
Testing Against Formal Specifications:

a Theoretical View

Gilles Bernot
LIENS, URA CNRS 1327

45, rue d’Ulm
F-75230 Paris cedex 05

email: bernot@FRULM63.BITNET or bernot@dmi.ens.fr

Résumé : Cet article développe une théorie pour le test de logiciel. Si l’on dispose d’une
spécification formelle des propriétés attendues du logiciel, on peut étudier formellement la
vérification de logiciel par rapport à sa specification. L’avantage principal de la théorie
développée ici est de préciser explicitement ce que l’on fait lorsque le processus de vérifi-
cation mélange des méthodes de preuve (pour les propriétés cruciales) et des techniques
de test (pour les autres propriétés). Deux étapes sont essentielles pour le test: le choix
d’un jeu de test, puis la décision du succès ou de l’échec de ce jeu de test lorsqu’il est
soumis au programme. Nous montrons qu’il est possible de déterminer la qualité d’un jeu
de test, ainsi que la fiabilité de la décision de succès ou échec, par le biais d’hypothèses
sur le programme testé. Nous décrivons alors des schémas d’hypothèse qui permettent de
sélectionner automatiquement des jeux de test à partir d’une specification algébrique.

1

Testing Against Formal Specifications:

a Theoretical View

Gilles Bernot
LIENS, URA CNRS 1327

45, rue d’Ulm
F-75230 Paris cedex 05

email: bernot@FRULM63.BITNET or bernot@dmi.ens.fr

1 Introduction

Assuming that a formal specification is available, one can formally study the verification of a
software with respect to its specification. While proof theories are widely investigated, testing
theories have not been extensively studied. The idea of deriving test data sets from a specification
can be found in [Rig 85], [Scu 88], but there are few other published works. The work reported
in this paper is the continuation of the works about formal specifications and testing reported
in [Bou 85], [BCFG 85], [BCFG 86] and more recently [GM 88]. Some pioneering works on that
subject were [GHM 81] and [GCG 85].

In practice, when big softwares are involved, a complete proof is often impossible, or at least
it is not realistic because it would be too costly. The crucial properties of the program under
test should be proved, but several less critical properties can be checked by testing. The aim
of this paper is to propose a formal model of the testing approach. We assume that a formal
specification (i.e. an axiomatic specification) is given and we have to verify a program against
its specification: some of the axioms can be proved while the other ones can be tested.

Most of the current methods and tools for software testing are based on the structure of the
program to be tested (“white-box” testing). Using a formal specification, it becomes possible to
also start from the specification to define some testing strategies in a rigorous and formal frame-
work. These strategies provide a formalization of the well known “black-box” testing approaches.
They have the interesting property to be independent of the program; thus, they result in test
data sets which remain unchanged even when the program is modified. Moreover, such strategies
allow to test if all cases mentioned in the specification are actually dealt with in the program.

The main advantage of our approach is to formally express what we do when testing. It
allows also to modelize cases where some properties have been proved. Moreover, for algebraic
specifications, we show that is is possible to automatically select test data sets from a structured
specification. We have done a system developed in prolog, which allows to select a test data
set from an algebraic specification and some hints about the chosen testing strategy. Our system
is not described in this paper (it is described in [Mar 90] and [BGM 90]), but we define the
strategies used by the system as examples of the theory.

The paper is organized as follows:

• Obviously, you are reading the introduction (Section 1) . . .

• Section 2 contains an intuitive approach of our formalism

• Section 3 gives some preliminary notations and definitions

• Section 4 defines the fundamental notion of testing contexts

2

• Section 5 explains how testing contexts can be refined in order to produce “practicable”
testing contexts

• Section 6 specializes to the case of algebraic specifications

• Section 7 shows our basic examples of testing strategies

• Section 8 explains how the problem of deciding success/failure of a test set is solved when
the specification and the program are designed for testability

• Section 9 gives some hints on how to test less testable programs

• Section 10 recapitulates the main ideas of our theory.

2 Intuitive Approach

We introduce the important idea (already sketched in [BCFG 86]) that a test data set (i.e. a set
of elementary tests) cannot be considered (or evaluated, or accepted, etc.) independently of:

• some hypotheses on the program which express the gap between the success of the test and
the correctness of the program

• the existence of an oracle, i.e. a means of deciding, for any submitted test data, if the
program behaves correctly with respect to its specification.

Thus, we define a testing context as a triple (H,T,O) where T is the test data set, H is a set of
hypotheses and O is an oracle.
Then we state what is a practicable testing context, i.e. a context such that, assuming H, O is
able to decide the success or failure of the test data set T and T is successful via O if and only
if the program is correct. We then define a “canonical” testing context which, unfortunately,
is rarely practicable and we provide some way of refining it until we get a practicable testing
context.

Intuitively, a program P gives a way of computing some operations and a specification SP

states some properties which should be satisfied by these operations. For example, assuming that
P is supposed to implement three operations named sin, cos and tg, an axiom of the specification
SP could be:

If x ≡ π
2 [π] Then cos(x) = 0 Else tg(x) = sin(x)

cos(x)

Running one test of this axiom consists of replacing the variable x by some constant α, computing
by P the compositions of operations which occur in the axiom (i.e. cos(α) and tg(α), sin(α) if
needed) and deciding, via the oracle, if the axiom is validated by P . It means that the oracle has
to decide if (α ≡ π

2 [π]), it has to use the application rules of “If..Then..Else” (as defined by
the semantics of the specification language of SP) and to decide if, for instance, cos(α) is equal
to 0 (where “is equal to” is also defined according to the semantics of the specification language).

When a test data set T is defined as a set of ground instances of such axioms, our view of
program testing is just a generalization of the classical way of running tests: the program is
executed for a given input, and the result is accepted or rejected, according to the axioms which
play the role of input-output relations required for the program.
Consequently, the correctness of these decisions is of first importance: if not ensured, it becomes
possible to reject correct programs for instance. An oracle is some decision process which is able

3

to decide, for each elementary test τ in T , if τ is successful or not when submitted to the program
P . Thus, this decision is just a predicate, which will be denoted by O. Providing such an oracle
is not trivial at all ([Wey 80], [Wey 82]) and may be impossible for some test data sets. Thus
the existence of an oracle must be taken into account when selecting a test data set.

As usual, when a test data set is successful, the program correctness is not ensured, even if
the oracle problem is solved: the set of all possible instances of the variables is generally infinite,
or at least too large to be exhaustively experienced. However, when a test fails we know that
the program is not correct: in some respects, it is consequently a success . . .
Nevertheless, when the test is successful, we get a partial confidence in the program. We prefer
to express this “partial confidence” as: “under what hypotheses does the success of the test data
set imply the program correctness ?” These hypotheses are usually left implicit. We believe that
it is of first importance to make them explicit. Moreover we consider that they are the good
starting point for the selection of test data sets: it seems sound to state first the hypotheses and
then to select a test data set which ensures correctness, assuming these hypotheses.

Thus, given a formal specification SP and a program P , the test data selection problem
implies to state some hypotheses H and to select some test data set T such that, informally:

H + success(T) ⇐⇒ correctness(P,SP)

This equivalence can be shown as three implications:

• The conservativity means that the chosen hypotheses are satisfied by every correct program:

correctness =⇒ H

• The unbias property means that a correct program cannot be rejected

correctness =⇒ success

• The validity property means that under the hypotheses H, if the test is successful then the
program is correct:

H + success =⇒ correctness

Equivalently, it also means that under the hypotheses H, any incorrect program is discarded
(similar to the completeness criteria of Goodenough and Gehrart [GG 75]):

H + incorrectness =⇒ failure

Another interesting view of the same implication is the following

incorrectness + success =⇒ not H

which recalls that hypotheses are only . . . hypotheses. Intuitively, there is a negative
correlation between the strength of the hypotheses and the size of the selected test data
set. If the selected test data set does not reveal any error, the hypotheses may be too
strong.
Notice that even when the hypothesis H is conservative, if the program P does not satisfy
H, then the implication H+success =⇒ correctness is always true (!)1 However, one should

1
I must thank one of the referees for this remark.

4

not be confused. In this case, the success of the test does not imply correctness because
(A and B) =⇒ C is not equivalent to B=⇒C, specially when A is false . . . the implication
is simply meaningless: the hypotheses are too strong.

Summing up this section, we have shown that it is not sufficient to simply select a test data
set T . One should provide a related set of hypotheses H and a well defined oracle O, with the
property:

H + success of T via O ⇐⇒ correctness

These three components are formally defined in Section 4. Let us first state several convenient
notations.

3 Notations

We consider a rather flexible definition of “formal specification.” It embeds various approaches of
formal specifications such as algebraic specifications, temporal logic and other kinds of logic, etc.
The readers familiar with Goguen and Burstall institutions will recognize a simplified version of
them.

A formal specification method is given by a syntax and a semantics.

• The syntax is defined by a class of signatures and a set of sentences is associated to each
signature.
In practice, a signature Σ is a set of operation names. Given a signature Σ, the associated
set of Σ-sentences, denoted by ΦΣ, contains all the well-formed formulas built on: the
operations in Σ, some variables, some atomic predicates and some logical connectives.

• The semantics is defined as follows: for each signature Σ there is an associated class of
Σ-models, denoted by ModΣ, and there is a “satisfaction relation” on ModΣ×ΦΣ, denoted
by “ |=”. For each Σ-model M ∈ ModΣ and for each Σ-sentence ϕ ∈ ΦΣ , “M |= ϕ” should
be read as “M satisfies ϕ.”

In this framework, a formal specification is a couple SP = (Σ, Ax) such that Ax is a finite
subset of ΦΣ. The models of ModΣ which satisfy all the sentences of Ax are the models satisfying
(or validating) SP . We denote by Mod(SP) this class of models:

Mod(SP) = {M ∈ ModΣ | (∀ ϕ ∈ Ax)(M |= ϕ)}

Of course the notions of signature, sentence, model and satisfaction relation depend on the kind
of formal specification one need to consider. It is possible to verify the adequacy or inadequacy of
a program P with respect to a specification SP only if the semantics of P and SP are expressible
in some common framework. Thus the notion of model must be carefully defined.

When the signature Σ is just a set of operation names, a Σ-model M is usually a set of values
and for each operation name of Σ, there is an operation of the relevant arity in M . Then, as a
program gives a way of computing operations, one can consider that the behaviour of a program
P defines a ΣP -model, where ΣP is the set of the names of all the operation exported by P .
It is important to note here that the variables, atomic predicates and logical connectives allowing
to built the formulas of SP do not belong to the signature Σ. For instance SP may contain

5

existential quantifiers while P does not (and this is a usual case).
The model MP associated with P is not well known a priori. It is the reason why validation
techniques such as testing or proving must be used in order to check whether MP ∈ Mod(SP)
(as “P is correct” is equivalent to “MP ∈ Mod(SP)”).

4 Testing Contexts

Definition 1 : Let P be the program under test. Let SP = (Σ, Ax) be the specification that
P is supposed to implement. A testing context is a triple (H,T,O) where:

• H is a set of hypotheses about the model MP associated with P . This means that H

describes a class of models Mod(H). Mod(H) is a subclass of ModΣP
where ΣP is

the signature associated with P (Mod(H) is called the class of models “satisfying H”)

• T is a subset of ΦΣ. It is called a “test data set” and each element τ of T is called an
“elementary test”

• the oracle O is a partial predicate on ΦΣ. For each sentence (think “each elementary
test”) ϕ in ΦΣ , either O(ϕ) is undefined either it decides if ϕ is successful when
submitted to P .

This definition is very general and calls for some comments:
The signature ΣP associated with P contains, in practice, the names (and arities) of all the
operations exported by P (as explained in Section 3 above). A priori we do not assume any
adequacy between ΣP and Σ (but we shall do it soon). Indeed, Mod(H) will characterize a
subclass of programs such that “incorrectness” implies “failure of the test.”
It may seem surprising that test data sets can contain sentences with variables. Of course, our
aim is to select test sets which are: executable (i.e. containing ground sentences), finite and
mainly instances of the axioms of SP . However, the definition above is useful because it allows
to build testing contexts by refinements.
The oracle O can be shown as a procedure using the program P : one should write OP but for
clarity of the notations P and SP are implicit parameters of the testing contexts.

Of course the goal of testing context refinements is to get so called practicable testing con-
texts:

Definition 2 : Let (H,T,O) be a testing context.

1. (H,T,O) has an oracle means that:

• T is finite (think “of reasonable size”)
• if MP satisfies H then T is included in D(O), where D(O) is the definition domain

of O (i.e. O is defined for each element of T)
• if MP satisfies H then O is decidable for each element τ of T .

2. (H,T,O) is practicable means that:

• (H,T,O) has an oracle
• if MP satisfies H then: O(T) ⇐⇒ MP |= Ax

where O(T) denotes “O(τ) for all τ in T ” which means that the test data set
is successful via the oracle. Notice that O(T) is defined and decidable when
(H,T,O) has an oracle.

Let us describe some special examples of testing contexts.

6

The proof examples : Let us assume that the syntaxes and semantics of P and SP allow
theorem proving (e.g. P is a rewrite rule system and SP is an equational specification).
One can consider the testing context where T is equal to Ax (the axioms of SP) and O

is some theorem prover (e.g. by structural induction). One should notice that, even for
this purely proof oriented example, the corresponding set of hypotheses H is not empty.
In the example where P is a set of rewrite rules and O is based on structural induction
methods, H must contain at least two hypotheses: the signature of P and SP are equal
(i.e. Mod(H) ⊂ ModΣ) and every term submitted to P must be build on the operations
of the signature (i.e. Mod(H) only contains finitely generated models). Such hypotheses
must not be neglected (more than 50% of the proved factorials admit negative arguments
and loop on them !). The main advantage of our approach is that the hypotheses are
explicit.
Such “proof oriented” testing contexts are practicable if and only if every axiom of SP is
decidable via the theorem prover O.

The “lazy example” : One can also consider an example where the hypothesis is “P is correct”
(i.e. Mod(H) = Mod(SP)). Then T is empty and O is the undefined predicate. It
reflects at least a full confidence in the program design. For instance, it can be used when
the program has been automatically build from the specification, the hypothesis simply
means that the program construction system is supposed correct. Most of the time, it
seems sound to (try to) prove such hypotheses . . .
Anyway, these testing contexts are always practicable.

The exhaustive test set : Under the same set of hypotheses H as for the proof oriented case,
one can consider the test data set T containing all ground instances of Ax. Assuming that
there exists a decidable oracle for all ground instances, the resulting testing context is
practicable if and only if T is finite (which is not the general case). Such an exhaustive
test data set may work for enumerated types for instance.

Since the exhaustive test data set is generally infinite; since the empty test data set gives
rise to an hypothesis which is too strong; since proving correctness is often too costly, it is clear
that a good testing context is something in the middle of these three extremist views of testing.
Such good and practicable testing contexts can be obtained via “testing contexts refinements.”
A natural starting point of these refinements is what we call the canonical testing context. It is
build from the informations that we directly get from P and SP :

Definition 3 : The canonical testing context is defined by:

• the hypothesis “MP is a Σ-model” which means ΣP = Σ , i.e. Mod(H) = ModΣ

• the test data set T = Ax

• the oracle O = undef (the never defined predicate)

Let us give some comments. It is not difficult to check in practice that the signature of P is
Σ: it is just the set of exported operations implemented by P . Considering the axioms of SP

as the canonical test data set simply means that our goal is to check whether P is compatible
with the specification. Of course, the refinement process allows to select, step by step, a finite
set of executable elementary tests. Similarly, the oracle, which is unknown at the starting point,
is refined until it is decidable on the (refined) test data set. The important property of the
canonical testing context is that it is valid (as proved in the next section).

7

Indeed, one need to define the validity and unbias properties (already sketched in Section 2):
they provide sufficient conditions for practicability.

Definition 4 : Let (H,T,O) be a testing context.

1. The test data set T is valid means that:
If P satisfies H (i.e. MP ∈ Mod(H)) then

MP |= T =⇒ MP |= Ax

2. The oracle O is valid means that:
If MP ∈ Mod(H) then

(forall ϕ ∈ D(O))(O(ϕ) =⇒ MP |= ϕ)

3. The test data set T is unbiased means that:
If MP ∈ Mod(H) then

MP |= Ax =⇒ MP |= T

4. The oracle O is unbiased means that:
If MP ∈ Mod(H) then

(forall ϕ ∈ D(O))(MP |= ϕ =⇒ O(ϕ))

The sufficient condition for practicability is given by the following theorem:

Theorem 5 : Let (H,T,O) be a testing context. If (H,T,O) has an oracle and T and O are
both valid and unbiased, then (H,T,O) is practicable.

The proof of this theorem is trivial. However, this theorem is fundamental since it justifies
the testing refinement process: the canonical testing context defined above is valid and unbiased;
in the following section we give a refinement criterion which preserves validity; and we give
another criterion, for algebraic specifications, which ensures unbias. Consequently, practicability
is ensured providing that we stop the refinement process when the triple (H,T,O) has an oracle
(we shall explain how to get this result in a finite number of refinement steps).

5 The Refinement Preorder

Definition 6 : Let TC1 = (H1, T1, O1) and TC2 = (H2, T2, O2) be two testing contexts.
TC2 refines TC1, denoted by TC1 ≤ TC2 , means that:

• Mod(H2) ⊂ Mod(H1), (i.e. H2 =⇒ H1)

• (∀ MP ∈ Mod(H2)) (MP |= T2 =⇒ MP |= T1)

• if MP ∈ Mod(H2) then D(O1) ⊂ D(O2) and

(∀ ϕ ∈ D(O1)) (O2(ϕ) =⇒ O1(ϕ))

The first condition means that it is possible to encrease the hypotheses about the program under
test via a refinement step. As already outlined in Section 2, encreasing the hypotheses allows to
decrease the size of the selected test data set without loosing validity. This idea is reflected by
the second condition. It exactly means that under the new hypotheses (H2, which can be bigger
than H1), the new test data set T2 must reveal an error if T1 reveals an error. Examples where
encreasing H allows to decrease T are given in Section 7. The third condition means that the

8

oracle predicate can be build, step by step, along the refinement preorder and that every error
revealed by O1 must be revealed by O2.
Notice that the refinement defined above is clearly a preorder (reflexive and transitive); it is not
antisymmetric.

The following theorem is trivial, but it is important because it ensures the validity of the
test data set, providing that the refinement starts from the canonical testing context defined in
Section 4 above:

Theorem 7 : Let (H,T,O) be a testing context. If (H,T,O) refines the canonical testing
context then T is valid.

By the way, the refinement preorder allows trivially to express all the interesting properties
defined in Section 4:

Proposition 8 : Let (H,T,O) be a testing context.
Let SatisfD(O) be the partial predicate on ΦΣ defined by: the definition domain of
SatisfD(O) is D(O) and for each ϕ in D(O), SatisfD(O)(ϕ) is equivalent to MP |= ϕ .
It simply means that SatisfD(O) coincides with the satisfaction relation “ |=” in the defini-
tion domain of O.

1. The oracle O is valid if and only if (H,T, SatisfD(O)) ≤ (H,T,O)

2. The test data set T is unbiased if and only if (H,T,O) ≤ (H,Ax,O) (where Ax is
the set of axioms of SP)

3. The oracle O is unbiased if and only if (H,T,O) ≤ (H,T, SatisfD(O)).

4. The set of hypotheses H is conservative if and only if (H,T,O) ≤ (Correct, T,O),
where Correct is the hypothesis defined by Mod(Correct) = ModΣ(SP).

From 1. and 3. one can deduce that the oracle problem is to exhibit a decidable subdomain
of the satisfaction relation which covers the selected test data set. Moreover, if the formal
specification method under consideration has some Birkhoff’s property, and 2. means that one
must select elementary tests which are theorems of the axioms of SP .
In the rest of this paper, we show how to fulfill these criteria. For that purpose, we specialize to
algebraic specifications.

6 Case of Algebraic Specifications

In this section, we first recall the main definitions of algebraic abstract data types as an instance
of our general definition of formal specifications. Then we show that valid and unbiased test
data sets can be selected from the so called “exhaustive test data set.”

In the framework of algebraic specifications, a signature is: a finite set S of sorts (i.e. type-
names) and a finite set of operation-names with arity is S. The corresponding class of models
ModΣ is defined as follows: a Σ-model is a heterogeneous set M partitioned as M = {Ms}s∈S ,
and with, for each operation-name “op : s1 ×· · ·× sn → s ” in Σ, a total function opM : Ms1

×
· · · × Msn

→ Ms .
The sentences of ΦΣ are the positive conditional equations of the form:

(v1 = w1 ∧ · · · ∧ vk = wk) =⇒ v = w

9

where vi, wi, v and w are Σ-terms with variables (k ≥ 0). A model M satisfies (|=) such a
sentence if and only if for each substitution σ with range in M , if σ(vi) = σ(wi) for all i then
σ(v) = σ(w) (as in [ADJ 76]).

Moreover specifications are structured:
a presentation (or “specification module”) ∆SP = (∆Σ,∆Ax) uses some imported specifications
SPi = (Σi, Axi) such that SP = ∆SP + (union of SPi) is a (bigger) specification. The
signature Σ of SP is the disjoint union of ∆Σ and the union of the Σi; the set of axioms Ax of
SP is the union of ∆Ax and the Axi . For example, a List presentation (with a sorted insertion)
over the imported specification of natural numbers can be expressed as follows:

∆NATLIST uses NAT /* Here ∆NAT uses BOOLEAN */

∆S = NatList

∆Σ =

empty :→ NatList

cons : Nat × NatList → NatList

ins : Nat × NatList → NatList

∆Ax =

ins(n, empty) = cons(n, empty)
n ≤ m = true =⇒ ins(n, cons(m,L)) = cons(n, cons(m,L))
n ≤ m = false =⇒ ins(n, cons(m,L)) = cons(m, ins(n,L))

where n and m are variables of sort Nat ; L of sort NatList.

Of course, all the results stated in the previous sections remain for the particular case of
structured algebraic specifications. In particular, given a testing context (H,T,O), an elementary
test of T can be any positive conditional equation. The following definitions and results prove
that it is possible to select ground instances of the axioms without loosing validity. Moreover, in
that case, the unbias property is ensured.

Definition 9 :

1. A Σ-model M is finitely generated if and only if every value of M is denotable by a
ground Σ-term. We denote by AdequateΣ the hypothesis such that Mod(AdequateΣ)
is the class of finitely generated Σ-models.
This hypothesis means that the signature exported by P is exactly the signature of
SP and that P does not admit inputs which are not denotable via Σ (we have already
mentioned this hypothesis in the “proof example” given in Section 4).

2. Given a specification SP , the exhaustive test data set, ExhaustSP , is the set of all
ground instances of all the axioms of SP .

ExhaustSP = { σ(ϕ) | ϕ ∈ Ax , range(σ) = WΣ }

where WΣ is the set of ground terms on Σ.

Under the Σ-adequacy hypothesis AdequateΣ, every testing context which refines, and is
included in the exhaustive test data set, produces valid and unbiased test data sets. More
precisely:

10

Proposition 10 : Let (H,T,O) be a testing context.

1. If T ⊂ ExhaustSP then T is unbiased.

2. If (H,T,O) refines (AdequateΣ, ExhaustSP , undef) then T is valid.

Proposition 1. is trivial. Proposition 2. results from the fact that (AdequateΣ, ExhaustSP , undef)
refines the canonical testing context defined in Section 4 and from the validity theorem of Sec-
tion 5.

In particular the exhaustive test data set itself is unbiased and valid. Unfortunately it is
generally infinite. The previous propositions means that the test data set refinement process can
be reduced to “add hypotheses to AdequateΣ in order to select a subset of reasonable size from
ExhaustSP .”
In the next section, we show via an example what kind of hypotheses can be used. Our system
handles the corresponding refinements automatically.

7 Regularity and Uniformity

Let us assume that we want to test the axiom:

n ≤ m = false =⇒ ins(n, cons(m,L)) = cons(m, ins(n,L))

One has to select instances of the list variable L and instances of the natural variables m and n.
A first idea, which is often used when testing, is to bound the size of the lists actually tested.
It means to bound the size of the terms substituting L. This can be obtained via the general
schema of regularity hypothesis.

Definition 11 : Let ϕ(L) be a sentence involving a variable L of a sort s ∈ ∆S. Let | t |s
be a complexity measure on the terms t of sort s (for instance the number of operations in
∆Σ of sort s occurring in t). Let k be a positive integer.
The regularity hypothesis of level k (with respect to ϕ and L), Regulϕ(L),k , is the hypothesis
which retains the Σ-models MP such that:

(∀t ∈ WΣ)(| t |s ≤ k =⇒ MP |= ϕ(t)) =⇒ (∀t ∈ WΣ)(MP |= ϕ(t))

where WΣ is the set of all ground Σ-terms.

Instead of a complexity measure, any function such that the sets {t ∈ WΣ | | t |s ≤ k} are
finite is acceptable. At first glance, it may seem unreasonable to use hypotheses which infer a
result for every list by checking only small lists. Anyway, these hypotheses reflect what is done
when testing. The main advantage of our approach is to make them explicit. Moreover one
should never forget that the goal of testing is not to prove correctness, rather the goal of testing
is to find good potential counter-examples of the correctness, as discussed in Section 2.

For the list example, a regularity level 3 allows to select the following instances of L:

L = empty

L = cons(p, empty)
L = ins(p, empty)

11

L = cons(p, cons(q, empty))
L = ins(p, cons(q, empty))
L = cons(p, ins(q, empty))
L = ins(p, ins(q, empty))

The corresponding refinement step of the testing context is obtained by adding the regularity
hypothesis to H, and by replacing in T the axiom under test by the seven axioms related to
those seven instances of L. Consequently, only variables of sort natural number remain: m,n, p

and q.

Notice that the four instances of L involving the operation ins seems to be less relevant than
those involving only cons and empty because cons and empty generate all the list values. Such a
subset ∆Ω of ∆Σ is called a set of generators. It is not difficult to modify the regularity hypothesis
in order to get a so called Ω-regularity hypothesis which only retains the three instances of L

build on cons and empty (as defined in [BGM 90]).

At this stage in the example, or after a finite number of regularity hypotheses in the general
case, the test selection problem is reduced to the replacement of the variables of imported sort
(natural number) by ground terms. The interesting cases correspond to the 4!=24 relative orders
of m, n, p and q. These 24 arrangements provide 24 subdomains of IN × IN × IN × IN = IN4.
A good testing strategy is to select one value in each subdomain. This can be obtained using
uniformity hypotheses on these 24 subdomains.

Definition 12 : Let ϕ(V) be a formula involving a variable, or a vector of variables, V of
imported sort(s). Let SD be a subdomain (i.e. a subset) of WΣ,s1

× · · · × WΣ,sk
, where

s1 · · · sk are the sorts of the variables of V . The uniformity hypothesis on the subdomain
SD (with respect to ϕ and V), Unifϕ(V),SD , is the hypothesis which retains the Σ-models
MP such that:

(∀v0 ∈ SD)(MP |= ϕ(v0) =⇒ [∀v ∈ SD][MP |= ϕ(v)])

Such an hypothesis means that if a sentence is true for some value v0 then it is always true
in SD . . . This is a strong hypothesis, and may seem unreasonable again. However, the same
arguments hold: the hypotheses reflect what is done when testing; we have just made them
explicit ; and the goal is not to prove correctness, it is to find potential counter-examples of
correctness.

A more interesting question is: “how to find the relevant subdomains ?”. Our system is able to
find them automatically. The key is: unfolding methods (based on equational logic programming
with constraints). These methods are described in [Mar 90] or [BGM 90].

Notice that the modularity of the specification is crucial here: the regularity hypotheses are
made for the sorts specified by ∆SP while the uniformity hypotheses are made for the imported
sorts.

Very roughly, our system starts from a modular specification and translates the axioms into
an equivalent set of Horn clauses (“equivalent” is defined in [Mar 90][BGM 90]). Then, for each
axiom of ∆Ax, the system selects a test data set as follows: for each sort of ∆S involved in the
axiom, the system adds clauses reflecting the regularity hypotheses (the user gives the regularity
level k); the axiom under test is transformed, via the regularity clauses, into a set of axioms
where only variables of imported sorts remain; the unfolding methods are then applied to each

12

transformed axiom, leading to a set of predicates (via the “wait” mechanisms) which define the
uniformity subdomains; one instance of each subdomain is then selected (by resolution with a
random choice of the clauses to apply).
Of course, many extensions of equational logic programming have been used, completeness being
one of the main difficulties. The system is fully described in [Mar 90]; a simpler description can
be found in [BGM 90].

8 The Oracle

In this section, we explain how the oracle problem can be solved using observability issues from
the specification level.

Hypotheses such as those exposed in the previous section provide test selection strategies
which allow to select finite test data sets included in ExhaustSP . Thus, an elementary test is of
the form:

(t1 = u1 ∧ · · · ∧ tk = uk) =⇒ t = u

where ti, ui, t and u are ground Σ-terms.
The oracle problem is reduced to decide success/failure of equalities between ground terms,
because the truth tables of ∧ and =⇒ can then be used to decide success/failure of the whole
conditional elementary test.

It is well known that deciding abstract equalities is not trivial at all. For example, let
P implement stacks by means of arrays: push records the element at range height into the
array and increments height; pop simply decreases height. Suppose the oracle has to decide
if pop(push(3, empty)) and empty give the same stack after their executions via P . There is
an observability problem which, indeed, is a concrete equality problem: these stacks give two
distinct array representations (because 3 has been recorded into the array for the first stack) but
they are abstractly equal (as the common height is 0, and there is no observable access, via top,
which allows to distinguish them). Thus, the predicate O(pop(push(3, empty)) = empty) must
be decided via some carefully elaborated method.

This problem relies on observability issues. Given a structured specification SP (e.g. Stack),
a subset SObs of observable sorts is distinguished among the imported sorts (e.g. the natural
numbers and the elements of the stacks). These observable sorts are specified by imported
observable specifications SPObs1, SPObs2, etc. Intuitively, they correspond to the observable
primitive types of the used programming language. In particular, for every program P , there are
built-in equality predicates which are correct and defined on observable sorts.

There are mainly three approaches to handle the oracle problem, which are discussed in the
rest of this paper.

A first idea is to modify the program under test in order to add new procedures extracting
the concrete representations and computing the abstract equalities for non observable sorts.
However, obviously, some of the advantages of the black-box approach are lost and the added
procedures may alter the program behaviour. Then, the actually tested behaviour could not be
represented by MP any more, which results in a biased application of our formalism.

Indeed the proper approach is to take into account, from the specification stage, all these
equality predicates for non observable sorts. This correspond to the well known slogan “plane

13

testable programs at every stage of the design process.” In this case, the oracle equality predicates
are operations of Σ and our formalism can be directly applied.

However, since the oracle equalities are crucial for the quality of the performed tests, any
hypothesis on them is very strong. Consequently, we recommand to put the sentences related
to those equality predicates in the “proof part” of the testing context (Section 4). Then, the
hypotheses (such as regularity and uniformity) are made only on the other sentences of the
specification. This is “the good solution” for the oracle. However, when the program has not
been designed to be easily testable, some partial results can be obtained via the second and third
approaches which are discussed in the next section.

9 Partial Oracles

The second approach is to select only observable elementary tests. This can be done by replac-
ing each non observable test [t = u] by a set of terms of the form [C(t) = C(u)] obtained by
surrounding t and u with some well chosen observable contexts C. Here, the word “context” must
be understood as “term with exactly one variable.”
For example, an equality between two stacks [t = u] seems to be equivalent to the following
observable equalities: [height(t) = height(u)], [top(t) = top(u)], [top(pop(t)) = top(pop(u))]
. . . [top(popheight(t)−1(t)) = top(popheight(t)−1(u))]. Here the chosen observable contexts C are
height(x) and the top(popi(x)) such that i < height(t). Unfortunately, it is well known that
identifying such a minimal set of contexts is undecidable for the general case of algebraic spec-
ifications [Sch 86]. Besides, when testing “big” stacks, this leads to an impracticable number of
observable tests.

But the situation is even worst: when we think that height(x) and top(popi(x)) are sufficient, we
implicitly assume that we manipulate (more or less) stacks. But this fact is just what we check
when testing !

Counter-example : We sketch a program which does not satisfy this implicit hypothesis.
The “bug” is that top returns the height when applied to a term t of the particular form
t = push(e, pop(· · ·)); for every other term t, top(t) returns the correct value.
A stack is implemented by a record < array, height, foo > where < array, height > is
the usual correct implementation and foo records the number of push performed since the
last pop (and the empty stack is initialized with foo=2). We ignore the exceptional cases
of pop and top when the stack is empty, it is not our purpose here . . .

proc emptystack();

stack.height := 0 ; stack.foo := 2 ;;

proc push(e:element);

stack.array[stack.height] := e ;

stack.height := stack.height+1 ; stack.foo := stack.foo+1 ;;

proc pop();

stack.height := stack.height - 1 ; stack.foo := 0 ;;

proc top();

if (stack.foo = 1) then return stack.height /* the bug */

else return stack.array[stack.height] ;;

14

The terms t = push(1, emptystack) and u = pop(push(2, push(1, emptystack))) are dis-
tinguishable because top(push(0, t)) = 0 (as foo=4) and top(push(0, u)) = 2 (as foo=1).
Nevertheless, the contexts height(x) and top(popi(x)) are unable to distinguish t from u

(as foo is never equal to 1 for those contexts), leading to an oracle which never detects
that t 6= u.

So, we get the depressing result that identifying the minimal set of observable contexts for
the equality decision is decidable ! We must consider the set of all observable contexts . . . which
is infinite, consequently impracticable.
We can follow a similar method as for test selection: this infinite set of observable contexts can
be reduced to a finite one by adding oracle hypotheses in the component H of the testing context.
For example, the finite set of contexts mentioned for stacks is related to the following hypothesis
on MP :
“for all stacks t and u, if MP |= (height(t) = height(u)) and MP |= (top(popi(t)) =
top(popi(u))) for i < height(t) then MP |= (t = u) .”
It will be useful later to remark here that the number of observable contexts of the form
top(popi(x)) is decided from the specification before the test is performed. Thus i < height(t)
should be understood with respect to the specification, height(t) is not computed by the pro-
gram here. Of course, the counter-example above does not meet this hypothesis and it will not be
discarded by the selected observable test data set. However, one time more: the main advantage
of our approach is to make the testing hypotheses explicit.

This idea of adding oracle hypotheses works when deciding equalities which appear in the con-
clusion of the tested conditional sentences. Unfortunately, if the equality appears in the precon-
dition, for instance:

t = u =⇒ concl ,

then we get a biased oracle ! This results from: t = u may be successful according to the oracle
hypotheses, but not satisfied in MP . In that case, one would require for concl to be satisfied, in
spite of the fact that concl is not required according to the formal satisfaction relation. Of course
a first case where the solution is trivial is when the specification only contains sentences with
observable preconditions (it is not really restrictive in practice). Another case which allows to
solve this problem is when the specification is “complete” with respect to the imported observable
specifications: if the oracle hypotheses are conservative then the oracle remain unbiased. All these
techniques are more precisely studied in [Ber 89].

The third approach, somehow intermediate between the two first approaches, is an oracle
which “drives” the program under test. The oracle is then realized as a new module on the top of
the program under test. The new operations of this module are equalities for the non observable
sorts where an equality predicate does not already exist in ΣP . Notice that these oracle equalities
are not “added into the code of P ,” rather they are computed on the top of P , and they can only
exploit the observable results of P . For our stack example, we may add an equality predicate for
the sort stack on the top of P as follows:

proc eq(t,u:stack);
If (height(t) 6=height(u)) then return false

Else

If (height(t)=0) then return true

else return ((top(t)=top(u)) and eq(pop(t),pop(u))) ;;

15

By convention, the terms which are computed by P have been written in bold.

Of course, this oracle is not able to discard the counter-example given above. This means that this
oracle is valid (as defined in Section 4) under an additional oracle hypothesis. This hypothesis is
similar to the hypothesis expressed for the second approach, except that the number of observable
contexts of the form top(popi(x)) is dynamically computed by P : it depends on height(t) as
computed by P ; it does not depend on height(t) as specified by SP .
The difficult point here is that one must prove that the computed oracle equalities are sound
with respect to the oracle hypotheses. If possible, we recommand to define them via rewrite
rules because rewrite rules facilitate proofs in the framework of algebraic specifications. This
approach is more detailed in [Ber 89].

Anyway, even if the approaches sketched in this section have some theoretical interest, practical
experiments showed that they are not realistic: observable contexts (resp. oracle equalities) are
often complex and there is a big number of them (for specifications of real size). This leads to an
amount of potential errors which is almost comparable to the amount of faults in the program
under test. It is far more suitable to plane testable programs from the specification stage, as
recommended in Section 8.

10 Recapitulation

This paper gives a formal study of testing when a formal specification of the program under test
is available. The main advantage is to make explicit, in a well defined framework, the limitations
and the abilities of testing.

We have shown that a test data set cannot be considered, or evaluated, independently of: some
hypotheses which express the gap between the success of the test data set and the correctness of
the program; and the existence of an oracle which is a means of deciding success/failure of the
test set. Thus, we have defined the fundamental notion of testing context which reflects theses
three components.

Our definition of testing context is powerful enough to reflect a software verification approach
where some of the properties required by the specification are proved, while the other ones are
tested. This allows to mix proof methods and testing methods in a unified framework.

We have described, and formally justified, a refinement method which allow to get so called
practicable testing contexts. Practicable testing contexts have finite test data sets and decidable
oracles, and they have the following crucial property:

Hypotheses + success of test via oracle ⇐⇒ correctness

When algebraic specifications are involved, we have established several more precise results which
lead to a concrete way of building practicable testing contexts by refinements.

Several other works based on the theory described in this paper have been done, or are in-
vestigated:
We have done a system, based on equational logic programming with constraints, which au-
tomatically selects a practicable test data set from the specification and some hints about the
corresponding hypotheses. Its existence proves that our formalism is usable.
We also extend our formalism to the case of algebraic specification with exception handling. It
shall allow, in particular, to handle bounded data structures where performing tests “near the
bounds” is crucial.

16

Acknowledgements : Obviously, the work reported here is only the “basic theoretical part” of
common researches about testing via formal specifications, and it is a pleasure to acknowl-
edge Marie Claude Gaudel, Bruno Marre and Pascale Le Gall for numerous interactions
and discussions which have allowed to build this formalism.
This work has been partially supported by the Meteor Esprit Project and the PRC “Pro-
grammation et Outils pour l’Intelligence Artificielle.”

11 References

[ADJ 76] J. Goguen, J. Thatcher, E. Wagner : An initial algebra approach to the specifi-
cation, correctness, and implementation of abstract data types, Current Trends in Programming
Methodology, Vol.4, Yeh Ed. Prentice Hall, 1978.

[BCFG 85] L. Bougé, N. Choquet, L. Fribourg, M. C. Gaudel : Application of PROLOG
to test sets generation from algebraic specifications, Proc. International Joint Conference on
Theory and Practice of Software Development (TAPSOFT), Berlin (R.F.A), Springer-Verlag
LNCS 186, pp.246-260, March 1985.

[BCFG 86] L. Bougé, N. Choquet, L. Fribourg, M. C. Gaudel : Test sets generation from
algebraic specifications using logic programming, Journal of Systems and Software Vol 6, No.4,
pp.343-360, November 1986.

[BGM 90] G. Bernot, M. C. Gaudel, B. Marre : Software testing based on formal speci-
fications: a theory and a tool, To appear in Software Engineering Journal, U.K., 1991. (also:
Internal Report LRI No.581, Orsay, France, June 1990.)

[Ber 89] G. Bernot : A formalism for test with oracle based on algebraic specifications, LIENS
Report 89-4, LIENS/DMI, Ecole Normale Supérieure, Paris, France, May 1989.

[Bou 85] L. Bougé : A proposition for a theory of testing: an abstract approach to the testing
process, Theoretical Computer Science 37, North-Holland, 1985.

[GCG 85] C. P. Gerrard, D. Coleman, R. Gallimore : Formal Specification and Design
Time Testing, Software Science ltd, technical report, June 1985.

[GG 75] J. B. Goodenough, S. L. Gerhart : Towards a theory of test data selection, IEEE
trans. soft. Eng. SE-1, 2, 1975. (Also: SIGPLAN Notices 10 (6), 1975.)

[GHM 81] J. Gannon, P. McMullin, R. Hamlet : Data-Abstraction Implementation, Speci-
fication, and Testing, ACM transactions on Programming Languages and Systems, Vol 3, no 3,
July 1981, pp.211-223.

[GM 88] M. C. Gaudel, B. Marre : Algebraic specifications and software testing: theory and
application, Internal Report LRI 407, Orsay, France, February 1988, and extended abstract in
Proc. workshop on Software Testing, Banff, IEEE-ACM, July 1988.

[Mar 90] B. Marre : Sélection automatique de jeux de tests a partir de specifications algebriques,
en utilisant la programmation logique, Ph. D. Thesis, LRI, Université de Paris XI, Orsay, France,
January 1990.

[Rig 85] G. Rigal : Generating Acceptance Tests from SADT/SPECIF, IGL technical report,
August 1986.

[Sch 86] O. Schoett : Data abstraction and the correctness of modular programming, Ph. D.

17

Thesis, Univ. of Edinburgh, 1986.

[Scu 88] G. T. Scullard : Test Case Selection using VDM, VDM’88, Dublin, 1988, LNCS no
328 pp 178-186.

[Wey 80] E. J. Weyuker : The oracle assumption of program testing, Proc. 13th Hawaii Intl.
Conf. Syst. Sciences 1, pp.44-49, 1980.

[Wey 82] E. J. Weyuker : On testing non testable programs, The Computer Journal 25, 4,
pp.465-470, 1982.

18

