
CORRECTNESS PROOFS FOR ABSTRACT

IMPLEMENTATIONS

To appear in Information and Computation, Vol. 80, Num. 2, pp. 121-151, Feb. 1989.

Gilles BERNOT
Laboratoire d’Informatique,
Ecole Normale Supérieure,

45 Rue d’Ulm,
F-75230 PARIS cedex 05,

FRANCE

bitnet: bernot@frulm63
uucp: bernot@ens.ens.fr

ABSTRACT

New syntax and semantics for implementation of abstract data types are presented in this paper.
This formalism leads to a simple, exhaustive description of the abstract implementation correct-
ness criteria. These correctness criteria are expressed in terms of sufficient completeness and
hierarchical consistency. Thus, correctness proofs of abstract implementations can be handled
using classical tools such as term rewriting methods, structural induction methods or syntactical
methods (e.g. fair presentations). The main idea of this approach is a fundamental distinction
between descriptive and constructive specifications, using both abstraction and representation
functions. Moreover, we show that the composition of several correct abstract implementations
is always correct. This provides a formal foundation for a methodology of program development
by stepwise refinement.

Key-words: abstract data types, abstraction, correctness proofs, implementation, initial model,
mathematical programming, representation, theorem proving.

1

1 INTRODUCTION

For about twelve years [LZ 75, Gut 75, ADJ 76], the formalism of abstract data types has been
considered a major tool for writing hierarchical and modular specifications. Algebraic spec-
ifications provide the user with legible and relevant properties concerning the specified data
structures. Nevertheless, as algebraic specifications give a description of the data structure prop-
erties, they should not provide the designer with a constructive specification of the corresponding
implementation. To implement a data structure, the descriptive specification is not directly used.
Rather, “resident” data structures (which have been previously implemented) are used. For in-
stance, we implement a STACK data structure by means of ARRAY. The following example
shows the difference between “descriptive” and “constructive” specifications:

Example 1 :
Let us specify stacks of natural numbers, STACK(NAT), as follows:

pop(empty) = empty

pop(push(n,X)) = X

top(empty) = 0
top(push(n,X)) = n

This specification is descriptive, as it describes the basic properties of stacks. But this data
structure is more efficiently implemented by means of arrays. A stack is then characterized by
an array, which contains the elements of the stack, and an integer, which is the height of the
stack.
Without leaving off the abstract data type formalism, a constructive specification of the imple-
mentation of STACK(NAT) using ARRAY and NAT can be done as follows:

empty =< t, 0 >

push(n,< t, i >) =< t[i] := n, succ(i) >

pop(< t, 0 >) =< t, 0 >

pop(< t, succ(i) >) =< t, i >

top(< t, 0 >) = 0
top(< t, succ(i) >) = t[i]

The first element pushed onto the stack is then t[0] ; and the index i points to the place where
the next element will be pushed (see [BBC 86] for a more realistic treatment of the exceptional
cases pop(empty) and top(empty)).
However, we have to prove that the second set of (constructive) axioms is correct with respect
to the data structure described by the first one.

It is well known that this need of establishing the correctness of an implementation with respect
to the “designer’s intentions” induces very difficult problems. The use of formal specifications
(in particular algebraic specifications) is particularly fruitful, both for proving [Hoa 72, ADJ 78,
EKP 80, EKMP 82, SW 82, San 87, Sch 87, GM 88 . . .] or for testing [Bou 82, BCFG 86,
Gau 86 . . .] the correctness of an implementation. A natural idea is to describe the implemen-
tation problem in a homogeneous abstract specification framework; this leads to the concept of
abstract implementation. We then hope that the usual proof techniques of abstract data types
would facilitate correctness proofs of abstract implementations.

Correctness proofs of abstract implementations can be done by using the notions of represen-
tation invariants and equality representation [GHM 76, Gau 80]. For instance, the equality
representation of Example 1 can be stated by:

2

< t, i > = < t′, i′ > iff i = i′ and t[j] = t′[j] for all j = 0..i

Unfortunately, equality representation must be specified by the user, and nothing proves that it
is correct. In particular, if we specify an equality representation where “everything is true,” then
every implementation will be correct.
Since 1980, several works have formalized the notion of implementation correctness [EKP 80,
EKMP 82, SW 82, San 87, Sch 87] without using an explicit equality representation. All these
works give pure semantical correctness criteria (such as existence of a morphism between two
algebras). Unfortunately, pure semantical correctness criteria do not provide the specifier with
theorem proving methods (e.g. structural induction). It is therefore necessary to complete the
abstract data type framework with an abstract implementation formalism which provides the
user with “simple” correctness proof criteria.

In this paper, a new formalism for abstract implementations is provided. This formalism leads in
a natural way to an exhaustive description of the abstract implementation correctness criteria.
These correctness criteria can be checked via classical methods since they are expressed by means
of sufficient completeness and hierarchical consistency. These two concepts are well known in
classical abstract data types; thus we show that the correctness of abstract implementations does
not require new concepts in the abstract data type field. This approach is especially powerful,
since it is then possible to prove the correctness of an implementation using term rewriting
techniques, structural induction etc. Moreover, this formalism is compatible with enrichment,
and the composition of two correct implementations always gives a correct result. This new
definition of abstract implementation allows for the use of positive conditional axioms. We will
show that this feature requires an equality representation, which in turn facilitates the correctness
proofs. Moreover, the adequacy of the specified equality representation will be implied by the
correctness of the implementation; thus the difficulties raised by the equality representation,
which have been pointed out above, will be solved in this framework. Finally, the semantical
level is very simple because it only uses the classical forgetful and synthesis functors. Thus, this
formalism can easily be extended, for instance to algebraic data types with exception handling
features [Ber 86].

The next section presents the classical problems related to abstract implementation. Section 3
describes the main ideas of our formalism which solve these problems. Sections 4 through 6
describe our abstract implementation formalism. In Section 7, we show how correctness proofs
of abstract implementation can be handled. Finally, we prove that abstract implementations
cope with enrichment and composition (Section 8). We assume that the reader is familiar with
elementary results of category theory and abstract data type theory.

2 PROBLEMS RAISED BY ABSTRACT IMPLEMENTATION

Abstract implementations are usually specified either with an abstraction function (presented in
[Hoa 72]), or with a representation function ([ADJ 78], section 5.4.2).

2.1 THE ABSTRACTION FUNCTION

The abstraction takes previously implemented objects (e.g. arrays and natural numbers), and
returns objects to be implemented (e.g. stacks). This is done by means of an abstraction operation
(e.g. A: ARRAY NAT → STACK). For instance, we obtain the axioms of the implementation
of stacks by substituting A(t,i) for <t,i> in Example 1. Another trivial example is the following:

3

Example 2 :
Natural numbers can be implemented by means of integers as follows:

0IN = A(0ZZ)
succIN (A(z)) = A(succZZ(z))

eq?IN(A(z), A(z′)) = eq?ZZ(z, z′)

where A: INT → NAT is the abstraction operation.

The abstraction viewpoint is generalized and formalized in [EKP 80, EKMP 82], and is also
underlying in [SW 82, San 87].

Unfortunately, abstraction operations synthesize too many objects in the sorts to be imple-
mented. For instance, A(create,4) does not implement any stack, because if the height of a stack
is equal to 4, then the four first ranges of the corresponding array must be initialized. In the
same way, A(-1) does not implement any natural number.
As shown in [EKMP 82], this fact prevents the specifier from carrying out simple correctness
proofs by theorem proving methods. For instance, one of the proofs required is the implemen-
tation consistency: two objects which are distinct with respect to the descriptive specification
must be implemented by two objects (synthesized by abstraction operations) which are distinct
with respect to the constructive specification. The only formal concept of abstract data types
which can handle such a condition is the hierarchical consistency. Thus, it is necessary to put
together the constructive specification of our implementation (Example 2) and the descriptive
specification to be implemented (NAT). We obtain a specification that contains both the (con-
structive) abstract implementation and the descriptive specification to be implemented, and we
can check whether this specification is hierarchically consistent over NAT. NAT is specified as
follows:

eq?IN(0IN , 0IN) = True

eq?IN(0IN , succIN (m)) = False

eq?IN (succIN (n), 0IN) = False

eq?IN(succIN (n), succIN (m)) = eq?IN (n,m)

But we obtain: True = eq?IN(0IN , 0IN) = eq?IN (0IN , succIN (A(−1))) = False . Consequently,
although it is clearly correct, we cannot prove the consistency of our implementation this way.

2.2 THE REPRESENTATION FUNCTION

The aim of a representation is to provide a composition of previously implemented operations
(e.g. those of NAT and ARRAY) for every operation to be implemented (e.g. empty, push, pop,
top). For instance, the representation associated with Example 1 is specified as follows:

ρ(empty) =< t, 0 >

ρ(push(n,< t, i >)) =< t[i] := n, succ(i) >

ρ(pop(< t, 0 >)) =< t, 0 >

ρ(pop(< t, succ(i) >)) =< t, i >

ρ(top(< t, 0 >)) = 0
ρ(top(< t, succ(i) >)) = t[i]

4

where ρ is the representation function.
Since representation only gives a representation for each operation to be implemented, it does
not create undesirable values in the sorts to be implemented. Unfortunately, it is very difficult
to give an algebraic meaning to such axioms. This is due to the fact that “<_,_>” has no real
algebraic definition. Considering <_,_> as an operation, its signature is necessarily: < , >: AR-
RAY NAT → STACK because it takes an array and a natural number, and returns a stack (as
we apply pop to <t,i>). Consequently, the signature of <_,_> is the same as the signature of
the abstraction operation. Thus, the function ρ is useless (in fact ρ is the identity), because the
operation < , > can simply be used as an abstraction operation, which simplifies the previous
specification.

A second way of looking at the representation may be to consider two representation operations:

ρ1 : STACK → ARRAY

ρ2 : STACK → NAT

But ρ1(empty) must be specified as a particular array. If we specify that ρ1(empty) can be equal
to any array (ρ1(empty) = t together with ρ2(empty) = 0 , as in the abstraction case), then
all arrays will be collapsed, which results in inconsistencies. Thus, breaking the representation
operation into several operations is not powerful enough.
In fact, we will develop an abstract implementation formalism which uses both ρ and <_,_> .
The problems mentioned above are avoided by means of intermediate “constructive sorts.”

2.3 REUSABILITY ISSUES

Let us assume that the stack data structure is already implemented by means of arrays and
natural numbers. A user of this data structure will probably include it in some other programs.
At the specification level, this means that some presentations over STACK will be specified
(presentations over STACK can be viewed as abstract programs). But the user should never have
to know how the implementation is done. In other words, (s)he knows the descriptive specification
of STACK, but (s)he does not know the constructive specification of its implementation. Thus,
every proof concerning an enrichment is done with respect to the descriptive specification of
STACK, but not with respect to the implementation specification. This does not prove that the
composition of the STACK implementation with the new enrichment gives the expected result.
A particular subproblem is the composition of several implementations (i.e. implementations
which reuse other implementations). All correctness proofs of the second implementation are
handled with respect to the descriptive specification of the first implemented data structure;
they are not done with respect to the constructive specification of this first implementation. A
priori, the composition of the first implementation and the second one is not proved to be correct,
even if these two implementations are separately proved correct.
In our framework, enrichments and compositions of correct abstract implementations always give
the expected (semantical) results. This feature was not provided in any of the previous works in
this area.

In order to achieve this goal, a specification of the equality representation must be included into
the implementation (at least as soon as we want to enrich this implementation by a presentation
containing conditional axioms).
For example, a presentation over STACK can contain a conditional axiom of the form:

pop(X) = empty =⇒ M = N

5

We may have: X = push(n,empty) . The implementations of the terms empty and pop(push(n,empty))
are then <create,0> and <create[0]:=n,0> . These pairs are not equal, but the premise of this
axiom must be satisfied. If the implementation cannot detect when two distinct pairs implement
the same stack, then our enrichment viewed through the implementation will not be correct,
since some instances of this axiom are not taken into account. Thus, it is necessary to include
the equality representation into the implementation in order to handle conditional axioms of en-
richments. We will show that equality representation is also a useful tool for correctness proofs.

3 OVERVIEW OF OUR FORMALISM

We have shown that the abstraction (A) has the advantage of synthesizing products of previ-
ously implemented sorts. Therefore, the inconsistencies described with ρ1 and ρ2 in section 2.2
are avoided. But abstraction leads to complicated correctness proofs because it adds some
undesirable values in the sorts to be implemented. A restriction is necessary before defining im-
plementation correctness. On the other hand, the representation (ρ) solves this problem, because
it only returns the implementation of each values to be implemented. Intuitively, the image of
ρ is just the result of the restriction. Representation automatically handles restriction. But we
must face the difficulty of giving an algebraic syntax for representation.
In fact, we will take advantage of both abstraction and representation by using intermediate
constructive sorts. Indeed, the main idea of the abstract implementation formalism described
here is a systematic distinction between descriptive and constructive specifications or models.
A descriptive specification or model only results from the abstract description of the known or
required properties of the data structure under consideration. A constructive specification or
model results from information or choices about its implementation.

Let us state the problem as follows:

• The previously implemented data structure (e.g. NAT and ARRAY) is specified by
SPEC0 = (S0,Σ0,A0) , where S0 is a set of sorts, Σ0 is a set of operations with
arity in S0 , and A0 is a set of positive conditional axioms over the signature (S0,Σ0).
SPEC0 is called the resident specification.
Of course, SPEC0 is a descriptive specification. SPEC0 does not explain how resident
sorts are implemented; it only describes “what properties we know” about the resident
values. In particular the initial algebra TSPEC0

is a “descriptive model” of resident values;
TSPEC0

does not necessarily reflect the constructive (previously completed) implementa-
tion of resident sorts.

• We want to implement a data structure described by SPEC1 = (S1,Σ1,A1) .
SPEC1 is only a descriptive specification of “what properties we want to obtain” after
the implementation is performed (e.g. NAT+STACK). In particular, the SPEC1-initial
algebra TSPEC1

is only a “reference model” (for correctness) which does not necessarily
reflect the actual implementation semantics. TSPEC1

is a descriptive model of the expected
implementation result.

• Notice that SPEC0 and SPEC1 are not necessarily disjoint. For example, NAT is a
specification included both in SPEC0=NAT+ARRAY and in SPEC1=NAT+STACK. In
the following, we assume that SPEC0 and SPEC1 are both persistent (i.e. hierarchically
consistent and sufficiently complete) over the common specification SP=(S,Σ,A)=(S0 ∩

S1,Σ0 ∩ Σ1,A0 ∩ A1).

6

The abstract implementation problem is to define a constructive specification of SPEC1 using
SPEC0 ; and to provide the specifier with usable correctness criteria.

An abstract implementation will be performed in five steps, using intermediate constructive sorts
containing constructive values:

• The first step describes the representation. For each (descriptive) sort of SPEC1 (e.g.
STACK), there is a constructive sort which represents it (STACK). Intuitively, STACK

will be the product sort “Array×Natural.” For each (descriptive) operation of SPEC1 (e.g.
empty, push, pop, top), there is a constructive operation which is its actual implementation
(empty, push, pop, top). These constructive operations work on the constructive sorts (e.g.
STACK) instead of directly working on the descriptive sorts to be implemented (STACK).
Notice that there are also constructive operations and a constructive sort associated with
NAT (as NAT ⊂ SPEC1). Since NAT has already been implemented (⊂ SPEC0),
NAT is simply a copy of NAT. Intuitively, this corresponds to the following fact: SPEC0

is a descriptive specification; we do not know the constructive (previously completed)
implementation of NAT. Consequently, by default, we synthesize NAT as a copy of NAT.

• The second step synthesizes the constructive values used by the implementation. These
constructive values are generated by means of synthesis operations. For example, the
synthesis operation associated with STACK is the abstraction operation

< _,_ >STACK : ARRAY NAT → STACK

that synthesizes the product sort STACK (ARRAY×NAT), associated with STACK ∈ S1.
Moreover, the synthesis operation associated with NAT is simply (by default) a copy op-
eration < _ >NAT : NAT → NAT .

• The third step is only a convenient (hidden) enrichment of the previously synthesized data
structure. This hidden component of the implementation was first introduced in [EKP 80].
It allows us to add hidden operations which are useful to specify the implementation. For
instance, if the resident specification of integers (Example 2) does not contain the operation
eq?ZZ , then it is very useful to define it in the hidden component before specifying the main
part of the implementation.

• The fourth step is the usual constructive specification of the implementation. It recursively
specifies the actual implementation of each new constructive operation (empty, push,. . .)
on the constructive sorts (STACK). This step is handled by means of conditional axioms,
as in previous examples.

• The last step specifies the equality representation. It will be specified by means of a set of
conditional axioms. Our last step specifies the implementation of the classes (or equiva-
lently values) to be implemented; while the fourth step only specifies the implementation
of terms to be implemented.

This new fundamental distinction between descriptive and constructive aspects will be reflected
on three different levels: the textual level, the presentation level and the semantical level.

• the textual level (Section 4) only contains the informations that the specifier must provide
in order to define the implementation

• the presentation level (Section 5) is automatically deduced from the textual level; it gives a
complete algebraic specification for the implementation (which will be useful for correctness
proofs)

7

• the semantical level (Section 6) is automatically deduced from the presentation level; it
describes the models (algebras) of the implementation.

Similar levels have been first introduced by [EKP 80]. They have been shown to be a firm basis
to define correctness for abstract implementations.

4 THE TEXTUAL LEVEL

Definition 1 (Textual level) :
We define an abstract implementation of SPEC1 by SPEC0, denoted by IMPL, as a tuple:

IMPL = (ρ , ΣSYNTH , H , AOP , AEQ)

where ρ is the representation, ΣSYNTH is the set of synthesis operations, H is the hidden com-
ponent, AOP is the set of constructive axioms, and AEQ is the equality representation.
These five parts are precisely defined in the following subsections.

4.1 THE REPRESENTATION

Definition 1.1 :
The representation, ρ, is the signature isomorphism defined as follows:

• for each descriptive sort to be implemented, s ∈ S1, there is an associated constructive
sort, s. We denote the set of constructive sorts by S1 (actual constructive values of sort s

will be generated by the synthesis operations). Thus, S1 is a copy of S1. The constructive
sort s implements s.

• for each operation to be implemented, op : s1 · · · sn → sn+1 (∈ Σ1), there is a constructive
operation, op : s1 · · · sn → sn+1, where si is the constructive sort associated with si. We
denote the set of constructive operations by Σ1. The constructive operation op implements
op.

ρ is the signature isomorphism from (S1,Σ1) to (S1,Σ1). ρ is called the representation signature
isomorphism, or simply the representation, since it gives the constructive representation of each
descriptive sort/operation to be implemented. For instance, ρ sends the sort NAT to NAT ,
STACK to STACK, push: NAT STACK → STACK to push : NAT STACK → STACK ,
and so on.

Remark 1 :
Notice that the representation ρ may seem useless. In practice, it is clear that we do not ask the
specifier to explicitly characterize ρ . Nevertheless, on a theoretical viewpoint, it is necessary to
precisely specify the correspondence between the descriptive signature to be implemented and
its constructive implementation.

4.2 THE SYNTHESIS OPERATIONS

Definition 1.2 :
The set of synthesis operations, denoted by ΣSYNTH is defined as follows: for each constructive

8

sort, s ∈ S1, there is a synthesis operation, < ... >s: r1 · · · rm → s, where all the ri are
resident sorts in S0 .

For instance, the synthesis operation associated with the sort STACK is the “abstraction opera-
tion:” < _,_ >STACK: ARRAY NAT → STACK ; the synthesis operation associated with
NAT is the “copy operation:” < _ >NAT : NAT → NAT .

Remark 2 :
The synthesis operation associated with each previously implemented sort of SP (e.g. NAT)
will be a copy operation. Thus, in practice, we never ask the specifier to give the synthesis
operation associated with these sorts. Nevertheless, this copy is useful, and necessary, when
rigorously proving the correctness of an abstract implementation. Intuitively, the introduction of
constructive sorts, together with the representation signature isomorphism, handles the restric-
tion problem. This restriction must apply to all sorts to be implemented, including the sorts
of SP. For example, top(<create,4>) could be a new value belonging to NAT, which must be
removed before verifying the correctness of our STACK implementation (as the pair <create,4>

is not a reachable stack). With this abstract implementation formalism, top(< create, 4 >) will
be of constructive sort NAT , and thus, the descriptive sort NAT is preserved.

4.3 THE HIDDEN COMPONENT

Definition 1.3 :
The hidden component of IMPL, H = (SH,ΣH,AH) , is a presentation over SORTimpl =
SPEC0 + (S1,ΣSYNTH, ∅) that enriches the synthesized data structures in order to facilitate
the implementation.

In our STACK by ARRAY example, H is empty. An example of non empty hidden component
is given in Example 3 (Section 4.5 below).

4.4 THE OPERATION-IMPLEMENTING AXIOMS

Definition 1.4 :
We denote by AOP the set of constructive axioms of IMPL. AOP is a set of positive conditional
axioms over the signature (S0 + SH + S1,Σ0 + ΣSYNTH + ΣH + Σ1). It specifies the actual
implementation of the constructive operations op. AOP is the set of operation-implementing
axioms.

The axioms of AOP are those specified for abstraction:

empty =< t, 0 >STACK

push(< n >NAT , < t, i >STACK) =< t[i] := n, succ(i) >STACK

pop(< t, 0 >STACK) =< t, 0 >STACK

pop(< t, succ(i) >STACK) =< t, i >STACK

top(< t, 0 >STACK) =< 0 >NAT

top(< t, succ(i) >STACK) =< t[i] >NAT

Of course, these axioms can always be automatically deduced from those of Example 1 (i.e. from
axioms “without overlines”).

9

4.5 THE EQUALITY REPRESENTATION

Definition 1.5 :
The equality representation, denoted by AEQ, is a set of positive conditional axioms which can
use all the sorts and operations previously mentioned: (S0+SH+S1+S1,Σ0+ΣH+ΣSYNTH+
Σ1 + Σ1) .

For instance, the equality representation of our STACK by ARRAY example can be specified
as follows:

< t, 0 >STACK = < t′, 0 >STACK

< t, i >STACK=< t′, i >STACK and t[i] = t′[i] =⇒ < t, succ(i) >STACK = <

t′, succ(i) >STACK

(In fact, AEQ can be empty in this example, since AOP already implies our two axioms; but
this is specific to the STACK example).

Let us specify another standard example: the implementation of SET by STRING (of natural
numbers, for instance).

Example 3 (textual implementation of SET by STRING) :

The representation signature isomorphism ρ sends the descriptive sorts BOOL, NAT and SET
to the constructive sorts BOOL, NAT and SET respectively; and sends ∅ to ∅, ins to ins, ∈ to
∈ , as well as True to True, False to False, and so on.
The synthesis operations of ΣSYNTH are:

< _ >SET : STRING → SET “true synthesis operation”
< _ >NAT : NAT → NAT “copy operation”

< _ >BOOL : BOOL → BOOL “copy operation”

If STRING does not contain the operations remove and occurs, then H may specify them as
hidden operations:

remove(x, λ) = λ

remove(x, add(x, s)) = s

eq?(x, y) = False =⇒ remove(x, add(y, s)) = add(y, remove(x, s))
occurs(x, λ) = False

occurs(x, add(x, s)) = True

eq?(x, y) = False =⇒ occurs(x, add(y, s)) = occurs(x, s)

From the second axiom, remove(x,s) only removes the first occurrence of x in s. This does not
matter because sets will only be represented by non-redundant strings.
The constructive axioms of AOP are:

∅ =< λ >SET

occurs(x, s) = True =⇒ ins(< x >NAT , < s >SET) =< s >SET

occurs(x, s) = False =⇒ ins(< x >NAT , < s >SET) =< add(x, s) >SET

del(< x >NAT , < s >SET) =< remove(x, s) >SET

< x >NAT ∈ < s >SET=< occurs(x, s) >BOOL

10

And the equality representation AEQ is given as follows:

< add(x, add(y, s)) >SET = < add(y, add(x, s)) >SET

Notice that this axiom does not create inconsistency on strings, because it applies to SET .

5 THE PRESENTATION LEVEL

A presentation is automatically built from the textual level of an abstract implementation. This
presentation is an enrichment of SPEC0. It is useful for proving the correctness of an im-
plementation. Intuitively, all well known difficulties of abstract implementation are treated by
the presentation level. These difficulties are mainly the restriction to reachable values, and the
identification of several implementation values which represent the same object. In [EKP 80,
EKMP 82, SW 82, San 87], these two problems are handled at the semantical level. This results
in a rigorous definition of correctness, but does not provide the specifier with useful correctness
proof tools (since correctness is mainly related to the existence of a morphism between two alge-
bras). Here, the restriction problem is explicitly handled via the intermediate constructive sorts
and the representation, while the identification problem is explicitly handled via the equality
representation.

The presentation level associated with the textual level of an abstract implementation is defined
as follows:

Figure 2 :

• EQ : AEQ

• REP : S1 − S0 , Σ1 − Σ0 , ΣREP , AREP

• OPimpl : Σ1 , AOP

• H : SH , ΣH , AH

• SORTimpl : S1 , ΣSYNTH

• SPEC0 : S0 , Σ0 , A0

where SORTimpl is a presentation over the specification SPEC0, H is a presentation over the
specification SPEC0+SORTimpl (union of SPEC0 and SORTimpl), and so on.
These presentations can be explained as follows:

• SPEC0 is the descriptive specification of the resident (previously implemented) data struc-
ture.

• SORTimpl is the synthesis presentation. For each descriptive sort to be implemented
s ∈ S1, the corresponding constructive sort s ∈ S1 is synthesized by means of the
synthesis operations < ... >s: r1 · · · rm → s . Moreover, SORTimpl does not contain
any axiom. Thus, SORTimpl “implements the constructive sorts” as free products, or
copies, of resident sorts. The initial algebra TSORTimpl contains the available constructive
structure which our abstract implementation can use.

• H is the hidden presentation of the abstract implementation. H is a presentation over
SPEC0+SORTimpl, as defined in previous section. It will facilitate the constructive
specification of the abstract implementation by enriching the resident or available con-
structive specifications (cf. remove and occurs in Example 3).

11

• OPimpl is the operation-implementing part of the presentation level. It specifies how the
constructive operations op ∈ Σ1 (implementing the descriptive operations op ∈ Σ1)
work over the previously synthesized constructive sorts. This is done by means of the
operation-implementing axioms AOP , as defined in the previous section. Thus, the initial
algebra TOPimpl handles the constructive implementation of the constructive operations
(op) over the synthesized sorts.

• REP is the representation presentation. It explicitly specifies (in the specification) the
effect of the representation signature isomorphism (ρ). We will define ΣREP and AREP

below.
This presentation REP has two principal characteristics. First, it syntactically specifies
the correspondence between the descriptive operations op and the constructive operations
op . Second, it explicitly handles the restriction part of the abstract implementation. Let
us return to Example 2 (implementation of NAT using INT). With our new formalism,
values such as < −1 >NAT are not of sort NAT ; they belong to NAT which is a copy of
INT. There is no NAT -term t such that ρ(t) is equal to < −1 >NAT .

• EQ is the equality representation part of the presentation level. It specifies when two
distinct available constructive values represent the same descriptive value to be imple-
mented. This is done via the set AEQ of conditional axioms. In view of the defini-
tion of AEQ given in previous section, EQ is a presentation over the signature (S0 +
SH + S1 + S1,Σ0 + ΣH + ΣSYNTH + Σ1 + Σ1); in particular EQ is a presentation
over SPEC0+H+SORTimpl+OPimpl+REP. Thus, the initial algebra TEQ handles
the identification of constructive values which represent the same descriptive value to be
implemented.

S1, ΣSYNTH, H, Σ1, AOP and Aeq are already defined in Section 4. ΣREP and AREP are
defined as follows:

• ΣREP is the set of representation operations. For each descriptive sort to be implemented,
s ∈ S1, there is a representation operation: ρs : s → s.

• AREP is the set of axioms which state that ρs extends the representation signature iso-
morphism ρ. This means that for each Σ1-ground-term t of sort s, ρs(t) is equal to the
Σ1-term deduced from t via ρ. Thus, for each operation to be implemented, op ∈ Σ1,
AREP contains the following axiom:

ρs(op(x1, · · · , xn)) = ρ(op)(ρsi
(xi), · · · , ρsn

(xn))

where s is the target sort of op, si is the sort of xi , and ρ(op) is equal to op.
Moreover, we have to specify that ρs and < ... >s both work as copy operations on the
signature of SP (common specification). Thus, for each sort s of SP, AREP contains the
following axiom:

< x >s = ρs(x)

(Such an axiom implies that 0 = < 0 >NAT and succ(< n >NAT) = < succ(n) >NAT

in NAT).
Finally, AREP contains the following axiom for each descriptive sort s ∈ S1 :

ρs(x) = ρs(y) =⇒ x = y .

12

The intuitive meaning of this axiom is the following: if two (descriptive) terms to be
implemented, x and y, are represented by the same constructive value (ρs(x) = ρs(y)),
then they must be equal after the implementation is done (x=y). The reason why this
constraint is required can be explained as follows: our goal is to describe the data structure
that “the user thinks (s)he manipulates” after the implementation is done. If the terms x
and y get the same representation, then the user of the implementation cannot distinguish
x from y ; consequently, “(s)he thinks that x is equal to y.” Such an amalgamation is
exactly handled by the axiom specified above.

Notice that ΣREP and AREP are automatically deduced from the signature isomorphism ρ .
Thus the presentation level is always automatically built from the textual definition of IMPL
without help from the specifier.

Example 4 :
In the STACK by ARRAY example, AREP is deduced from the signature isomorphism ρ as
follows:

ρSTACK(empty) = empty

ρSTACK(push(n,X)) = push(ρNAT (n), ρSTACK(X))
ρSTACK(pop(X)) = pop(ρSTACK(X))

· · · etc · · ·

ρSTACK(X) = ρSTACK(Y) =⇒ X = Y

ρNAT (m) = ρNAT (n) =⇒ m = n

Remark 3 :
This specification, from SPEC0 to OPimpl, is very close to the “syntactical level” of [EKP 80]
or [EKMP 82]. Our formalism mainly adds the presentations REP and EQ. It can be shown
that REP explicitly specifies the Restriction functor of the [EKMP 82] semantics; and when
the abstract implementation is correct, EQ explicitly specifies the Identification functor of the
[EKMP 82] semantics.

6 THE SEMANTICAL LEVEL

We have shown the following: TSORTimpl contains all synthesized constructive sorts; TOPimpl

handles the constructive implementation of all constructive operations (op); TREP does not add
unreachable values to the descriptive sorts to be implemented (thus restriction is already in-
cluded in TREP); and TEQ contains the identification of constructive values which implement
the same descriptive value. Consequently, TEQ is not far from the semantical result of the ab-
stract implementation.
Notice that TEQ contains all intermediate sorts and operations used by the abstract implemen-
tation. But the user of the new implemented data structure must not use the specific operations
and sorts of the implementation. It is necessary to forget: the resident sorts and operations
which are not in SPEC1, the hidden sorts and operations, the intermediate constructive sorts,
the synthesis operations, and the constructive operations op . Then, we get a new Σ1-algebra
which contains only what the user “thinks (s)he manipulates.” This “user view” algebra is called
the semantical result of IMPL and is denoted by SEMIMPL.

The semantics of an abstract implementation IMPL is the composition of two functors:

Alg(SPEC0) −−FSORTimpl+..+EQ → Alg(EQ + .. + SPEC0) −−UΣ1
→

Alg(S1,Σ1)TSPEC0
⊢ FSORTimpl+..+EQ → TEQ ⊢ UΣ1

→ SEMIMPL

13

FSORTimpl+..+EQ is the usual synthesis functor associated with the presentation SORTimpl
+ H + OPimpl + REP + EQ over SPEC0 (left adjoint to the forgetful functor). UΣ1

is the usual forgetful functor from Alg(SPEC0+SORTimpl+H+OPimpl+REP+EQ) to
Alg(S1,Σ1, ∅) .
So, SEMIMPL describes the “user view ” of the new implemented data structure. SEMIMPL

is the part of TEQ corresponding to the descriptive sorts to be implemented (S1); and the only
operations accessible to the user are those of Σ1.

Notice that this semantical level is considerably simpler than the ones of [EKP 80, EKMP 82,
SW 82. . .]. This reflects the fact that all abstract implementation problems (restriction and
identification) are handled at the presentation level. Moreover, the next section shows that
correctness criteria can be stated in a constructive manner, because restriction and identification
are taken into account at the presentation level.
At first glance, our formalism may seem to be more restrictive than the [EKP 80, EKMP 82]
formalism, because we require a specification of the equality representation. The [EKP 80,
EKMP 82] formalism uses the equations of A1 in order to perform the Identification functor. In
fact, when we choose AEQ = A1 in our formalism, we get exactly the same semantical result
SEMIMPL. The interresting point here is that our semantics avoids the Restriction functor
by using the representation ρ (another title of this paper could be “Implementation without
Restriction” . . .). All the difficulties encountered in [EKP 80, EKMP 82] are due to this “bad”
Restriction functor.
Correctness proofs are considerably simpler, in the [EKMP 82] formalism, when the Identification
functor can be performed before the Restriction functor (IR semantics instead of RI semantics).
It can be shown that the IR semantics of [EKMP 82] is equivalent to the semantics obtained in
our formalism by AEQ = ρ(A1) = A1 (e.g. pop(push(x,X)) = X . . . etc); then, correctness can
be directly checked at the constructive level.

7 CORRECTNESS PROOFS

Of course, we cannot accept an implementation which does not completely simulate “from the
user point of view” the abstract data structure described by SPEC1. From the above semantics,
this means that an abstract implementation must (at least) satisfy the following criteria:

• Each operation to be implemented (∈ Σ1) has a complete constructive representation (in
the “product values” synthesized by ΣSYNTH).

• The user view of IMPL is isomorphic to the descriptive view associated with SPEC1.
This means that SEMIMPL must be isomorphic to TSPEC1

.

These two criteria are handled in four steps (by dividing the second one into three conditions):

• The complete implementation of all operations to be implemented is called operation-
completeness.

• SEMIMPL must be finitely generated over Σ1. This means that SEMIMPL is an object of
the subcategory Gen(S1,Σ1, ∅) of Alg(S1,Σ1, ∅). This condition is called data protection.

• SEMIMPL must be a SPEC1-algebra. This means that SEMIMPL must validate the
SPEC1-axioms (A1). This condition is called the validity of IMPL.

• Finally, among all finitely generated SPEC1-algebras, SEMIMPL must be initial. This
condition is called the consistency of IMPL. Now, SEMIMPL is necessarily isomorphic to
TSPEC1

(unicity of the initial object).

14

An abstract implementation satisfying these four conditions is called acceptable. Some other
correctness criteria will be added. For instance, acceptability only concerns the objects to be
implemented; it does not ensure the protection of resident values.
Notice that the last acceptability condition reflects an initial view of abstract data types. Of
course, the consistency condition can be modified according to a loose semantics “protecting
some predefined specifications” [SW 83, Ber 87] by simply requiring consistency of SEMIMPL

with respect to these predefined specifications.

7.1 OPERATION COMPLETENESS

Operation completeness was first introduced by [EKP 80]. The fact that all operations to be
implemented have a synthesized constructive representation means that all Σ1-terms have a
synthesized constructive representation.

Definition 2 :
IMPL is op-complete if and only if for all terms t ∈ TΣ1

, there is α ∈ TSORTimpl such that
ρs(t) = α in TREP (where s is the sort of t).

Notice that the operation-implementing axioms (AOP) must entirely (recursively) define the
implementation of all operations. This must be done without any consideration of the equality
representation (i.e. without using AEQ). For example, given a representation <t,1> of the term
push(n,empty) , we must be able to directly apply pop : pop(< t, 1 >) = < t, 0 > , without
looking at the implementation of the term empty. Thus, op-completeness is defined in TREP and
not in TEQ.

The following theorem shows that op-completeness can always be checked at the constructive
level (i.e. without explicitly using the representation).

Theorem 1 :
IMPL is op-complete if and only if for all terms t ∈ TΣ1

, there is α ∈ TSORTimpl such that
t = α in TOPimpl .

Proof :
From the specification of AREP, for each Σ1-term t, ρs(t) is equal to the Σ1-term t = ρ(t).
Consequently, if all Σ1-terms have a synthesized value for OPimpl, then a fortiori all Σ1-terms
have a synthesized representation for REP. Conversely, ρ is a surjective signature morphism,
and REP is consistent over OPimpl. Thus, if for each Σ1-term t, the term t = ρs(t) is equal
to a synthesized value α in TREP , then each Σ1-term t is equal to a synthesized value α in
TOPimpl . 2

Consequently, op-completeness is not difficult to check. It can be directly proved by structural
induction over Σ1. Moreover, we have the following result:

Corollary :
If OPimpl is sufficiently complete over SORTimpl, then IMPL is op-complete.

Proof :
Immediate, because OPimpl adds Σ1 to SORTimpl and sufficient completeness means that
the canonical adjunction morphism from TSORTimpl to TOPimpl is surjective. 2

Sufficient completeness of OPimpl over SORTimpl is not needed in the general case. For in-
stance, we may think of a SET by STRING implementation where del(< ′aaa′ >SET) does not

15

return any string. Then, OPimpl will not be sufficiently complete over SORTimpl. Neverthe-
less, since < ′aaa′ >SET is not a reachable value, this fact does not destroy op-completeness of
IMPL. We only need for del to return a string when its argument is non redundant.
However, this corollary works in most examples. For instance, del(< ′aaa′ >SET) =< ′aa′ >SET

in Example 3. Similar results were first given in [EKP 80].

Example 5 :
We prove that our implementation of STACK by ARRAY is op-complete, by structural induc-
tion.

• ρSTACK(empty) is equal to empty, which is equal to α = < create, 0 >STACK

• if x and X have constructive representations (x = α1 =< n >NAT ; and ρSTACK(X) =
α2 =< t, i >STACK), then so does ρSTACK(push(x,X)) :

ρSTACK(push(x,X)) = push(< n >NAT , < t, i >STACK) = < t[i] :=
n, succ(i) >STACK

• similar reasonings apply for pop and top.

7.2 DATA PROTECTION

Definition 3 :
IMPL is data protected if and only if the semantical result SEMIMPL is finitely generated over
Σ1 .

Theorem 2 :
If H is sufficiently complete over SP, then IMPL is data protected
(SP=(S,Σ,A) is the common specification between SPEC0 and SPEC1).

Proof :
The specification of an abstract implementation does not contain any operation with target sort
in S1–S, except those of Σ1. Thus, it suffices to prove that SEMIMPL is finitely generated with
respect to the sorts of S. Since SEMIMPL is included in TEQ, it suffices to prove that TEQ is
finitely generated with respect to TSP ; i.e. that EQ+REP+..+SPEC0 is sufficiently com-
plete over SP. Consequently, Theorem 2 results from the fact that the abstract implementation
specification does not contain any operation with target sort in S, except those of Σ1 and ΣH. 2

From the theoretical point of view, sufficient completeness of the hidden component is not re-
quired, since AOP or AEQ may complete the specification of some hidden operations. However
it is clearly suitable from a methodological point of view, as AEQ and AOP have not to play
this role.
Data protection is not difficult to prove, since it can be proved by structural induction or via
syntactical tools (such as fair presentations, [Bid 82]). Our STACK by ARRAY example is
clearly data protected, as H is empty. Example 3 (SET by STRING) is also data protected
because remove and occurs always return predefined strings or booleans (AH is equivalent to a
canonical rewriting system).

7.3 VALIDITY

Definition 4 :
IMPL is a valid abstract implementation if and only if for all Σ1-terms, t and t’, we have:

16

if t=t’ in TSPEC1
then t=t’ in SEMIMPL.

The following results prove that validity is equivalent to the fact that SEMIMPL validates
SPEC1 ; they also prove that validity can always be reduced to a hierarchical consistency
property.

Theorem 3 :
If IMPL is data protected then the following conditions are equivalent:

1) IMPL is a valid abstract implementation
2) there is a Σ1-morphism from TSPEC1

to SEMIMPL

3) SEMIMPL validates the axioms of A1

4) SEMIMPL validates the axioms of A1–A
5) TEQ validates the axioms of A1–A
6) ID is hierarchically consistent over EQ+REP+..+SPEC0

where ID is the presentation over EQ+..+SPEC0 which contains the set of axioms A1–A.
Thus, ID+EQ+..+SPEC0 contains all the specifications involved in our formalism (both the
specification associated with IMPL and the descriptive specification SPEC1).

Proof :
[1 ⇐⇒ 2] is clear : since TSPEC1

is finitely generated over Σ1, there is a morphism from TSPEC1

to SEMIMPL if and only if two Σ1-terms equal in TSPEC1
are also equal in SEMIMPL.

[2 ⇐⇒ 3] results from the facts that SEMIMPL is finitely generated over Σ1 and that TSPEC1

is initial in SPEC1. Thus, there is a morphism from TSPEC1
to SEMIMPL if and only if

SEMIMPL is a SPEC1-algebra (i.e. SEMIMPL validates A1).
[3 ⇐⇒ 4] results from the fact that EQ+..+SPEC0 contains SPEC0. In particular, it contains
SP, thus it contains A. Consequently, SEMIMPL always validates A.
[4 ⇐⇒ 5] results from the facts that the axioms of A1–A only concern the signature (S1,Σ1),
and SEMIMPL = UΣ1

(TEQ) .
[5 ⇐⇒ 6] results from the fact that ID does not add new operations to EQ+..+SPEC0

(ID=A1–A). Thus, ID is hierarchically consistent over EQ+..+SPEC0 if and only if TEQ

already validates the axioms of A1–A. 2

The main result is the equivalence between the validity of IMPL and the consistency of ID
over EQ+..+SPEC0. Thus, validity proofs can always be handled by “classical” methods. This
feature is entirely due to our intermediate constructive sorts and the equality representation
explicitly specified via Aeq.

Examples 6 :
The validity of our abstract implementation of STACK is shown by proving that each STACK -
axiom is a theorem of the specification associated with IMPL. We prove here that pop(push(n,X))
is equal to X in TEQ. The other axioms of STACK are proved in a straightforward manner,
following the same method.
Since AREP contains the axiom ρSTACK(X) = ρSTACK(Y) =⇒ X = Y , and since our
implementation is op-complete, it suffices to show that pop(push(< n >NAT , < t, i >STACK)) is
equal to < t, i >STACK in TEQ . From AOP, it results that pop(push(< n >NAT , < t, i >STACK

)) = < t[i] := n, i >STACK. Moreover, from the equality representation (AEQ), it results
that < t[i] := n, i >STACK = < t, i >STACK , which ends our proof.

To prove that our implementation of SET by STRING is valid, it suffices to prove that each
axiom of SET is true in TEQ. We will prove here that

17

ins(x,ins(y,X)) = ins(y,ins(x,X)) is true in TEQ.

Since AREP contains the following axiom:

ρSET (X) = ρSET (Y) =⇒ X = Y

and since our implementation is op-complete, it suffices to prove that

ins(< n >NAT , ins(< m >NAT , < s >SET)) = ins(< m >NAT , ins(< n >NAT , < s >SET))

We have to distinguish 5 cases:

• n and m both occur in s ; then we get

< s >SET =? = < s >SET

• n occurs in s and m does not; then we get

< add(m, s) >SET =? = < add(m, s) >SET

• m occurs in s and n does not; then we get

< add(n, s) >SET =? = < add(n, s) >SET

• s does not contain n and m, but n and m are equals; then we get

< add(n, s) >SET =? = < add(m, s) >SET (with n=m)

• s does not contain n and m, and n and m are distinct; then we get

< add(n, add(m, s)) >SET =? = < add(m,add(n, s)) >SET

The four first equalities are trivial. The last one results from the equality representation.

7.4 CONSISTENCY

Definition 5 :
IMPL is consistent if and only if for all Σ1-terms, t and t’, we have:

if t=t’ in SEMIMPL, then t=t’ in TSPEC1
.

The following results prove that consistency is equivalent to the fact that SEMIMPL is initial
in Gen(SPEC1). They also prove that consistency can always be reduced to a hierarchical
consistency property.

Theorem 4 :
If IMPL is data protected and valid, then the following conditions are equivalent:

1) for all t and t’ in TΣ1
, if t=t’ in TEQ then t=t’ in TSPEC1

2) IMPL is consistent

18

3) the initial morphism from TSPEC1
to SEMIMPL is a monomorphism

4) SEMIMPL is an initial SPEC1-algebra
5) the initial morphism from TSPEC1

to UΣ1
(TID) is a monomorphism

6) ID+EQ+..+SPEC0 is hierarchically consistent over SPEC1

Proof :
[1 ⇐⇒ 2] results from the fact that SEMIMPL is equal to the part of TEQ concerning the
signature (S1,Σ1).
[2 ⇐⇒ 3] results from the fact that TSPEC1

is finitely generated over Σ1. Notice that the initial
morphism TSPEC1

→ SEMIMPL exists, from Theorem 3.
[3 ⇐⇒ 4] results from the fact that SEMIMPL is finitely generated over Σ1.
[3 ⇐⇒ 5] results from SEMIMPL = UΣ1

(TEQ), and from TEQ = TID (Theorem 3).
[5 ⇐⇒ 6] is clear since the initial morphism TSPEC1

→ UΣ1
(TID) is the adjunction unit

associated with the presentation ID+..+SPEC0 over SPEC1. 2

For the same reasons as Theorem 3, Theorem 4 facilitates the consistency proofs, since they can
be handled using rewriting techniques or structural induction.

Examples 7 :
The only axioms that may destroy the consistency of ID+..+SPEC0 over SPEC1 are the
axioms of sort in S1.
In the STACK by ARRAY example, these axioms are:

ρSTACK(X) = ρSTACK(Y) =⇒ X = Y

ρNAT (m) = ρNAT (n) =⇒ m = n

These axioms imply to prove that two descriptive terms represented by the same constructive
value (in TEQ) are equal (in TSPEC1

). Thus, we must consider each axiom of AOP ∪AEQ, and
prove that it does not create inconsistencies. Let us consider, for instance, the axiom:

push(< n >NAT , < t, i >STACK) = < t[i] := n, succ(i) >STACK .

Since we work on the stack values (not on the stack ground terms), we can handle our proofs
with respect to the normal forms of STACK. It is possible to prove, by structural induction,
that < t, i >STACK represents the stack push(t[i−1], push(· · · , push(t[0], empty)..)) . Thus, our
proof is clear, as push(ρNAT (n), ρSTACK(X)) represents push(n,X). Other axioms are handled
in a similar manner using the normal forms.
In the SET by STRING example, axioms whose sort belongs to S1 are:

ρSET (X) = ρSET (Y) =⇒ X = Y

ρNAT (n) = ρNAT (m) =⇒ n = m

ρBOOL(a) = ρBOOL(b) =⇒ a = b

These axioms imply to show that two descriptive terms represented by the same constructive
value (in TEQ), are equal (in TSPEC1

). Thus, we must consider each axiom of AH∪AOP∪AEQ,
and prove that it does not create inconsistencies. The consistency of AH is not difficult to prove.
Before proving the consistency of the other axioms, we first prove the following “lemma:” if the
string s represents the set X then

x ∈ X = occurs(x, s)

19

(this results from the last axiom of AOP in Example 3 and from the axiom < n >NAT = ρNAT (n)
of AREP , since NAT is the common specification between SET and STRING).
Then, similar to the use of normal forms in the STACK example, we remark that ∅ is represented
by λ (first axiom of AOP); and if s represents X then ins(n,X) is represented by add(n,s) each
time n ∈ X is false. (This results from the second axiom of AOP and from our “lemma.”)
Next, the consistency of all axioms of IMPL is straightforward. For example, from the following
axioms

occurs(x, s) = False =⇒ ins(< x >NAT , < s >SET) = < add(x, s) >SET

occurs(x, s) = True =⇒ ins(< x >NAT , < s >SET) = < s >SET

we get:

x ∈ X = False =⇒ ins(x,X) = ins(x,X)
x ∈ X = True =⇒ ins(x,X) = X

which do not create inconsistencies.
From the equality representation

< add(x, add(y, s)) >SET = < add(y, add(x, s)) >SET

we get:

ins(x,ins(y,X)) = ins(y,ins(x,X))

which does not create inconsistencies.

Remark 4 :
Theorems 3 and 4 reduce the most difficult correctness proofs to hierarchical consistency cri-
teria, which mainly leads to theorem proving methods. It is well known that, in many cases,
hierarchical consistency is difficult to check. Nevertheless, these results focalize the implementa-
tion correctness problem to this well known abstract data type problem. Moreover, hierarchical
consistency is considerably more usable than purely semantical criteria, such as the existence of
a morphism. Also, it should be noted that the semantical reasonings introduced in Example 7
can be replaced by more systematic (but less concise) methods based on rewriting theory.

Now, we are able to define the acceptability of an abstract implementation:

Definition 6 :
IMPL is acceptable if and only if it is op-complete, data protected, valid and consistent.

7.5 CORRECT IMPLEMENTATIONS

When defining acceptability of abstract implementation so far, we were only interested in the
implemented data structure (initially described by SPEC1). Most existing abstract implemen-
tation formalisms do not add other conditions for correctness. However, acceptability do not care
about the interactions between the implementation and other specifications (used by, or using,
the implementation). In particular, acceptable implementations may alter already implemented
(resident) specifications.

20

Definition 7 (protection of the resident specification) :
An implementation IMPL protects the resident data structure if and only if EQ+..+SPEC0

is persistent over the resident specification SPEC0.

Protection of the resident data structure implies that the semantical result SEMIMPL is finitely
generated over Σ1 :

Proposition :
Let IMPL be any abstract implementation. If IMPL protects the resident data structure then
IMPL is data protected (definition 3).

Proof :
In the proof of Theorem 2, we showed that it suffices to prove that EQ+..+SPEC0 is sufficiently
complete over SP. By hypothesis, SPEC0 contains SP, and SPEC0 is sufficiently complete over
SP. Thus, the sufficient completeness of EQ+..+SPEC0 over SPEC0 gives the conclusion. 2

As already mentioned in the beginning of section 7, our acceptability criteria are related to an
initial semantics. In particular, the validity of IMPL signifies that the initial algebra TEQ vali-
dates the SPEC1 axioms (Theorem 3). It implies that all finitely generated (EQ+..+SPEC0)-
algebras validate A1 but it does not implies that all (EQ+..+SPEC0)-algebras validate A1

(see Example 8 below).

Definition 8 (Full validity) :
An implementation is fully valide if and only if all (EQ+..+SPEC0)-algebras validate A1 .

Notice that, in practice, this exactly means that the equality representation is powerful enough;
in such a way that validity can be proved by equational reasoning, without using structural in-
duction. In particular, all implementations following the [EKMP 82] semantics (i.e. AEQ = A1

in our framework, cf. Section 6) are trivialy fully valide.
Similarly to Theorem 3, an implementation is fully valide if and only if for each (EQ+..+SPEC0)-
algebra A the adjunction morphism from A to FID(A) is injective (i.e. if and only if ID is strongly
hierarchically consistent over EQ+..+SPEC0).

Definition 9 (Correct implementations) :
An abstract implementation is correct if and only if it is op-complete, it protects the resident
data structure, it is fully valide and it is consistent.

Of course, “correct” implies “acceptable.”

8 REUSE OF ABSTRACT IMPLEMENTATIONS

8.1 IMPLEMENTATIONS AND ENRICHMENTS

Let SPEC1 be a specification implemented via IMPL. Let PRES be a presentation over
SPEC1. We have shown (Section 2.3) that every proof concerning PRES is done with respect to
SPEC1, but not with respect to the specification of IMPL. The constructive implementation of
PRES+SPEC1 is not specified by PRES+SPEC1, it is specified by PRES+EQ+..+SPEC0,
where EQ+..+SPEC0 is the whole specification of the implementation of SPEC1. The follow-
ing theorem proves that everything is going well whenever the presentation PRES is persistent
over SPEC1 : the “user view” of the constructive specification PRES+EQ+..SPEC0 is iso-
morphic to the descriptive data structure specified by PRES+SPEC1. This result is entirely
due to our intermediate constructive sorts.

21

Theorem 5 :
If IMPL is a correct abstract implementation of SPEC1, then for all persistent presentations
PRES over SPEC1, we have:

UΣ1+ΣPRES
(TEQ+PRES) = TSPEC1+PRES

This theorem proves that the presentation PRES, together with the abstract implementation of
SPEC1, always provides the user with the expected results.

Before proving Theorem 5, we recall the following lemma (proved in [Ber 86] with positive
conditional axioms).

Lemma :
If Pa and Pb are two persistent presentations over a specification Spec, with disjoint signatures,
then Pb is still a persistent presentation over (Pa+Spec).

Proof of Theorem 5 :
We remark that correctness of IMPL ensure that ID+..+SPEC0 is persistent over SPEC1

(Theorem 4 and data protection). Thus, we deduce from the previous lemma that PRES +
ID +..+ SPEC0 is persistent over SPEC1+PRES : UΣ1+ΣPRES

(TID+PRES) is isomorphic to
TSPEC1+PRES . Consequently, it suffices to prove that TID+PRES is isomorphic to TEQ+PRES .
This results from the fact that all (EQ+..+SPEC0)-algebras validate A1 (full validity). 2

Here is an example of acceptable implementation which is not correct, and an example of persis-
tent presentation which does not cope with this implementation.

Example 8 :
Let SPEC0 defined by S0=NAT , Σ0=0,succ_ with usual arities, and A0 = ∅.
Let SPEC1 defined by S1=UNAT , Σ1 = zero:→UNAT , next:UNAT→UNAT , and A1 con-
taining the following axiom:

next(x)=next(y) =⇒ x=y

Of course the initial algebras are isomorphic (to N), thus UNAT can be implemented by NAT
with AH = AEQ = ∅. The implementation is clearly acceptable; however it is not correct (not
fully valide).
Let PRES simply adding a constant τ to the signature, and the axiom: next(τ) = next(zero) .
PRES is persistent over SPEC1=UNAT (τ must be equal to zero) but it is not persistent over
the implementation of SPEC1 (τ is not equal to zero in TPRES+EQ+..+NAT : the implemen-
tation does not ensure the injectivity of next). TPRES+EQ+..+NAT is a non finitely generated
(EQ+..+NAT)-algebra which does not validate the axiom of A1 .

8.2 COMPOSITION OF ABSTRACT IMPLEMENTATIONS

When we implement SPEC1 by means of SPEC0, the resident specification SPEC0 is often
already implemented by means of a lower level implementation. But all our correctness proofs are
done with respect to the descriptive specification SPEC0, not with respect to the specification
of the implementation of SPEC0. We prove in this section that the composition of two correct
implementations always yields correct results. This feature is not provided in any work already
put forward. The formalism of [SW 82] provides correct “vertical compositions,” but these

22

vertical compositions do not solve our problem: all upper level implementation operations must
be implemented by the lower level implementation. This results in a large number of operations
being implemented by the lowest level implementation; moreover, this implies that all the lower
level implementations must be redefined every time a new implementation is added.
The following theorem proves that the user view, obtained after pushing two correct abstract
implementations together, is always correct.

Theorem 6 :
Let IMPL2 be an abstract implementation of SPEC2 by means of SPEC1. Let IMPL1 be an
abstract implementation of SPEC1 by means of SPEC0. Consider the specification IMPL(1,2)
obtained from the specification of IMPL2 by substituting the specification of IMPL1 for
SPEC1.

IMPL(1,2) = SPEC0 + (SORTimpl1 + H1 + · · · + EQ1) +
(SORTimpl2 + H2 + · · · + EQ2)

If IMPL1 and IMPL2 are both correct, then we have:

UΣ2
(TIMPL(1,2)) = TSPEC2

Proof :
Since IMPL2 is correct, (SORTimpl2 + · · · + EQ2) is persistent over SPEC1. Thus, Theorem
5 (with PRES=SORTimpl2 + · · · + EQ2) proves that UΣ(SPEC1+..+EQ2)(TIMPL(1,2)) = TEQ2

.
In particular, UΣ2

(TIMPL(1,2)) = UΣ2
(TEQ2

) = SEMIMPL2
. Moreover, the correctness of

IMPL2 implies that SEMIMPL2
= TSPEC2

, which ends our proof. 2

This theorem can be extended to a finite number of correct implementations. Thus, it is possible
to handle structured, modular abstract implementations. This provides a formal foundation for
a methodology of program development by stepwise refinement.

9 CONCLUSION

The abstract implementation formalism described in this paper relies on three main ideas:

• Abstract implementation is done by means of intermediate constructive values, which are
distinct from the descriptive values to be implemented.

• These constructive sorts are synthesized by means of synthesis operations which extend
the classical notion of abstraction operations.
The correspondence between the descriptive sorts/operations to be implemented and the
constructive sorts/operations is specified by means of a representation signature isomor-
phism.

• The equality representation is explicitly introduced into the abstract implementation in
order to handle conditional axioms.

The main results of this abstract implementation formalism are the following:

• It allows use of positive conditional axioms, which facilitate the specifications.

23

• All correctness proof criteria for abstract implementation are “simple” ones (sufficient com-
pleteness, hierarchical consistency or fair presentations). This feature provides the specifier
with “classical” methods such as term rewriting methods, structural induction methods or
syntactical criteria.

• Abstract implementations are compatible with the notion of enrichment.

• The composition of several correct implementations always yields correct results. Thus,
abstract implementations can be specified in a modular and structured way.

As a last remark, we want to emphasize the fact that the semantical level of our abstract im-
plementation is built with “simple” functors. Consequently, it is not difficult to extend this
formalism, for instance to abstract data types with exception handling [BBC 86, Ber 86], or to
parameterization since parameterization mainly relies on synthesis functors and pushouts (see
[ADJ 80]).

ACKNOWLEDGEMENTS :

It is a pleasure to express gratitude to Michel Bidoit, Christine Choppy and Marie-Claude Gaudel
for interesting suggestions, stimulating discussions and careful reading of previous versions of this
paper.
This work was partially supported by ESPRIT Project METEOR, at LRI (Orsay, France).

10 REFERENCES

[ADJ 76]
Goguen J., Thatcher J., Wagner E. : “An initial algebra approach to the specification, correctness,
and implementation of abstract data types”, Current Trends in Programming Methodology, Vol.4,
Yeh Ed. Prentice Hall, 1978 (also IBM Report RC 6487, October 1976).

[ADJ 78]
Goguen J.A., Thatcher J.W., Wagner E.G. : “Abstract data types as initial algebras and the
correctness of data representation”, Current Trends in Programming Methodology 4, (Yeh R.
Ed), Prentice-Hall, 1978, p. 80-149.

[ADJ 80]
Ehrig H., Kreowski H., Thatcher J., Wagner J., Wright J. : “Parameterized data types in algebraic
specification langages”, Proc. 7th ICALP, July 1980.

[BBC 86]
Bernot G., Bidoit M., Choppy C. : “Abstract data types with exception handling : an initial
approach based on a distinction between exceptions and errors”, Theoretical Computer Science,
Vol. 46, num. 1, p. 13-45, November 1986.

[BCFG 86]
Bougé L., Choquet N., Fribourg L., Gaudel M-C. : “Test sets generation from algebraic specifica-
tions using logic programming”, Journal of Systems and Software, vol.6, num.4, November 1986.

[Ber 86]
Bernot G. : “Une sémantique algébrique pour une spécification différenciée des exceptions et
des erreurs : application à l’implémentation et aux primitives de structuration des spécifications
formelles”, PhD thesis, University of Paris-Sud, Orsay, February 1986.

24

[Ber 87]
Bernot G. : “Good functors . . . are those preserving philosophy ! ”, Proc. Summer Conference on
Category Theory and Computer Science, September 1987, Springer-Verlag LNCS 283, pages 182-
195.

[Bid 82]
Bidoit M. : “Algebraic data types: structured specifications and fair presentations”, Proc. of
AFCET Symposium on Mathematics for Computer Science, Paris, March 1982.

[Bou 82]
Bougé L. : “Modélisation de la notion de tests de programme”, PhD thesis, University of Paris VI,
October 1982.

[EKMP 82]
Ehrig H., Kreowski H., Mahr B., Padawitz P. : “Algebraic implementation of abstract data types”,
Theoretical Computer Science 20, 1982, pages 209-263.

[EKP 80]
Ehrig H., Kreowski H., Padawitz P. : “Algebraic implementation of abstract data types: concept,
syntax, semantics and correctness”, Proc. ICALP, Springer-Verlag LNCS 85, 1980.

[Gau 80]
Gaudel M.C. : “Génération et preuve de compilateurs basée sur une sémantique formelle des
langages de programmation”, Thèse d’état, Nancy, 1980.

[Gau 86]
Gaudel M-C. : “Automation of testing in software development ”, Position paper, IFIP 86, panel
on Automation of software development, Dublin (Ireland), September 1986.

[GHM 76]
Guttag J.V., Horowitz E., Musser D.R. : “Abstract data types and software validation”, C.A.C.M.,
Vol 21, n.12, 1978. (also USG ISI Report 76-48).

[GM 88]
Gaudel M-C., Moineau T. : “A theory of software reusability”, to appear in Proc. ESOP 88,
Nancy, Mars 1988.

[Gut 75]
Guttag J.V. : “The specification and application to programming”, Ph.D. Thesis, University of
Toronto, 1975.

[Hoa 72]
Hoare C.A.R. : “Proofs of correctness of data representation”, Acta Informatica 1, n. 1, 1972,
p. 271-281.

[LZ 75]
Liskov B., Zilles S. : “Specification techniques for data abstractions”, IEEE Transactions on
Software Engineering, Vol.SE-1 N 1, March 1975.

[San 87]
Sannella D. : “Implementations revisited ”, 5th Workshop on Specification of abstract data types,
Edinburgh, September 1987, abstracts in LFCS report 87-41.

[Sch 87]
Schoett O. : “Data abstraction and the Correctness of Modular Programming”, PhD thesis,

25

University of Edinburgh, 1987.

[SW 82]
Sannella D., Wirsing M. : “Implementation of parameterized specifications”, Report CSR-103-82,
Department of Computer Science, University of Edinburgh.

[SW 83]
Sannella D., Wirsing M. : “A kernel language for algebraic specification and implementation”,
Proc. Intl. Conf. on Foundations of computation Theory, Springer-Verlag, LNCS 158, 1983.

26

