n ∈ NEGATIVE ==> n = CRASH
succ(CRASH) = CRASH
pred(CRASH) = CRASH

CRASH− n = CRASH
n − CRASH = CRASH
CRASH + n = CRASH

n + m = m + n
n ∈ TOO-LARGE ==> n+0 = n

n+succ(m)∈ TOO-LARGE ==> n+succ(m) = succ(n+m)
succ(n)∈ TOO-LARGE ==> pred(succ(n)) = n

n ∈ TOO-LARGE ==> n−0 = n
n ∈ TOO-LARGE ==> n−succ(m) = pred(n)−m

Each term that contains a negative value in its subterms is equal toCRASH. Every other term is amalgamated with its nor-
mal form (succi (0)), (even if this form is not an okay one).

[*] The l i ’s are notnecessarily distinct.

The semantics ofGen-Ax works directly on thevaluesof A, in a straightforward manner.

Definition 14 : The algebra A validatesGen-Ax if f : for each axiom ofGen-Ax,
[t1∈l1 tn∈l n v1 = w1 vm = wm] ==> v = w ,

and for each substitutionσ with range inA, the following holds :
if σ (ti) belongs to Al i

for all i, and σ (v j) = σ (w j) for all j, thenσ (v) = σ (w) in A.

Example 8 : We hav eshown (Example 5) that the evaluation of the termpred(succ(Maxint))fails via the okay axioms,
this term is exceptional. Nevertheless,pred(succ(Maxint))is recovered via our generalized axioms of Example7, using
the axiom :

succ(n)∈ TOO-LARGE ==> pred(succ(n)) = n.
It suffices to show thatsucc(Maxint)is labeled withTOO-LARGE; which results from the first labelling axiom of Exam-
ple 6. Thus, the termpred(succ(Maxint))is recovered into the class ofMaxint.

Definition 15 : Let SPEC=<ΣΣ-Exc,St-Frm,St-Exc,Ok-Ax ,Lbl-Ax ,Gen-Ax> be an exception specification. AΣΣ-Exc-
algebra, A, is aSPEC-algebra iff it validates all parts ofSPEC. We denote the full subcategory of Alg(ΣΣ-Exc) containing
theSPEC-algebras by Alg(SPEC).

8. INITIALITY RESULTS

In this section, we show that Alg(SPEC) has an initial object. Our main result is more general; it extends the major tech-
nical result of the classical abstract data type theory [ADJ 76].

Theorem 1 : Let SPECbe an exception-specification over ΣΣ-Exc. Let A be aΣΣ-Exc-algebra, and letR be a binary rela-
tion over A compatible with the sorts ofΣΣ-Exc. There is a least congruence over A, denoted by≡≡SPEC,R, and there are
least subsets of (A/ ≡≡SPEC,R), denoted by {(A/ ≡≡SPEC,R)l i

} , such that (A/ ≡≡SPEC,R) is aSPEC-algebra and≡≡SPEC,R contains
R.

Proof : giv en in appendix.

Corollary 1 : The category Alg(SPEC) has an initial object, denoted byTSPEC.

Proof : From the definition of exception morphisms, it is clear that theSPEC-algebraTSPEC , obtained by Theorem 1
with A=TΣΣ-Exc andR=∅, giv es the answer (sinceTΣΣ-Exc is already initial in Alg(ΣΣ-Exc)).

Example 9 : With the specificationSPECof bounded natural numbers given in sections 3 through 7, the initial algebra
is defined as follows :
TSPEC = {CRASH} ∪N, with operations 0 succ pred + and − as usual. Every negative value is amalgamated with
CRASH, and every operation applied over CRASHgives CRASH. Moreover, NNEGATIVE is equal to {CRASH}, NTOO-LARGE

is equal to]Maxint,+∞[andNOk is equal to[0,Maxint].

9. STRUCTURED EXCEPTION SPECIFICATIONS

9.1. Forgetful functors
Definition 16 : Let ΣΣ-Exc1 =< S1, ΣΣ1, L1 > and ΣΣ-Exc2 =< S2, ΣΣ2, L2 > be two exception signatures such that
ΣΣ-Exc1 ⊂ ΣΣ-Exc2. We define theforgetful functor U from Alg(ΣΣ-Exc2) to Alg(ΣΣ-Exc1) in a similar manner as in the clas-
sical abstract data type theory :

for eachΣΣ-Exc2-algebra B=(B, {Bl }) , U(B) is theΣΣ-Exc1-algebra A=(A, {Al }) such thatA (resp. Al for each
l ∈L1∪{Ok}) is the subset ofB (resp.Bl) corresponding to the sorts ofS1 (i.e. we remove the subsets associated with
the sorts ofS2 − S1). TheΣΣ1-operations work over A as they do over B.

for eachΣΣ-Exc2-morphism µ: B → B’ , U(µ) is the ΣΣ-Exc1-morphismµ, restricted toU(B) and corestricted to
U(B’).

Unfortunately, giv en two specificationsSPEC1 ⊂ SPEC2, if B i s aSPEC2-algebra, thenU(B) is aΣΣ-Exc1-algebra but is
not always aSPEC1-algebra. This is due to the following fact : if SPEC2 adds some standard exceptions to the operations
of SPEC1, then it is possible that it removes someSPEC1 okay standard forms. Thus, several occurrences ofSPEC1-okay
axioms are inhibited. There are then several SPEC2-algebras that do not validateOk-Ax1.

9.2. Presentations
Definition 17 : A presentationover the exception specificationSPEC1 is a tuple

PRES= < S , ΣΣ , L , St-Frm , St-Exc , Ok-Ax , Lbl-Ax , Gen-Ax >
such that SPEC2 = SPEC1 + PRES is an exception specification,<S0, ΣΣ0> ∩ <S,ΣΣ> is empty, and for allSPEC2-alge-
bras, A, theΣΣ-Exc1-algebraU(A) is aSPEC1-algebra.
The specificationSPEC1 is called thepredefinedspecification.

This definition is not a very constructive one. Nevertheless, we shall give a sufficient condition under whichPRES is
a presentation.

Proposition 2 : If, for each elementary declaration ofSt-Excof the form
[t1 ∈ St -Exc tn ∈ St -Exc] ==> t ∈ St -Exc,

the leading operator symbol oft belongs toΣΣ, thenPRES is a presentation over SPEC1 .
This means that the standard exceptions added byPRESare only preconditions on the new operations. There must not be
any new standard exceptions with a predefined operation at the top.
Proof : Standard exceptions are closed under partial evaluations, but this evaluation only concernsstrict subterms. The
leading operator is never avoided. Thus, each new standard exception contains a new operation at the top; and the presen-
tation cannot remove predefined standard forms.Consequently, it cannot remove any occurrence of a predefined okay
axiom.

Example 10 : We define the following presentationPRES over SPEC1 = NAT + BOOL, in order to specify bounded
arrays of natural numbers :

S = { ARRAY }

ΣΣ = { create , _ [_]:=_ , _ [_] } (with usual arities)

L = { OUT-OF-RANGE , NOT-INITIALIZED }

St-Frm : create∈ St -Frm

t ∈ St -Frm n ∈ St -Frm

......... i ∈ St -Frm Maxrange< i = False





==> t[i]:=n ∈ St -Frm

St-Exc= ∅ [becauseSt-Frm already contains “Maxrange<i = False” in the premisses]

Ok-Ax : eq?(i,j) = False ==> (t[i]:=n)[j]:=m = (t[j]:=m)[i]:=n
i = j ==> (t[i]:=n)[j]:=m = t[j]:=m

Lbl-Ax : create[i] ∈ NOT-INITIALIZED
t[i] ∈ NOT-INITIALIZED eq?(i,j) = False ==> (t[j]:=n)[i] ∈ NOT-INITIALIZED

succMaxrange−10 < i = True ==> t[i] ∈ OUT-OF-RANGE
i ∈ NEGAT ==> t[i] ∈ OUT-OF-RANGE

succMaxrange−10 < i = True ==> t[i]:=n ∈ OUT-OF-RANGE
i ∈ NEGAT ==> t[i]:=n ∈ OUT-OF-RANGE

Gen-Ax : ∅ [... for simplicity, but we can specify recoveries, ad libidum]

Proposition 2 ensures thatPRES is a presentation over NAT andBOOL. Notice that this specification is an example where
standard forms are not normal forms.

9.3. Synthesis functors
Definition 18 : The synthesis functorassociated with the presentationPRES is the functor, F, from Alg(SPEC1) to
Alg(SPEC2), defined by means of Theorem 1 as follows :

for eachSPEC1-algebra, A, the morphismeval: TΣΣ1(A)→A defines a binary relation inTΣΣ2(A) by :
xRy <==> eval(x)=eval(y) forall x and y in TΣΣ1(A) [*].

From Theorem 1, we know that there is a least congruence over TΣΣ2(A) , ≡≡SPEC2,R, generated byR, such that
F(A)=(TΣΣ2(A)/ ≡≡SPEC2,R) [together with smallest subsets,F(A) l , containing Al] is a SPEC2-algebra. The
SPEC2-algebraF(A) is called thesynthesisof A.

for eachSPEC1-morphism,µ: A → A’ , F(µ) is theSPEC2-morphism fromF(A) to F(A’) deduced in a unique
way from theΣΣ2-morphism µ: TΣΣ2(A) → TΣΣ2(A′) .

Example 11 : Let A = {CRASH} ∪N ∪ { True,False} be a (NAT+BOOL)-algebra, as in Example 9. LetPRESbe the
presentation of bounded arrays from Example 10. The synthesized algebraF(A) associated withPRES is described as fol-
lows :
Every array that contains only okay natural numbers in the range0..Maxrangeis an okay one. Every array that contains an
operation using an index in { CRASH} ∪]Maxrange,+∞[is erroneous (OUT-OF-RANGE). Every array that contains an
erroneous natural number (∈ { CRASH} ∪]Maxint,+∞[) is erroneous (by implicit error propagation rule).
Moreover, the predefined sorts contain new erroneous values :those obtained by taking a value from outside of the range
0..Maxrange; those obtained by taking a value from a non initialized index ; and those obtained by taking a value from an
erroneous array (implicit error propagation rule). These new values are not predefined ones, except if the generalized
axioms ofPRESamalgamates them withCRASH, or recovers them.
Notice that the labeled subsetF(A)OUT-OF-RANGE contains both numbers and arrays. This is an example of an exception-
algebra where a labeled subset intersects several sorts.

Theorem 2 : The synthesis functorF is a left adjoint for the forgetful functorU. This means that for eachSPEC1-alge-
bra, A, and for eachSPEC2-algebra, B, HomSPEC2

(F(A), B) is isomorphic to HomSPEC1
(A, U(B)).

Proof : Let IA be theSPEC1-morphism from A toU(F(A)) deduced from the identity over A in a unique way. The pair
(A,IA) is a universal arrow from A to U, resulting from the definition ofF(A) (Theorem 1). Thus, the Yoneda lemma
([McL 71], III.2) proves our theorem. Notice that the familyIA , for A in Alg(SPEC1), is then the unit of adjunction.

9.4. Hierarchical consistency
In the classical abstract data type theory, hierarchical consistency means thatPRESdoes not amalgamate predefined val-
ues. This means that the unit of adjunction isinjective. With exception handling, we must also verify that PRES do not
add predefined labels to some predefined values :

Definition 19 : Let I be the unit of adjunctionI : TSPEC1
→ U(F(TSPEC1

) = U(TSPEC2
). ThepresentationPRES is hier-

archically consistentiff I is injective and for all predefined labelsl ∈ L1, we hav e: I (TSPEC1,l) = U(TSPEC2
)l ∩I (TSPEC1

).
In the categorical framework, this means thatI is partially retractable[**].

Example 12 : TheARRAYpresentation specified in Example 10 is hierarchically consistent. But if we add the axiom:
0 ∈ TOO-LARGE, PRES is not hierarchically consistent any more, since the predefined value 0 becomes labeled with the
predefined labelTOO-LARGE.

9.5. Sufficient completeness
In the classical abstract data type theory, sufficient completeness means thatPRESdoes not add new values to the prede-
fined sorts. This means that the unit of adjunction issurjective. In exception handling, such a definition is too restrictive.
Sufficient completeness should allow presentations to add erroneous values into the predefined sorts.For instance, each
value of the formt[i] , with i>Maxrange, is a new predefined value ;but the presentation is sufficiently complete, sincet[i]
is erroneous (labeled withOUT-OF-RANGE).

Definition 20 : The presentationPRES is sufficiently completeif f the unit of adjunctionI satisfies :
U(TSPEC2

− TSPEC2,err) ⊂ I (TSPEC1
)

This means that the presentationPRESmust not add new non erroneous values to the predefined sorts.

Example 13 : TheARRAYpresentation specified in Example 10 is sufficiently complete. But if we remove the axiom:
create[i] ∈ NOT-INITIALIZED , thenPRES is no longer sufficiently complete, sincecreate[i] is not erroneous any more
and is not amalgamated with a predefined value (create[i] is then incompletely specified).

[*] recall thatTΣΣ1(A) ⊂ TΣΣ2(A)

[**] In the classical abstract data type theory, injective morphisms, monomorphisms and partially retractable morphisms are the same. In our
exception handling formalism, monomorphisms are injective morphisms, but are not always partially retractable.

10. CONCLUSION

In this paper, we hav eshown how exception handling can be integrated into algebraic specifications without losing the use
of congruences, the existence of least congruences and the existence of initial models. We must point out that to guarantee
the existence of least congruences, we do not need to introduce any restriction on exception specifications. For instance,
ev en if in most examples, axioms can be transformed into canonical term rewriting systems, this condition is never
required. We do not introduce any restrictions on the class of models taken into account, i.e. we do not restrict ourselves to
finitely generated algebras or to the ground term algebra. This allows our results to hold in a very general framework. It
should be noted that the key idea is to distinguishexceptionsanderrors, and this is made possible by working at the level
of TΣ(A). Indeed the formalism described in this paper relies on this simple but powerful idea.

What is especially important is that once the initiality results are guaranteed for exception specifications, the classical
specification-building primitives are easily extended to our framework. We hav ecarefully detailed how enrichment carries
over to our exception specifications, and how hierarchical consistency and sufficient completeness can be suitably rede-
fined. In the same way, parameterization may be extended to exception specifications, since it mainly relies on initiality,
synthesis functors and pushouts (see [ADJ 80]). As a last remark, we want to emphasize the fact that the concepts of
abstract implementation developed in [EKMP 80], and [BBC 86], may also be extended to exception specifications (cf.
[Ber 84] and [Ber 86] respectively). This fact is especially important since realistic examples of abstract implementations
can hardly be designed without exception handling (e.g. the implementation of bounded queues by means of bounded
arrays).

ACKNOWLEDGEMENTS
This work is partially supported by CNRS GRECO de Programmation, and by the ESPRIT Projects METEOR and FOR-
ME-TOO.

11. APPENDIX

This appendix contains the technical proofs omitted in the body of the article.

Proof of Proposition 1 : We follow the usual method for minimality proofs :
The set,C, of all congruences satisfying the IF..THEN condition is not empty: it contains at least the trivial congru-

ence.
Now, we show that the congruence,≡≡Ok, equal to the conjunction of all the congruences inC, is still in C. Thus, we

want to prove that≡≡Ok satisfies the IF..THEN condition.
Assume that≡≡Ok , σ and the okay axiom([v1 = w1......... . . .vn = wn] ==> v=w) satisfy the three conditions of the IF state-
ment. We want to prove that σ (v) ≡≡ σ (w) for all “≡≡” i n C. Thus, since each≡≡ in C satisfies the IF..THEN condition, it
suffices to prove that each≡≡ in C satisfies these three conditions. The first condition is clear, since it is independent of≡≡
(eval is intrinsic to A). The second condition results from the fact that≡≡Ok is the conjunction of all≡≡ in C : this implies
that ti ≡≡ α i for all i and all≡≡. The same reasoning applies to the third condition, which ends our proof.

Proof of Theorem 1 :

We will prove a more general result. Theorem 1 means that there is a leastSPEC-algebra, B=(A/ ≡≡SPEC,R), finitely gener-
ated over A and compatible withR. We will prove that this result can be extended to the non finitely generated algebras :

Theorem 1b : Let SPECbe an exception-specification over the exception-signatureΣΣ-Exc. Let A be aΣΣ-Exc-algebra,
and letR be a binary relation over A compatible with the sorts ofΣΣ-Exc. There is a leastSPEC-algebra, B, and an excep-
tion morphism µ: A → B such that : ifxRy then µ(x) = µ(y) .

Proof : Let F be the family of allSPEC-morphisms,ν : A → Z , where Z is aSPEC-algebra andν is compatible with
R. F is not empty : it contains at least the trivial morphismτ : A → S.

Let B be the quotient of A such that the surjective ΣΣ-Exc-morphism, µ: A → B , is defined by: µ(x) = µ(y) iff
ν (x) = ν (y) for allν in F ; and µ(x) ∈ Bl iff ν (x) ∈ Zl for all ν in F.
µ is clearly an exception morphism since allν in F are exception morphisms. Thus, it suffices to prove that B is aSPEC-
algebra ;i.e. thatB validatesSt-Frm, St-Exc, Ok-Ax , Lbl-Ax andGen-Ax. Two lemmas are needed. Notice that, from
the definition of B, there is an exception morphism,ν ′: B → Z , for each algebra Z inF. In the following, for each algebra
Z in F, ν : TΣΣ(B) → TΣΣ(Z) denotes theΣΣ-morphism deduced in a unique way fromν ′.

Lemma 1 : ν (Ok-FrmB) is included inOk-FrmZ.

Lemma 2 : The congruenceν −1(≡≡Z,Ok) contains the congruence≡≡B,Ok (in TΣΣ(B)×TΣΣ(B)).

For lack of space, we do not prove these lemmas (proved in [Ber 86]). The first lemma results from minimality properties
of St-FrmB andSt-ExcZ. The second one results from minimality properties of≡≡B,Ok.

The validation ofSt-Frm andSt-Exc means thateval(Ok-FrmB)⊂BOk. This results from Lemma 1, from the fact that
eval(Ok-FrmZ)⊂ZOk for all Z in F, and from the definition ofBOk : x∈BOk iff ν ′(x)∈ZOk for all Z in F.

The validation ofOk-Ax means that ift ≡≡B,Ok t′ theneval(t)=eval(t’) in B. This results from Lemma 2, from the fact
that each Z inF validatesOk-Ax , and from the definition of B.

For the same reasons, the validation ofLbl-Ax andGen-Ax results directly from the definition of B, since the seman-
tics ofLbl-Ax andGen-Ax is directly defined in B (not viaTΣΣ(B)).
This ends our proof.

12. REFERENCES
[ADJ 76] Goguen J., Thatcher J., Wagner E. : “An initial algebra approach to the specification, correctness, and implementa-

tion of abstract data types”, Current Trends in Programming Methodology, Vol.4, Yeh Ed. Prentice Hall, 1978 (al-
so IBM Report RC 6487, Oct. 1976).

[ADJ 79] Thatcher J., Wagner W., Wright J. : “Data type specification: parameterization and the power of specification tech-
niques”, Proc. of SIGACT 10th Annual Symposium on Theory of Computing, 1979.

[ADJ 80] Ehrig H., Kreowski H., Thatcher J., Wagner J., Wright J. : “Parameterized data types in algebraic specification lan-
gages”, Proc. 7th ICALP, July 1980.

[BBC 86] Bernot G., Bidoit M., Choppy C. : “Abstract implementations and correctness proofs”, Proc. 3rd STACS, January
1986, Springer-Verlag LNCS.

[Ber 84] Bernot G. : “Implémentations de types abstraits alge´briques en pre´sence d’exceptions”, DEA Report, LRI, Orsay,
Sept. 1984.

[Ber 86] Bernot G. : “Une se´mantique alge´brique pour une spe´cification différenciée des exceptions et des erreurs: applica-
tion à l’implémentation et aux primitives de structuration des spe´cifications formelles”, The`se de troisième cycle,
Universitéde Paris-Sud, 1986.

[Bid 82] Bidoit M. : “Algebraic data types: structured specifications and fair presentations”, Proc. of AFCET Symposium
on Mathematics for Computer Science, Paris, March 1982.

[Bid 84] Bidoit M. : “Algebraic specification of exception handling by means of declarations and equations”, Proc. 11th
ICALP, Springer-Verlag LNCS 172, July 1984.

[BW 82] Broy M., Wirsing M. : “Partial abstract data types”, Acta Informatica, Vol.18-1, Nov 1982.
[EKMP 80] Ehrig H., Kreowski H., Mahr B., Padawitz P. : “Algebraic implementation of abstract data types”, Theoretical

Computer Science, Oct. 1980.
[EPE 81] Engels G., Pletat V., Ehrich H. : “Handling errors and exceptions in the algebraic specification of data types”, Os-

nabruecker Schriften zur Mathematik, July 1981.
[GDLE 84] Gogolla M., Drosten K., Lipeck U., Ehrich H.D. : “Algebraic and operational semantics of specifications allowing

exceptions and errors”, Theoretical Computer Science 34, North Holland, 1984.
[Gog 77] Goguen J.A. : “Abstract errors for abstract data types”, Formal Description of Programming Concepts E.J.

NEUHOLD Ed., North Holland, New York
[Gog 78] Goguen J.A. : “Exceptions and error sorts, coercion and overloading operators”, SRI Research Report, 1978.
[Gut 79] Guttag J.V. : “Notes on type abstraction (Version 2)”, IEEE Transactions on Software Engineering, 1979.
[Loe 81] Loeckx J. : “Algorithmic specifications of abstract data types”, ICALP 1981.
[McL 71] Mac Lane S. : “Categories for the working mathematician”, Graduate texts in mathematics, 5, Springer-Verlag,

1971.
[Pla 82] Plaisted D. : “An initial algebra semantics for error presentations”, Unpublished Draft, 1982.
[SW 83] Sannella D., Wirsing M. : “A kernel language for algebraic specification and implementation”, Proc. Intl. Conf. on

Foundations of computation Theory, Springer-Verlag, LNCS 158, 1983.

[Wir 82] Wirsing M. : “Structured algebraic specifications”, Proc. of AFCET Symposium on Mathematics for Computer
Science, Paris, March 1982.

[Wir 83] Wirsing M. : “Structured algebraic specifications: a kernel language”, Habilitation thesis, Technische Universitat
Munchen, 1983.

