Good functors ... are those preserving philosophy !

Gilles BERNOT

LIENS, CNRS URA 1327
Ecole Normale Supérieure,
45 Rue d’Ulm,
F-75230 PARIS Cédex 05,
FRANCE

bitnet: bernot@frulm63
uucp: bernot@ens.ens.fr

(Appeared in Proc. of “Category Theory and Computer Science”, LNCS 283, 1987.)
Abstract

The aim of this paper is to prevent the abstract data type researcher from an improper, naive use
of category theory. We mainly emphasize some unpleasant properties of the synthesis functor
when dealing with so-called loose semantics in a hierarchical approach. All our results and
counter-examples are very simple, nevertheless they shed light on many common errors in the
abstract specification field.

We also summarize some properties of the category of models “protecting predefined sorts.”

Keywords : abstract data types, abstract specifications, category theory, completeness, consis-
tency, initial model, structured specifications.

1 Introduction

In the following pages, we focus our attention on results which seem to be “trivially ensured” in
the basic abstract data type framework. We sometimes give proofs... often counter-examples
of such results. In order to get striking counter-examples, we provide very simple ones, if not
trivial (mainly based on elementary algebraic properties of natural numbers). Nevertheless,
many common errors, or misinterpretations found in the abstract data type litterature result
from similar mechanisms. This emphasizes the fact that category theory should be carefully
used in the abstract data type field, including for (very) low level concepts.

More provocatively: this paper mainly points out the fact that the synthesis functor F of abstract
data types “does not preserve philosophy.” However, since about teen years [ADJ76], it is well
known that this functor is crucial for defining a hierarchical, modular approach of abstract
specifications!

Some elementary reminders about abstract data types are given in the next section (Sec-
tion 2). Section 3 discusses about the well known forgetful and synthesis functors, U and F,
associated with a hierarchical approach. Section 4 shows the difficulty of properly defining suf-
ficient completeness and hierarchical consistency with loose semantics. In Section 5, we show
what happens when combining enrichments. Lastly, Section 6 discusses about a loose semantics
obtained by “protecting” predefined sorts.

The following discussions are mainly centered on pairs [positive fact / proof| (respectively:
[negative fact / counter-example]).

2 Elementary reminders

Let us begin with basic definitions and properties [ADJ76]:

Given a signature ¥ (i.e. a finite set S of sorts and a finite set ¥ of operation-names with arity in
S), a X-algebra, A, is a heterogeneous set partitioned as { A4 }ses , and for each operation-name
op: 81---Sp—1 — Sy of X there is an operation opa : Ag, X --- X Ag, | — As,, . A X-morphism
from A to B is a sort-preserving, operation-preserving application from A to B. This defines a
category, denoted by Alg(X) ; it has an initial object: the ground-term algebra T, .

In the following, a specification SPEC will be defined by a signature > and a finite set F of
positive conditional equations of the form:

V1 =w1 NN\ Up_1] = Wp_1 = Up, = Wy,

where v; and w; are X-terms with variables.

Given a specification SPEC, Alg(SPEC) is the full sub-category of Alg(X) whose objects are
the Y-algebras which validate each axiom of E. The category Alg(SPEC) has an initial object,
denoted by Tsprc [BPWS82].

Since Tsppc exists, Gen(SPEC) can be defined as the full sub-category of Alg(SPEC') such that
the initial morphism is an epimorphism (i.e. is surjective, in our framework). Gen(SPEC) is
the category of the finitely generated algebras. Our first “fact” will be devoted to the following
remark:

It is well known that Gen(SPEC) is a particularly interesting category for the abstract data
type computer scientist; nevertheless, this is not exactly due to its large spectrum of morphisms,
as reminded below.

fact 1 : (Morphisms from a finitely generated algebra)
Let I" be an object of Gen(SPEC') and A an object of Alg(SPEC). The set Hom a19(sprc)(I'; A)
contains at most one element. Consequently, for all objects X and Y of Gen(SPEC),
Homgen(specy(X,Y) contains at most one morphism.

Proof: By initiality properties, if there exists a morphism pu, then the following triangle com-
mutes:

G m A
initial initial
morphism morphism

Tsprc

Thus, the unicity of u results from the surjectivity of the initial morphism associated with I'. O

One of the most important aspect of abstract data types is its structured, hierarchical,
modular approach. This is obtained by means of presentations. A presentation PRES over
SPEC is a new “part of specification” PRES =< S’ ¥/ E’ > such that the disjoint union
SPEC + PRES =< SUS’, YUY, EUE' > is a specification. Sorts and operations of SPEC
are often called the predefined sorts and operations. Relations between the categories Alg(SPEC)
and Alg(SPEC 4+ PRES) are handled by the well known forgetful functor and synthesis functor:

(U : Alg(SPEC + PRES) — Alg(SPEC)) and (F : Alg(SPEC) — Alg(SPEC + PRES)).

The functor F is a left adjoint for the functor ¢. Consequently, for each SPEC-algebra A, there
is a particular morphism from A to U(F(A)) : the morphism deduced from the adjunction unit
(or adjunction morphism). This morphism is absolutely crucial for the hierarchical approach: it
allows to evaluate the modifications performed on A under the action of PRES.

Example 2 : If A is equal to IN over the signature {0, succ_} (without axioms) and if PRES
adds pred with the axioms [pred(succ(n)) = succ(pred(n)) = n| , then U(F(IN)) is
isomorphic to Z. The unit of adjunction leads to the natural inclusion; and this morphism
permits to show that IV has been modified by adding negative values.

If the axioms were [pred(succ(n)) = n and pred(0) = 0], then the unit of adjunction leads
to the identity over IN showing that this second specification of pred does not change IN.

3 Forgetful and synthesis functors

We first present a rather obvious reminder about the forgetful functor. Let B be a SPEC+PRES-
algebra. The forgetful functor removes all subsets By where s € S’, and all operations of ¥’ are

forgotten (including those with arity in S only), but it does not remove any value of predefined
sort: U(Bs) = By for each s € S. For instance, in Example 2, U(Z) = Z#IN.

Let us remind the classical definition of the synthesis functor (although classical, this defini-
tion is the starting point of some misinterpretations!): Let A be a SPEC-algebra and let Tx 4y (A)
be the algebra of ¥ 4 ¥'-terms with variables in A; we denote by eval : U(Tx4s/(A)) — A the
canonical evaluation morphism. F(A) is the quotient of T%5/(A) by the smallest congruence
containing both the fibers of eval and the close instanciations of F + E'.

Because F + FE’ is required in the definition of F (instead of E’ alone), F(A) does not only
depend on A and PRES ; it also depends on SPEC.

fact 3 : Given a presentation PRFES, the action of the synthesis functor F over a given, fixed
algebra A is highly dependent of the predefined specification.
As outlined in the following example, this fact considerably restricts the possibility of
writing “implementation independent” specifications (see for instance [EKMP80], [SW82],
or [BBC86a| about abstract implementations).

Example 4 : Let SPEC be a classical specification of NAT with operations 0, succ and
t:

r+0==x
x + succ(y) = succ(r + y)

Let SPEC’ be the specification obtained by adding the following axiom to SPEC :
rt+y=rx+z=—y==z

The specifications SPEC and SPEC’ have clearly the same initial object: IV .
Let PRES be the presentation adding no sort, adding the operation ~ x | and adding
the axioms:

x % succ(0) = x > (1 is neutral)
x X succ(y) =z + (x X y) > (recursive definition)

When PRES is shown as a presentation over SPEC, F(IN) is a model where all terms con-
taining a multiplication by 0 cannot be evaluated. When PRES is shown as a presentation
over SPEC’, F(IN) is isomorphic to IN, because:

x+0=x=x X succ(0) =z + (z x 0)

and the simplification axiom of SPEC’ leads to 0 = x x 0 .

Notice that, in spite of the fact that SPEC and SPEC’ have the same initial semantics, the
presentation PRES is not completely specified over the first specification, but is completely
specified over the second one.

4 Consistency and completeness

The subject of this section is an examination of some a priori possible definitions of the notions
of sufficient completeness and hierarchical consistency with loose semantics. We start with the
most loose semantics: the entire category Alg(SPEC'). We will show that the simplest definitions
are unacceptable for abstract specification purposes.

All the counter-examples provided in this section are based on the following specification+presentation
example. Hopefully, we believe that this counter-example cannot be suspected to be too much
unusual, complicated or ad hoc.

Example 5 : Let SPEC be a specification of natural numbers (for instance the specification
given in Example 4) together with a sort BOOL and boolean operations True and False.
We consider the presentation PRES enriching SPEC by an equality predicate eq? :

eq?(0,0) = True

eq?(0, succ(n)) = False
eq?(succ(m),0) = False
eq?(succ(m), succ(n)) = eq?(m,n)

Looking at this presentation PRES, we can affirm that a “good notion” of sufficient completeness
(resp. hierarchical consistency) should be satisfied by PRES. This example is simply written by
taking into account each possible value for the arguments of eq?, with respect to the constructors
of SPEC, moreover there are no axioms between constructors (fair presentation [Bid82]).

We may of course imagine more sophisticated presentation examples, in particular examples
which add new sorts to SPEC. But our goal is simply to prevent the abstract data type re-
searcher from using a naive, rather unrealistic definition of sufficient completeness or hierarchical
consistency.

4.1 Sufficient completeness

In the initial approach, sufficient completeness is defined as follows [Gau78].

“The adjunction morphism associated with the initial algebra is surjective:”

T SPEC — U(F(T_SPEC))

This condition exactly means that PRES does not add new values to 7' SPEC . Remind that
F(T _SPEC)=Tsprc+rRrES , due to adjunction properties.

fact 6 : The following definition of sufficient completeness is not suitable in the general case:
“PRES is sufficiently complete if and only if for all algebras in Alg(SPEC') the adjunction
morphism is surjective”.

Using Example 5, we convince ourselves of this fact by considering the SPEC-algebra obtained
by two copies of IN. This algebra, (INV x {0,1} and {True, False}) , is not finitely generated,
but is an object of Alg(SPEC) by sending the operation-name 0 over the element (0,0) , and
suce((n,a)) = (suce(n),a) . Terms of the form eq?((n,0), (m, 1)) cannot be evaluated using the
PRES axioms of Example 5. Consequently, they add new boolean values, and the adjunction
morphism is not surjective.

fact 7 : The following two definitions of sufficient completeness are logically equivalent:

1. the adjunction morphism associated with the initial algebra " SPEC' is surjective
2. for all algebras in Gen(SPEC) the adjunction morphism is surjective.

Proof: [2 = 1] is trivial because the initial algebra is finitely generated.

[l = 2] : let A be a finitely generated SPEC-algebra. By construction of F, F(A) is finitely
generated over the signature of SPEC + PRES. Consequently, the image of the initial morphism
via the forgetful functor is surjective:

U(inits) : U(F(T _SPEC))=U(Tsprc+rrEs) — U(F(A))

Our conclusion results from the commutativity of the following diagram:

U(F(A
adjunction (E(A))
(surjective) (surjective)
(surjective)
TspeC U(Tspec+prES) 0

Restricting ourselves to finitely generated algebras has several disadvantages. For instance,
parameterized presentations require a non finitely generated semantics [ADJ80).

4.2 Hierarchical consistency

In the initial approach, hierarchical consistency is defined as follows:
“the adjunction morphism associated with the initial algebra is a monomorphism”

(i.e. is injective in our framework).

fact 8 : The following definition of hierarchical consistency is not suitable in the general case:
“PRES is hierarchically consistent if and only if for all algebras in Alg(SPEC') the adjunc-
tion morphism is injective”.

Let us return to Example 5. If we consider the SPEC-algebra Z (which is a non finitely generated
algebra), we get the following inconsistency:

True = eq?(0,0) = eq?(0, succ(—1)) = False

Restricting hierarchical consistency checks to finitely generated algebras does not yield better
results:

fact 9 : The following definition of hierarchical consistency is not suitable in the general case:
“PRES is hierarchically consistent if and only if for all algebras in Gen(SPEC') the ad-
junction morphism is injective”.

Using Example 5 again, we consider a finitely generated algebra of the form % , and we get the
following inconsistency:

True = eq?(0,0) = eq?(0,n) = eq?(0, succ(n — 1)) = False

These facts prove that “defining sufficient completeness on Alg(SPEC)” , “defining hierar-
chical consistency on Alg(SPEC)” or “defining hierarchical consistency on Gen(SPEC)” are too
strong requirements. Extension from the purely initial semantics to a loose semantics must be
done more carefully.

5 Combining presentations

In the remainder of this paper, we simply follow the definitions of sufficient completeness and
hierarchical consistency given at the beginning of sections 4.1 and 4.2 (i.e. the initial approach).
Given a specification SPEC, we consider two presentations PRES| and PRESs with disjoint
signatures.

Let PRES be the union of PRES| and PRES> , we care about the sufficient completeness
and hierarchical consistency of PRES. In spite of the strong hypothesis described here, we have
sometimes to be careful, as detailed in the following two subsections.

5.1 Sufficient completeness

fact 10 : If PRES, and PRES, are both sufficiently complete over SPEC, then PRES =
PRES| + PRES> remain sufficiently complete. Moreover, under the same hypothesis,
PRES, is sufficiently complete over SPEC + PRES,.

Proof: (using elementary tools)

Tsprc+PRES,+PRES, is the quotient of Txyx, 4y, by the smallest congruence containing the
close instanciations of the SPEC' + PRES1+ PRES5 axioms [BPW82|. Consequently, it suffices
to prove that each ¥ + X; 4+ Yg-ground-term of sort in S (resp. in S + Sj) belongs to the
equivalence class of a Y-term (resp. ¥ + Yj-term). This can be trivially proved via structural
induction. O

Obviously, the converse is false: the sufficient completeness of PRES does not imply the
sufficient completeness of PRES, or PRES, .

5.2 Hierarchical consistency

fact 11 : The hierarchical consistency of PRES| and PRES5 over SPEC does not imply the
hierarchical consistency of PRES = PRES| + PRES, over SPEC.

Example 12 : Let SPEC be a specification of natural numbers. Let PRES; be the presenta-
tion simply containing the following axiom:

succ(n) =0=n=20

PRES, is clearly consistent (in fact, the premise cannot be satisfied in the initial object,
thus this axiom is never applied). Let PRESs be the presentation adding the opera-
tion pred_ with [pred(succ(n)) = succ(pred(n)) = n| . PRES, is clearly hierarchically
consistent over natural numbers (even though it is not sufficiently complete). The union
PRES = PRES1+PRES> is not hierarchically consistent because from succ(pred(0)) = 0
we get:

0 = pred(0) , which leads to succ(0) = succ(pred(0)) =0

Another example of the same fact is the following:

Example 13 : Let PRES, be the presentation described in Example 5 (adding equality pred-
icate to natural numbers), and let PRES5 be the same presentation as Example 12 before
(adding pred). PRES, and PRES, are clearly hierarchically consistent over natural num-
bers, but the union PRES = PRES| + PRES> is not hierarchically consistent because:

True = eq?(0,0) = eq?(0, succ(pred(0))) = False

(a similar example was first presented in [EKP80], for abstract implementation purposes).

fact 14 : If PRES = PRES| + PRES, is hierarchically consistent over SPEC then PRES,
and PRFES, are hierarchically consistent over SPEC.

Proof: Assume that PRES is not consistent: the morphism from Tsppc to U(Tspec+pPRES,)
is not injective. Since the following diagram commutes, the adjunction morphism from Tsprc

to T'spEc+PRES,+PRES, 1s not injective:

Ul(Tspec+pRrES,) U(Tspec+PRES,+PRES,)
(PRES; (PRES, + PRES,
adjunction morphism) adjunction morphism)
Tspec

(the horizontal arrow is the forgetful of the adjunction morphism for PRESy over SPEC +
PRES)).
It results that PRES is not hierarchically consistent over SPEC. O

fact 15 : If PRES| and PRES5 are both hierarchically consistent and sufficiently complete
over SPEC, then PRES = PRES| + PRES5 too. Moreover, under the same hypothesis,
PRES, is hierarchically consistent and sufficiently complete over SPEC + PRES].

(This fact is well known; a demonstration with conditional axioms, including exception handling,
can be found in [Ber86]).

6 Loose semantics with “Protect”

Clearly, abstract specifications do not necessarily directly lead to executable specifications. It is
often convenient to specify some operations via “universal properties.” For instance the subtrac-
tion can be specified via:

Z—yYy=r<—cr+ty==z

Sometimes, such axioms may lead to uncompletely specified presentations, as in the following
example.

Example 16 : Let SPEC be an initial specification of integers with operations 0, succ_, pred_,
4+, — and _ x _ . Let us specify a presentation PRES adding the operation
_div__ as follows:

0 <= (a— (b x (adivb))) = True
(a — (b x (adivd))) < b= True

These axioms characterize (adivb) among all integers finitely generated with respect to succ
and pred. However, in the initial model Tgpp o, pppg » the term (adivb) is not reached by
succ and pred . Its value is only a unreachable value such that the (unreachable) remainder
(a — (b x (adivb))) returns the specified boolean values when compared with 0 and b .
Consequently, this presentation is uncompletely specified according to the usual definition
of sufficient completeness.

In such examples, the only interesting models are those which do not modify the predefined initial
model (Z). This leads to a (loose) semantics where models are those protecting predefined sorts
[Kam80]. Indeed, when writing relatively large specifications, this semantics seems to be highly

suitable (AsL [Wir82] [SW83|, Pruss [Gau84|, OBy [FGJMS85]|, LARCH [GHS83]...).

Let us define the associated category:

Definition 17 : (The “Protect” category)
Let SPEC be a specification and let PRES be a presentation over SPEC. The category
of PRES-models protecting SPEC' is the full subcategory of Alg(SPEC + PRES) whose
objects are the SPEC + PRES-algebras A such that U(A) is isomorphic to the initial
predefined algebra T'sprc . We denote this category by Prot(SPEC, PRES) .

Notice that the object class of Prot(SPEC, PRES) can be empty.

fact 18 : If Prot(SPEC, PRES) is not an empty category, then PRES is hierarchically con-
sistent over SPEC.

(Here, consistency is defined with respect to the initial algebra Tspgc only)

Proof: If Tgppc, prpg is inconsistent over Tsppc, then a fortiori all SPEC' + PRES-algebras
are inconsistent over Tsppc (because Tsprc L PRES is minimal). O

fact 19 : Even if PRES is consistent over SPEC, Prot(SPEC, PRES) may be empty.

Example 20 : Let SPEC be the boolean specification with True and False. Let PRES be a
specification of SET(BOOL) with (), insert, € and choose :

True €) = False

False €) = False

b€ insert(b/,X) = (b=b")orbe X
choose(X) € X = True

This specification is clearly hierarchically consistent (even though it is not sufficiently
complete). However, the Protect category is empty, because the term choose()) can neither
be equal to T'rue nor to False (both choices induce True = False).

(Fortunately, this example can be easily specified without inconsistency using abstract
data types with exception handling [Bid84] [GDLE84| [BBC86b| [Ber86|, or with partial
functions [BW82].)

fact 21 : Even if Prot(SPEC, PRES) contains models, it has not necessarily an initial object.

Example 22 : Let SPEC be the boolean specification with True and False. Let PRES be the
presentation adding the constant operation maybe, without any axiom. Prot(SPEC, PRES)
contains two models, no one is initial.

fact 23 : If PRES is sufficiently complete over SPEC, then either the category Prot(SPEC, PRES)
has an initial object, either it is empty.

Proof: If PRES is consistent, then the initial model T'gp g, prpg Pelongs to Prot(SPEC, PRES);
it is then necessarily initial in Prot(SPEC, PRES). If PRES is not hierarchically consistent,
then Fact 18 implies that Prot(SPEC, PRES) has no object. O

fact 24 : There are presentations PRFES which are not sufficiently complete over SPEC, such
that Prot(SPEC, PRES) is not empty and has an initial object.

It suffices to refer to Example 16, where the axioms characterize div by a “universal property
among integers.” The division is incompletely specified according to classical initial definition of
sufficient completeness, but Prot(SPEC, PRES) only contains one model (Z) which is neces-
sarily initial.

7 Conclusion

We have investigated how a hierarchical approach of abstract data types, with the notions of
hierarchical consistency and sufficient completeness, could be defined when dealing with so-called
loose semantics. The results shown in sections 2 to 5 seem to be somewhat pessimistic:

e The synthesis functor is “implementation dependent” with respect to the predefined speci-
fication (Fact 3).

e Sufficient completeness cannot be checked on all models (Fact 6).
e Hierarchical consistency cannot be checked on all models (Fact 8).

e Hierarchical consistency cannot be checked on all finitely generated models, a smaller class
of models must be investigated (Fact 9).

e Combining hierarchically consistent presentations does not result on a hierarchically con-
sistent presentation (Fact 11).

However, we showed some positive results:

e Checking sufficient completeness on all finitely generated algebras is equivalent to check it
on the initial algebra only (Fact 7).

e Combining sufficiently complete presentations results on sufficiently complete presenta-
tions (Fact 10); the same occurs for presentations that are both sufficiently complete and
hierarchically consistent (Fact 15).

In the last section (Section 6), we defined the category of models protecting predefined sorts. We
have investigated the relations between the classical notions of completeness/consistency and the
elementary properties of this category:

e The category is empty if the presentation is not hierarchically consistent, but the converse
is false (Facts 18 and 19).

e The category has not necessarily initial models (Fact 21).
It has initial models if the presentation is sufficiently complete and hierarchically consistent,
but the converse is false (Facts 23 and 24).

In conclusion: From facts 3, 6, 8, 9 and 11, we showed that the synthesis functor of classical
abstract data types “does not always preserve philosophy” when dealing with loose semantics.
Moreover, with a loose semantics based on protection of predefined sorts, the corresponding

category has few systematic relations with sufficient completeness or hierarchical consistency
(facts 18 to 24).

Acknowledgements: It is a pleasure to express gratitude to Michel Bidoit, Chris-
tine Choppy and Marie-Claude Gaudel for encouragements to write this paper and
careful proof readings. The title was suggested by Stephane Kaplan.

References

[ADJ76] Goguen J., Thatcher J., Wagner E. : “An initial algebra approach to the specification,
correctness, and implementation of abstract data types”’, Current Trends in Program-
ming Methodology, Vol.4, Yeh Ed. Prentice Hall, 1978. Also : IBM Report RC 6487,
Oct. 1976.

[ADJ80| Ehrig H., Kreowski H., Thatcher J., Wagner J., Wright J. : “ Parameterized data types
in algebraic specification langages”, Proc. 7th ICALP, July 1980.

[BBC86a] Bernot G., Bidoit M., Choppy C. : “Abstract implementations and correctness proofs”,
Proc. 3rd STACS, January 1986, Springer-Verlag LNCS 210, January 1986. Also : LRI
Report 250, Orsay, Dec. 1985.

[BBC86b| Bernot G., Bidoit M., Choppy C. : “Abstract data types with exception handling :
an initial approach based on a distinction between exceptions and errors”, Theoretical
Computer Science, Vol.46, No.1, p.13-45, November 1986.

[Ber86] Bernot G. : “Une sémantique algébrique pour une spécification différenciée des excep-
tions et des erreurs : application a l'implémentation et aux primitives de structuration
des spécifications formelles”, Thése de troisiéme cycle, LRI, Université de Paris-Sud,
Orsay, Février 1986.

10

[Bid82] Bidoit M. : “Algebraic data types: structured specifications and fair presentations”,
Proc. AFCET Symposium on Mathematics for Computer Science, Paris, March 1982.

[Bid84] Bidoit M. : “Algebraic specification of exception handling by means of declarations and
equations”, Proc. 11th ICALP, Springer-Verlag LNCS 172, July 1984.

[BPW82| Broy M., Pair C., Wirsing M. : “A systematic study of models of abstract data types”,
Theoretical Computer Sciences, p. 139-174, vol. 33, October 1984.

[BW82] Broy M., Wirsing M. : “Partial abstract data types’, Acta Informatica, Vol.18-1, Nov.
1982.

[EKMP80| Ehrig H., Kreowski H., Mahr B., Padawitz P. : “Algebraic implementation of abstract
data types”, Theoretical Computer Science, Oct. 1980.

[EKP80| Ehrig H., Kreowski H., Padawitz P. : “Algebraic implementation of abstract data types:
concept, syntax, semantics and correctness”, Proc. ICALP, Springer-Verlag LNCS 85,
1980.

[FGIJMS85| Futatsugi K., Goguen J., Jouannaud J-P., Meseguer J. : “Principles of OBJ2”, Proc.
12th ACM Symp. on Principle of Programming Languages, New Orleans, January 1985.

[Gau78] Gaudel M-C. : “Spécifications incomplétes mais suffisantes de la représentation des
types abstraits”, Laboria Report 320, 1978.

[Gau84] Gaudel M-C. : “A first introduction to PLUSS”, LRI Report, Orsay, December 1984.

[GDLE84] Gogolla M., Drosten K., Lipeck U., Ehrich H.D. : “Algebraic and operational seman-
tics of specifications allowing exceptions and errors”, Theoretical Computer Science 34,

North Holland, 1984.

[GH83] Guttag J.V., Horning J.J. : “An introduction to the LARCH shared language”, Proc.
IFIP 83, REA Mason ed., North Holland Publishing Company, 1983.

[Kam80] Kamin S. : “Final data type specifications : a new data type specification method”, Proc.
of the 7th POPL Conference, 1980.

[SW82] Sannella D., Wirsing M. : “Implementation of parameterized specifications”’, Report
CSR-103-82, Department of Computer Science, University of Edinburgh.

[SW83] Sannella D., Wirsing M. : “A kernel language for algebraic specification and imple-
mentation”, Proc. Intl. Conf. on Foundations of computation Theory, Springer-Verlag,
LNCS 158, 1983.

[Wir82] Wirsing M. : “Structured algebraic specifications”, Proc. of AFCET Symposium on
Mathematics for Computer Science, Paris, March 1982.

11

