
A Formal Approach to Software TestingGilles Bernot1, Marie-Claude Gaudel2 and Bruno Marre31 LIENS, URA CNRS 1327, Ecole Normale Sup�erieure, 45 rue d'Ulm,F-75230 Paris cedex 05, email: bernot@frulm632 LRI, URA CNRS 410, Universit�e PARIS-SUD, F-91405 Orsay cedex,email: mcg@frlri61.bitnet3 LRI, URA CNRS 410, Universit�e PARIS-SUD, F-91405 Orsay cedex,email: marre@frlri61.bitnetAbstract. This paper addresses the problem of the formalization ofsoftware testing. More precisely, we are concerned with the use of formalspeci�cations for guiding the testing activity. This kind of software test-ing is often called \functional testing." Formal speci�cations provide abasis for what we call \formal testing": i.e. the de�nition of testing in aformal framework which makes explicit the relationship between testingand correctness. Besides, it provides some grounds for the study of thecomplementarity of testing and proving.IntroductionSoftware testing is sometimes considered as intrinsically empirical, without pos-sibility of theoretical grounds. There is some evidence that it is not the case: seefor instance [1] and [2] for some accounts of the research in the area and [3] or[4] for some theoretical foundations.This paper discusses the use of formal speci�cations for guiding the testingactivity and for formalizing it. It is well-known that one of the advantages offormal speci�cations is to give the possibility of correctness proofs of programs.We believe that formal speci�cations also provide a basis for what we call \for-mal testing": i.e. the de�nition of testing in a formal framework which makesexplicit the relationship between testing and correctness. Besides, it providessome grounds for the study of the complementarity of testing and proving.Moreover, such a formal approach to testing has proved to be a good basisfor automatizing the selection of test data sets from formal speci�cations [5],and provides a better understanding of some common test practices.We present brie
y here some new developments of a research activity whichhas been reported in [6, 7, 8, 9, 5, 10], and more recently in [11] and [12]. Ourprevious results were specialized to positive conditional algebraic speci�cations.We show in this paper that it is possible to work in the more general frame-work of institutions [13]. It makes it possible to consider a larger class of formalspeci�cations; it makes clearer the relation between the semantics of the formalspeci�cations and the corresponding testing process; moreover, changing of in-stitution often correspond to changes in the kind of properties expressible in theformal speci�cation: thus it allows to test the same program against di�erentpoints of view.



1 Formal speci�cations and correctnessBrie
y, a formal speci�cation method (institution) is given by a syntax and asemantics.{ The syntax is de�ned by a notion of signature; with each signature � isassociated a set of sentences �� . �� contains all the well-formed formulasbuilt on �, some variables, some logical connectives and quanti�ers.{ The semantics is de�ned by a class of �-interpretations, Int� , and a satis-faction relation on Int� � �� denoted by j=. For each �-interpretation Aand for each �-formula �, \A j= �" should be read as \A satis�es �".In this framework, a formal speci�cation is a pair SP = (�;Ax) such that Axis a (�nite) subset of �� .The class of interpretations satisfying SP is called the class of models of SPand is denoted by Mod(SP):Mod(SP) = f A 2 Int� j A j= Ax gThe notions of signature, sentence, interpretation, and satisfaction depend onthe kind of formal speci�cation, for instance equational algebraic speci�cations,temporal logic,. . .Let SP be a formal speci�cation and P be a program. It is possible to verify(by proving or by testing) the adequacy or inadequacy of P with respect to SPif the semantics of P and SP are expressible in some common framework. As weare interested in dynamic testing4, this role is ensured here by the concept ofan interpretation for a given signature: intuitively a �-interpretation is a set ofvalues plus, for each name in the signature �, an operation of the relevant arityon these values. We consider that P de�nes a �-interpretation MP . Then, thequestion of the correctness of P with respect to SP becomes: does MP belongto the class of models of SP ?2 Testing a program against a formulaIn our framework, a test data5 is a �-formula �(X). As said above, �(X) is awell-formed composition of some predicates, logical connectives, operation namesof �, and variables in X. A test data is executable by a program P if it is aground formula and if P actually de�nes a �-interpretation, i.e. P providesan implementation of every operation of the signature. Under these conditions,running a test � consists of computing byMP the operations of � which occur in� and checking that the results returned by MP satisfy the property required by4 i.e. test which consists of several executions of the program on a �nite subset of itsinput domain, while static testing relies on some analysis of the program text.5 In protocol testing, what we call \test data" is commonly called \test purpose".



the connectives. For instance, let f, g, h, a, b belong to �, let _ be a connective,x,y some variables; and �(x; y) the following formula:( f(x; y) = g(x) ) _ ( f(x; y) = h(y) )Let us note fP , gP , ... the functions computed by P for f, g, ... . A test data forthe formula above is:( f(a; b) = g(a) ) _ ( f(a; b) = h(b) )Running this test consists of computing the three values fP (aP ; bP ), gP (aP ),hP (bP ) and checking that the �rst one is equal either to the second one, or tothe third one.This view of program testing is just a generalization of the classical way ofrunning tests, where the program is executed for a given input, and the resultis accepted or rejected: in this case, the formula is the input-output relationrequired for the program.There are some cases where it is not possible to decide whether or not anexecution returns a correct result, mainly for reasons of insu�cient observabilityof MP : a property required by the speci�cation may not be directly observableusing the program under test (see for instance [14]). It is an aspect of the so-called oracle problem: the oracle is some decision process which should be able todecide, for each test data � whether � is successfully run or not when submittedto the program P: Providing such an oracle is not always trivial ([15, 16]) andmay be impossible for some test data. An example, among many others, is howto decide that the result of a compiler for a given source program is correct, i.e.that the generated code is equivalent, in some way to be de�ned, to this sourceprogram.3 Exhaustive data sets, HypothesesLet us come back to the notion of correction and the satisfaction relation. As anexample of an institution, let us consider equational algebraic speci�cations asde�ned in [17].Example 1: In [17] the satisfaction relation is stated as\ A �-equation is a pair e = < L;R > where L;R 2 T�(X )s for somesort s. Let var(e) = var(L) [ var(R) . . . A �-algebra A satis�es e i��(L) = �(R) for all assignements � : Y ! A where Y = var(e). If E is aset of �-equations, then A satis�es E i� A satis�es every e 2 E ".(Where � is the unique extension of � to T�(X )).For a given speci�cation, this de�nition naturally leads to the following test dataset:



De�nition:given an equational algebraic speci�cation SP = < �;E >, the exhaus-tive test data set, ExhaustSP , is the set of all ground instances of allthe equations in E.ExhaustSP = f�(�) j � 2 E ; range(�) = T�gwhere T� is the set of ground terms on �.This test set is exhaustive with respect to the speci�cation, not with respect tothe program, since we limit the assignments to those values of MP which aredenotable by some term of T� . It means that the success of this test set willensure correctness only if MP is �nitely generated with respect to �: Thus wehave introduced an additional hypothesis on MP (the �rst one was that MP isa �-interpretation). We note this hypothesis Adequate�(MP )6. Let us assumethat we have a correct oracle procedure named success; in this institution, as\=" is the only predicate, the oracle is a procedure which is able to decide, giventwo values of MP , whether or not they represent the same abstraction in SP(cf. the identify step in [18]). Now, we have, assuming Adequate�(MP ) :success(ExhaustSP ) () MP 2Mod(SP)ExhaustSP is obviously not usable in practice since it is generally in�nite. Oneway to make it practicable, i.e. �nite, is to make stronger hypotheses on thebehaviour ofMP . These testing hypotheses represent and formalize common testpractices; for instance, identifying subdomains of the variables where the pro-gram is likely to have the same behaviour; in this case, it is no more necessary,assuming the hypothesis, to have all the ground instances of the variables, butonly one by subdomain. As an example, when testing a stack implementation, itis commonly assumed that its behaviour, when pushing a value on a given stack,then poping, does not depend on the value. Such hypotheses are called unifor-mity hypotheses. There are other possible patterns of hypotheses, for instanceregularity hypotheses, etc [12].The choice of these hypotheses is driven by the speci�cation. For instance,it is shown in [10] and [19] how unfolding techniques can be used to identifyuniformity subdomains. Besides, this choice also depends on the acceptable sizeof the test set: as usual in testing, the problem is to �nd a sound trade-o�between cost and quality considerations.4 Validity, Unbias and PracticabilityThe hypotheses we have mentioned have the property that, starting from theaxioms of the speci�cation, they allow one to select executable test sets whichare valid and unbiased.6 It is not surprising to have such assumptions in a speci�cation-based testing ap-proach. They just express that the program under test, which is seen as a \blackbox" should not be too far from the speci�cation; for instance, they have the samesignature; the program modules do not export additional operations.



A test set T is valid if, assuming some hypotheses H :MP j= T =) MP 2Mod(SP)T is unbiased if, assuming H :MP 2Mod(SP) =) MP j= TSimilarly, an oracle success is valid if, assuming H , for every formula � eithersuccess(�) is unde�ned, or:success(�) =) MP j= �success is unbiased if, assuming H , for every formula � either success(�) isunde�ned, or: MP j= � =) success(�)Validity expresses that assuming the hypotheses, uncorrect programs are de-tected; unbias is the converse property, i.e. correct programs are not rejected.A su�cient condition to ensure validity and unbias is to select test sets whichare subsets of the exhaustive test set, derived from the hypotheses. However, thislimitation is sometimes too strong. For instance, the need of an oracle maylead to build an observable exhaustive test data set which is not a subset ofthe exhaustive data set (it is however, valid and unbiased); or it is sometimese�cient to perform some simpli�cations of the formulas of the data set (see [12]sections 2.3 and 2.4).The theoretical framework presented here introduces the important idea thata test data set cannot be considered (or evaluated, or accepted, etc) indepen-dently of some hypotheses and of an oracle. Thus, we de�ne a testing context asa triple (H,T,success) where T is the test data set, H is a set of hypotheses onMP and success is an oracle, i.e. a predicate partially de�ned on �� (see [11]and [12] for more details).The aim of test data selection is then to build practicable testing contexts. Atesting context (H,T,success) is practicable if: T is �nite; success is de�ned onall the test data in T; and assuming the hypotheses H , T and success are bothvalid and unbiased.5 The Re�nement PreorderA starting point of the \testing elaboration process" directly results from thespeci�cation; it is called the basic testing context : (Adequate�, the axioms, theunde�ned oracle). Then, the re�nement preorder allows to derive a practicabletesting context from the basic testing context (by successive re�nements).The re�nement preorder:Let TC1 = (H1; T1; success1) and TC2 = (H2; T2; success2) be two test-ing contexts. TC2 re�nes TC1 means that:



{ \the hypotheses about the program under test may increase"H2 =) H1{ \under the hypotheses H2, T2 reveals as many errors as T1 does"Under the hypotheses H2; MP j= T2 =) MP j= T1{ \under the hypotheses H2, the oracle success2 is more de�ned thansuccess1 and reveal as many errors as success1 does"Under the hypotheses H2, if success1(�) is de�ned then success1(�)is de�ned too and success2(�) =) success1(�)Example:Let us assume that TC1 = (H1; T [f'(x; s)g; success) where '(x; s) isthe formula: pop(push(x; s)) = s, the variables x and s being respectivelyof types natural numbers and stacks. Let Unifx(') be the uniformityhypothesis mentionned at the end of section 3. This hypothesis allowsus to replace the occurrence of x in '(x; s) by one arbitrary chosenvalue, e.g. 3. Thus TC2 = (H1 ^ Unifx('); T [ f'(3; s)g; success) is are�nement of TC1, whatever H1 and success are. Some other examplesof re�nements are given in [12], including oracle re�nements.It is not di�cult to prove that if (H;T; success) re�nes the basic testing contextthen T is valid. Moreover if T is a subset of one of the exhaustive test sets men-tioned above and in Section 6, then it is unbiased. Validity and unbias of theoracle success is somewhat more di�cult to ensure in general [11][12], howeverthese oracle properties will be trivially ensured when considering the institutionof \observational semantics of algebraic speci�cations" described in Section 6.Consequently, our re�nement preorder provides a way for deriving practicabletesting contexts from the basic testing context: it is su�cient to stop the re�ne-ment process when T is �nite and included in the de�nition domain of the oraclesuccess. Indeed, in [10] and [12] we present a tool which follows this re�nementpreorder to automatically produce test data sets from algebraic speci�cations.6 Changing of InstitutionWe have shown on Example 1 how to derive, in the \ADJ institution" a triple(minimal hypothesis, exhaustive test set, equality oracle) in a canonical way. Inthe sequel we will call this triple (HminADJ ; ExhaustADJ ;SP ; EqADJ ). It isinteresting to look at such derivations for some other semantic approaches ofalgebraic speci�cations.



Example 2 (operational semantics of algebraic speci�cations):Let us consider that the semantics of an algebraic speci�cation SP = <�;E > is the term rewriting system obtained from E by orientation ofthe equations7. The corresponding de�nition of satisfaction is:MP j= E () (8t 2 T� ; MP j= t = t#)t# being a normal from, i.e. we consider the usual re
exive, symmetricand re
exive closure of the one-step rewriting relation, on ground terms.This leads to the following exhaustive test set for a speci�cation SP :ExhaustTRS ;SP = ft = t# j t 2 T�gand the minimal hypothesis HminTRS is that MP is a �-interpretation. Itis possible to use the same patterns of testing hypotheses, i.e. uniformity andregularity, as for Example 1. One can remark that HminTRS does not requireMP to be �nitely generated w.r.t. �. This is due to the way the satisfactionrelation is de�ned.The basic testing context is de�ned by HminTRS , ExhaustTRS ;SP . Eacht# can be computed by an ASSPEGIQUE-like [20] or an OBJ-like system [21] andthe oracle procedure is an equality decision, similar to the oracle of Example 1.Let us consider now another example of institution which is particularlyinteresting since it nicely deals with the oracle problem.Example 3 (observational semantics of algebraic speci�cations):We consider here that the class of models of SP = < �;E;Obs > is theclass Beh(SP) as de�ned by [22, 14, 23] and others. Obs is a subset ofthe sorts of SP , called the observable sorts.The notion of observable contexts is crucial for observational semantics:an observable context over a sort s is a �-term C of observable sort,with exactly one occurrence of one variable of sort s. Then, a �-algebraA satis�es an equation e = < L;R > i� C[�(L)] = C[�(R)] for allassignements � and all observable contexts C over the sort of e.Then the observational exhaustive test set for a speci�cation SP is:ExhaustOBS ;SP = fC[t] = C[t0] j t; t0 2 s; (t = t0) 2 ExhaustADJ ;SP ;C observable context over sgand HminOBS = Adequate�.Remark:Let us note that algebraic speci�cations with observational semanticsis not an institution in general, as proved in [23], because the so-called\satisfaction condition" is not satis�ed. However, in the particular case7 When this TRS is con
uent and terminating, this ensures the existence of at leastone model.



of program testing, this condition is ful�lled because the considered pro-grams have a �xed observational signature which corresponds to theobservable types and operations of the programming language. Anyway,the satisfaction condition is never used in our framework (we only needan explicit de�nition of the satisfaction relation).This institution is interesting for our testing purpose since it provides a way ofsolving the oracle problem with weak hypotheses: let us take as Obs the set ofprede�ned sorts (with equality) of the programming language. It is sensible toassume that these equality implementations are correct (however, it remains ahypothesis). Then the oracle decision just uses these equalities. This approachis reported in [11] and [12].More generally, in order to apply our formal testing approach, the institu-tion under consideration must provide a way of de�ning the exhaustive test setExhaustSP as well as a way of characterizing a correct oracle success. Roughlyspeaking, the institution should provide us with a notion of \ground formulas"canonically derived from a set of axioms (the exhaustive test set), as well asa practicable de�nition of the satisfaction of ground atoms and some satisfac-tion rules associated with the connectives. Notice that this can be di�cult, forinstance if existential quanti�ers are allowed in the speci�cations.7 Testing and provingOne of the possible continuation of this work may be the de�nition of a veri�-cation framework where proving and testing would complement each other, in away similar to proofs and refutations in mathematics [24]. A natural idea is toprove the hypotheses. It is not clear that it is always worth the e�ort: in Exam-ple 3, proving the oracle hypothesis can be very costly, and not truly necessary; on the contrary, Adequate� can be proved easily if the programming languageprovides a well-de�ned encapsulation mechanism; some uniformity hypothesescould be veri�ed by static analysis of the program. This point deserves furtherre
ections: this implies to have a common theoretical background for testing andproving. Note that our ideas in this area are very tentative; they are reported inthe following part of this paper for the purpose of opening a discussion.A �rst obvious di�erence between proving and testing is that a proof workson the text of the program (let us call it P ) and that a test exercises the systemobtained from P , i.e. in our framework MP . However, it is possible to exhibitsome similarities. Let us consider a proof method i.e. some set of inference rulesallowing to deduce facts of the form:` correctness(P;SP )where correctness(P;SP ) is the so-called \correctness theorem", or the \proofobligation" associated with the development of P from SP [25], we can considerthat it is an oracle. The set of properties required by SP (or a subset of it) can



be directly considered as a part of the test set occurring in our testing contexts.In this case, we assume some \Birko�-like" hypothesis, namely :` correctness(P; �) () MP j= �This hypothesis means that it is assumed that both the correctness theorem andthe execution support of P (i.e. translators, operating system) are consistentwith the semantics MP of P . . . Similar issues are studied in the perspective ofsoftware proving in the ProCoS research project [26].ConclusionWe propose a formalization of black-box testing, i.e. of those testing strategieswhich do not depend of the program structure, but on its speci�cation only. Thisapproach is based on formal speci�cations and it seems to be rather general andapplicable to a signi�cant class of formalisms. Moreover, we have introduceda notion of testing hypothesis which expresses the gap between the success ofa test and correctness, and which could bring a way of combining testing andproving.As soon as speci�cations are handled in a formal framework and the testingstrategies are expressed as hypotheses (i.e. formulas), one can use proof-orientedtools for the selection of test data sets. These tools depend on the kind of formalspeci�cation in use: in [10] and [12] we present a tool based on \Horn clauselogic" which allows one to deal with algebraic speci�cations and produces testsets corresponding to the combination of some general hypothesis schemes. Ourtool is even more elaborated since it helps in the choice of hypotheses.AcknowledgementsThis work has been partially supported by the PRC \Programmation et Outilspour l'Intelligence Arti�cielle" and the ESPRIT basic research actions COM-PASS and PDCS.References1. Proc. 1st ACM-IEEE Workshop on Software Testing, Ban�, July 1986.2. Proc. 2nd ACM-IEEE Workshop on Software Testing, Veri�cation, and Analysis,Ban�, July 1988.3. Goodenough J.B., Gerhart S.L. Towards a theory of test data selection. IEEEtrans. soft. Eng. SE-1, 2, 1975. Also: SIGPLAN Notices 10 (6), 1975.4. Gourlay J.S. A mathematical framework for the investigation of testing. IEEETransactions on Software Engineering, vol. SE-9, no 6, november 1983.5. Marre B. G�en�eration automatique de jeux de tests, une solution : Sp�eci�cationsalg�ebriques et Programmation logique. Proc.Programmation en Logique, Tregastel,CNET-Lannion, pp.213-236, May 1989.6. Boug�e L. A proposition for a theory of testing: an abstract approach to the testingprocess. Theoretical Computer Science 37, 1985.
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