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Observational Approaches in Algebraic Speci�cations:A Comparative Study �Gilles Bernot Michel Bidoit Teodor KnapikL. I. E. N. S.C.N.R.S. U.R.A 1327Ecole Normale Sup�erieure45 Rue d'UlmF { 75230 PARIS Cedex 05 FranceAbstractThis paper focuses on observability issues in the framework of loose algebraicspeci�cations. It is well known that some correct realizations of an algebraic speci�cationdo not satisfy all the axioms of the speci�cation. They remain correct provided that thedi�erences between the properties of the realization and the properties required by thespeci�cation are not \observable". We compare various observational approaches devel-oped so far. We point out their respective advantages and limitations. Expressive poweris our main criterion for the discussion.Keywords: algebraic speci�cation, observability, implementation1 IntroductionSince the pioneering work of [6], algebraic speci�cations have been advocated as beingone of the most promising approach to enhance software quality and reliability. Algebraicspeci�cations proved to be useful not only to formally describe complex software systems, butalso to prototype them (e.g. by transforming axioms into an equivalent set of rewrite rules,or by resolution as in SLOG [3] or RAP [9]), and to prove the correctness of these softwaresystems (w.r.t. their formal, algebraic speci�cation). More recently, it has also been shownthat algebraic speci�cations provide suitable means to compute adequate test sets for thedescribed software systems, and that they provide also a formal basis to promote softwarereusability. An important aim of the research activity in the area of algebraic speci�cations isto provide adequate concepts, languages and tools to cover the whole software developmentprocess and to establish their mathematical foundations.In this paper we shall focus on problems arising when one tries to establish the correctnessof some software w.r.t. its speci�cation. To better understand the very nature of the problemsinvolved, we shall �rst brie
y recall the main underlying paradigm of the loose approach:�This work is partially supported by ESPRIT Working Group COMPASS and C.N.R.S. GDR deProgrammation. 2



� A speci�cation is supposed to describe a future or existing system in such a way that theproperties of the system (what the system does) are expressed, and the implementationdetails (how it is done) are omitted. Thus a speci�cation language aims at describingclasses of correct (w.r.t. the intended purposes) realizations. In contrast a programminglanguage aims at describing speci�c realizations.� In a loose framework, the semantics of some speci�cation SP is a class Alg[SP] of (non-isomorphic) algebras. Given some realization (program) P, its correctness w.r.t. thespeci�cation SP can then be established by relating the program P with one of thealgebras of the class Alg[SP]. Roughly speaking, the program P will be correct w.r.t.the speci�cation SP if and only if the algebra de�ned by P belongs to the class Alg[SP].This understanding of program correctness w.r.t. algebraic speci�cations is however an over-simpli�ed picture. Indeed, if correctness is de�ned in such a way, then most realizations thatwe would like to consider as being correct (from a practical point of view) turn out to beincorrect ones. This is illustrated by the following example:spec : SETuse : NAT, BOOLsort : Setgenerated by :� : ! Setins: Nat Set ! Setoperations :2 : Nat Set ! Booldel : Nat Set ! Setaxioms :ins(x,ins(x,s)) = ins(x,s)ins(x,ins(y,s)) = ins(y,ins(x,s))del(x, �) = �del(x, ins(x, s)) = del(x, s)x 6= y ) del(x, ins(y, s)) = ins(y, del(x, s))x 2 � = falsex 2 ins(x,s) = truex 6= y ) x 2 ins(y,s) = x 2 sIf we consider a standard realization of SET by e.g. lists, we do not obtain a correct re-alization: this is due to the axioms expressing the commutativity of the insertion operation,which do not hold for lists. However, if we notice that indeed we are only interested in theresult of some computations (e.g. membership), then it is clear that our realization \behaves"correctly. This leads to a re�ned understanding of program correctness: a program P shouldbe considered as being correct w.r.t. its speci�cation SP if and only if the algebra de�ned byP is a \behaviourally correct realization" of SP. In other words, the di�erences between thespeci�cation and the program should not be \observable", w.r.t. some appropriate notion of\observability".The problem is now to specify the \observations" to be associated to some speci�cation,and to de�ne the semantics of such \observations" in order to obtain a framework that willcapture the essence of program correctness. Up to now, various notions of observability havebeen introduced, involving observation techniques based on sorts [5], [21], [10], [4], [18], [11],[19], [14], [13], operations [1], terms [17], [7] or formulae [16], [17]. It is unfortunately di�cultto compare these various notions of observability and to decide which one is better suited to3



solve the problem described above. The aim of this paper is to provide grounds for such acomparative study. To achieve this goal we shall use the notion of \observational equivalence"of Sannella and Tarlecki, �rst introduced in [16] and further developed in [17]. The expressivepower of the various observation techniques mentioned above will be our main criterion forthe discussion.This paper is organized as follows. In Section 2 we summarize some basic notations thatwill be used later on and we introduce various observation techniques. In Section 3 we brie
yrecall the observational-equivalence-based semantics. Then we use this semantics in Section4 to establish a classi�cation of the various observation techniques and some other results.In Section 5 we point out some limitations of observational-equivalence-based approaches.2 Observational Speci�cationsWe assume that the reader is familiar with algebraic speci�cations (see e.g. [6] and [2]).A signature � consists of a �nite set of sort symbols Sorts[�] (also denoted by S) anda �nite set of operation names with arities Ops[�] (also denoted by �). We denote by T�(resp. T�(X)) the �-algebra of ground terms (resp. terms with variables) over �. We useAt[�] to denote the set of atoms over � (i.e. At[�] = ft = t0 j t; t0 2 T�(X)g) and At[W] todenote the set of all atoms built only with a set W of terms (i.e. At[W] = ft = t0 j t; t0 2Wg).From atoms, connectives (_, ^, : etc.) and quanti�ers (9, 8) we construct the set of allwell formed formulae over �, written W�[�], in the usual way. The de�nition of a (total)�-algebra is the standard one, as well as the satisfaction relation between �-algebras and�-formulae. The class of all �-algebras is denoted by Alg[�]. The restriction (by the for-getful functor) of a �-algebra A to a subsignature �0 of � is denoted by Aj�0 .An algebraic speci�cation SP is a pair h�;�i where � is its signature (also writtenSig[SP]) and � � W�[�] is a �nite set of axioms. We denote by Alg[SP] the class of themodels of SP, which by de�nition is the class of all �-algebras for which � is satis�ed.\To rely on some observational technique" means \to choose which kind of objects weobserve and how we observe them". In this paper, for a given signature � (with S = Sorts[�]),we will consider observation techniques based on:� sortsWe consider some set of observable sorts SObs which is a subset of the sorts of thesignature (SObs � S).� operationsWe consider some set of observable operations �Obs which is a subset of the operationsof the signature (�Obs � �).� termsWe consider some set of observable terms W (W � T�(X)).� atomsWe consider some set of observable �-atoms E (E � At[�]).� formulaeWe consider some set of observable �-formulae � (� �W�[�]).4



Once we have chosen some observation technique, we can specify, using this technique, thatsome parts of an algebraic speci�cation are observable. An observational speci�cation isformed by adding a speci�cation of the objects to be observed to a usual algebraic speci�ca-tion, as precised by the following de�nition.De�nition 2.1An observational speci�cation is a pair hSP;Obsi, where SP is a usual algebraic spec-i�cation and Obs is a set of observations over Sig[SP], which can be either a set of sorts,operations, terms, atoms or formulae, according to the observation technique in use.The next step is to de�ne the semantics of such observational speci�cations.3 Observational SemanticsAs already mentioned in the introduction, the usual satisfaction relation is not su�cientto re
ect the paradigm: \the class of the models of a speci�cation represents all its acceptablerealizations." Some correct programs could correspond to algebras which do not satisfy allthe axioms of the speci�cation, provided that the di�erences between the properties of thealgebra and the properties required by the speci�cation are not observable. Thus, a correctrealization of an algebraic speci�cation SP may correspond to an algebra which is outsideof Alg[SP]. The aim of an observational semantics is to de�ne the class of \observationalmodels" (or \behaviours") of SP, denoted by Beh[hSP, Obsi], which better matches the classof correct realizations of SP (w.r.t. Obs).There are mainly two possible ways to de�ne an observational semantics of SP. We couldextend Alg[SP] by including some additional algebras which are \observationally equivalent"to a model of Alg[SP] w.r.t. Obs (extension by observational equivalence, see [16], [17], [7]).We could also directly relax the satisfaction relation (extension by relaxing the satisfactionrelation, see [18], [14], [1]). Our comparative study of observation techniques will be basedon the notion of \observational equivalence".First we need an appropriate equivalence relation �Obs on Alg[�], also called observa-tional equivalence of algebras w.r.t. Obs (cf. [16], [17]). The choice of �Obs depends on theobservational technique in use. For each observational technique we give below a de�nitionof the corresponding observational equivalence �Obs.De�nition 3.1Given a set of observations Obs, an observational equivalence w.r.t. Obs, written �Obs,is an equivalence relation on Alg[�] de�ned (depending on the observation technique used toexpress Obs) as follows:� Obs = SObs (observable sorts)1A �SObs B i� 8 t; t0 2 (T�(X))s; s 2 SObs A j= t = t0 , B j= t = t0In other words, A and B are observationally equivalent w.r.t. a set of observable sorts,if A and B satisfy the same equalities between terms of observable sorts.� Obs = �Obs (observable operations)1A ��Obs B i�8 f ; g 2 �Obs; with the same target sort8 � : X! T�(X)A j= f(x1; : : : ; xn)� = g(y1; : : :ym)� , B j= f(x1; : : : ; xn)� = g(y1; : : :ym)�5



In other words, A and B are observationally equivalent w.r.t. a set of observable oper-ations, if A and B satisfy the same equalities between terms with observable head.� Obs = W (observable terms)1A �W B i� 8 l; r 2W 8 �; � : X! T�(X) A j= l� = r� , B j= l� = r�In other words, A and B are observationally equivalent w.r.t. a set of observable terms, ifA and B satisfy the same equalities between observable terms and their (non necessarilyground) instantiations.2� Obs = E (observable atoms)A �E B i� 8 e 2 E A j= e , B j= eIn other words, A and B are observationally equivalent w.r.t. a set of observable atoms,if A and B satisfy the same observable atoms.� Obs = � (observable formulae)A �� B i� 8' 2 � A j= ' , B j= 'In other words, A and B are observationally equivalent w.r.t. a set of observable for-mulae, if A and B satisfy the same observable formulae.An observational model of hSP;Obsi is an algebra observationally equivalent to a modelof SP as de�ned below:De�nition 3.2The class of observational models of hSP;Obsi, written Beh[hSP;Obsi] is de�ned as fol-lows: Beh[hSP;Obsi] = fB 2 Alg[�] j 9 A 2 Alg[SP] B �Obs AgIt should be noted that ordinary speci�cations can be considered as observational speci�-cations in a straightforward way. For a given observation technique � we just have to considera set Obsall� which makes \everything" observable. Then for all SPBeh[hSP;Obsall� i] = Alg[SP]For instance if we consider observable operations then the set �allObs which makes everythingobservable is just the whole signature �. Then we have:Beh[hSP;�i] = Alg[SP]This correctly re
ects the fact that the class of observational models associated to an ordinaryspeci�cation SP is exactly Alg[SP].1There is a variant of these techniques which consists on observation of ground objects (i.e. ground terms ofsorts S in the case of sort observation, ground terms with observable head in the case of operation observationetc).2We consider the atoms formed by substituted terms l� = r� rather than l = r only. For instance, whenW = ftg, the observational equivalence �W does not rely only on the satisfaction of the unique (trivial) atomt = t, but also on the satisfaction of all atoms t� = t�.6



4 Expressive Power of Observation TechniquesIt is of �rst importance to have a precise understanding of the respective expressivenessof various observation techniques for the following reason. The observation technique will bethe basis of a correctness notion (of some software w.r.t. its speci�cation). If the observationtechnique is not \powerful enough", then it may be impossible to take into account some real-izations that we would like to consider as being relevant (because they will still be incorrect).The crucial point here is that when the observation technique is not powerful enough, thenthe set of \observed properties" (i.e. those properties that are used to decide the correctnessof the realization) is too large, hence the class of correct realizations is too small.In this section we compare the expressive power of observation techniques introduced inSection 2. The criterion for this comparison is provided by following two de�nitions.De�nition 4.1An observation technique � is �ner than another one �, written � � �, if and only if:For any speci�cation SP and any set Obs� of observations de�ned using technique �, thereexists a set of observations Obs� (de�ned using technique �) such that both hSP;Obs�i andhSP;Obs�i have the same observational models, i.e. Beh[hSP;Obs�i] = Beh[hSP;Obs�i].De�nition 4.2An observation technique � is strictly �ner than another one �, written � � � if it is�ner and if:There exists a speci�cation SP and a set Obs� of observations de�ned using technique �,such that there is no set of observations Obs� (de�ned using technique �) for which bothhSP;Obs�i and hSP;Obs�i have the same observational models, i.e.� � � and 9 SP 9 Obs� 8 Obs� Beh[hSP;Obs�i] 6= Beh[hSP;Obs�i]In the following we use the de�nitions above to compare the expressive power of theobservation techniques introduced in Section 2.Proposition 4.3Fineness orders observation techniques as follows:formulae � atoms � terms � operations � sortsProofIn order to prove that � � �, from De�nitions 3.1, 3.2 and 4.1 it is enough to construct a setObs� corresponding to the given Obs� such that8 A;B 2 Alg[�] A �Obs� B i� A �Obs� B� formulae� atomsThis is clear since each set of atomic formulae is a set of formulae as well.� atoms � termsGiven a set W of terms the corresponding set of atomic observations is given byE = fl� = r� j l; r 2W; �; � : X! T�(X)g� terms � operationsTerm observation corresponding to an operation observation �Obs is given by the set:W = ff(t1; : : : ; tn) j (f : s1 : : : sn ! s) 2 �Obs; t1 2 (T�(X))s1 ; : : : ; tn 2 (T�(X))sng7



� operations� sortsGiven a set of observable sorts SObs we construct the corresponding set of observable operationsas follows: �Obs = ff : s1 : : : sn ! s 2 � j s 2 SObsg 2The above result is not very surprising. Indeed it is even possible to show that the orderingbetween the observation techniques is a strict one:Proposition 4.4Strict �neness orders observation techniques as follows:formulae � atoms � terms � operations � sortsProofWe consider the following speci�cationspec : SPsort : sgenerated by :a, b, c, d : ! saxioms :a = bb = cc = dFrom the axioms of SP and the fact that � = Sig[SP] is reduced to constants, we have: for anyalgebra A 2 Alg[SP] and for any atom e 2 At[�]: A j= e. Therefore:8 E � At[�] Beh[hSP; Ei] = Alg[h�; Ei]� formulae� atomsAssume that the set of observable formulae is the singleton � = fa = b _ c = dg. Since anyA 2 Alg[SP] satis�es � we have Beh[hSP;�i] = Alg[h�;�i]Assume now that there exists E � At[�] such thatBeh[hSP; Ei] = Beh[hSP;�i]Thus Alg[h�; Ei] = Alg[h�;�i]But this is in contradiction with the fact that Alg[h�;�i] has no initial object while, for anyE � At[�], Alg[h�; Ei] does.� atoms � termsConsider the previous speci�cation SP with the set E0 = fa = b; c = dg of atomic observations.Assume that there exists W � T� such thatBeh[hSP;Wi] = Beh[hSP; E0i] (i)For the same reason as before (i) is equivalent toAlg[h�;At[W]i] = Alg[h�; E0i] (ii)Since � is reduced to constants, we must therefore have At[W] � E0. Thus W � fa; b; c; dg,hence (b = c) 2 At[W]. Consider B 2 Alg[�] such that aB = bB 6= cB = dB . ThenB 2 Alg[h�; E0i]and B 62 Alg[h�;At[W]i]which contradicts (ii). 8



It is easy to construct analogous examples which prove terms � operations� sorts. 2When Obs� � Obs� , in general for a given SP1 and Obs� there is no set of observationsObs� such that hSP1;Obs�i has the same behaviour as hSP1;Obs�i. However some systematictransformations can be performed on hSP1;Obs�i in order to obtain hSP2;Obs�+��i which\simulates" the behaviour of hSP1;Obs�i, where �� is a particularly simple set of formulae.Proposition 4.5 (Term observation can be simulated by operation observation)Let SP1 = h�1;�1i. Let W be a set of �1-terms. For each term t 2 W, let s be thesort of t, and x1; : : : ; xn be the variables occurring in t (of sorts s1; : : : ; sn respectively); weintroduce a new operation ft : s1 : : : sn ! s, and a new axiom et : ft(x1; : : : ; xn) = t. Let then�� = fft j t 2Wg�� = fet j t 2Wgand SP2 = h�1 + ��;�1 +��iThe observational speci�cation hSP1;Wi is \simulated" by the observational speci�cationhSP2;��+��i in the sense that:Beh[hSP2;��+ ��i]j�1 = Beh[hSP1;Wi]Proof is given in Appendix A.This transformation can be rather impractical when W is large since we need to enrichSP1 with jWj operations and jWj axioms in order to obtain SP2.Proposition 4.6 (Operation observation can be simulated by sort observation)Let SP1 = h�1;�1i. Let �Obs � �1 be a set of observable operations. For each targetsort s of the observable operations we introduce a new sort snew. Let thenSObs = fsnew j 9 (f : s1 : : :sn ! s) 2 �ObsgFor each f : s1 : : :sn ! s 2 �Obs we introduce a new operation fnew : s1 : : : sn ! snew. Let�� = hSObs; ffnew j f 2 �ObsgiNext, for each g : p1 : : :pn ! s 2 �Obs and h : r1 : : :rm ! s 2 �Obs we introduce a new axiomag;h : g(x1; : : : ; xn) = h(y1; : : : ; ym) , gnew(x1; : : : ; xn) = hnew(y1; : : : ; ym) with pairwisedistinct variables x1; : : : ; xn; y1; : : : ; ym. Let then�� = fag;h j g; h 2 �Obs with the same target sortgand let SP2 = h�1 +��;�1 + ��i.Under the hypothesis above, the observational speci�cation hSP1;�Obsi is \simulated" bythe observational speci�cation hSP2; SObs + ��i in the sense that:Beh[hSP2; SObs +��i]j�1 = Beh[hSP1;�Obsi]Proof is given in Appendix B.The two last propositions demonstrate that observations based on terms can be \simu-lated" by observations based on operations, with additional observation of some particularatoms (axioms et), and that observations based on operations can as well be simulated by9



observations based on sorts, with additional observation of some particular formulae (axiomsag;h).It should be noted that the additional observable atoms, for the �rst simulation, as wellas the additional observable formulae, for the second one, have a particularly simple form.Thus one could hope to lift proofs from the sort observation level to the term observationlevel.Therefore, one could hope that Hennicker's proof method (see [8]), which works mainlyfor observable sorts, could be used to prove properties expressed with observable terms.However, we want to prevent the reader from such a quick conclusion, which requires furtherinvestigation, especially w.r.t. the following points:1. Hennicker's observational semantics is slightly di�erent from Sannella's and Tarlecki'sobservational semantics, that we used to establish our simulation results.2. Hennicker's proof method requires observable preconditions for every conditional axiomof the speci�cation, but in the transformation described in Proposition 4.6, we addaxioms (ag;h) with non observable preconditions.3. Even if possible, such translations of proofs would result in rather illegible proofs.Consequently, the problem of the proof translation remains an open question.5 Some Limitations of Extension by Observational Equiva-lenceThe observational semantics based on an equivalence on Alg[�] provides a general frame-work enabling us to discuss the power of observational techniques. Nevertheless, there aresome cases where this observational semantics seems too restrictive. Sometimes, there clearlyexists some relevant realizations which are not observationally equivalent to a (usual) modelof the speci�cation. This fact is particularly clear when Alg[SP] is empty. For instance, letus consider the following speci�cationspec : SET-WITH-ENUMuse : NAT, BOOL, LISTsort : Setgenerated by :� : ! Setins: Nat Set ! Setoperations :2 : Nat Set ! Booldel : Nat Set ! Setenum : Set ! Listaxioms :ins(x,ins(x,s)) = ins(x,s)ins(x,ins(y,s)) = ins(y,ins(x,s))del(x, �) = �del(x, ins(x, s)) = del(x, s)x 6= y ) del(x, ins(y, s)) = ins(y, del(x, s))x 2 � = false 10



x 2 ins(x,s) = truex 6= y ) x 2 ins(y,s) = x 2 senum(�) = nilenum(ins(x,s)) = cons(x,enum(s))What we really need for this example is to observeW = fx 2 sg [ ft 2 TSig[LIST] j t is of sort Nat or BoolgIn other words, we observe membership and some LIST terms but we do not observe thoseLIST terms where enum occurs.Obviously, this speci�cation is inconsistent (i.e. Alg[SP] = �). Consequently the exten-sion by the observational equivalence w.r.t. the set W yields an empty class of observationalmodels. Moreover, for any observation technique �, the speci�cation SET-WITH-ENUM withobservations Obs� has its observational model class empty. Nevertheless, a realization whichrepresents sets by lists, enum being the identity, should clearly be considered as a correct one.In a semantical framework based on the extension by observational equivalence, the exis-tence of observational models depends on the existence of usual models. Indeed, the extensionby observational equivalence is based on the usual satisfaction relation. This leads to a some-what heterogeneous framework where the observational features are based on the usual ones.In particular the \observational consistency" (Beh[hSP;Obsi] 6= �) always coincides withthe usual one (Alg[SP] 6= �). An approach where the satisfaction relation is directly rede-�ned according to observability (extension by relaxing the satisfaction relation) seems morepromising. This would allow to give a homogeneous observational de�nition for all the usualnotions depending on the satisfaction relation (such as e.g. consistency).Note also that this example points out a situation where we want to observe an in�niteset of terms.6 ConclusionWhen we want to include observability features into algebraic speci�cations, two aspectshave to be taken into account. First, we have to ensure a good expressive power which forinstance gives rise to a usable speci�cation language. Second, we must provide simple prooftechniques since this point is crucial to establish software correctness. Clearly, the complex-ity of proving software correctness increases with the �neness of the observation technique.Consequently, the choice of an observation technique should be a compromise between its�neness and the existence of proof facilities. Therefore we should, as far as possible, choosethe lower level of observation with a satisfactory expressive power. From our experimentsit seems that this level corresponds to term observation. Terms allow the expression of anycomposition of operations. Intuitively, a term denotes a \computation" and software spec-i�cation needs at most to de�ne the computations that we want to observe and those thatwe do not want to observe. Conversely, there are examples where term observation seemsnecessary (c.f. SET-WITH-ENUM).Of course, the choice of even the �nest observation technique does not ensure, by itself,a satisfactory expressive power of the observational approach. The speci�cation SET-WITH-ENUM points out some limitations of semantics based on the extension by observationalequivalence. For this reason we believe that a promising direction for further investigations11
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[17] Sannella D., Tarlecki A. Toward Formal Development of Programs from Algebraic Speci�ca-tion Revisited, Acta Informatica 25, 233-281 (1988)[18] Reichel H. Behavioural Validity of Conditional Equations in Abstract Data Types Contributionsto General Algebra 3, Proceedings of the Vienna Conference, June 1984[19] Schoett O. Data Abstraction and the Correctness of Modular Programming Ph. D. Thesis,Univ. of Edinburgh, 1986[20] Schoett O. An Observational Subset of First-Order Predicate Logic Cannot Specify the Be-haviour of a Counter (Extended Abstract) STACS, Hamburg 1991, LNCS 480, 499-510[21] Wand M. Final Algebra Semantics and Data Type Extension Journal of Computer and SystemSciences, Vol 19, 27-44 (1979)A Proof of the Proposition 4.5Proposition 4.5 was stated in Section 4 as follows:Proposition 4.5Let SP1 = h�1;�1i. Let W be a set of �1-terms. For each term t 2 W, let s be thesort of t, and x1; : : : ; xn be the variables occurring in t (of sorts s1; : : : ; sn respectively); weintroduce a new operation ft : s1 : : : sn ! s, and a new axiom et : ft(x1; : : : ; xn) = t. Let then�� = fft j t 2Wg�� = fet j t 2Wgand SP2 = h�1 + ��;�1 +��iThe observational speci�cation hSP1;Wi is \simulated" by the observational speci�cationhSP2;��+��i in the sense that:Beh[hSP2;��+ ��i]j�1 = Beh[hSP1;Wi]To prove Proposition 4.5 we will use the following lemmas.Lemma A.1Let �1 � �2. For any �2-algebra A2 and any �1-formula ' we have:A2j�1 j= ' i� A2 j= '(Well known) 2Lemma A.2With the notations of Proposition 4.5, for any �1-algebra B1 there existsB2 2 Alg[h�1 +��;��i] such that B2j�1 = B1.ProofObvious from the de�nition of �� and ��. Indeed B2 is unique and its carrier is the one of B1.2Lemma A.3Given SP1 and SP2 as de�ned in Proposition 4.5, for any �1-algebra A1 there existsA2 2 Alg[SP2] such that A2j�1 = A1. 13



ProofFollows directly from Lemmas A.2 and A.1. 2Lemma A.4Given SP1 and SP2 as de�ned in Proposition 4.5, for any model A2 2 Alg[SP2] and anymodel B2 2 Alg[h�1 +��;��i], we have:A2 ���+�� B2 i� A2 ��� B2ProofResults from the fact thatA2 ���+�� B2 i� A2 ��� B2 ^ A2 ��� B2The second member of this last conjunction is true since from the hypothesis we have A2 j= �� andB2 j= ��, and we know that 8� (A j= � ^ B j= �) ) A �� B 2Lemma A.5With the notations of Proposition 4.5, for any t 2 W , any � : X ! T(�1+��)(X), thereexists � : X! T�1(X) such that ft(x1; : : : ; xn)� =��t�i.e. ft(x1; : : : ; xn)� and t� are equal in the theory presented by ��.ProofIt is obvious from the de�nition of �� and �� that for any l 2 T(�1+��)(X) there exists r 2T�1(X) such that l =��r. In particular, for i = 1; : : : ; n there exists di 2 T�1(X) such that xi� =��di.Consequently ft(x1�; : : : ; xn�) =��ft(d1; : : : ; dn)Therefore we can consider � : X! T�1(X) such that � = fxi 7! digi2f1;:::;ng. Thenft(x1; : : : ; xn)� =��ft(x1; : : : ; xn)�But since ft(x1; : : : ; xn) = t belongs to ��, we concludeft(x1; : : : ; xn)� =��t� 2Lemma A.6With the notations of Proposition 4.5, for all A2;B2 2 Alg[h�1 +��;��i] the followingholds: A2 ��� B2 i� A2j�1 �W B2j�1Proof 14



� )Given A2;B2 2 Alg[h�1+��;��i] such that A2 ��� B2; given l; r 2W and �; � : X! T�1(X),we have to prove that A2j�1 j= l� = r� i� B2j�1 j= l� = r�Since fl(x1; : : : ; xn) = l and fr(y1; : : : ; ym) = r belong to �� we haveA2 (resp. B2) j= l� = fl(x1�; : : : ; xn�) ^ r� = fr(y1�; : : : ; ym�)Hence A2 j= l� = r� i� A2 j= fl(x1�; : : : ; xn�) = fr(y1�; : : : ; ym�)and B2 j= l� = r� i� B2 j= fl(x1�; : : : ; xn�) = fr(y1�; : : : ; ym�)But since A2 ��� B2, we haveA2 j= fl(x1�; : : : ; xn�) = fr(y1�; : : : ; ym�) i� B2 j= fl(x1�; : : : ; xn�) = fr(y1�; : : : ; ym�)Hence A2 j= l� = r� i� B2 j= l� = r�and from Lemma A.1, this is equivalent toA2j�1 j= l� = r� i� B2j�1 j= l� = r�� (Given A2;B2 2 Alg[h�1 + ��;��i] such that A2j�1 �W B2j�1 ; given ft(x1; : : : ; xn)� andfu(y1; : : : ; ym)� (with �; � : X! T(�1+��)(X) and ft; fu 2 ��) we have to prove thatA2 j= ft(x1; : : : ; xn)� = fu(y1; : : : ; ym)� i� B2 j= ft(x1; : : : ; xn)� = fu(y1; : : : ; ym)�By Lemma A.5 there exist �; � : X! T�1(X) such thatA2;B2 j= ft(x1; : : : ; xn)� = t�and A2;B2 j= fu(y1; : : : ; ym)� = u�Thus: A2 j= ft(x1; : : : ; xn)� = fu(y1; : : : ; ym)� i�A2 j= t� = u� i�(by Lemma A.1) A2j�1 j= t� = u� i�(by hypothesis A2j�1 �W B2j�1 ) B2j�1 j= t� = u� i�(by Lemma A.1) B2 j= t� = u� i�B2 j= ft(x1; : : : ; xn)� = fu(y1; : : : ; ym)� 2Proof of Proposition 4.5We have to prove Beh[hSP2;��+��i]j�1 = Beh[hSP1;Wi]We have:Beh[hSP2;��+��i] =(by de�nition of Beh)= fB2 2 Alg[�1 +��] j 9A2 2 Alg[SP2];B2 ���+�� A2g =(by Lemma A.4)= fB2 2 Alg[h�1 +��;��i] j 9A2 2 Alg[SP2];B2 ��� A2g =(by Lemma A.6)= fB2 2 Alg[h�1 +��;��i] j 9A2 2 Alg[SP2];B2j�1 �W A2j�1g15



Therefore,Beh[hSP2;��+��i]j�1 == fB2 2 Alg[h�1 +��;��i] j 9A2 2 Alg[SP2];B2j�1 �W A2j�1gj�1 =(by Lemma A.2)= fB1 2 Alg[�1] j 9A2 2 Alg[SP2];B1 �W A2j�1g =(by Lemma A.3)= fB1 2 Alg[�1] j 9A1 2 Alg[SP1];B1 �W A1g =(by de�nition of Beh)= Beh[hSP1;Wi] . 2B Proof of Proposition 4.6Proposition 4.5 was stated in Section 4 as follows:Proposition 4.6Let SP1 = h�1;�1i. Let �Obs � �1 be a set of observable operations. For each targetsort s of the observable operations we introduce a new sort snew. Let thenSObs = fsnew j 9 (f : s1 : : :sn ! s) 2 �ObsgFor each f : s1 : : :sn ! s 2 �Obs we introduce a new operation fnew : s1 : : : sn ! snew. Let�� = hSObs; ffnew j f 2 �ObsgiNext, for each g : p1 : : :pn ! s 2 �Obs and h : r1 : : :rm ! s 2 �Obs we introduce a new axiomag;h : g(x1; : : : ; xn) = h(y1; : : : ; ym) , gnew(x1; : : : ; xn) = hnew(y1; : : : ; ym) with pairwisedistinct variables x1; : : : ; xn; y1; : : : ; ym. Let then�� = fag;h j g; h 2 �Obs with the same target sortgand let SP2 = h�1 +��;�1 + ��i.Under the hypothesis above, the observational speci�cation hSP1;�Obsi is \simulated" bythe observational speci�cation hSP2; SObs + ��i in the sense that:Beh[hSP2; SObs +��i]j�1 = Beh[hSP1;�Obsi]To prove Proposition 4.6 we will use the following lemmas.Lemma B.1With the notations of Proposition 4.6, for any �1-algebra B1 there existsB2 2 Alg[h�1 +��;��i] such that B2j�1 = B1.ProofLet F be the free synthesis functor associated with the presentation h��;��i over SP1. Then:F(B1)j�1 = B1because �� only contains operations with target in the new sorts (i.e. in SObs) and �� only concernsthe new sorts. Thus we can take B2 = F(B1). 216



Lemma B.2Given SP1 and SP2 as de�ned in Proposition 4.6, for any �1-algebra A1 there existsA2 2 Alg[SP2] such that A2j�1 = A1.ProofFollows directly from Lemmas B.1 and A.1. 2Lemma B.3Given SP1 and SP2 as de�ned in Proposition 4.6, for any model A2 2 Alg[SP2] and anymodel B2 2 Alg[h�1 +��;��i], we have:A2 �SObs+�� B2 i� A2 �SObs B2Proofsame as for Lemma A.4 2Lemma B.4With the notations of Proposition 4.6, for all A2;B2 2 Alg[h�1 +��;��i] the followingholds: A2 �SObs B2 i� A2j�1 ��Obs B2j�1ProofLet A2;B2 2 Alg[h�1 +��;��i]. By de�nition of \�SObs", A2 �SObs B2 if and only if:8 l; r 2 (T(�1+��)(X))s; s 2 SObs A2 j= l = r i� B2 j= l = r (i)Since each proper subterm of l (resp. r) is in T�1(X) (because no operation of �1 + �� has anobservable sort in its domain), the expression (i) is equivalent to8 f; g 2 �Obs 8 �; � : X! T�1(X) A2 j= fnew(x1; : : :xn)� = gnew(y1; : : : ; ym)�i� B2 j= fnew(x1; : : :xn)� = gnew(y1; : : : ; ym)� (ii)where x1; : : :xn; y1; : : : ; ym are pairwise distinct variables.By hypothesis both A2 and B2 satisfy the axiom af;g. HenceA2 j= f(x1; : : :xn)� = g(y1; : : : ; ym)� i� A2 j= fnew(x1; : : :xn)� = gnew(y1; : : : ; ym)�and B2 j= f(x1; : : :xn)� = g(y1; : : : ; ym)� i� B2 j= fnew(x1; : : :xn)� = gnew(y1; : : : ; ym)� (iii)From (iii) we can deduce that (ii) is equivalent to8 f; g 2 �Obs 8 �; � : X! T�1(X) A2 j= f(x1; : : :xn)� = g(y1; : : : ; ym)�i� B2 j= f(x1; : : :xn)� = g(y1; : : : ; ym)�which by Lemma A.1 is itself equivalent to8 f; g 2 �Obs 8 �; � : X! T�1(X) A2j�1 j= f(x1; : : :xn)� = g(y1; : : : ; ym)�i� B2j�1 j= f(x1; : : :xn)� = g(y1; : : : ; ym)�By de�nition of \��Obs" the last expression is equivalent toA2j�1 ��Obs B2j�1 217



Proof of Proposition 4.6We have to prove Beh[hSP2; SObs +��i]j�1 = Beh[hSP1;�Obsi]We have:Beh[hSP2; SObs +��i] =(by de�nition of Beh)= fB2 2 Alg[�1 +��] j 9A2 2 Alg[SP2];B2 �SObs+�� A2g =(by Lemma B.3)= fB2 2 Alg[h�1 +��;��i] j 9A2 2 Alg[SP2];B2 �SObs A2g =(by Lemma B.4)= fB2 2 Alg[h�1 +��;��i] j 9A2 2 Alg[SP2];B2j�1 ��Obs A2j�1gTherefore,Beh[hSP2; SObs +��i]j�1 == fB2 2 Alg[h�1 +��;��i] j 9A2 2 Alg[SP2];B2j�1 ��Obs A2j�1gj�1 =(by Lemma B.1)= fB1 2 Alg[�1] j 9A2 2 Alg[SP2];B1 ��Obs A2j�1g =(by Lemma B.2)= fB1 2 Alg[�1] j 9A1 2 Alg[SP1];B1 ��Obs A1g =(by de�nition of Beh)= Beh[hSP1;�Obsi] . 2
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