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Abstract. This paper addresses the problem of the formalization of
software testing. More precisely, we are concerned with the use of formal
specifications for guiding the testing activity. This kind of software test-
ing is often called “functional testing.” Formal specifications provide a
basis for what we call “formal testing”: i.e. the definition of testing in a
formal framework which makes explicit the relationship between testing
and correctness. Besides, it provides some grounds for the study of the
complementarity of testing and proving.

Introduction

Software testing is sometimes considered as intrinsically empirical, without pos-
sibility of theoretical grounds. There is some evidence that it is not the case: see
for instance [1] and [2] for some accounts of the research in the area and [3] or
[4] for some theoretical foundations.

This paper discusses the use of formal specifications for guiding the testing
activity and for formalizing it. It is well-known that one of the advantages of
formal specifications is to give the possibility of correctness proofs of programs.
We believe that formal specifications also provide a basis for what we call “for-
mal testing”: i.e. the definition of testing in a formal framework which makes
explicit the relationship between testing and correctness. Besides, it provides
some grounds for the study of the complementarity of testing and proving.

Moreover, such a formal approach to testing has proved to be a good basis
for automatizing the selection of test data sets from formal specifications [5],
and provides a better understanding of some common test practices.

We present briefly here some new developments of a research activity which
has been reported in [6, 7, 8, 9, 5, 10], and more recently in [11] and [12]. Our
previous results were specialized to positive conditional algebraic specifications.
We show in this paper that it is possible to work in the more general frame-
work of institutions [13]. It makes it possible to consider a larger class of formal
specifications; it makes clearer the relation between the semantics of the formal
specifications and the corresponding testing process; moreover, changing of in-
stitution often correspond to changes in the kind of properties expressible in the
formal specification: thus it allows to test the same program against different
points of view.



1 Formal specifications and correctness

Briefly, a formal specification method (institution) is given by a syntaz and a
semantics.

— The syntax is defined by a notion of signature; with each signature X is
associated a set of sentences @x. 5 contains all the well-formed formulas
built on X, some variables, some logical connectives and quantifiers.

— The semantics is defined by a class of X-interpretations, Ints, and a satis-
faction relation on Inty, x ®5 denoted by |=. For each X-interpretation A
and for each Y-formula ¢, “A | ¢” should be read as “A satisfies ¢”.

In this framework, a formal specification is a pair SP = (X, Az) such that Az
is a (finite) subset of ®5.

The class of interpretations satisfying SP is called the class of models of SP
and is denoted by Mod(SP):

Mod(SP) = {Aents |AE Az }

The notions of signature, sentence, interpretation, and satisfaction depend on
the kind of formal specification, for instance equational algebraic specifications,
temporal logic,. . .

Let SP be a formal specification and P be a program. It is possible to verify
(by proving or by testing) the adequacy or inadequacy of P with respect to SP
if the semantics of P and SP are expressible in some common framework. As we
are interested in dynamic testing?®, this role is ensured here by the concept of
an interpretation for a given signature: intuitively a Y-interpretation is a set of
values plus, for each name in the signature X, an operation of the relevant arity
on these values. We consider that P defines a Y-interpretation Mp. Then, the
question of the correctness of P with respect to SP becomes: does Mp belong
to the class of models of SP ?

2 Testing a program against a formula

In our framework, a test data® is a X-formula ¢(X). As said above, ¢(X) is a
well-formed composition of some predicates, logical connectives, operation names
of ¥, and variables in X. A test data is executable by a program P if it is a
ground formula and if P actually defines a X-interpretation, i.e. P provides
an implementation of every operation of the signature. Under these conditions,
running a test ¢ consists of computing by Mp the operations of X which occur in
¢ and checking that the results returned by Mp satisfy the property required by
% i.e. test which consists of several executions of the program on a finite subset of its
input domain, while static testing relies on some analysis of the program text.
5 In protocol testing, what we call “test data” is commonly called “test purpose”.



the connectives. For instance, let f, g, h, a, b belong to X, let V be a connective,
z,y some variables; and ¢(z,y) the following formula:

(flz,y) = g(=)) vV (flz,y) = h(y))

Let us note fp, gp, ... the functions computed by P for f, ¢, ... . A test data for
the formula above is:

(fla,b) = g(a)) v (f(a,b) = h(b))

Running this test consists of computing the three values fp(ap,bp), gr(ap),
hp(bp) and checking that the first one is equal either to the second one, or to
the third one.

This view of program testing is just a generalization of the classical way of
running tests, where the program is executed for a given input, and the result
is accepted or rejected: in this case, the formula is the input-output relation
required for the program.

There are some cases where it is not possible to decide whether or not an
execution returns a correct result, mainly for reasons of insufficient observability
of Mp: a property required by the specification may not be directly observable
using the program under test (see for instance [14]). It is an aspect of the so-
called oracle problem: the oracle is some decision process which should be able to
decide, for each test data ¢ whether ¢ is successfully run or not when submitted
to the program P. Providing such an oracle is not always trivial ([15, 16]) and
may be impossible for some test data. An example, among many others, is how
to decide that the result of a compiler for a given source program is correct, i.e.
that the generated code is equivalent, in some way to be defined, to this source
program.

3 Exhaustive data sets, Hypotheses

Let us come back to the notion of correction and the satisfaction relation. As an
example of an institution, let us consider equational algebraic specifications as
defined in [17].

Example 1: In [17] the satisfaction relation is stated as

“ A Y-equation is a pair e = < L, R > where L, R € Tx(X); for some
sort s. Let var(e) = var(L) Uvar(R) ... A Y-algebra A satisfies e iff
0(L) = §(R) for all assignements  : Y — A where Y = var(e). If E is a
set of Y-equations, then A satisfies E iff A satisfies everye € E 7.
(Where @ is the unique extension of 6 to Tx(X)).

For a given specification, this definition naturally leads to the following test data
set:



Definition:

given an equational algebraic specification SP = < X, E >, the ezhaus-
tive test data set, Exhaustgp, is the set of all ground instances of all
the equations in F.

Ezhaustgp = {0(¢) | ¢ € E, range(o) = Tx}
where 7y is the set of ground terms on X.

This test set is exhaustive with respect to the specification, not with respect to
the program, since we limit the assignments to those values of Mp which are
denotable by some term of 7x. It means that the success of this test set will
ensure correctness only if Mp is finitely generated with respect to Y. Thus we
have introduced an additional hypothesis on Mp (the first one was that Mp is
a Y-interpretation). We note this hypothesis Adequates(Mp)®. Let us assume
that we have a correct oracle procedure named success; in this institution, as
“="is the only predicate, the oracle is a procedure which is able to decide, given
two values of Mp , whether or not they represent the same abstraction in SP
(cf. the identify step in [18]). Now, we have, assuming Adequateys,(Mp) :

success(Exhaustgp) <= Mp € Mod(SP)

Ezhaust gp is obviously not usable in practice since it is generally infinite. One
way to make it practicable, i.e. finite, is to make stronger hypotheses on the
behaviour of Mp. These testing hypotheses represent and formalize common test
practices; for instance, identifying subdomains of the variables where the pro-
gram is likely to have the same behaviour; in this case, it is no more necessary,
assuming the hypothesis, to have all the ground instances of the variables, but
only one by subdomain. As an example, when testing a stack implementation, it
is commonly assumed that its behaviour, when pushing a value on a given stack,
then poping, does not depend on the value. Such hypotheses are called unifor-
mity hypotheses. There are other possible patterns of hypotheses, for instance
reqularity hypotheses, etc [12].

The choice of these hypotheses is driven by the specification. For instance,
it is shown in [10] and [19] how unfolding techniques can be used to identify
uniformity subdomains. Besides, this choice also depends on the acceptable size
of the test set: as usual in testing, the problem is to find a sound trade-off
between cost and quality considerations.

4 Validity, Unbias and Practicability

The hypotheses we have mentioned have the property that, starting from the
axioms of the specification, they allow one to select executable test sets which
are valid and unbiased.

6 It is not surprising to have such assumptions in a specification-based testing ap-
proach. They just express that the program under test, which is seen as a “black
box” should not be too far from the specification; for instance, they have the same
signature; the program modules do not export additional operations.



A test set T is valid if, assuming some hypotheses H :
MpET = Mp € Mod(SP)
T is unbiased if, assuming H :
Mp € Mod(SP) = MpET

Similarly, an oracle success is valid if, assuming H, for every formula ¢ either
success(¢) is undefined, or:

success(¢p) = MplE

success is unbiased if, assuming H, for every formula ¢ either success(¢) is
undefined, or:
MpE¢ = success(¢)

Validity expresses that assuming the hypotheses, uncorrect programs are de-
tected; unbias is the converse property, i.e. correct programs are not rejected.

A sufficient condition to ensure validity and unbias is to select test sets which
are subsets of the exhaustive test set, derived from the hypotheses. However, this
limitation is sometimes too strong. For instance, the need of an oracle may
lead to build an observable exhaustive test data set which is not a subset of
the exhaustive data set (it is however, valid and unbiased); or it is sometimes
efficient to perform some simplifications of the formulas of the data set (see [12]
sections 2.3 and 2.4).

The theoretical framework presented here introduces the important idea that
a test data set cannot be considered (or evaluated, or accepted, etc) indepen-
dently of some hypotheses and of an oracle. Thus, we define a testing context as
a triple (H, T,success) where T is the test data set, H is a set of hypotheses on
Mp and success is an oracle, i.e. a predicate partially defined on &5 (see [11]
and [12] for more details).

The aim of test data selection is then to build practicable testing contexts. A
testing context (H,T,success) is practicable if: T is finite; success is defined on
all the test data in T; and assuming the hypotheses H, T' and success are both
valid and unbiased.

5 The Refinement Preorder

A starting point of the “testing elaboration process” directly results from the
specification; it is called the basic testing context: (Adequatey,, the azioms, the
undefined oracle). Then, the refinement preorder allows to derive a practicable
testing context from the basic testing context (by successive refinements).

The refinement preorder:
Let TCy = (Hy, Ty, successy) and TCo = (Ha, To, success2) be two test-
ing contexts. T'Cy refines TC, means that:



— “the hypotheses about the program under test may increase”
Hy, — H;
— “under the hypotheses H,, T reveals as many errors as 7 does”

Under the hypotheses Hy, Mp =Ty = Mp E T}

— “under the hypotheses Hs, the oracle successy is more defined than
success; and reveal as many errors as success; does”
Under the hypotheses Hs, if success:(¢) is defined then successy(¢)
is defined too and

successy (@) = success(¢)

Example:

Let us assume that TCy = (Hy, T U {p(z,s)}, success) where p(z, s) is
the formula: pop(push(z, s)) = s, the variables 2 and s being respectively
of types natural numbers and stacks. Let Unif,(p) be the uniformity
hypothesis mentionned at the end of section 3. This hypothesis allows
us to replace the occurrence of z in ¢(z,s) by one arbitrary chosen
value, e.g. 3. Thus T'Cy = (Hy AUnif.(v), T U {p(3,s)}, success) is a
refinement of T'C';, whatever H; and success are. Some other examples
of refinements are given in [12], including oracle refinements.

It is not difficult to prove that if (H,T, success) refines the basic testing context
then T is valid. Moreover if T is a subset of one of the exhaustive test sets men-
tioned above and in Section 6, then it is unbiased. Validity and unbias of the
oracle success is somewhat more difficult to ensure in general [11][12], however
these oracle properties will be trivially ensured when considering the institution
of “observational semantics of algebraic specifications” described in Section 6.
Consequently, our refinement preorder provides a way for deriving practicable
testing contexts from the basic testing context: it is sufficient to stop the refine-
ment process when T is finite and included in the definition domain of the oracle
success. Indeed, in [10] and [12] we present a tool which follows this refinement
preorder to automatically produce test data sets from algebraic specifications.

6 Changing of Institution

We have shown on Example 1 how to derive, in the “ADJ institution” a triple
(minimal hypothesis, exhaustive test set, equality oracle) in a canonical way. In
the sequel we will call this triple (Hmin 47, EwhaustADJﬂp, Eqapy)- It is
interesting to look at such derivations for some other semantic approaches of
algebraic specifications.



Example 2 (operational semantics of algebraic specifications):

Let us consider that the semantics of an algebraic specification SP = <
Y, E > is the term rewriting system obtained from E by orientation of
the equations”. The corresponding definition of satisfaction is:

MpEE < (VteTyg, MpEt=t])

t] being a normal from, i.e. we consider the usual reflexive, symmetric
and reflexive closure of the one-step rewriting relation, on ground terms.

This leads to the following exhaustive test set for a specification SP:

Ezhaustpg sp ={t =t [t € Ts}

and the minimal hypothesis Hminppg is that Mp is a Y-interpretation. It
is possible to use the same patterns of testing hypotheses, i.e. uniformity and
regularity, as for Example 1. One can remark that Hmin ppg does not require
Mp to be finitely generated w.r.t. X. This is due to the way the satisfaction
relation is defined.

The basic testing context is defined by Hmin ppg, Exhaust TRS.SP- Each
t} can be computed by an ASSPEGIQUE-like [20] or an OBJ-like system [21] and
the oracle procedure is an equality decision, similar to the oracle of Example 1.

Let us consider now another example of institution which is particularly
interesting since it nicely deals with the oracle problem.

Example 3 (observational semantics of algebraic specifications):
We consider here that the class of models of SP = < X', E, Obs > is the
class Beh(SP) as defined by [22, 14, 23] and others. Obs is a subset of
the sorts of SP, called the observable sorts.

The notion of observable contexts is crucial for observational semantics:
an observable context over a sort s is a YX-term C of observable sort,
with exactly one occurrence of one variable of sort s. Then, a X-algebra

A satisfies an equation e = < L,R > iff C[(L)] = C[B(R)] for all
assignements 6 and all observable contexts C' over the sort of e.

Then the observational exhaustive test set for a specification SP is:

Ezxhaust npg gp = {C[t] = C[t'] | t,t' € 5, (t =t') € Exhaust ypj gp»
C observable context over s}
and Hmin pg = Adequatey:.

Remark:

Let us note that algebraic specifications with observational semantics
is not an institution in general, as proved in [23], because the so-called
“satisfaction condition” is not satisfied. However, in the particular case

" When this TRS is confluent and terminating, this ensures the existence of at least
one model.



of program testing, this condition is fulfilled because the considered pro-
grams have a fixed observational signature which corresponds to the
observable types and operations of the programming language. Anyway,
the satisfaction condition is never used in our framework (we only need
an explicit definition of the satisfaction relation).

This institution is interesting for our testing purpose since it provides a way of
solving the oracle problem with weak hypotheses: let us take as Obs the set of
predefined sorts (with equality) of the programming language. It is sensible to
assume that these equality implementations are correct (however, it remains a
hypothesis). Then the oracle decision just uses these equalities. This approach
is reported in [11] and [12].

More generally, in order to apply our formal testing approach, the institu-
tion under consideration must provide a way of defining the exhaustive test set
Ezhaustgp as well as a way of characterizing a correct oracle success. Roughly
speaking, the institution should provide us with a notion of “ground formulas”
canonically derived from a set of axioms (the exhaustive test set), as well as
a practicable definition of the satisfaction of ground atoms and some satisfac-
tion rules associated with the connectives. Notice that this can be difficult, for
instance if existential quantifiers are allowed in the specifications.

7 Testing and proving

One of the possible continuation of this work may be the definition of a verifi-
cation framework where proving and testing would complement each other, in a
way similar to proofs and refutations in mathematics [24]. A natural idea is to
prove the hypotheses. It is not clear that it is always worth the effort: in Exam-
ple 3, proving the oracle hypothesis can be very costly, and not truly necessary
; on the contrary, Adequateysx can be proved easily if the programming language
provides a well-defined encapsulation mechanism; some uniformity hypotheses
could be verified by static analysis of the program. This point deserves further
reflections: this implies to have a common theoretical background for testing and
proving. Note that our ideas in this area are very tentative; they are reported in
the following part of this paper for the purpose of opening a discussion.

A first obvious difference between proving and testing is that a proof works
on the text of the program (let us call it P) and that a test exercises the system
obtained from P, i.e. in our framework Mp. However, it is possible to exhibit
some similarities. Let us consider a proof method i.e. some set of inference rules
allowing to deduce facts of the form:

F correctness(P, SP)

where correctness(P, SP) is the so-called “correctness theorem”, or the “proof
obligation” associated with the development of P from SP [25], we can consider
that it is an oracle. The set of properties required by SP (or a subset of it) can



be directly considered as a part of the test set occurring in our testing contexts.
In this case, we assume some “Birkoff-like” hypothesis, namely :

F correctness(P,¢) <= Mp|=¢

This hypothesis means that it is assumed that both the correctness theorem and
the execution support of P (i.e. translators, operating system) are consistent
with the semantics Mp of P ... Similar issues are studied in the perspective of
software proving in the ProCoS research project [26].

Conclusion

We propose a formalization of black-box testing, i.e. of those testing strategies
which do not depend of the program structure, but on its specification only. This
approach is based on formal specifications and it seems to be rather general and
applicable to a significant class of formalisms. Moreover, we have introduced
a notion of testing hypothesis which expresses the gap between the success of
a test and correctness, and which could bring a way of combining testing and
proving.

As soon as specifications are handled in a formal framework and the testing
strategies are expressed as hypotheses (i.e. formulas), one can use proof-oriented
tools for the selection of test data sets. These tools depend on the kind of formal
specification in use: in [10] and [12] we present a tool based on “Horn clause
logic” which allows one to deal with algebraic specifications and produces test
sets corresponding to the combination of some general hypothesis schemes. Our
tool is even more elaborated since it helps in the choice of hypotheses.
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