
ABSTRACT IMPLEMENT ATIONS AND CORRECTNESS PROOFS

Gilles BERNOT, Michel BIDOIT, Christine CHOPPY

Laboratoir e de Recherche en Informatique
Bât 490, UniversitéPARIS-SUD

F-91405 ORSAY CEDEX
FRANCE

ABSTRACT
In this paper, we present a new semantics for the implementation of abstract data types. This semantics
leads to a simple, exhaustive description of the abstract implementation correctness criteria. These correct-
ness criteria are expressed in terms ofsufficient completenessandhierarchical consistency. Thus, correct-
ness proofs of abstract implementations can always be handled using classical tools such astheorem
proving methods,structural inductionmethods orsyntactical methods(e.g. fair presentations). The main
idea of our approach is the use of intermediate “concrete sorts”, which synthesize the available values used
by implementation. Moreover, we show that thecompositionof several correct abstract implementations is
always correct. This provides a formal foundation for a methodology of program development by stepwise
refinement.

1. INTRODUCTION
For about ten years [LZ 75, Gut 75, ADJ 76], the formalism of abstract data types has been considered a
major tool for writing hierarchical and modular specifications. Algebraic specifications provide the user
with legible and relevant properties concerning the specified data structure. In particular, an abstract specifi-
cation does not necessarily reflect the “concrete” implementation of the described data structure. But then,
we have often to prove that the concrete implementation iscorrect according to our abstract specification.
The following example shows the difference between “abstract” and “concrete” specifications.

Example 1
Let us specify the stacks of natural numbers.STACK(NAT) is specified as follows :

pop(empty) = empty
pop(push(n,X)) = X

top(empty) = 0
top(push(n,X)) = n

But this data structure is often implemented by means of arrays. A stack is then characterized by an array,
which contains the elements of the stack, and an integer, which is the height of the stack :

empty = <t,0>
push(n,<t,i>) = <t[i]:=n,succ(i)>

pop(<t,0>) = <t,0>
pop(<t,succ(i)>) = <t,i>

top(<t,0>) = 0
top(<t,succ(i)>) = t[i]

The first element pushed onto the stack is thent[0] ; and the index i points to the place where the next ele-
ment will be pushed.

Our problem is to prove that the second set of axiomssimulatesthe data structure described by the first one.
Correctness proofs of abstract implementations can be done by using the notions ofrepresentation invari-
antsandequality representation[GHM 76, Gau 80].For instance, the equality representation of Example 1
can be stated by :

<t,i> = <t’,i’> if f i=i’ and t[j]=t’[j] for all j=0..i
Unfortunately, this equality representation must be specified by the user, and nothing proves that it is cor-
rect. In particular, if we specify an equality representation where “everything is true”, then every implemen-
tation will be correct. Since 1980, several works have formalized the notion ofsimulation [EKP 80,
EKMP 80, SW 82] ;all these works give pure semanticalcorrectness criteria (such as existence of a mor-
phism between two algebras). Unfortunately, pure semantical correctness criteria do not provide the speci-
fier with theorem proving methods orstructural inductionmethods. It is therefore necessary to complete the
abstract data type framework with an abstract implementation formalism which is able to provide the user
with “simple” correctness proof criteria. These criteria are mainlysufficient completenessandhierarchical
consistency.

In this paper, we present a new formalism of abstract implementation. This formalism leads in a natural
way to an exhaustive description of the abstract implementation correctness criteria. These correctness cri-
teria can be checked via classical methods since they are expressed in terms of sufficient completeness and
hierarchical consistency. This approach is especially powerful, since it is then always possible to prove the
correctness of an implementation via theorem proving methods. Moreover, we prove that our formalism is
compatible withenrichmentand that thecompositionof two correct implementations always gives a correct
result. Our formalism allows use ofpositive conditional axioms. We will show that this feature imposes an
explicit specification of the equality representation, but that it also facilitates the specification process. In
particular our abstract implementation formalism can easily be extended to the algebraic data types with
exception handling features [Ber 85].
The next section explains the classical problems related to abstract implementation.Section 3 describes the
main ideas of our formalism which solve these problems. Sections 4 through 6 describe our abstract imple-
mentation formalism. In Section 7, we show how correctness proofs of abstract implementation can be han-
dled. Andfinally, we prove that abstract implementations cope withenrichment(Section 8), andcomposi-
tion (Section 9). We assume that the reader is familiar with elementary results of category theory and
abstract data type theory.

2. PROBLEMS RAISED BY ABSTRACT IMPLEMENT ATION
Abstract implementations can be specified in two main ways :with anabstractionfunction, or with arepre-
sentationfunction.

2.1. Abstraction
The abstraction takes already implemented objects (e.g. arrays and natural numbers), and returns “abstract”
objects (e.g. stacks). This is done by means of anabstraction operation (e.g.A: ARRAY NAT → STACK).
For instance, we obtain the axioms of the implementation of stacks by substitutingA(t,i) for <t,i> in Exam-
ple 1. Another example is the following :

Example 2
Natural numbers can be implemented by means of integers as follows :

0N = A(0Z)
succN(A(z)) = A(succZ(z))

eq?N(A(z), A(z′)) = eq?Z(z, z′)
where A: INT → NAT is the abstraction operation.

Unfortunately, abstraction operations create too many abstract objects.For instance,A(create,4)does not
implement any stack, since if the height of a stack is equal to 4, then the four first ranges of the

corresponding array must be initialized. In the same way,A(-1)does not implement any natural number.
As shown in [EKMP 80], this fact prevents the specifier from carrying out simple correctness proofs by the-
orem proving methods. For instance, one of the proofs needed by implementation is the consistency of the
implementation. Thismeans that two distinct abstract objects must be implemented by two distinct con-
crete objects. The only formal concept of abstract data types which can handle such a condition ishierar-
chical consistency. Thus, it is necessary to put together the specification of our implementation (Example 2)
and the abstract specification to be implemented (NAT). Then,we obtain a specification that contains both
the abstract implementation and the specification to be implemented, and we can check whether this speci-
fication is hierarchically consistent over NAT. NAT is specified as follows :

eq?N(0N, 0N) = True
eq?N(0N, succN(m)) = False
eq?N(succN(n), 0N) = False

eq?N(succN(n), succN(m)) = eq?N(n, m)

But then, we obtain: True= eq?N(0N, 0N) = eq?N(0N, succN(A(−1))) = False. Consequently, we
cannot prove the consistency of our implementation this way.

2.2. Representation
The aim of a representation is to provide a composition of already implemented operations (e.g. those of
NAT andARRAY) for every operation to be implemented (e.g.empty, push, pop, top). For instance, the rep-
resentation associated with Example 1 is specified as follows :

ρ(empty) = <t,0>
ρ(push(n, < t, i >)) = <t[i]:=n,succ(i)>

ρ(pop(< t, 0 >)) = <t,0>
ρ(pop(< t, succ(i) >)) = <t,i>

ρ(top(< t, 0 >)) = 0
ρ(top(< t, succ(i) >)) = t[i]

whereρ is therepresentationfunction.
Since representation only gives a representation for each operation to be implemented, it should not create
undesirable abstract values. Unfortunately, it is very difficult to give an algebraic meaning to such axioms.
This is due to the fact that“<_ ,_ >” has no real algebraic definition. If we consider<_ ,_ > as an opera-
tion, then its arity is necessarily: < , >: ARRAY NAT → STACK because it takes an array and a natural
number, and returns a stack (as we applypop to <t,i>). Consequently, the arity of <_,_ > is the same as
the arity of the abstraction operation. Thus, the functionρ is useless (equal to the identity), since the opera-
tion < , > can simply be used as an abstraction operation, which simplifies the specification of abstract
implementation. Nevertheless, we will show how our formalism uses bothρ and A , by means of an inter-
mediate “product sort”.

2.3. Presentations and implementations
Assume that theSTACK data structure is already implemented by means ofARRAYandNAT. The user of
this data structure will probably specify a presentation over the STACK specification (presentations over
STACK can be viewed as abstract programs). But the user should never hav eto know how the implementa-
tion is done. In other words, (s)he knows the abstract specification ofSTACK, but not the specification of
the implementation.Thus, every proof concerning this enrichment is done w.r.t. the abstract specification
of STACK, but not w.r.t. the abstract implementation. Nothing proves that the composition of our implemen-
tation and the new enrichment gives the expected results. A particular subproblem of this is the composition
of several implementations. All correctness proofs of the second implementation are handled w.r.t. to the
abstract specification of the first implemented data structure, but they are not done w.r.t. to the concrete
specification of the first implementation. In our framework, an enrichment of an abstract implementation

always gives the expected result. This feature was not provided for in any of the works previously put for-
ward.

In order to achieve this goal, we need anexplicit specification of the equality representation in the imple-
mentation :when we enrich the implementation ofSTACK, the associated presentation will probably con-
tain some axioms of the form :

X = Y ==> ...
We may have : X = empty and Y = pop(push(x,empty)). The implementations ofX andY are then<cre-
ate,0> and <create[0]:=x,0> . If the designer of the implementation says nothing about “when two dis-
tinct pairs implement the same stack”, our enrichment viewed through the implementation will not be cor-
rect, since several occurrences of these axioms are not taken into account. Thus, it is necessary to specify
theequality representationin the implementation, in order to handle conditional axioms. We will show that
equality representation is also a useful tool for correctness proofs.

3. PRESENTATION OF OUR FORMALISM
Our situation is described as follows :

The already implemented data structure (e.g.ARRAY and NAT) is specified by
SPEC0 = < S0, ΣΣ0, A0 > , whereS0 is a set of sorts,ΣΣ0 is a set of operations with arity inS0 ,
andA0 is a set ofpositive conditionalaxioms over the signature< S0, ΣΣ0 >. SPEC0 is called the
residentspecification.

We want to implement an enrichment (e.g.STACK) of the already implemented data structure.
This enrichment is described by a specificationSPEC1 = < S1, ΣΣ1, A1 > which contains
SPEC0, and is persistent over SPEC0. SPEC1 is theabstract specificationof the data structure
obtained after the implementation is done (STACK+ARRAY+NAT).

Our implementation will be made in five steps :
The first step describes the representation. For each (abstract) sort ofSPEC1 (e.g. STACK),

there is aconcrete sort which represents it (STACK) ; STACK will be the product sort
“A rray×Natural”. For each (abstract) operation ofSPEC1 (e.g.empty, push, pop, top), there is a
concreteoperation which is itsactual implementation(empty, push, pop, top). These concrete
operations work on the concrete sorts (e.g.STACK) instead of working on the abstract sorts to be
implemented (STACK).

The second step synthesizes theconcrete valuesused by implementation. These concrete val-
ues are synthesized by means of abstraction operations. For instance,
ASTACK: ARRAY NAT→ STACK is the abstraction operation that synthesizes the product sort
STACK(ARRAY×NAT), associated withSTACK∈ S1.

The third step is only a convenient (hidden) enrichment of the previously synthesized data
structure. Thishidden componentof the implementation was first introduced in [EKP 80]. It
allows us to add hidden operations which are useful to specify the implementation. For instance, if
the resident specification of integers (Example 2) does not contain the operationeq?Z , then it is
very useful to define it in the hidden component before specifying the main part of the implemen-
tation.

The fourth step recursively specifies the actual implementation of the concrete operations, on
the concrete sorts. This step is handled by means of (conditional) axioms, as in previous examples.

The last step specifies the equality representation. It will be specified by means of a set of (con-
ditional) axioms. Thus, our last step specifies the implementation of theclasses(or equivalently
values) to be implemented.

This approach can be pictured as follows :

Specification to be Implementation of
implemented (SPEC1) −representation→ concrete values

⇑ ⇑
inclusion equalityrepresentation

| |

Resident −abstraction→ Concrete products
specification (SPEC0) + hidden enrichment

Our abstract implementation is described on three different levels :
the formal definitiononly contains the information which the specifier must provide in order to

define the implementation
theassociated syntaxis automatically deduced from the formal definition; it giv es an algebraic

specification for the implementation
the associated semanticsis automatically deduced from the syntax; it describes the models

(algebras) of the implementation.
The distinction between these three levels was first introduced by [EKP80]. This distinction has been
shown to be a firm basis to handle correctness proofs for implementations.

4. FORMAL DEFINITION
Definition 1
We define anabstract implementation, denoted byIMPL , as a tuple :

IMPL = < ρ , ΣΣABS , H , AOP , AEQ >
where :

ρ is the signature isomorphism defined as follows :
• for each abstract sort to be implemented,s ∈ S1, there is an associated “concrete sort”,
s. We denote the set of concrete sorts bySABS (since it will be synthesized by the
abstraction operations [*]). Thus,SABS is a copy of S1.
• for each operation to be implemented (∈ ΣΣ1), op: s1

. . .sn → sn+1, there is a “con-
crete operation”,op: s1

. . .sn → sn+1, wheresi is the concrete sort associated withsi .
We denote the set of concrete operations byΣΣOP.

ρ is the signature isomorphism from<S1, ΣΣ1> to <SABS, ΣΣOP>. ρ is calledrepresentation sig-
nature isomorphism, or simply representation, since it gives the actual representation of each sort
(resp. operation) to be implemented. For instance,ρ sends the sortNAT to NAT, STACK to
STACK, push: NAT STA CK → STACK to push: NAT STACK→ STACK, and so on.

ΣΣABS is the set ofabstraction operations: for each sort to be implemented,s ∈ S1, there is
one abstraction operation,As: r1

. . .r m → s, where all ther i are sorts inS0 . For instance, the
abstraction operation associated with the sortSTACK is : ASTACK: ARRAY NAT→ STACK;
the abstraction operation associated withNAT is a copy operation : ANAT: NAT → NAT.

H is the hidden componentof IMPL . H = <SH, ΣΣH, AH> is a presentation over
ABS = SPEC0+ < SABS, ΣΣABS, ∅ > , which enriches the concrete data structure in order to facil-
itate the implementation. In ourSTACK by ARRAYexample,H is empty.

AOP is a set of positive conditional axioms over the signature
<S0 + SH + SABS, ΣΣ0 + ΣΣH + ΣΣABS + ΣΣOP>. It describes the actual implementation of the con-
crete operationsop. AOP is the set of operation implementing axioms. These axioms are those
specified for abstraction :

[*] in our formalism,abstractionfunctions returnconcretevalues (!).

empty = ASTACK(t, 0)
push(ANAT(n), ASTACK(t, i)) = ASTACK(t[i]: = n, succ(i))

pop(ASTACK(t, 0)) = ASTACK(t, 0)
pop(ASTACK(t, succ(i))) = ASTACK(t, i)

top(ASTACK(t, 0)) = ANAT(0)
top(ASTACK(t, succ(i))) = ANAT(t[i])

AEQ is a set of positive conditional axioms over the same signature. It defines theequality rep-
resentation. For instance, the equality representation of ourSTACK by ARRAYexample can be
specified as follows [*] :

ASTACK(t, 0) = ASTACK(t′, 0)
ASTACK(t, i) = ASTACK(t′, i) t[i] = t′[i] ==> ASTACK(t, succi) = ASTACK(t′, succi)

5. ASSOCIATED SYNTAX
The syntax associated with the formal definition of an abstract implementation is defined as follows :

EQ : AEQ

REP : S1 − S0 , ΣΣ1 − ΣΣ0 , ΣΣREP , AREP

OPimpl : ΣΣOP , AOP

H : SH , ΣΣH , AH

ABS : SABS , ΣΣABS

SPEC0 : S0 , ΣΣ0 , A0

whereABS is a presentation over SPEC0, H is a presentation over SPEC0+ABS, and so on.
ABS is the abstraction component of the syntax. It describes the synthesis of the concrete sorts

s, by means of the abstraction operation arities (As: r1
. . .r n → s).

H is the hidden component of the syntactical level. H is a presentation over the concrete specifi-
cationSPEC0+ABS.

OPimpl is the operation implementing part of the syntax. It specifies the actual implementation
of the concrete operations (op∈ΣΣOP) working on the concrete sorts, by means ofAOP .

REP is the representation component. Itexplicitly specifies (in the syntax) the effect of the rep-
resentation signature isomorphism. We defineΣΣREP andAREP below.

EQ is the equality representation part of the syntax. It specifies when two distinct availables
values (concrete values) represent the same abstract value.

H, SABS, ΣΣABS, ΣΣOP, AOP andAEQ are defined in Section 4.ΣΣREP andAREP are defined as follows :
ΣΣREP is the set ofrepresentation operations. For each abstract sort,s ∈ S1, there is one repre-

sentation operation :ρ s: s → s.
AREP is the set of axioms which state thatρ s extends the representation signature isomor-

phism ρ . This means that for allΣΣ1-terms,t, of sort s, ρ s(t) is equal to the term deduced fromt
via ρ . Thus, for each operation to be implemented,op ∈ ΣΣ1, AREP contains the following
axiom :

ρ s(op(x1, . . . ,xn)) = ρ(op)(ρ si
(xi), . . . ,ρ sn

(xn)) [*]
wheres is the target sort ofop, and si is the sort ofxi .
Moreover, AREP contains the following axiom for each abstract sort,s ∈ S1 :

ρ s(x) = ρ s(y) ==> x = y .
This axiom is explained as follows : our goal is to specify the data structure obtained after the

[*] In fact, AEQ can be empty in this example, sinceAOP already implies our two axioms. But this is particular to our exam-
ple.

[*] ρ(op) is equal toop.

implementation is done. If two terms to be implemented,x andy, are represented by the same con-
crete values, then it is impossible to distinguishx from y. Thus their values are equal in the result-
ing data structure.

Example 3
In theSTACK by ARRAYexample,AREP is deduced from the signature isomorphismρ as follows :

ρ STACK(empty) = empty
ρ STACK(push(x, X)) = push(ρ NAT(x), ρ STACK(X))

ρ STACK(pop(X)) = pop(ρ STACK(X))
. . .etc. . .

ρ STACK(X) = ρ STACK(Y) ==> X = Y
ρ NAT(m) = ρ NAT(n) ==> m = n

ρ ARRAY(t) = ρ ARRAY(t′) ==> t = t′

6. ASSOCIATED SEMANTICS
The semantics of our abstract implementation is the composition of two functors :

Alg(SPEC0) −FABS+H+OPimpl+REP+EQ→ Alg(EQ) −U<S1,ΣΣ1>→ Alg(<S1, ΣΣ1>)
TSPEC0

−FABS+H+OPimpl+REP+EQ→ TEQ −U<S1,ΣΣ1>→ SEMIMPL

where FABS+H+OPimpl+REP+EQ is the usual synthesis functor associated with the presentation
ABS+H+OPimpl+REP+EQ over SPEC0 ; andU<S1,ΣΣ1> is the usual forgetful functor.

More precisely, the intuitive meaning of this semantics can be divided as follows :
TSPEC0

describes the (abstract) resident data structure.
TABS describes the concrete data structure synthesized from the resident one by means of the

abstraction operations.TABS is theavailablestructure which our abstract implementation can use.
TH describes the hidden enrichment of the concrete data structure and the resident abstract data

structure.
TOPimpl handles the concrete implementation of the concrete operations (op) over the previ-

ously synthesized concrete sorts.
TREP is the implementation of the abstract ground terms to be implemented. It contains both

the abstract operations (op), and their concrete implementation (op). The correspondance between
opandop is made via the representation operationsρ s.

TEQ handles theidentificationof the concrete terms which represent the same abstract value.
Notice thatTEQ contains all the sorts and operations used in our implementation. Thus, it is

necessary to remove the hidden sorts and operations, the intermediate concrete sorts, the abstrac-
tion operations, and the concrete operationsop. This is done by means of a forgetful functor, and
thesemantical resultis aΣΣ1-algebra, denoted bySEMIMPL . Thus,SEMIMPL is the “user view” of
the implementation, since the user must not use the specific operations and sorts of the implemen-
tation.

7. CORRECTNESS PROOFS
The above semantics leads, in a natural way, to define abstract implementation correctness as follows : an
abstract implementation iscorrect if f each operation to be implemented has a (complete) concrete repre-
sentation, and the semantical result (SEMIMPL) is isomorphic to the initial algebra to be implemented
(TSPEC1

). These criteria are handled in four steps. The complete implementation of all operations to be
implemented is calledoperation-completeness. The isomorphism betweenSEMIMPL andTSPEC1

is divided
into three conditions.SEMIMPL must be finitely generated over ΣΣ1 ; this condition is thedata protection.
SEMIMPL must be aSPEC1-algebra ;this condition is thevalidity of IMPL . SEMIMPL must be an initial

SPEC1-algebra ; this condition is theconsistencyof IMPL .

7.1. Operation completeness
Operation completeness was first introduced by [EKP 80]. The fact that all abstract operations have a con-
crete implementation means that allΣΣ1-terms have an “available” representation. Thus, operation complete-
ness is defined as follows :

Definition 2
IMPL is op-completeif f for all terms t ∈ TΣΣ1

, there isα ∈ TABS such thatρ s(t) = α in TREP
Notice that op-completeness must be tested without any consideration of the equality representation. Thus,
it is defined inTREP and not inTEQ.

Op-completeness can be directly proved by structural induction. Moreover, we hav ethe following theorem:

Theorem 1
If OPimpl is sufficiently complete over ABS, thenIMPL is op-complete.

Proof : Since REP is always sufficiently complete over OPimpl (fair presentation, [Bid82]),
(REP+OPimpl) is also sufficiently complete over ABS. But the sufficient completeness ofREP over ABS
means that for each (ΣΣ1 + ΣΣH + ΣΣABS + ΣΣOP + ΣΣREP)-term, r, whose sort belongs to (S0 + SH + SABS),
there isα ∈ TABS such thatr = α in TREP. In particular, this holds for all terms of the formρ s(t), as
needed.

Example 4
We prove that our implementation ofSTACK by ARRAYis op-complete, by structural induction.

• ρ STACK(empty) is equal toempty, which is equal toα = ASTACK(create, 0)
• if x and X have concrete representations (x = α1 and ρ STACK(X) = α2 = ASTACK(t, i)), then
ρ STACK(push(x, X)) do too :

ρ STACK(push(x, X)) = push(α1, ASTACK(t, i)) = ASTACK(t[i]: = α1, succ(i)) .
• similar reasoning applies forpopandtop.

7.2. Data protection
Theorem 2
If H is sufficiently complete over SPEC0, thenSEMIMPL is finitely generated over ΣΣ1.

Proof : The syntax of our abstract implementation does not contain any operations with target sort in
S1 − S0, except those ofΣΣ1. Thus,SEMIMPL is always finitely generated w.r.t. the sorts ofS1 − S0. It suf-
fices to prove that SEMIMPL is finitely generated w.r.t. the sorts ofS0. Consequently, Theorem 2 results
from the fact that our abstract implementation syntax does not contain any operation with target sort inS0,
except those ofΣΣ1 andΣΣH.

Definition 3
IMPL is data protectediff H is sufficiently complete over SPEC0. This means that the resident (abstract)
sorts are protected throughIMPL .

Data protection is then not difficult to prove, since it can be proved by structural induction or via syntactical
tools (such asfair presentations, [Bid 82]). OurSTACK by ARRAYexample is clearly data protected, asH
is empty.

7.3. Validity
Definition 4
IMPL is avalid abstract implementation iff for all ΣΣ1-terms,t andt’ , we hav e:

if t=t’ in TSPEC1
thent=t’ in SEMIMPL .

Theorem 3
If IMPL is data protected then the following conditions are equivalent :

IMPL is a valid abstract implementation
there is aΣΣ1-morphism fromTSPEC1

to SEMIMPL
SEMIMPL validates the axioms ofA1 = A0 + A
SEMIMPL validates the axioms ofA
TEQ validates the axioms ofA
ID is hierarchically consistent over EQ

whereID is the presentation over EQ which contains the set of axiomsA. Thus,ID contains all the specifi-
cations involved in our formalism (both the syntax ofIMPL andSPEC1).

Proof : giv en in Appendix.

The main result is the equivalence between the validity ofIMPL and the consistency of ID over EQ. This
feature is entirely due to our intermediate product sorts and the equality representation explicitly specified
via AEQ. This result facilitates the validity proofs, since then, they can always be handled by theorem prov-
ing methods.

Example 5
The validity of our abstract implementation ofSTACK is shown by proving that eachSTACK-axiom is a
theorem of the syntax ofIMPL . We prove here that pop(push(x,X))is equal toX in TEQ. Other axioms
of STACK are proved in a straightforward manner, following the same method.
SinceAREP contains the axiomρ STACK(X) = ρ STACK(Y) ==> X = Y , and since our implementation is
op-complete, it suffices to show that pop(push(x, ASTACK(t, i))) is equal to ASTACK(t, i) in TEQ. From
AOP, it results thatpop(push(x, ASTACK(t, i))) = ASTACK(t[i]: = x, i). Moreover, from the equality
representation (AEQ), it results thatASTACK(t[i]: = x, i) = ASTACK(t, i) , which ends our proof.

7.4. Consistency
Definition 5
IMPL is consistentif f for all ΣΣ1-terms,t andt’ , we hav e:

if t=t’ in SEMIMPL , then t=t’ in TSPEC1
.

Theorem 4
If IMPL is data protected and valid, then the following conditions are equivalent :

for all t andt’ in TΣΣ1
, if t=t’ in TEQ thent=t’ in TSPEC1

IMPL is consistent
the initial morphism fromTSPEC1

to SEMIMPL is a monomorphism
SEMIMPL is an initialSPEC1-algebra
the initial morphism fromTSPEC1

toUS1
(TID) is a monomorphism

ID is hierarchically consistent over SPEC1

Proof : giv en in Appendix.

For the same reasons as Theorem 3, Theorem 4 facilitates the consistency proofs, since they can always be
handled by theorem proving methods.

Example 6
The only axioms that can destroy the consistency of ID over SPEC1 are the axioms whose sort is inS1.
These axioms are :

ρ STACK(X) = ρ STACK(Y) ==> X = Y
ρ NAT(m) = ρ NAT(n) ==> m = n

ρ ARRAY(t) = ρ ARRAY(t′) ==> t = t′
These axioms lead to show that two abstract terms represented by the same concrete value (inTEQ), are
equal. Thus, we must consider each axiom ofAOP∪AREP∪AEQ, and prove that it does not create incon-
sistencies. Letus consider, for instance, the axiom

push(ANAT(x), ASTACK(t, i)) = ASTACK(t[i]: = x, succ(i)) .

Since we work in the stackvalues(not in the stack ground terms), we can handle our proofs w.r.t. the nor-
mal forms ofSTACK. It is possible to prove, by structural induction, thatASTACK(t, i) represents the stack
push(t[i-1], push(. . . ,push(t[0], empty). .)). Then, our proof is clear, as push(x, ρ STACK(X)) repre-
sentspush(x,X). Other axioms are handled in a similar manner, by using the normal forms.

Definition 6
IMPL is correct if f it is both op-complete, data protected, valid and consistent.

8. ABSTRACT IMPLEMENT ATIONS AND ENRICHMENTS
Let SPEC1 be a specification implemented viaIMPL . Let P be a presentation over SPEC1. We hav e
shown (Section 2.3) that every proof concerningP is done w.r.t. SPEC1, but not w.r.t. the syntax ofIMPL .
The “concrete” implementation ofP+SPEC1 is not specified byP+SPEC1. It is specified byP+EQ,
whereEQ is the whole syntax of the implementation ofSPEC1. The following theorem proves that the
user view of the concrete specificationP+EQ is isomorphic to the data structure specified byP+SPEC1.

Theorem 5
If IMPL is a correct abstract implementation ofSPEC1, then for all persistent presentations,P, over
SPEC1, we hav e:

U<ΣΣ1+ΣΣP>(TEQ+P) = TSPEC1+P

Proof : giv en in Appendix.

This theorem proves that the presentationP, pushed together with the abstract implementation ofSPEC1,
always provides the user with the expected results.

9. COMPOSITION OF ABSTRACT IMPLEMENT ATIONS
When we implementSPEC1 by means ofSPEC0, the resident specificationSPEC0 is often already
implemented by means of a lower level specification. Butall our correctness proofs are done w.r.t. the
specificationSPEC0, not w.r.t. the specification of the implementation ofSPEC0. We prove in this section
that the composition of two correct implementations always gives correct results. This feature is not pro-
vided in any work already put forward. Theformalism of [SW82] provides correct “vertical composi-
tions”, but these vertical compositions do not solve our problem: all upper level implementation operations
must be implemented by the lower level implementation. This results in a large amount of operations to be
implemented by the lowest level implementation ; moreover, this implies that all the lower level implemen-
tations must be redefined each time we add a new implementation. Sucha composition is incompatible
with modular, structured implementation.
The following theorem proves that the user view, obtained by pushing two correct abstract implementations
together, is always correct.

Theorem 6
Let IMPL 2 be an abstract implementation ofSPEC2 by means ofSPEC1. Let IMPL 1 be an abstract
implementation ofSPEC1 by means ofSPEC0. Consider the specificationIMPL (1,2) obtained from the
syntax ofIMPL 2 by substituting the syntax ofIMPL 1 for SPEC1.

IMPL (1,2) = SPEC0 + (H1 + ABS1+. . .+EQ1) + (H2 + ABS2+. . .+EQ2)
If IMPL 1 andIMPL 2 are both correct, then we have :

U<S2,ΣΣ2>(TIMPL (1,2)) = TSPEC2

Proof : Since IMPL 2 is correct, (H2+. . .+EQ2) is persistent over SPEC1. Thus, Theorem 5 proves
thatUSPEC1+..+EQ2

(TIMPL (1,2)) = TEQ2
.

In particular, U<S2,ΣΣ2>(TIMPL (1,2)) = U<S2,ΣΣ2>(TEQ2
) = SEMIMPL2

. Moreover, the correctness ofIMPL 2
implies thatSEMIMPL2

= TSPEC2
, which ends our proof.

This theorem can easily be extended to every (finite) number of implementations. Thus, it is possible to
handle structured and modular abstract implementations. This provides a formal foundation for a methodol-
ogy of program development by stepwise refinement.

10. CONCLUSION
The abstract implementation formalism described in this paper relies on three main ideas :

Abstract implementation is done by means of intermediate concrete values, which are distinct
from the abstract values to be implemented. These concrete sorts are synthesized by means of
abstraction operations.

The correspondance between the abstract sorts or operations to be implemented and the con-
crete sorts or operations is specified by means of arepresentation signature isomorphism.

The equality representationis explicitly introduced into the abstract implementation, in order
to handle conditional axioms.

The main results of this abstract implementation formalism are the following :
It allows use ofpositive conditional axioms, which facilitates the specifications and increases

the class of models taken into account.
All correctness proof criteria for abstract implementation are “simple” ones (sufficient com-

pleteness, hierarchical consistency or fair presentations). This feature provides the specifier with
theorem proving methods,structural inductionmethods orsyntacticalcriteria.

Abstract implementations cope with the notion ofenrichment.
Thecompositionof several correct implementations always gives correct results. Thus, abstract

implementations can be specified in a modular and structured way.

As a last remark, we want to emphasize the fact that the semantics of our abstract implementation is a func-
torial one. Thus it is not difficult to include the notion ofparameterizationinto our formalism, since param-
eterization mainly relies on synthesis functors and pushouts (see [ADJ 80]).

ACKNOWLEDGEMENTS
This work is partially supported by CNRS GRECO de Programmation, ESPRIT Project METEOR
and FOR-ME-TOO.

11. APPENDIX
This appendix contains the technical proofs omitted in the body of the article. The results being proved are
restated for convenience of reference.

11.1. Proof of Theorem 3
Theorem 3
If IMPL is data protected then the following conditions are equivalent :

1) IMPL is a valid abstract implementation
2) there is aΣΣ1-morphism fromTSPEC1

to SEMIMPL
3) SEMIMPL validates the axioms ofA1 = A0 + A
4) SEMIMPL validates the axioms ofA
5) TEQ validates the axioms ofA
6) ID is hierarchically consistent over EQ

whereID=EQ+<A>.

Proof :
[1 <==> 2] is clear : sinceTSPEC1

is finitely generated over ΣΣ1, there is a morphism fromTSPEC1
to

SEMIMPL if and only if twoΣΣ1-terms equal inTSPEC1
are also equal inSEMIMPL .

[2 <==> 3] results from the facts thatSEMIMPL is finitely generated over ΣΣ1 and thatTSPEC1
is initial in

SPEC1. Thus, there is a morphism fromTSPEC1
to SEMIMPL if and only if SEMIMPL is aSPEC-algebra

(i.e.SEMIMPL validatesA1).
[3 <==> 4] results from the fact thatEQ containsA0. Thus,SEMIMPL always validatesA0.
[4 <==> 5] results from the fact that the axioms ofA only concern the signature <S1, ΣΣ1>, and

SEMIMPL = U<S1,ΣΣ1>(TEQ) .
[5 <==> 6] results from the fact thatID does not add new operations toEQ (EQ=ID−A). Thus,ID is hierar-
chically consistent over EQ if and only ifTEQ already validates the axioms ofA.

11.2. Proof of Theorem 4
Theorem 4
If IMPL is data protected and valid, then the following conditions are equivalent :

1) for all t andt’ in TΣΣ1
, if t=t’ in TEQ thent=t’ in TSPEC1

2) IMPL is consistent
3) the initial morphism fromTSPEC1

to SEMIMPL is a monomorphism
4) SEMIMPL is an initialSPEC1-algebra
5) the initial morphism fromTSPEC1

toUS1
(TID) is a monomorphism

6) ID is hierarchically consistent over SPEC1

Proof :
[1 <==> 2] results from the fact thatSEMIMPL is equal to the part ofTEQ concerning the signature <S1, ΣΣ1>.
[2 <==> 3] results from the fact thatTSPEC1

is finitely generated over ΣΣ1, and from Definition 5. Notice that
the initial morphismTSPEC1

→ SEMIMPL exists, from Theorem 3.
[3 <==> 4] results from the fact thatSEMIMPL is finitely generated over ΣΣ1.
[3 <==> 5] results fromSEMIMPL = US1

(TEQ), and fromTEQ = TID (Theorem 3).
[5 <==> 6] is clear since the initial morphismTSPEC1

→ US1
(TID) is the unit of adjunction associated with

the presentationID over SPEC1.

11.3. Proof of Theorem 5
Theorem 5
If IMPL is a correct abstract implementation ofSPEC1, then for all persistent presentations,P, over
SPEC1, we hav e:

U<ΣΣ1+ΣΣP>(TEQ+P) = TSPEC1+P

Proof : We recall the following classical lemma :

Lemma If Pa and Pb are two persistent presentations over a specification SP such that
< Sa, ΣΣa > ∩ < Sb, ΣΣb > is empty, thenPb is still a persistent presentation over (Pa+SP).
(proved in [Ber 85] with positive conditional axioms)

The correctness ofIMPL implies thatID is persistent over SPEC1. Thus, our lemma proves thatTSPEC1+P
is isomorphic toU<ΣΣ1+ΣΣP>(TID+P).
Moreover, sinceP is sufficiently complete over theS1 part ofTID+P, Theorem 3 proves thatTEQ+P is iso-
morphic toTID+P. Consequently,U<ΣΣ1+ΣΣP>(TEQ+P) is isomorphic toTSPEC1+P, as needed.

12. REFERENCES
[ADJ 76] Goguen J., Thatcher J., Wagner E. : “An initial algebra approach to the specification, correctness, and implementa-

tion of abstract data types”, Current Trends in Programming Methodology, Vol.4, Yeh Ed. Prentice Hall, 1978 (al-
so IBM Report RC 6487, Oct. 1976).

[ADJ 80] Ehrig H., Kreowski H., Thatcher J., Wagner J., Wright J. : “Parameterized data types in algebraic specification lan-
gages”, Proc. 7th ICALP, July 1980.

[Ber 85] Bernot G. : “Une se´mantique alge´brique pour une spe´cification différenciée des exceptions et des erreurs: applica-
tion à l’implémentation et aux primitives de structuration des spe´cifications formelles”, The`se de troisième cycle,
Universitéde Paris-Sud, Orsay, 1985.

[Bid 82] Bidoit M. : “Algebraic data types: structured specifications and fair presentations”, Proc. of AFCET Symposium
on Mathematics for Computer Science, Paris, March 1982.

[EKMP 80] Ehrig H., Kreowski H., Mahr B., Padawitz P. : “Algebraic implementation of abstract data types”, Theoretical
Computer Science, Oct. 1980.

[EKP 80] Ehrig H., Kreowski H., Padawitz P. : “Algebraic implementation of abstract data types: concept, syntax, semantics
and correctness”, Proc. ICALP, Springer-Verlag LNCS 85, 1980.

[Gau 80] Gaudel M.C. : “Ge´né ration et preuve de compilateurs base´e sur une se´mantique formelle des langages de program-
mation”, Thèse d’état, Nancy, 1980.

[GHM 76] Guttag J.V., Horowitz E., Musser D.R. : “Abstract data types and software validation”, C.A.C.M., Vol 21, n.12,
1978. (also USG ISI Report 76-48).

[Gut 75] Guttag J.V. : “The specification and application to programming”, Ph.D. Thesis, University of Toronto, 1975.

[LZ 75] Liskov B., Zilles S. : “Specification techniques for data abstractions”, IEEE Transactions on Software Engineering,
Vol.SE-1 N 1, March 1975.

[SW 82] Sanella D., Wirsing M. : “Implementation of parameterized specifications”, Report CSR-103-82, Department of
Computer Science, University of Edinburgh.

