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Abstract:

We give the main definitions and results of a new framework for algebraic specifi-
cations: the framework of label algebras. The main idea underlying our approach
is that the semantics of algebraic specifications can be deeply improved when the
satisfaction relation is defined via assignments with range in terms instead of values.
Surprisingly, there are several cases where even if two terms have the same value, it is
possible that one of them is a suitable instance of a variable in an formula while the
other one is not. It is for instance the case for algebraic specifications with exception
handling or with observability features. We show that our approach is a useful tool
for solving this problem.

Keywords: algebraic specifications, exception handling, initial semantics, observ-
ability, subsorting, structured specifications.

1 Introduction

This paper is an overview of a new framework for algebraic specifications: the framework of
label algebras. Many applications of abstract data types require specialized semantics (e.g. ob-
servability issues, exception handling, partial functions, etc). For such applications, it has been
shown that the simple pioneer semantics proposed by the ADJ group [GTW78] cannot be applied
directly, they often lead to inconsistencies, or unreadable specifications. The reason why simple
semantics are not suitable is often that the scope of an axiom is too wide. When variables are
universally quantified over a sort, several instances of an axiom can lead to inconsistencies. For
example, for exception handling, the scope of certain axioms must be restricted to non excep-
tional assignments only; for observability purposes, only observable consequences of an axiom
must be taken into account (usually via observable contexts); for partial functions, only assign-
ments belonging to some definition domains must be considered; etc. Several powerful general
frameworks, such as order sorted algebras [Gog78] or unified algebras [Mos89] can be used to
restrict the scope of the axioms, allowing a more elaborated definition of the acceptable assign-
ments. These frameworks usually consider assignments which substitute values for variables.
Our claim in this paper is that, for some cases, assignments which range in terms are more
suitable. Surprisingly, it turns out that even if two terms have the same value, it is possible
that one of them is a suitable instance of a variable while the other one is not. For instance,
in [BB91], it is shown that observability can sometimes require to characterize a set of observable
terms while sets of observable values would not be powerful enough. In the same way, [BBC86]
pointed out that exception handling with bounded data structures requires to characterize a set
of “Ok-terms” and that considering only sets of “Ok-values” leads to inconsistencies (see Sec-
tion 2). Label algebras will allow us to “type” terms instead of values: twos terms which have
the same value can be labelled with distinct labels, while a classical “type” (even in order sorted
algebras) must be shared by all the terms having the same value. Thus, label algebras can be
considering as a tool to avoid inconsistencies where the “types” of terms (i.e. labels) play a role
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similar to sorts and subsorts in [Gog78]. As described in Section 5.2, we have already used label
algebras to define exception algebras (an algebraic framework for exception handling) but the
application domain of label algebras seems to be much more general than exception handling.

In Section 2, from an example with exception handling, we will point out the importance
of terms in the field of first order algebraic specifications and we will show the necessity of
“labelling” terms in order to easily specify exceptions. In Section 3, we will define the framework
of label algebras. The main results (e.g. initiality results) will be established in Section 4. In
Section 5, we will first sketch out how far this framework can be applied to several classical
subjects of abstract data types, such as partial functions, observability features, etc; and then,
we will rapidly explain how a new formalism of exception algebras is defined, related to the one
of label algebras. Recapitulation and perspectives can be found in Section 6.

We assume that the reader is familiar with algebraic specifications [GTW78][EM85][GB84]
and with the elementary definitions of category theory [McL71].

2 The importance of the terms within algebraic specifications

We have claimed that several approaches of algebraic specifications require to take care of terms.
Let us mention two applications whose semantics closely depends on terms.

First, let us consider algebraic specifications with observability issues. A crucial aspect of
observational specifications is that “what is observable” must be carefully specified. It is often
very difficult to prove that two values are observationally equal (while it is sufficient to exhibit two
observations which distinguish them to prove that they are distinct). In [Hen89], R. Hennicker
uses a predicate Obs to characterize the observable values. This powerful framework leads to
legible specifications and it provides some theorem proving methods. Nevertheless, it has been
shown in [BB91] that there are some specifications which are inconsistent when observability is
carried by values and that these inconsistencies can be avoided when observability is expressed
which respect to a subset ΣObs of the signature Σ. The use of this subset of operations leads
consequently to consider a subset of terms instead of values (see also Section 5.1).

Now, we will go in more details with an example containing exception handling features. Since
the works of [GTW78], many algebraic approaches have been proposed to treat many exception
handling features such as declaration of exceptions, recovery, etc. For instance, [Gog78] [FGJM85]
[GM89] [GDLE84] [Gog87] give solutions to the algebraic treatment of “intrinsic errors” (such
as pred(0) or pop(empty)), with implicit error propagation and possible recoveries, but they are
not able to treat the other kind of errors, especially bounded data structures (see [Bre91] for the
crucial importance of bounded data structures). The most difficult point is to simultaneously
handle bounded data structures and certain recoveries of exceptional values:

Example 1 In order to specify bounded natural numbers it is indeed not too difficult to specify
that all the values belonging to [0 . . . maxint] are Ok-values [BBC86]; let us assume that this
is done. We also have to specify that the operation succ raises an exception when applied to
maxint, e.g. TooLarge; let us assume that this is done too. When specifying the operation pred,
we must have the following axiom:

pred(succ(x)) = x(1)

which is a “normal property” and, as such, should be understood with certain implicit precondi-
tions such as “if x and succ(x) are Ok-values” for example. Let us assume now that we want to
recover all TooLarge values on maxint. We will then necessarily have succ(maxint) = maxint.

Since these two values are equal, we will have to choose: either both of them are erroneous
values, or both of them are Ok-values. The first case is not acceptable because it does not
cope with our intuition of “recovery.” (Moreover, when considering the value m = maxint − 1
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we clearly need that pred(maxint) = m, as a particular case of our “normal property” about
pred. Thus succ(m) = maxint must be considered as a normal value.) Unfortunately, since
succ(maxint) is then a normal value, x = maxint is an acceptable assignment for (1) and we
get the following inconsistency: m = pred(maxint) = pred(succ(maxint)) = maxint which
propagates in the same way, and all values are equal to 0.

Let us point out that subsorting [Gog78] cannot be used to specify such bounded data struc-
tures with recoveries. The axiom (1) necessarily gives rise to a similar paradox because sorts are
attached to values. Two terms having the same value must share the same subsorts; consequently
maxint and succ(maxint) cannot be distinguished.

Indeed, it is precisely the difference between “exception handling” and “error handling.” The
term succ(maxint) is not erroneous but it is exceptional while the term maxint is not exceptional;
the semantics must take this fact into account. This leads to the following idea: the term maxint

is an acceptable assignment for the variable x in the equation (1) while succ(maxint) is not,
even though maxint and succ(maxint) have the same value. Thus, exception handling requires
taking care of terms inside the algebras and good functional semantics for exception handling
should allow such distinctions. This idea has been formalized in [BBC86], where “Ok-terms” are
declared: the term succmaxint(0) is “labelled” by Ok while the term succmaxint+1(0) is not;1 and
the acceptable assignments of a normal property (called “Ok-axiom”) are implicitly restricted to
Ok-terms only. This solves the inconsistencies due to the recovery succ(maxint) = maxint with
the axiom (1).

These considerations have been our main motivation to develop the framework of label alge-
bras.

Usually, algebras are (heterogeneous) sets of values [GTW78][EM85]. Let us remember that
a signature is usually a couple < S,Σ > where S is a finite set of sorts (or type names) and Σ
is a finite set of operation names with arity in S; the objects (algebras) of the category Alg(Σ)
are heterogeneous sets, A, partitioned as A = {As}s∈S , and with, for each operation name
“f : s1 . . . sn → s” in Σ (0 ≤ n), a total function fA : As1

× . . . × Asn
→ As ; the morphisms of

Alg(Σ) (Σ-morphisms) being obviously the sort preserving, operation preserving applications.
As a consequence of our remarks, labelled terms must also be considered as “first class citizen

objects.” Given an algebra A, the satisfaction of a normal property must be defined using
terms (the usual definition only involves values). A simple idea could be to consider both A

and TΣ (the ground term algebra over Σ). Unfortunately, finitely generated algebras (i.e. such
that the initial Σ-morphism from TΣ to A is surjective) are not powerful enough to cope with
enrichment, parametrization or abstract implementation. How is one to deal with both terms
and non reachable values ? This question is solved by the free Σ-term algebra TΣ(A). Let us
remember its definition.

Notation 1 Given a heterogeneous “set of variables” V = {Vs}s∈S, the free Σ-term algebra
with variables in V is the least Σ-algebra TΣ(V ) (with respect to the preorder induced by the
Σ-morphisms) such that V ⊆ TΣ(V ).
Since V is not necessarily enumerable, we can consider TΣ(A) for every algebra A. An element
of TΣ(A) is a Σ-term such that each leaf contains either a constant of Σ, or a value of A.

For example, if A = Z = {. . . ,−2,−1, 0, 1, 2, . . .} is the algebra of all integers over the
signature {zero,succ_,pred_}, then succ(succ(zero)), succ(succ(0)), succ(1), etc. are distinct
elements of TΣ(Z), even though they have the same value when evaluated in Z.

The main technical point underlying our framework is to systematically use TΣ(A) directly
inside the label algebras. This allows us to have a very precise definition of the satisfaction
relation, using assignments with range in TΣ(A) instead of A. Intuitively, a term reflects the

1succi(0) is an abbreviation for succ(succ(. . . (0) )) where succ appears i times.

3



“history” of a value; it is a “sequence of calculi” which results in a value. Of course, several
histories can provide the same value. This is the reason why labelling is more powerful than
typing: it allows us to “diagnose” the history in order to apply a specific treatment or not.
Nevertheless, we must be able to relate each term to its final value. The canonical evaluation
morphism evalA : TΣ(A) −→ A, deduced from the Σ-algebra structure of A, relates each term
to its final value. Of course, in the end , the satisfaction of an equality must be checked on values;
thus, evalA is a crucial tool for defining the satisfaction relation on equational atoms. However,
the considered assignments can be precisely restricted to certain kinds of terms/histories before
checking equalities on values, and this is the reason why the inconsistencies mentioned before
can be solved via label algebras.

Notation 2 We note A = TΣ(A) and for every Σ-morphism µ : A → B, µ : A → B denotes
the canonical Σ-morphism which extends µ to the corresponding free algebras.

3 Label algebras

3.1 Basic definitions

Definition 1 A label signature is a triple ΣL = < S,Σ, L > where < S,Σ > is an usual
signature and L is a finite set of labels.

A ΣL-algebra is a couple A = (A, {lA}l∈L) where A is a Σ-algebra, and {lA}l∈L is a
L-indexed family such that, for each l in L, lA is a subset of A.

There are no conditions about the subsets lA: they can intersect several sorts, they are not
necessarily disjoint and their union (

⋃

l∈L

lA) does not necessarily cover A.

Definition 2 Let A = (A, {lA}l∈L) and B = (B, {lB}l∈L) be two ΣL-algebras. A ΣL-morphism
h : A → B is a Σ-morphism from A to B such that ∀l ∈ L, h(lA) ⊆ lB.

When there is no ambiguity about the signature under consideration, ΣL-algebras and ΣL-
morphisms will be called label algebras and label morphisms, or even algebras and morphisms.

Definitions 3 The category of all ΣL-algebras and ΣL-morphisms is denoted by AlgLbl(ΣL).
TΣL is the ΣL-algebra such that the underlying Σ-algebra of TΣL is the ground terms algebra

TΣ and for each l in L, lTΣL
is empty.

Triv is the ΣL-algebra such that the underlying Σ-algebra of Triv is the trivial algebra Triv

which contains only one element in Trivs for each s in S and for each l in L, lTriv = Triv.

The ΣL-algebra TΣL (resp. Triv) is clearly initial (resp. terminal) in AlgLbl(ΣL). As usual,
a ΣL-algebra A is called finitely generated iff the initial ΣL-morphism from TΣL to A is an epi-
morphism. Thus, A is finitely generated iff the underlying morphism from TΣ to A is surjective.

Definitions 4 The full subcategory of AlgLbl(ΣL) containing all the finitely generated algebras is
denoted by GenLbl(ΣL). Moreover, the signature ΣL is sensible iff Triv belongs to GenLbl(ΣL).

The category GenLbl(ΣL) has the same initial object as AlgLbl(ΣL), and if ΣL is sensible
(i.e. if there exists at least one ground term of each sort) then it has the same terminal object
too.

Not surprisingly, a “label specification” will be defined by a (label) signature and a set of well
formed formulae (axioms):

Definition 5 Given a label signature ΣL, a ΣL-axiom is a well formed formula built on:
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• atoms: atoms are either equalities (u = v) such that u and v are Σ-terms with variables, u

and v belonging to the same sort, or labelling atoms (w ǫ l) such that w is a Σ-term with
variables and l is a label belonging to L,

• connectives belonging to {¬,∧,∨,⇒}.

(Every variable is implicitly universally quantified.)2

A ΣL-axiom is called positive conditional if and only if it is of the form a1 ∧ . . . ∧ an ⇒ a

where the ai and a are positive atoms (if n = 0 then the axiom is reduced to a).

The predicate “ ǫ ” should be read “is labelled by”.

Definition 6 A label specification is a couple SP =< ΣL,Ax > where ΣL is a label signa-
ture and Ax is a set of ΣL-axioms. SP is called positive conditional iff all its axioms are positive
conditional.

The satisfaction relation is indeed the crucial definition of this section. It is of first importance
to remark that we consider assignments with range in A = TΣ(A) (terms) instead of A (values):

Definition 7 Let A = (A, {lA}l∈L) be a ΣL-algebra.

• A satisfies (u = v), where u and v are two terms of the same sort in A, means that, in A,
evalA(u) = evalA(v) [the symbol “=” being the set-theoretic equality in the carrier of A].

• A satisfies (w ǫ l), where w ∈ A and l ∈ L, means that w ∈ lA [the symbol “∈” being the
set-theoretic membership].

• Given a ΣL-axiom ϕ, A satisfies ϕ, denoted by A |= ϕ, means that for all assignments
σ : V → A (V covering all the variables of ϕ), A satisfies σ(ϕ) according to the “ground
atomic satisfaction” defined above and the truth tables of the connectives.

A satisfies a label specification SP iff A satisfies all its axioms. AlgLbl(SP ) is the full subcategory
of AlgLbl(ΣL) containing all the algebras satisfying SP . A similar notation holds for GenLbl.

Notice that AlgLbl(SP ) or GenLbl(SP ) can be empty categories (for example when SP contains
ϕ and ¬ϕ). Providing that the axioms of SP never contain the connective “¬”, AlgLbl(SP ) has
the same terminal object as AlgLbl(ΣL): Triv. However, as usual, initiality results can be
easily obtained only for positive conditional specifications [WB80]. These results are provided in
Section 4.

3.2 The partial evaluation constraint

Certain applications of label algebras require that if a term t ∈ A is labelled by l then every partial
evaluation of t is still labelled by l. For instance, let us return to observability. The predicate Obs

used by [Hen89] to characterize the observable values can be reflected by a label: t ǫ Ok will now
mean that the term t is observable. Let us consider the algebra A=Z and let us assume that A is
observed via some boolean terms of A. If the term [pred(pred(0)) ≤ succ(succ(0))] is labelled by
Obs, then we clearly would like [pred(−1) ≤ succ(1)] to also be observable (i.e. labelled by Obs),
as well as [−2 ≤ succ(1)], [−2 ≤ 2], or true itself. Similarly, when exception handling is involved,
if the term ((3 + 4) − 5) is an Ok-term (i.e. labelled by Ok), then we probably would like for
(7− 5), or 2, to be also labelled by Ok. More generally, the terms labelled by Ok are sequences
of calculi which contain only “normal treatments.” This means that an exceptional treatment
cannot appear at any stage of the evaluation of such terms. Thus, any partial evaluation of any
term labelled by Ok can also be labelled by Ok. Intuitively, since a term of A reflects the history

2Allowing existential quantifiers is not difficult at all, but the management of the assignments for the satisfac-
tion relation becomes rather tedious. . .
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of a value, if this history does not raise exceptional cases then it can be entirely or partially
forgotten (via partial evaluations); but it cannot be forgotten if the term is exceptional because
exceptional treatments are specified with respect to this history (often via pattern matching).
Thus, this partial evaluation constraint cannot be required for labels which reflect exception
names. It would disallow some recovery cases. (For more details, see Section 5.2.) Summing up,
some labels of a label signature should follow the so called partial evaluation constraint while
some other ones should not.

Definition 8 A constrained label signature is a triple Σ̂L = < S,Σ, L̂ > where < S,Σ > is a
usual signature and L̂ is a couple (L,C) such that L and C are disjoint sets of labels. The labels
of L are called “unconstrained;” the ones of C are called “constrained.” We shall note L̃ = L∪C

the set of all labels, and ΣL̃ = < S,Σ, L̃ > the corresponding (unconstrained) label signature.

A constrained label signature can be seen as a label signature (with respect to L̃) such that
a subset of constrained labels (C) is distinguished.

Definitions 9 Let A be a Σ-algebra and let t be a term in A = TΣ(A).
Let u be (an occurrence of) a subterm of t and let v be any term in A of the same sort as u.

The term t[u ← v] is the term of A obtained by replacing (the considered occurrence of) u by v

in t.
When v is the value evalA(u) of A (remember that A is included in A = TΣ(A)), the term

t[u← evalA(u)] is a partial evaluation of t. More generally, a term t′ is a partial evaluation of
t if it can be obtained via a finite sequence of such partial evaluations.

For example, (7− 5) is a partial evaluation of (3 + 4)− 5 while 6− 4 is not.

Definition 10 Given a constrained label signature Σ̂L. A Σ̂L-algebra is a label algebra over the
signature ΣL̃ which satisfies the following partial evaluation constraint: for every label l in C

and for every term t in A, if t belongs to lA then all partial evaluations of t still belong to lA.
AlgLbl(Σ̂L) is the full subcategory of AlgLbl(ΣL̃) which contains all the Σ̂L-algebras. A similar

notation holds for GenLbl.

Intuitively, the stability of labelling by constrained labels with respect to partial evaluation
means that, as soon as a term has been labelled, one can forget its “old history” without modifying
its constrained labels. Equivalently, since a term represents a sequence of calculi, it means that
constrained labelling does not depend on the particular computational strategy. The only point
which matters is that there exists at least one strategy which yields the constrained label.

Remarks 1 T
ΣL̃

and Triv are constrained label algebras, whatever C is.
If t′ is a partial evaluation of t then evalA(t′) = evalA(t) (the converse property is false).

Moreover, for every constrained label algebra A, as the (constant) term evalA(t) is a partial
evaluation of t, constrained labels are compatible with evalA in the sense that ∀l ∈ C, evalA(lA) ⊆
lA.

The partial evaluation constraint cannot be specified using label axioms.

Definitions 11 Given a constrained signature Σ̂L, a Σ̂L-axiom is simply a ΣL̃-axiom. A
constrained label specification is a pair ŜP = < Σ̂L,Ax > where Σ̂L is a constrained label
signature and Ax is a set of Σ̂L-axioms.

The category AlgLbl(ŜP ) is the full subcategory of AlgLbl(Σ̂L) containing all the algebras satis-
fying Ax (according to the satisfaction relation defined in Definition 7). An object of AlgLbl(ŜP )
is called a ŜP -algebra. (Similar definitions hold for GenLbl(ŜP ).)

A signature name (or specification name, etc.) surrounded by a hat means now “constrained.”
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4 Fundamental results

This section deals with initiality results. We show that the classical results of [GTW78] can be
extended to the framework of label algebras. They are given for constrained label specifications.
Of course, they remain valid for unconstrained label specifications, since a unconstrained speci-
fication SP is a constrained specification ŜP such that C = ∅. For lake of space, the results are
not proved or their proofs are only sketched. Complete proofs can be found in [BL91].

Theorem 1 Let ŜP be a positive conditional Σ̂L-specification. Let X be a ΣL̃-algebra. Let
R be a binary relation over X compatible with the sorts of the signature (i.e. R is a subset of⋃

s∈S

Xs ×Xs). There is a least ŜP -algebra Y such that there exists a label morphism hY : X → Y

and such that (Y, hY ) is compatible with R (i.e. ∀x, y ∈ X, x R y =⇒ hY (x) = hY (y) ).

Sketch of proof: Let F be the family of all couples (Z, hZ : X → Z) compatible with R. Let us

consider the ΣL̃-algebra Y = (Y, {lY }
l∈L̃

) as the quotient algebra of X (hY is the quotient ΣL̃-morphism)
defined by:

• ∀x, y ∈ X, ( hY (x) = hY (y) ⇔ (∀(Z, hZ) ∈ F, hZ(x) = hZ(y)) )

• ∀l ∈ L̃, ∀x ∈ X, ( hY (x) ∈ lY ⇔ (∀(Z, hZ) ∈ F, hZ(x) ∈ lZ) )

For every (Z, hZ) in F , there exists a ΣL̃-morphism µZ : Y → Z defined by ∀x ∈ X, µZ(hY (x)) =
hZ(x). Consequently, if (Y, hY ) belongs to F then it is its smallest element. It is then not too difficult

to prove that (Y, hY ) is compatible with R and that Y satisfies ŜP . This concludes the proof of the
theorem.

Theorem 2 Let ŜP be a positive conditional label specification. AlgLbl(ŜP ) and GenLbl(ŜP ) have
an initial object T

ŜP
. Triv is final in AlgLbl(ŜP ) (and in GenLbl(ŜP ) if Σ̂L is sensible).

Sketch of proof: by using Theorem 1 with R = ∅, X = T
ΣL̃

, we get Y = T
ŜP

.

The purpose of the remainder of this section is to give some basic tools for manipulating
structured positive conditional label specifications. We first define the forgetful functor U asso-
ciated with a structured presentation, then the synthesis functor F , and we prove that F is left
adjoint for U .

Definition 12 Let Σ̂L1 and Σ̂L2 be such that Σ̂L1 ⊆ Σ̂L2 (i.e. S1 ⊆ S2, Σ1 ⊆ Σ2, L1 ⊆ L2 and
C1 ⊆ C2). The forgetful functor U : AlgLbl(Σ̂L2)→ AlgLbl(Σ̂L1) is defined as follows:

• for each Σ̂L2-algebra A, U(A) is the Σ̂L1-algebra B defined by:

∀s ∈ S1, Bs = As ; ∀l ∈ L̃1, lB = lA ∩B ; and ∀f ∈ Σ1, fB = fA ;

• for each Σ̂L2-morphism µ : A → A′, U(µ) : U(A) → U(A′) is the Σ̂L1-morphism µ

restricted to B = U(A) and co-restricted to B′ = U(A′).

Remark 2 B = U(A) satisfies the partial evaluation constraint with respect to L̂1 and U(µ)
clearly preserves the labels of L̃1.

Theorem 3 Let ŜP 1 and ŜP 2 be two label specifications such that ŜP 1 ⊆ ŜP 2. Let U be the
forgetful functor from AlgLbl(Σ̂L2) to AlgLbl(Σ̂L1). The restriction of U to AlgLbl(ŜP 2) can be co-
restricted to AlgLbl(ŜP 1). More generally, given two signatures Σ̂L1 ⊆ Σ̂L2, for all Σ̂L2-algebras
A and for all Σ̂L1-axioms ϕ we have: A |= ϕ =⇒ U(A) |= ϕ

Remark 3 Theorem 3 does not require for the axiom ϕ to be positive conditional.

The reverse implication is not valid in general, as shown in the following example. Conse-
quently, the so-called “satisfaction condition” does not hold for label algebras; the framework
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of label algebras is not an institution [GB84], at least with the natural definitions of signature
morphisms and axiom translations.

Example 2 Let ΣL1 be the label signature defined by S1 = { thesort }, Σ1 = { cst1 : →
thesort } and L1 = { thelabel } (it does no matter if thelabel is constrained or not in this
example). Let ΣL2 be the label signature defined by S2 = S1, Σ2 = { cst1 : → thesort , cst2 :
→ thesort } and L2 = L1. We clearly have ΣL1 ⊂ ΣL2. Let A be the ΣL2-algebra defined by
A = {a = cst1A = cst2A} (A is a singleton) and thelabelA = { a , cst1 } (let us remind that
TΣ2

(A) = { a , cst1 , cst2 }). The ΣL1-algebra U(A) is then characterized by U(A) = {a =
cst1U(A)} and thelabelU(A) = { a , cst1 }; thus, thelabelU(A) = TΣ1

(U(A)). Consequently, U(A)
satisfies the ΣL1-axiom “x ǫ thelabel” while A does not (as cst2 does not belong to thelabelA).

Theorem 4 Let ŜP 1 and ŜP 2 be two positive conditional label specifications such that ŜP 1 ⊆ ŜP 2.
There exists a synthesis functor F : AlgLbl(ŜP 1)→ AlgLbl(ŜP 2) which is a left adjoint for U.

Sketch of proof: For every ŜP 1-algebraA, F (A) is a quotient of TΣ2
(A) defined using Theorem 1, with

a well chosen initial labelling for L̂1. The adjunction can be proved with the Yoneda lemma [McL71].

As usual, the adjunction IA : A → U(F (A)) can be used to define hierarchical consistency
(“no-collapse” property) and sufficient completeness (“no-junk” property) for structured specifi-
cations.

Remark 4 We have shown in this subsection that the framework of label algebras does not
form an institution [GB84], even if restricted to positive conditional axioms because Example 2
shows that we do not have the reverse implication of the satisfaction condition given in the
Theorem 3. Indeed, we have proved that the framework of positive conditional label algebras
form a specification logic which has free constructions [EBO91][EBCO91]. Let us point out that
the specification logic of label algebras has not amalgamations (as defined in [EBCO91]). The
reason a priori is that we show in Section 5.1 that observational semantics can be reflected within
label algebras, and [EBCO91] has proved that observational semantics have not amalgamations
in general. It is the same for extensions (at least if we do not restrict the definition of morphisms).

5 Some applications of label algebras

We have mentioned so far that labels can be used within frameworks devoted to observability or
exception handling. Indeed, labels provide a great tool to express several other features already
developed in the field of (first order) algebraic specifications.

5.1 Some possible applications

We have mentioned in the introduction that the framework of label algebras can be shown as
an extension of more standard algebraic approaches based on “multityping.” More precisely, we
can specify multityping by means of label specifications. Indeed the difference between a label
and a type is that labels are carried by terms (in A) while type names are carried by values (in
A). Thus a label l can easily play the role of a type name: it is sufficient to saturate each fiber
of evalA : A→ A which contains a term labelled by l. This is easily specified by a ΣL-axiom of
the form:

x ǫ l ∧ x = y =⇒ y ǫ l

where x and y are variables. For every model A satisfying such axioms for l belonging to L, two
terms u and v of A having equal values in A are necessarily labelled by the same labels, thus
labels can play the role of types. Notice that we should write one axiom of this form for each
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sort belonging to S because the variables x and y are typed with respect to S in our framework.
Nevertheless, as far as we intend to simulate types by labels, S should be a singleton. Thus,
the “typing” of terms, as well as variables, becomes explicit in the precondition of each axiom.
Therefore, this approach leads to consider typing as “membership constraints.” For finitely
generated algebras, such a specification style facilitates theorem proving, as demonstrated in
[Smo86][Com90].

An advantage of such an approach is that additional properties about types, according to
the needs of the considered application, can be easily specified within the same framework. For
example, let us consider a property such as s ≤ s′ between two sorts in the framework of order
sorted algebras [FGJM85]. It can be specified within the framework of label specifications by
x ǫ s ⇒ x ǫ s′ where s and s′ are labels which simulate the corresponding (sub)sorts. In the
same way, it is possible to specify dependent types such as binary search tree (the specifications
of natural numbers and booleans are supposed already written by another way):

S = {All}
Σ = {empty, node_ _ _, root_, max_, min_}
L = {Bool, Nat, Notdefined, Bst, Sta, Gta}3

with the following axioms:

empty ǫ Bst

max(empty) ǫ Sta

min(empty) ǫ Gta

x ǫ Sta ∧ n ǫ Nat =⇒ x ≤ n = true

x ǫ Gta ∧ n ǫ Nat =⇒ n ≤ x = true

a ǫ Bst ∧ b ǫ Bst ∧ n ǫ Nat ∧max(a) ≤ n = true ∧ n ≤ min(b) = true =⇒ node a n b ǫ Bst

root(empty) ǫ Notdefined

node a n b ǫ Bst⇒ root (node a n b) = n

Algebraic specifications with partial functions can also be reflected via label specifications.
They often rely on an additional predicate D which is used to specify the definition domain of
each operation of the signature ([BW82] and others). Thus, atoms are either equalities, or of
the form D(t), where t is a term with variables. It is of course not difficult to translate D(t)
to (t ǫ IsDefined); we simply have to specify the propagation of the definition domains with
respect to any operation f of the signature:

f(x1, . . . , xn) ǫ IsDefined =⇒ x1 ǫ IsDefined ∧ . . . ∧ xn ǫ IsDefined

Then, the label IsDefined can be used in the preconditions of the axioms defining the partial
operations in such a way that every label algebra A satisfying the resulting label specification
has the property that evalA(IsDefinedA) is a subset of A that behaves like a partial algebra
satisfying the original specification (see also [AC91]).

In the same way, labels can be used to give a refined semantics of the predefined predicates of
specification languages. For example in Pluss [Bid89], an expression of the form “t is defined

when something” can be reflected by the following label axiom: something ⇒ t ǫ IsDefined

More generally, labels are indeed unary predicates on terms; thus, they can be at least used as
predicates on values (using the label axiom already mentioned for multityping). The advantage
of such predicates is that their semantics is not defined via a hidden boolean sort: using booleans
to define predicates is often unsatisfactory because it assumes that the specification is consistent
with respect to boolean values. In this way, labels can advantageously be used in a specification
to provide additional informations about the specified data types. For instance, we can write:

3Bst for Binary Search Tree; Sta for Smaller-Than-All and Gta for Greater-Than-All
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0 ǫ Even

n ǫ Even =⇒ succ(n) ǫ Odd

n ǫ Odd =⇒ succ(n) ǫ Even

exp(n, 0) = succ(0)
succ(m) ǫ Odd =⇒ exp(n, succ(m)) = exp(n, m)× n

m ∈ Even =⇒ exp(n, m) = exp(n× n , m div succ(succ(0)) )

Let us return to the application of label algebras to observability (see Section 2). Clearly, the
predicate Obs used by [Hen89] can be reflected by a label. More generally, labels can be used to
characterize observable terms. By distinguishing a subset ΣObs of Σ, the framework of [BB91]
introduces two distinct notions that reflect a hierarchy in the definition of observability. The
terms that only contain operations belonging to ΣObs are said to “allow observability” (the other
ones can never be observed). Then, a term “allowing observability” really becomes “observable”
only if it belongs to an observable sort. It is not difficult to reflect the observational hierarchy
defined in [BB91] by using two distinct labels denoted AllowsObs and Obs. For each operation
f allowing observability (i.e. belonging to the considered subset ΣObs of the signature), it is
sufficient to consider the following label axiom:

x1 ǫ AllowsObs ∧ . . . ∧ xn ǫ AllowsObs =⇒ f(x1, . . . , xn) ǫ AllowsObs

The fact that a term allowing observability becomes observable if and only if it belongs to an
observable sort s can easily be specified by the label axiom (one axiom for each observable sort):
x ǫ AllowsObs ⇒ x ǫ Obs where x is a variable of sort s. As shown in [BB91], this label Obs

is carried by terms, not by values contrarily to the predicate Obs used in [Hen89]. Hopefully,
the advantages of the Hennicker’s approach could be preserved, since they mainly rely on the
explicit specification of the predicate Obs.

5.2 Application to exception handling

Let us define the framework of exception algebras as a specialization of the one of label algebras,
where the labels are used for exception handling purposes. The particular label Ok will be
distinguished to characterize the normal cases; exception names and error messages will be
reflected by all the other labels. This allows us to take exception names into account in the
axioms. Intuitively, in an exception algebra A, t ∈ lA with l 6=Ok will mean that the calculus
defined by t leads to the exception name l; and t ∈ OkA will mean that the calculus defined
by t is a “normal” calculus (i.e. it does not need an exceptional treatment and the calculus is
successful). An exception signature is then by definition a label signature Σ̂L with L̂ = (L, {Ok})
where L is the set of exception names. In order to reflect the specific behaviours of data with
exception handling, we add some implicit label axioms.

An important implicit aspect is the “common future” property. Let us consider A reflecting
the natural numbers bounded by maxint, the terms succi(0) with i ≤ maxint being labelled
by Ok. Let us assume that succmaxint+1(0) is recovered on succmaxint(0). Once this recovering
is done, we want everything to happen as if the exception succmaxint+1(0) were never raised;
this is the very meaning of the word recovery. The same succession of operations applied to
succmaxint(0) or to succmaxint+1(0) should return the same value and raise the same exception
names. If succmaxint+1(0) is labelled by TooLarge, then the term t = succmaxint+2(0) should
also be labelled by TooLarge, since succmaxint+1(0) = t[succmaxint+1(0) ← succmaxint(0)]. In a
label algebra A, evalA(u) = evalA(v) implies for every term t containing u as strict subterm,
that t and t[u ← v] have the same value, but it does not imply that they have the same labels.
On the contrary, such a property will be required for exception names in exception algebras. An
exception algebra is then by definition a Σ̂L-algebra which satisfies the common future property.
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As usual, when specifying a data structure with exception handling features, the speci-
fier first declares the desired Ok-part. Let us assume that all the terms succi(0) with i ≤
maxint are labelled by Ok and that the specification contains also the following “normal axiom:”
pred(succ(n)) = n. Then, for instance, the term pred(succ(0)) should also belong to the Ok-
domain because its calculus does not require any exceptional treatment and leads to the Ok-term
0 via the previous normal axiom. By a terseness principle, labelling by Ok must be implicitly
propagated through the axioms kept for normal cases. Since label algebras have no implicit as-
pects, the semantics of exception specifications must implicitly add label axioms reflecting these
properties.

As Ok-axioms require special semantics, it is necessary to separate the axioms concerning
exceptional cases (given by GenAx) from the Ok-axioms which concern normal cases. Thus an
exception specification SPEC is defined as a triple < Σ̂L,GenAx,OkAx > where GenAx is a
set of generalized axioms (which are positive conditional Σ̂L-axioms) and where OkAx is a set
of Ok-axioms (which are positive conditional Σ̂L-axioms with a conclusion of the form u = v).

• GenAx is mainly devoted to exception handling. Its first purpose concerns labelling of
terms. The axioms with a conclusion of the form t ǫ Ok (resp. t ǫ l with l ∈ L) mean that
t is a normal term (resp. the heading function of the term t raises the exception name l).
The second purpose of GenAx is to handle the exceptional cases, in particular to specify
recoveries, according to the previous labelling of terms. The corresponding axioms will have
a conclusion of the form u = v. As the axioms of GenAx concern all terms, exceptional or
not, the satisfaction of such axioms will simply be the same as for label axioms.

• OkAx is entirely devoted to the normal cases, and will only concern terms labelled by Ok.
The semantics of OkAx must be carefully restricted to Ok-assignments, in order to avoid
inconsistencies (see Section 2). It will both treat equalities between Ok-terms and carefully
propagate labelling by Ok through these equalities.

(For an example of exception specification, see Example 3 below)

Definition 13 Let Σ̂L be an exception signature. An exception algebra A satisfies an Ok-axiom
of the form P ⇒ v = w, where P is the precondition,4 if and only if for all assignments σ with
range in A (covering all the variables of the axiom) which satisfy the precondition (i.e. A as
Σ̂L-algebra satisfies the “ground” label axiom σ(P )), the two following properties hold:

Ok-propagation: if at least one of the terms σ(v) or σ(w) belongs to OkA and the other one
is of the form f(t1, . . . , tp) with all the ti belonging to OkA

5, then both σ(v) and σ(w) belong to
OkA.

Ok-equality: if σ(v) and σ(w) belong to OkA then evalA(σ(v)) = evalA(σ(w)).

The first property of the definition reflects a careful propagation of the label Ok (which
starts from the Ok-terms declared in GenAx). Intuitively, such an innermost evaluation reflects
an implicit propagation of exceptions because a term can be labelled by Ok through an Ok-
axiom only if all the arguments of its heading function are already labelled by Ok. The second
property specifies the equalities that must hold for the normal cases. Two terms can get the
same evaluation through an Ok-axiom only if they are both labelled by Ok.

We denote by AlgExc(SPEC) the full subcategory of AlgLbl(Σ̂L) containing all the exception
algebras satisfying SPEC (i.e. which satisfy each axiom of SPEC).

Theorem 5 Let SPEC =< Σ̂L,GenAx,OkAx > be an exception specification. There exists
a positive conditional label specification Tr(SPEC), over the same label signature Σ̂L such that
AlgExc(SPEC) = AlgLbl(Tr(SPEC)).

4P may be empty.
5p may be equal to 0
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Sketch of proof: It is sufficient to add well chosen label axioms which reflect the common future
property and to add for each Ok-axiom of SPEC a set of label axioms reflecting the Definition 13.

Remark 5 Tr(SPEC) may contain a great number of label axioms (related to the number of
operations and labels of Σ̂L).

Tr(SPEC) only contains positive conditional axioms. Thus, from Section 4 we have:

Theorem 6 Let SPEC be a exception specification. AlgExc(SPEC) has an initial object TSPEC.
Moreover, given two exception specifications SPEC1 and SPEC2 such that SPEC1 ⊆ SPEC2,

the forgetful functor U : AlgExc(SPEC2)→ AlgExc(SPEC1) exists and has a left adjoint func-
tor F .
Example 3 Let BoundedNat = < {Nat}, {0, succ_, pred_}, ({TooLarge,Negative}, {Ok}) >

be the exception signature. An example of exception specification over this signature is given
by:

GenAx : succmaxint(0) ǫ Ok

succ(n) ǫ Ok ⇒ n ǫ Ok

succmaxint+1(0) ǫ TooLarge

pred(0) ǫ Negative

succ(n) ǫ TooLarge =⇒ succ(n) = n

OkAx : pred(succ(n)) = n

Where : n : Nat

The two first axioms specify the Ok domain of Nat. It is not necessary to declare all the
Ok-terms (the label Ok will be automatically be propagated to terms such as pred(succ(0)) via
the Ok-axiom). Even if it is generally easier to recursively specify the Ok domain, it is not
mandatory; it is only desirable to declare at least one term for each intended Ok-value. The
third and fourth axioms declare exception names. Their meaning is that the operation succ

(resp. pred) raises the exception TooLarge (resp. Negative) when applied to maxint (resp. 0).
Finally, the last axiom of GenAx recovers the terms labelled by TooLarge by expressing the
following exceptional treatment: “if the operation succ raises the exception TooLarge, then do
not perform it.”.

When compared to the formalism of [BBC86], our formalism is much simpler because its
semantics can be translated into the one of the label algebras which is more easily understandable.
Moreover, we justify in Section 2 the necessity of labelling terms instead of values with respect
to the label Ok. But, it is also crucial to label terms (and not values) by the exception names.
In [BBC86], exception names are carried by values instead of terms (while the label Ok is rightly
carried by terms). If we consider the last axiom of GenAx of the Example 3, this would lead
to inconsistencies. The term succ(maxint) being equal to the term maxint, both of them are
labelled by TooLarge. Let m = maxint− 1; since maxint is labelled by TooLarge, we get the
following inconsistency: maxint = succ(m) = m. This inconsistency propagates in the same
way, and all values are equal to 0. Thus, our formalism of exception algebras is not only simpler
than [BBC86] but it is also better than [BBC86] because Example 3 correctly behaves with
respect to our semantics, while it is inconsistent with respect to the semantics of [BBC86].

As already mentioned (see page 6), it would make no sense to consider a partial evaluation
constraint with respect to L̂ = (∅, L∪{Ok}). In the Example 3, the partial evaluation constraint
for the label TooLarge would lead to label the constant maxint with TooLarge since maxint

is a partial evaluation of succ(maxint). Thus, everything would happen as if exception names
were carried by values, leading to the same inconsistency as for the semantics of [BBC86].

Summing up, as for the application to exception handling, all the possible applications men-
tioned in Section 5.1 require some generic label axioms which must be implicit . These axioms
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should be considered as modifiers of the semantics. Thus, the framework of label algebras
provides us with “low level” algebraic specifications. When an algebraic specification SPEC

is written according to some special semantics (e.g. observational specifications or exception
algebras), it has to be “compiled” (translated) to a label specification Tr(SPEC).

6 Conclusion

We have shown that observational approaches or exception handling require a refined notion of
the satisfaction relation for algebraic specifications. The scope of an axiom must be restricted
to carefully chosen patterns, because a satisfaction relation based on assignments with range in
values often raises inconsistencies. A more elaborated notion of assignment must be considered:
assignment with range in terms. This allows us to restrict the scope of an axiom to certain
suitable patterns, and solves the inconsistencies raised by exception handling. We use labels to
characterize these suitable patterns. In order to avoid inconsistencies, labels must not go through
equational atoms; thus, two terms having the same value do not necessarily carry the same labels.
We have first defined the framework of label algebras, that defines suitable semantics for labels.
The scope of the label axioms is carefully delimited by labels which serve as special marks on
terms.

We have applied with success the formalism of label algebras in order to avoid usual inconsis-
tencies raised by exception handling. This approach is powerful enough to cope with all suitable
exception handling features such as implicit propagation of exceptions, possible recoveries, dec-
laration of exception names, bounded data structures, etc.

The application domain of label algebras seems to be much more general than exception
handling. Indeed, labels provide a great tool to express several other features developed in the
field of (first order) algebraic specifications. We have outlined in Section 5.1 how label algebras
can be used to specify several more standard algebraic approaches such as order sorted algebras
[Gog83], partial functions [BW82] or observability issues [Hen89][BB91]. However, as for the
application to exception handling, all the specific applications of label algebras require certain
implicit label axioms or constraints. Thus, the framework of label algebras provides us with
“low level” algebraic specifications: in a generic way, the specific semantical aspects of a given
approach (e.g. subsorting or exception handling) can be specified by a well chosen set of label
axioms.

We have shown in Section 4 that the framework of label algebras restricted to positive con-
ditional axioms, and consequently the one of exception algebras, form a specification logic which
has free constructions [EBO91][EBCO91].6 These results provide us with a first basis to study
modularity for label specifications. However, modularity should be studied according to the spe-
cific application under consideration (behavioural specifications, exception specifications, etc).
Indeed, it can be shown that the existing frameworks for modularity do not cope with exception
handling because structured exception specification must allow erroneous “junk” (see [BBC86]).

Several other extensions of the framework of label algebras will probably give promising
results. Intuitively, labels are unary predicates on terms. In order to facilitate certain applications
of label algebras, we plane to generalize labels to “labels of strictly positive arity.” Theorem
proving methods according to the semantics of label algebras should be studied in future works.
Higher order label specifications may also be dealt with in future works. Last, but not least, let
us mention that bounded data structures play a crucial role in the theory of testing because test
data sets should contain many elementary tests near the bounds. One of our current researches
is to extend the theory of test data selection from algebraic specifications described in [BGM91]
to exception specifications.

6but it does not form a liberal institution [GB84].
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