
Formal Specifications and Algebraic Specifications

Gilles Bernot

Laboratoire de Mathématiques et d’Informatique

Université d’Evry – Val d’Essonne

Bd des Coquibus

F-91025 Evry Cedex

FRANCE

e-mail: bernot@lami.univ-evry.fr

– Position Paper –
Proc of The 7th International Software Quality Week, San Francisco, 17-20 Mai 1994

1 Introduction (Formal Specifications in General)

In this paper I will adopt a rather restrictive definition of “formal specifications”. I will say that
a specification framework is “formal” if it contains :

• a rigorous syntax entirely defining what a specifier is allowed to write (to obtain a “speci-
fication”)

• mathematically defined semantics describing (all) the “model(s)” associated to a given
specification

• a rigorous syntax to define “well formed” properties and a (not necessarily complete) set
of rules allowing to prove if certain properties are satisfied by (all) the model(s) of a given
specification.

The role of the semantics is to establish and justify the soundness of the rules used to perform
proofs with respect to a given specification. Consequently, in practice, a specifier is not obliged to
understand all the “so complicated mathematical considerations” involved by semantics. I believe
that it is sufficient for a specifier to have a good intuitive idea of what his or her specification
means, provided that he or she is able to perform proofs in order to check the required properties.
Of course the soundness of the set of rules used to perform proofs is crucial; it should have been
established once and for all by the author(s) of the specification framework, according to the
semantics.

One of the main advantages of formal specifications is that they never contain an ambiguity.
They entirely define what the correctness of a program signifies and they are indeed the only way
to have a rigorous definition of correctness. Consequently, formal specifications must be used
if we want to consider “entirely proved programs”, “zero fault softwares”, etc. Nonetheless, the
idea of using formal specifications as absolute correctness reference is not as good as it seems.
When an inadequation between a formal specification and a program supposed to implement it
is found, the practice reveals that almost half of the time (say 1/3) it comes from an error in the
specification (and not necessarily a bug in the program). In practice, the first advantage of formal
specifications is to oblige the specifier to give a complete specification (including exceptional or
rare cases) and to facilitate a “mutual validation” between two texts written according to formal
syntactical rules. This mutual validation is not necessarily done between a specification and a
program; it is often done between two formal specifications, one of them being a refinement of

1



the other. The use of formal specification languages gives a deeper understanding of the specified
properties.

We meet here another important criteria for formal specifications: the ability to go from the
higher level specification to the program code by stepwise refinements (each step is often called
an abstract implementation). Each step should be an elementary step where mutual correctness
proofs are not too difficult to handle; it is possible to have a great number of such elementary
steps. Let us remark that there is a classical problem with formal specifications: the higher level
formal specification cannot be validated with respect to an external specification since it can
only be compared with something unformal (e.g. “what we have in mind”). It is only possible to
obtain a partial validation, for example we can try to prove a property that “should be ensured
if the specification does what we believe it does” (if the proof fails, the specification is probably
wrong or uncomplete).

Lastly, I strongly believe that there is no “universal formal specification framework.” In the
same way that it is now well known that there does not exists a universal programming language
(we have to choose a programming language according to the intended application), we have
to choose a formal specification framework according to the problem under consideration. For
some applications, it seems preferable to use in the same time several specification frameworks
in order to give several point of view on the same object (e.g. functional requirements vs. real
time requirements). Consequently I will not affirm that algebraic specifications must always be
used. . .

2 Algebraic Specifications

According to the restrictive definition of “formal specification” developed in the first section,
we may distinguish two classes of formal specification frameworks. The first one can be called
“model oriented” and is more widely used1 than the second one which can be called “property
oriented” or “declarative.”

In the model oriented approaches (VDM [Daw91][Jon86], Z [Spi89], B [Abr94]. . . ) the speci-
fier builds a unique model, from a lot of built-in data structures and construction primitives that
the specification language offers. Then, a program is correct with respect to the specification if it
has the “same behavior” than the specified model. It is important, in the software development
process, to always keep in mind that the final software should not necessarily follow the same
construction than the specification, nor the same data structures.

In the property oriented approaches, the specifier gives first a list of “functionality names”
and by default there is an infinity of models that provide, in different manners, a functionality
for each name. Next, the specifier declares several properties (often called “axioms” as they have
not to be proved; they are simply required). Among all the previously mentioned models only a
few of them satisfy the required properties; all other models “do not satisfy the specification” and
are discarded. Then, a program is correct with respect to the specification if it provides the users
with all the declared functionality names and if the way it manages its internal data structures
in order to perform those functionalities defines a model that satisfies the specification. Also, a
specification is consistent if there exists at least one model that satisfies this specification.2

Property oriented approaches are often based on abstract data types and the most “popu-
lar” approaches are based on algebraic semantics. Algebraic specifications denote indeed a lot

1At least in Europe
2Consistency is not decidable in general but there are usually usable sufficient conditions to ensure consistency.

2



of different specification frameworks (LARCH [GH86], ASL [SW83][Wir86], PLUSS [Gau92],
CLEAR [BG80][San84], OBJ [FGJM85], ACT-ONE/ACT-TWO [EM85]. . . ). The paradigm of
algebraic specifications is rather a way of thinking semantics, with a common set of mathemat-
ical tools (based on category theory) to establish basic properties of the proposed specification
languages, and with a syntax mainly based on equalities. Algebraic models are usually set of
values, in most of the approaches each value has one or several types and there are “operations”
or “functions” which work on those values according to their type(s) [GTW78][EM85]. As we can
imagine, in such a context “time issues” are rarely dealt with. My opinion is that algebraic specifi-
cations should be used to describe functional aspects, in complementarity with other frameworks
(such as temporal logics, Petri nets or transition systems) to specify real time systems, systems
with parallelism or concurrency. On the other hand, algebraic specifications are fully adequate
to deal with modularity, stepwise refinements, exception handling, typing issues, reusability, etc.
(i.e. more or less all the classical problems of software engineering with respect to sequential
programs).

From an academic point of view, algebraic approaches of specification have the great advan-
tage to formally answer the question “What is correctness for programs ?” using well established
mathematical tools and they serve as reference to build and study fully reliable software devel-
opment and verification methods. From an industrial point of view, algebraic specifications may
be a reference in the near future but I believe that, for the moment, they lack of easily usable
tools. There are many and many academic tools to support algebraic approaches, but they often
remain prototypes with poor interfaces. Moreover, existing reliable tools are often dedicated to
a specific approach of algebraic specification.

Nevertheless, a lot of such academic tools are very convincing. For example:

• automatic or computer aided prototyping from algebraic specifications

• incremental integration of modules where stubs and drives are automatically derived (or
computer aided) from algebraic specification modules

• ADA, C, LISP, ML automatic code generation (or computer aided) from algebraic specifi-
cations; for example the MIT project LARCH gives well elaborated tools.

• since formal specifications follow entirely established syntactic rules, we can a priori de-
sign automatic test selection tools from the specifications (black-box/functional testing)
in a similar manner as automatic test selection tools exist from the program text (glass-
box/structural testing). Such an approach as been explored in France for algebraic speci-
fications [Ber91][BGM91] and gives powerful test data sets [BGLM93]:

– a case study on a module extracted from a nuclear plant system gave us better results
than classical structural testing3).

– a case study on overspeed alarm for a subway train automatically focused the test
data sets on critical combinations of events and several tests have been selected that
were never proposed by the experts of test4

• more generally, almost all well known tools working on the program texts should give rise
to similar tools for formal specifications, taking advantage of their fully established syntax
and semantics.

3approximatively 99.98% against 84%.
4about 3 previously unknown bugs have been revealed (3 is a big number when human life is under consider-

ation).

3



Concluding remarks:

The main advantage of formal specifications (with the restrictive definition of first section) is
to turn specifications into formal texts that can be treated with powerful tools or methods.
These tools or methods are based on rules which are rigorously established with respect to the
corresponding formal semantics. Algebraic specifications are well suited to deal with classical
problems of sequential software engineering (modularity, stepwise refinements, exception han-
dling, typing issues, reusability, etc.); they are less usable for real time or parallelism issues.
My belief is that in the near future, formal specification languages should be chosen (and mixed
together) with the same facility than programming languages: the choice should depend on the
problem (or part of problem) under consideration.

References

[Abr94] Abrial J-R. : “Assigning programs to meanings.” To appear, 1994.

[Ber91] Bernot G. : “Testing against formal specifications: a theoretical view.” Proc. of the In-
ternational Conference on Theory and Practice of Software Development (TAPSOFT’91
CCPSD), Brighton U.K., April 1991, Springer-Verlag LNCS 494, p.99-119.

[BG80] Burstall R.M., Goguen J.A. : “The semantics of CLEAR, a specification language.”
Advanced Course on Abstract Software Specifications, Copenhagen, Springer-Verlag
LNCS 86, p.292-332, 1980.

[BGLM93] Bernot G., Gaudel M.-C., Le Gall P., Marre B. : “Experience with Black-Box Test-

ing from Formal Specification.” 2nd international conference on Achieving Quality in
Software (AQuIS’93), Venice, Italy, October 1993.

[BGM91] Bernot G., Gaudel M.-C., Marre B. : “Software testing based on formal specifications:

A theory and a tool.” Software Engineering Journal (SEJ), Vol.6, No.6, p.387-405,
November 1991 .ALSO LRI Report 581, Universite’ de Paris XI, Orsay, France, June
1990.

[Daw91] Dawes J. : “The VDM-SL reference guide.” Pitman, 1991.

[EM85] Ehrig H., Mahr B. : “Fundamentals of Algebraic Specification 1. Equations and initial

semantics.” EATCS Monographs on Theoretical Computer Science, Vol.6, Springer-
Verlag, 1985.

[FGJM85] Futatsugi K., Goguen J.A., Jouannaud J-P., Meseguer J. : “Principles of OBJ2.”
Proc. 12th ACM Symp. on Principle of Programming Languages, New Orleans, january
1985.

[Gau92] Gaudel M-C. : “Structuring and modularizing algebraic specifications: the PLUSS spec-

ification language, evolution and perspectives.” Proc. of the 9th Symposium on Theoret-
ical Aspects of Computer Science (STACS), Cachan, France, February 1992, Springer-
Verlag LNCS 557, p.3-18, 1992.

[GH86] Guttag J.V., Horning J.J. : “Report on the LARCH shared language.” Science of Com-
puter Programming Journal, Vol.6, No.2, p.103-134, 1986.

[GTW78] Goguen J.A., Thatcher J.W., Wagner E.G. : “An Initial Algebra Approach to the Spec-

ification, Correctness, and Implementation of Abstract Data Types.” Current Trends in

4



Programming Methodology, ed. R.T. Yeh, Printice-Hall, Vol.IV, pp.80-149, 1978. (Also
IBM Report RC 6487, October 1976.)

[Jon86] Jones C.B. : “Systematic software development using VDM.” Prentice Hall, 1986.

[San84] Sannella D. : “A set-theoretic semantics for CLEAR.” Acta Informatica, Vol.21, p.443-
472, 1984.

[Spi89] Spivey J.M. : “The Z notation: a reference manual.” Prentice Hall, 1989.

[SW83] Sannella D., Wirsing M. : “A kernel language for algebraic specification and imple-

mentation.” Proc. of the Intl Conf. on Foundations of Computation Theory (FCT),
Borgholm, Sweden, Springer-Verlag LNCS 158, p.413-427, 1983.

[Wir86] Wirsing M. : “Structured algebraic specifications: a kernel language.” Theoretical Com-
puter Science (TCS), Vol.42, No.2, p.124-249, 1986.

5


