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ABSTRACT

In this paperwe present a ng semantics for the implementation of abstract data types. This semantics
leads to a simplexbaustve description of the abstract implementation correctness criteria. These correct-
ness criteria are expressed in termsuficient completenesand hierarchical consistencyThus, correct-

ness proofs of abstract implementations camagd be handled using classical tools suchtheesorem
proving methodsstructural inductionmethods orsyntactical methodge.g. &ir presentations). The main
idea of our approach is the use of intermediate “concrete sorts”, which synthesizail#dideavalues used

by implementation. Moragr, we show that thecompositionof several correct abstract implementations is
always correct. This provides a formal foundation for a methodology of prograatogenent by stepwise
refinement.

1. INTRODUCTION

For about ten years [LZ 75, Gut 75, ADJ 76], the formalism of abstract data types has been considered a
major tool for writing hierarchical and modular specifications. Algebraic specificationgderthe user

with legible and releant properties concerning the specified data structure. In partianldstract specifi-

cation does not necessarily reflect the “concrete” implementation of the described data structure. But then,
we hae dten to prave tat the concrete implementationcisrrectaccording to our abstract specification.

The following example shows the difference betwearstract and “concreté specifications.

Example 1
Let us specify the stacks of natural numb&MCK(NAT) is specified as follows :
pop(empty) = empty
pop(push(n,X)) = X
top(empty) = O
top(push(n,X)) = n

But this data structure is often implemented by means of arrays. A stack is then characterized by an array
which contains the elements of the stack, and an intebah is the height of the stack :

empty = <t,0>
push(n,<t,i>) = <ti]:=n,succ(i)>
pop(<t,0>) = <t,0>
pop(<t,succ(i)>) = <ti>
top(<t,0>) = O

top(<t,succ(i)>) t[i]

The first element pushed onto the stack is tf@n; and the ind& i points to the place where the next ele-
ment will be pushed.



Our problem is to pnee that the second set of axiosimulateshe data structure described by the first one.
Correctness proofs of abstract implementations can be done by using the notepresantation iari-
antsandequality epresentatiofGHM 76, Gau 80].For instance, the equality representation of Example 1
can be stated by :

<t,i>=<ti"> if fi=i" and t[j]=t[j] forall j=0..i
Unfortunately this equality representation must be specified by the asgmothing prees that it is cor
rect. In particularif we specify an equality representation whergégthing is true”, then\eery implemen-
tation will be correct. Since 1980, veeal works hae formalized the notion ofimulation [EKP 80,
EKMP 80, SW 82] all these works gie pure £manticalcorrectness criteria (such asstence of a mer
phism between twdgebras). Unfortunatelypure semantical correctness criteria do not provide the speci-
fier with theoem poving methods ostructural inductionmethods. It is therefore necessary to complete the
abstract data type framverk with an abstract implementation formalism which is able to provide the user
with “simple” correctness proof criteria. These criteria are masnlfjcient completenesand hierarchical
consistency

In this paperwe pesent a ng formalism of abstract implementation. This formalism leads in a natural
way to an haustve description of the abstract implementation correctness criteria. These correctness cri-
teria can be checked via classical methods singeatieeexpressed in terms of sufficient completeness and
hierarchical consistegcThis approach is especially powerful, since it is thevagd possible to pre the
correctness of an implementation via theorem proving methods. Moree prove that our formalism is
compatible withenrichmentand that theompositiorof two correct implementationsabys gives a orrect

result. Our formalism allows use pbsitive conditional axiomsWe will show that this feature imposes an
explicit specification of the equality representation, but that it also facilitates the specification process. In
particular our abstract implementation formalism can easilyxbended to the algebraic data types with
exception handling features [Ber 85].

The next section explains the classical problems related to abstract implemer8atiion 3 describes the
main ideas of our formalism which selthese problems. Sections 4 through 6 describe our abstract imple-
mentation formalism. In Section 7, we shbow correctness proofs of abstract implementation can be han-
dled. Andfinally, we prove tat abstract implementations cope wattirichmentSection 8), angdomposi-

tion (Section 9). W assume that the reader is familiar with elementary results of category theory and
abstract data type theory.

2. PROBLEMS RAISED BY ABSTRACT IMPLEMENT ATION

Abstract implementations can be specified in taain ways :with anabstractionfunction, or with arepre-
sentationfunction.

2.1. Abstraction

The abstraction takes already implemented objects (e.g. arrays and natural numbers), and returns “abstract”
objects (e.g. stacks). This is done by means dlmtraction opeation (e.g. A: ARRA NAT - STACK).

For instance, we obtain the axioms of the implementation of stacks by subst#(tfinépr <t,i> in Exam-

ple 1. Another example is the following :

Example 2
Natural numbers can be implemented by means of integers as follows :
On = A@)
sucq(A(z) = A(suce(2)

eq?v(A(2), A(Z))

where A: INT — NAT is the abstraction operation.

eq?(z z)

Unfortunately abstraction operations create too mastract objects.For instanceA(create,4)does not
implement ap stack, since if the height of a stack is equal to 4, then the four first ranges of the



corresponding array must be initialized. In the same A&y, does not implement gmatural number.

As shown in [EKMP 80], this fact pvents the specifier from carrying out simple correctness proofs by the-
orem proving methods.df instance, one of the proofs needed by implementation is the congistehe
implementation. Thisneans that tw distinct abstract objects must be implemented by distinct con-

crete objects. The only formal concept of abstract data types which can handle such a coinigian is

chical consistencyThus, it is necessary to put together the specification of our implementation (Example 2)
and the abstract specification to be implemeni&&T). Then,we obtain a specification that contains both

the abstract implementation and the specification to be implemented, and we can check whether this speci-
fication is hierarchically consistente NAT. NAT is specified as follows :

eq?y(O, Oy)

eq?n(Oy, sucgy(my))
eq?y(sucgy(n), Oy)
eq?n(sucgy(n), sucg(m))

But then, we obtain True = ed?y(Oy, Oy) = ed?y(Oy,

True
False
False
eq?y(n, m)

sucg(A(-1))) = False. Consequently we

cannot pree the consistencof our implementation this way.

2.2. Representation

The aim of a representation is to ypiste a composition of already implemented operations (e.g. those of
NAT andARRAY for every operation to be implemented (eegmpty push, pop, top For instance, the rep-
resentation associated with Example 1 is specified as follows :

plempy =
p(pustin <t,i >)) =
p(POH(< 1,0 >)
p(PORI< t, sucdi) >)
pltop(< 1,0 >)
pliop(< t,sucd) >) =

where p is therepresentatiorfunction.

<t,0>
<t[i]:=n,succ(i)>
<t,0>

<t,i>

0

t[i]

Since representation onlyvgs a epresentation for each operation to be implemented, it should not create
undesirable abstract values. Unfortunatilis very difficult to give an dgebraic meaning to such axioms.

This is due to the fact thdk_, >" has no real algebraic definition. If we consider, > as an opera-

tion, then its arity is necessarily<, > ARRA’ NAT . STACK because it takes an array and a natural
number and returns a stack (as we applgpto <t,i>). Consequentlythe arity of <, >is the same as

the arity of the abstraction operation. Thus, the functiags useless (equal to the identity), since the opera-
tion <,> can simply be used as an abstraction operation, which simplifies the specification of abstract
implementation. Neertheless, we will sho how our formalism uses botp and A, by means of an inter

mediate “product sort”.

2.3. Presentations and implementations

Assume that th&TACK data structure is already implemented by meamSRRAYand NAT. The user of

this data structure will probably specify a presentatioer the STACK specification (presentationvey
STACK can be viered as abstract programs). But the user shouwleriaveto knov how the implementa-

tion is done. In other words, (s)he kvothe abstract specification $TACK, but not the specification of
the implementation.Thus, &ery proof concerning this enrichment is dong.wthe abstract specification

of STACK, but not wr.t. the abstract implementation. Nothing ye®that the composition of our implemen-
tation and the v enrichment gies the expected results. A particular subproblem of this is the composition
of several implementations. All correctness proofs of the second implementation are hardletb whe
abstract specification of the first implemented data structure, buiateenot done w.t. to the concrete
specification of the first implementation. In our framoek, an enrichment of an abstract implementation



always gives the expected result. This featuraswnot provided for in gnof the works previously put fer
ward.

In order to achiee this goal, we need amplicit specification of the equality representation in the imple-
mentation when we enrich the implementation 8IACK, the associated presentation will probably con-
tain some axioms of the form :
X=yY = ..
We may have : X = empty and Y = pop(push(x,empty)) The implementations of andY are then<cre-
ate,0> and <create[0]:=x,0> . If the designer of the implementation says nothing abebth two dis-
tinct pairs implement the same skdcour enrichment viewed through the implementation will not be cor
rect, since seeral occurrences of these axioms are not taken into account. Thus, it is necessary to specify
the equality epresentatiorin the implementation, in order to handle conditional axiomswilf show that
equality representation is also a useful tool for correctness proofs.

3. PRESENTATION OF OUR FORMALISM

Our situation is described as follows :
O The already implemented data structure (eARRAY and NAT) is gpecified by
SPEG =< &, 2, Aq >, whereS; is a set of sortsX is a set of operations with arity g,
andAg is a set opositive conditionabxioms wer the signature< Sy, 25 >. SPEG, is called the
residentspecification.
O We want to implement an enrichment (eSJACK) of the already implemented data structure.
This enrichment is described by a specificati@PEC, =< S;,2;,A; > which contains
SPEG, and is persistentver SPEG,. SPEC, is theabstact specificatiorof the data structure
obtained after the implementation is doB&ACK+ARRAY+MT).

Our implementation will be made in égeps :
O The first step describes the representation. For each (abstract) Si°E6; (e.g. STACK),
there is aconcrete sort which represents itSTACK) ; STACK will be the product sort
“ArrayxNatural”. For each (abstract) operation SPEC,; (e.g.empty push pop top), there is a
concreteoperation which is itsictual implementatiogempty push pop, Top). These concrete
operations work on the concrete sorts (&§ACK) instead of wrking on the abstract sorts to be
implemented $TACK).
O The second step synthesizes tbacete valuesised by implementation. These concredk v
ues are synthesized by means of abstraction operationser Mnstance,
Astack ARRAY NAT- STACK s the abstraction operation that synthesizes the product sort
STACK(ARRA¥NAT), associated witb TACK I S;.
o The third step is only a cwenient (hidden) enrichment of the previously synthesized data
structure. Thishidden componentf the implementation was first introduced in [EKP 80]. It
allows us to add hidden operations which are useful to specify the implementation. For instance, if
the resident specification of integers (Example 2) does not contain the opeg®jgrthen it is
very useful to define it in the hidden component before specifying the main part of the implemen-
tation.
o The fourth step recungly specifies the actual implementation of the concrete operations, on
the concrete sorts. This step is handled by means of (conditional) axioms, asdnspeeamples.
O The last step specifies the equality representation. It will be specified by means of a set of (con-
ditional) axioms. Thus, our last step specifies the implementation alabsegor equvalently
valueg to be mplemented.

This approach can be pictured as follows :




Specification to be Implementation of

implemented $PEC;) | -representation concrete values
0 0
inclusion equalityrepresentation
I I
Resident —abstraction- Concrete products
specification BPEG) + hidden enrichment

Our abstract implementation is described on three differedsle
o theformal definitiononly contains the information which the specifier must provide in order to
define the implementation
O theassociated syntais automatically deduced from the formal definitighgives an dgebraic
specification for the implementation
O the associated semantidgs automatically deduced from the syntaik describes the models
(algebras) of the implementation.
The distinction between these thregele was first introduced by [EK80]. This distinction has been
shown to be a firm basis to handle correctness proofs for implementations.

4. FORMAL DEFINITION

Definition 1
We cefine amabstract implementatiqmdenoted byMPL , as atple :
IMPL = <p!ZABS! H ,Aop !AEQ>
where :
O pis the signature isomorphism defined as follows :
« for each abstract sort to be implemented) S;, there is an associated “concrete sort”,
S. We cenote the set of concrete sorts 8Bygs (since it will be synthesized by the
abstraction operations [*]). ThuSugsis a coy of S;.
« for each operation to be implementdd X,), Op: S; - -+S, — Snh+1, there is a “con-
crete operation’Pp: S; - - Sy — Sy, Wheres; is the concrete sort associated wéth
We ckenote the set of concrete operation2lgy.
p is the signature isomorphism fromS;, 21> to <Spgs, 20p>. p is calledrepresentation sig-
nature isomorphismor Smply representationsince it gives the actual representation of each sort
(resp. operation) to be implemented. For instanzesends the somAT to NAT, STACK to
STACK push: AT STAXK - STACK to push NAT STACK - STACK, and so on.
O 2apsis the set ofbstaction opeations: for each sort to be implementesi[]S;, there is
one abstraction operatio\s: r{---r,, - S, where all ther; are sorts irS, . For instance, the
abstraction operation associated with the SFACK is : Agtack ARRAY NAT- STACK;
the abstraction operation associated WHT is a coy operation : Ayat: NAT — NAT.
O H is the hidden componentf IMPL. H=<S,,24,Ay> is a pesentation wer
ABS = SPEG+ < Spps Zaps L >, which enriches the concrete data structure in ordeadio- f
itate the implementation. In o&TACK by ARRAYexample,H is empty.
O Aop is a set of posie nditional axioms wer the signature
<SS+ Sy +Saps 2ot 2y + Zapst Zop>. It describes the actual implementation of the con-
crete operation®p. Agp is the set of operation implementing axioms. These axioms are those
specified for abstraction :

[*] in our formalism,abstractionfunctions returrconcretevalues (!).



Astack(t; 0)
Astac(t[i]: = n, sucdi))

empty
push{Anat(n), Astack(t:i))

PO Astackt,0) = Astac(t,0)
POp(Astaci(t, suci))) = Astacut.i)
~ top(Astackt, 0)) = Anat(0)
fop(Astacit, sucdi))) = Aar(t[i])

O Aggls a set of posite mnditional axioms eer the same signature. It defines dgiality ep-
resentation For instance, the equality representation of SUACK by ARRAYexample can be

specified as follows [*] :
_ Astact; 0) = Agtacd(t’, 0)
Astact, 1) = Astact’ 1) ~ tli] =t'[i] = Astaci(t, succ) = Astack(t’, succ)

5. ASSOCIATED SYNTAX
The syntax associated with the formal definition of an abstract implementation is defined as follows :

EQ: Agg
REP: 35— ,21-2%, 2rep, Arep
OPimpl: 2op,Acp
H: Sy,24,Aq

ABS: Sags, ZaBs
SPEG S, %0, Ao |

whereABS is a presentationver SPEG,, H is a presentationver SPECG,+ABS, and so on.

O ABS is the abstraction component of the syntax. It describes the synthesis of the concrete sorts
S, by means of the abstraction operation aritig:(r, - - :r, - ).

O H is the hidden component of the syntacticaélleH is a presentationver the concrete specifi-
cationSPEG,+ABS.

O OPimpl is the operation implementing part of the syntax. It specifies the actual implementation
of the concrete operation@f1>5p) working on the concrete sorts, by meané\gp .

O REP is the representation componentedplicitly specifies (in the syntax) the effect of the rep-
resentation signature isomorphisme \#fine2 rep andA gep below.

O EQ is the equality representation part of the syntax. It specifies wheigtinct availables
values (concrete values) represent the same abstract value.

H, Sags ZaBs Zop, Aop andAgq are defined in Section £ gep andAgep are defined as follows :

O 2Zgrepis the set ofepresentation opettions For each abstract sos,[1 S, there is one repre-
sentation operation ps: S — S.

O ARgep is the set of axioms which state thaf extends the representation signature isemor
phism p. This means that for all;-terms,t, of sort s, ps(t) is equal to the term deduced fram
via p. Thus, for each operation to be implemente, 13, Agrgp contains the follwing
axiom :

Ps(0p(Xy, .-, Xn)) = p(OP)(Ps(Xi), - - . s, (Xn)) [*]
wheresis the target sort ap, and S; is the sort ofx; .
Moreover, Agep contains the following axiom for each abstract seift] S; :
ps(X) =osy) = x=y.
This axiom is gplained as follass : our goal is to specify the data structure obtained after the

ple.

[*] In fact, AEQ can be empty in thisxample, sincéAgp already implies our ta axioms. But this is particular to ouxam-

[ p(op) is equal taop.



implementation is done. If vterms to be implementedandy, are represented by the same con-
crete values, then it is impossible to distinguigtom y. Thus their @alues are equal in the result-
ing data structure.

Example 3
In the STACK by ARRAYexample,Arep is deduced from the signature isomorphisras follows :
Pstackempty = empty
Pstack Push(x, X)) = LUSUPNAT(X), Pstac X))
PstacPOR(X)) = POR(Pstack(X))
.ete- -

PstackX) = PstacY) = X=Y
PNAT(M) =PnaT(n) = m=n
PArrAYL) = Parrad(t) = t=t

6. ASSOCIATED SEMANTICS
The semantics of our abstract implementation is the compositiorodtihetors :

Alg(SPEG)  -FagsiH+orimpi+repseQ~  AIG(EQ)  Ucg s >—  Alg(<S;, 2,>)
TSPEQ) ”FABS+H+OPimpI+REP+EQ - TEQ U <§,Z;> SEIVIMPL

where Fags+H+opimpl+rep+eQ 1S the usual synthesis functor associated with the presentation
ABS+H+OPIimpl+REP+EQ over SPE(, ; andU_g 5 > is the usual forgetful functor.

More preciselythe intuitve meaning of this semantics can be divided as follows :
O Tspec, describes the (abstract) resident data structure.
O Tagps describes the concrete data structure synthesized from the resident one by means of the
abstraction operation3.agg is theavailablestructure which our abstract implementation can use.
O Ty describes the hidden enrichment of the concrete data structure and the resident abstract data
structure.
O Topimpl handles the concrete implementation of the concrete operadphever the previ-
ously synthesized concrete sorts.
O Trep is the implementation of the abstract ground terms to be implemented. It contains both
the abstract operationsg), and their concrete implementati@pj. The correspondance between
op andop is made via the representation operatipgs
O Tgg handles thédentificationof the concrete terms which represent the same abstract value.
O Notice thatTgq contains all the sorts and operations used in our implementation. Thus, it is
necessary to reme te hidden sorts and operations, the intermediate concrete sorts, the abstrac-
tion operations, and the concrete operati@psThis is done by means of a forgetful functard
the semantical esultis aZ;-algebra, denoted BSEMyp. . Thus,SEMyp, is the “user view” of
the implementation, since the user must not use the specific operations and sorts of the implemen-
tation.

7. CORRECTNESS PROOFS

The abee £mantics leads, in a naturahyyto define abstract implementation correctness asvislloan
abstract implementation orrectiff each operation to be implemented has a (complete) concrete repre-
sentation, and the semantical res@EMyp.) is isomorphic to the initial algebra to be implemented
(Tspeg)- These criteria are handled in four steps. The complete implementation of all operations to be
implemented is calledperation-completenes$he isomorphism betweesEMyp. and Tgpgg, is divided

into three conditionsSEMy,p. must be finitely generatedr&r 2, ; this condition is thalata piotection
SEMpmpL must be SPEC; -algebra this condition is thevalidity of IMPL . SEMyp. must be an initial



SPEG; -algebra ; this condition is thmnsistencyf IMPL .

7.1. Operation completeness

Operation completeness was first introduced by [EKP 80]. atiettiat all abstract operationsvhaa ©n-
crete implementation means that®{-terms hae a “available” representation. Thus, operation complete-
ness is defined as follows :

Definition 2

IMPL is op-completaff for all termst U Ty, , there isa [ Tagg such thaipg(t) = a in Trep

Notice that op-completeness must be tested without@msideration of the equality representation. Thus,
itis defined inTgegp and not inTgq.

Op-completeness can be directly yaw by gructural induction. Moreger, we havethe following theorem

Theorem 1
If OPimpl is sufficiently completewer ABS, thenIMPL is op-complete.

Proof: Since REP is aways sufficiently complete v@r OPimpl (fair presentation, [Bi&2]),
(REP+OPimpl) is dso sufficiently completevar ABS. But the sufficient completeness REP over ABS
means that for eacly( + 2, + Z gt 2Zop + Zrep)-term, r, whose sort belongs tdSf + Sy + Sags),
there isa [ Tpgg such thatr = a in Tgrep. In particular this holds for all terms of the foripg(t), as
neededO

Example 4
We prove that our implementation @TACK by ARRAYis op-complete, by structural induction.
» Dstackempty is equal toempty which is equal tar = Agrack(create 0)
« if x and X have mncrete representation € a, and ogtack(X) = a2 = Astack(t, 1)), then
Pstacpush(x, X))dotoo:
Pstack Push(x, X)) = pushay, Astact, 1)) = Astac(tli]: = a1, sucdi)) .
 similar reasoning applies fgropandtop.

7.2. Data protection

Theorem 2
If H is sufficiently completever SPEG,, thenSEMyp, is finitely generatedwar 2.

Proof : The syntax of our abstract implementation does not contairoperations with target sort in
S — S, except those ok ;. Thus,SEMyp, is aways finitely generated wt. the sorts of5; — ;. It suf-
fices to pree that SEMyp_ is finitely generated wt. the sorts ofS;. ConsequentlyTheorem 2 results
from the fict that our abstract implementation syntax does not contpiopgmation with target sort 8,
except those ok, andZ. O

Definition 3
IMPL is data potectediff H is sufficiently completexer SPEG,. This means that the resident (abstract)
sorts are protected througPL .

Data protection is then not difficult to me since it can be pneed by gructural induction or via syntactical
tools (such afair presentations[Bid 82]). OurSTACK by ARRAYexample is clearly data protected, lds
is empty.

7.3. Validity

Definition 4
IMPL is avalid abstract implementatiorfifor all 2;-terms,t andt’, we have:
if t=t’" in TSF’EQ thent=t’ in SEMMPL'



Theorem 3
If IMPL is data protected then the following conditions areatgiit :
o IMPL is a valid abstract implementation
O there is &-morphism fromT gpec, t0 SEMypL
0 SEMyp. validates the axioms oA; = Ag+ A
0 SEMyp. validates the axioms ok
O Tgg vaidates the axioms ok
O ID is hierarchically consistenter EQ
wherelD is the presentationver EQ which contains the set of axioms Thus,ID contains all the specifi-
cations iwolved in our formalism (both the syntaxiMPL andSPEG,).

Proof : given in Appendix.

The main result is the eqaence between the validity ¢fMPL and the consistegof ID over EQ. This

feature is entirely due to our intermediate product sorts and the equality representation explicitly specified
via Agq. This result facilitates the validity proofs, since thenytten aivays be handled by theorem pro

ing methods.

Example 5

The validity of our abstract implementation 81ACK is shown by proving that eaclACK-axiom is a
theorem of the syntax dMPL . We gove here that pop(push(x,X))is equal toX in Tgq. Other axioms
of STACK are praved in a graightforward mannefollowing the same method.

SinceA gep contains the axiompstack(X) = Pstack(Y) = X =Y, and since our implementation is
op-complete, it stices to shw that POP( push(X, Astack(t, 1))) is equal to Agraci(t, i) in Tgg. From
Aop, it results thafpop(push(X, Astack(t,))) = Agtack(t[i]: = X,i). Moreover, from the equality
representationgq), it results thatAstack(t[i]: = X,i) = Astack(t, i) , which ends our proof.

7.4. Consistency

Definition 5
IMPL is consistentff for all Z;-terms,t andt’, we have:
if t=t' in SEMMPLv then t=t’ in TSPEQ'

Theorem 4

If IMPL is data protected and valid, then the following conditions arevaqnot :
O foralltandt’ in Ty , if t=t" in Tgg thent=t' in Tgpgc
o IMPL is consistent
O the initial morphism fronT gpgc, to SEMyp, is @ monomorphism
0 SEMwp. is an initialSPEC; -algebra
O the initial morphism fronTgpgc, to Ug (T\p) is @ monomorphism
O ID is hierarchically consistenver SPEC;

Proof : given in Appendix.

For the same reasons as Theorem 3, Theorem 4 facilitates the copsgstais, since thgcan alvays be
handled by theorem proving methods.

Example 6
The only axioms that can destrthe consistencof ID over SPEC, are the axioms whose sort is .

These axioms are :
PstackX) = PstacY) = X =Y
PnaT(M) =Ponat(n) = m=n
Parravl) = Parrav(l’) = t =t
These axioms lead to shdhat two bstract terms represented by the same concrete valde-§) are
equal. Thus, we must consider each axiom\ghlLJArepl1AEq, and prove that it does not create incon-
sistencies. Letis considerfor instance, the axiom

PUSHANAT(X), Astact 1)) = Astack(tli]: = X, sucdi)) .




Since we work in the stackalues(not in the stack ground terms), we can handle our proofs the nor
mal forms ofSTACK. It is possible to pree, by gructural induction, thatAgtack(t,i) represents the stack
pusHht[i-1], push(. . ., push(t[0], empty. .)). Then, our proof is cleaies push(x, pstack(X)) repre-
sentspush(x,X) Other axioms are handled in a similar manbgrusing the normal forms.

Definition 6

IMPL is correctiff it is both op-complete, data protected, valid and consistent.

8. ABSTRACT IMPLEMENT ATIONS AND ENRICHMENTS

Let SPEC, be a specification implemented UbPL . Let P be a presentationver SPEC,. We have
shawvn (Section 2.3) thatvery proof concernind? is done wr.t. SPEC;, but not wr.t. the syntax ofMPL .
The “concrete” implementation d+SPEGC; is not specified byp+SPEC,. It is secified byP+EQ,
whereEQ is the whole syntax of the implementationSPEC,. The following theorem pnees that the
user viav of the concrete specificatidhEQ is isomorphic to the data structure specifiedPbHPEC,.

Theorem 5
If IMPL is a correct abstract implementation SPEC,, then for all persistent presentatior, over
SPEC, we have:

U<zl+>:p>(TEQ+P) = Tspegep
Proof : given in Appendix.

This theorem prees that the presentatioR, pushed together with the abstract implementatioSBEC,,
always provides the user with the expected results.

9. COMPOSITION OF ABSTRACT IMPLEMENT ATIONS

When we implemenSPEC, by means ofSPEG,, the resident specificatioBPEG, is often already
implemented by means of awer level specification. Butall our correctness proofs are done.wthe
specificatiorSPEG,, not w.r.t. the specification of the implementationSIPEC,. We prove in this section
that the composition of wvoorrect implementations wbys gives mrrect results. This feature is not pro-
vided in ay work already put forard. Theformalism of [SW82] provides correct “vertical composi-
tions”, but these vertical compositions do not eaiur problem: al upper level implementation operations
must be implemented by the lowevékimplementation. This results in adgaramount of operations to be
implemented by the leest level implementation ; moreey, this implies that all the lower Vel implemen-
tations must be redefined each time we addvainglementation. Such composition is incompatible
with modular structured implementation.

The following theorem pnges that the user vig, obtained by pushing twoorrect abstract implementations
togetheris dways correct.

Theorem 6
Let IMPL , be an abstract implementation 8PEGC, by means ofSPEC,. Let IMPL ; be an abstract
implementation ofSPEC, by means oSPEG,. Consider the specificatioPL (1,2) obtained from the
syntax ofMPL » by substituting the syntax &#PL ; for SPEGC,.

IMPL (1,2) = SPEG + (H{ + ABS;+...+EQ) + (H, + ABS,+. . .+EQ>)
If IMPL ; andIMPL 5 are both correct, then weVe:

Ucs,5,>(TivpL 1,2) = Tspec,

Proof : Since IMPL 5 is correct, H,+...+EQ)>) is persistent wer SPEC,. Thus, Theorem 5 pues
thatUspec +. +£0,(TivpL (1,2) = Teq, -
In particularU<52yzz>(T|Mp|_ (12)) = U<82,22>(TEQ2) = SEMMPL2 . Moreover, the correctness dMPL 2
implies thatSEMyp, = Tspec,» Which ends our proofa
This theorem can easily be extended terge (finite) number of implementations. Thus, it is possible to

handle structured and modular abstract implementations. Thiglpsoa formal foundation for a methodol-
ogy of program deslopment by stepwise refinement.



10. CONCLUSION

The abstract implementation formalism described in this paper relies on three main ideas :
O Abstract implementation is done by means of intermediate concrete values, which are distinct
from the abstractalues to be implemented. These concrete sorts are synthesized by means of
abstraction operations
O The correspondance between the abstract sorts or operations to be implemented and the con-
crete sorts or operations is specified by meansegfrasentation signaterisomorphism
O The equality epresentations explicitly introduced into the abstract implementation, in order
to handle conditional axioms.

The main results of this abstract implementation formalism are the following :
o It allows use ofpositive conditional axiomavhich facilitates the specifications and increases
the class of models taken into account.
o All correctness proof criteria for abstract implementation are “simple” ones (sufficient com-
pleteness, hierarchical consistgrar fair presentations). This feature provides the specifier with
theorem poving methodsstructural inductiormethods osyntacticalcriteria.
O Abstract implementations cope with the notiorenfichment
O Thecompositiorof several correct implementationsvedys gives arrect results. Thus, abstract
implementations can be specified in a modular and structured way.

As a last remark, we want to emphasize the fact that the semantics of our abstract implementation is a func-
torial one. Thus it is not difficult to include the notionpaframeterizationinto our formalism, since param-
eterization mainly relies on synthesis functors and pushouts (see [ADJ 80]).
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11. APPENDIX

This appendix contains the technical proofs omitted in the body of the article. The results besdgrgro
restated for corenience of reference.

11.1. Proof of Theorem 3

Theorem 3
If IMPL is data protected then the following conditions areetgrit :
1) IMPL is a valid abstract implementation
2) there is &7-morphism fromT spgg, t0 SEMypL
3) SEMyp. validates the axioms oA; = Ag+ A
4) SEMyp. validates the axioms ok
5) Tgg vdidates the axioms ok
6) ID is hierarchically consistentver EQ
wherelD=EQ+<A>.

Proof :

[1 == 2] is clear : sincelspgg is finitely generated ver 2, there is a morphism fronfgpgg to
SEMwp if and only if twoZ,-terms equal i spgg, are also equal IBEMyp .

[2 == 3] results from the facts th&EMyp, is finitely generatedver 2, and thatTgpgg is initial in
SPEG,. Thus, there is a morphism frofispe, to SEMyp if and only if SEMyp, is aSPECGalgebra
(i.e. SEMyp. vaidatesA,).

[3 <= 4] results from the fact th&Q containsAg. Thus,SEMyp, always validatedA.

[4 = 5] results from the dct that the axioms ofA only concern the signatureSg, 2,>, and



SEMwmpL =Ucs, 5,5(Teg) -
[5 == 6] results from the fact thdD does not add meoperations t&EQ (EQ=ID-A). Thus,ID is hierar
chically consistentwer EQ if and only if Tgq already validates the axioms Af

11.2. Proof of Theorem 4

Theorem 4

If IMPL is data protected and valid, then the following conditions arevaqnt :
1) foralltandt’ in Ty , if t=t" in Tgg thent=t' in Tgpgc
2) IMPL is consistent
3) the initial morphism fronl gpgg, to SEMyp is @ monomorphism
4) SEMpp. is an initial SPEC; -algebra
5) the initial morphism fronTgpgc, to Ug (T)p) is @ monomorphism
6) ID is hierarchically consistenwver SPEC,

Proof :

[1 == 2] results from the fact th@EMyp is equal to the part dfgg concerning the signaturesSg, 21>

[2 == 3] results from the fact thadtgpec, is finitely generatedwver 2.1, and from Definition 5. Notice that
the initial morphisml spe, » SEMypL €Xists, from Theorem 3.

[3 <= 4] results from the fact th&EMyp, is finitely generatedwer 2;.

[3 == 5] results fromSEMyp. =Ug (Teg), and fromTgg = T\p (Theorem 3).

[5 == 6] is clear since the initial morphisiispeg — Us (Tip) is the unit of adjunction associated with
the presentatiotD over SPEC,. O

11.3. Proof of Theorem 5

Theorem 5
If IMPL is a correct abstract implementation SPEC,, then for all persistent presentatior, over
SPEC;, we have:
U<>:1+>:p>(TEQ+P) = Tspeg+p
Proof: We recall the following classical lemma :

Lemma If P, and P, are two persistent presentations v@& a ecification SP such that
<S,,2;>n <S5, 2, > is empty thenP, is still a persistent presentationeo (P,+SP).
(proved in [Ber 85] with positre amnditional axioms)

The correctness dMPL implies thatlD is persistentwer SPEC,. Thus, our lemma pre@s thatTspec +p
is isomorphic tdJ <5 15 >(Tip+p)-

Moreover, since P is sufficiently completeer the S; part of Tip4p, Theorem 3 prees that Tgg.p is iso-
morphic toTp +p. ConsequentlW <5 45 »(Teq+p) is isomorphic tol spec, +p, as reededs
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