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Abstract: We propose a new algebraic framework for exception handling which is powerful enough to
cope with many exception handling features such as recovery, implicit propagation of exceptions, etc.
This formalism treats all the exceptional cases; on the contrary, we show that within all the already
existing frameworks, the case of bounded data structures with certain recoveries of exceptional values
remained unsolved.
We justify the usefulness of “labelling” some terms in order to easily specify exceptions without
inconsistency. Surprisingly, there are several cases where even if two terms have the same value, one
of them is a suitable instance of a variable in a formula while the other one is not. The main idea
underlying our new framework of label algebras is that the semantics of algebraic specifications can be
deeply improved when the satisfaction relation is defined via assignments with range in terms instead
of values. We give initiality results, which are useful for structured specifications, and a calculus for
positive conditional label specifications, which is complete on ground formulas. Exception algebras
and exception specifications are then defined as a direct application of label algebras. The usual
inconsistency problems raised by exception handling are avoided by the possibility of labelling terms.
We also sketch out how far the application domain of label algebras is more general than exception
handling.
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1 Introduction

For some kinds of software engineering projects (railways, aeronautics, hardware codesign),
formal specifications methods are becoming of common use. In practice, specifiers do not ask
for universal specification frameworks (e.g. a very general logic); they prefer specification
languages dedicated to the problem under consideration. For each class of formal specifica-
tion frameworks, a common challenge is to increase the capability of “tuning” syntax and
semantics according to the needs of the specifiers. Among these needs, exception handling is
a subject which, in practice, has been often neglected at the specification stage in software
engineering. This results in incomplete specifications and various choices of “how to treat
exceptional cases” are then often made at the programming stage. As usual when specifi-
cations are incomplete, this decreases the overall quality of the software: some exceptional
cases are checked twice (e.g. in the calling module and in the called module), or even worse
there are misunderstandings about how they should be treated, or still worse they are never

1Short and partial versions of this article can be found in [BL91] and in [BL93].
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checked. Moreover, if the exceptional cases are not well specified, the corresponding bugs are
very difficult to identify, as they do not cope with the standard verification and validation
methods (e.g. proving or testing methods).

An important class of exceptional cases is related to “intrinsic” properties of the under-
lying abstract data structure: access to an empty data structure (e.g. top of an empty stack,
or an element chosen in an empty set, etc.), or functions which are intrinsically not defined
for certain values (e.g. “pop” for an empty stack, predecessor for 0 in natural numbers,
or factorial for negative numbers, etc.). Another important class of exceptional cases relies
on “dynamic” properties of the data structure (e.g. access to a non-initialized data, a non-
initialized array cell, etc.). In addition, it is very important not to neglect certain limitations,
due to the system itself or required by the specifier, mainly bounded data structures (e.g.
arrays, intervals, etc.).

In this paper, a new framework for exception handling within algebraic specifications
is proposed. Before defining what we call exception algebras, we will introduce a general
framework, the label algebras, whose application domain is much more general than exception
handling. The paper is organized as follows:

• In Section 2 we will point out two great usefulness of exception handling that are often
neglected: legibility and terseness. Algorithms are considerably simplified when the
programming language has exception handling features. By analogy, we will extract
several requirements for formal specifications with exception handling in order to im-
prove legibility and terseness. One of them is that “exception handling” does not only
mean “error handling,” it also means “rare case handling.”

• In Section 3 we will enumerate the main difficulties raised by exception handling within
the algebraic framework (often resulting in inconsistencies). The most difficult point is
to simultaneously handle bounded data structures and certain recoveries of exceptional
values. No previously existing framework is capable of solving this difficulty. The
solution requires defining assignments on terms instead of values, and we will show the
usefulness of “labelling” terms in order to easily specify exceptions.

• In Section 4 we will define the framework of label algebras. We will also sketch out how
far this framework can be applied to several other classical subjects of abstract data
types, such as partial functions, observability features, etc.

• The main results (e.g. initiality results, adjunction, the soundness of the associated
calculus, or its completeness on ground formulas) will be established in Section 5.

• Exception signatures and exception algebras will be introduced in Section 6 as a par-
ticular case of label algebras, and the difference between exception and error will be
rigorously defined.

• Exception specifications and their semantics will be defined in Section 7, and they are
related to the semantics of label algebras (via a simple translation).

• Section 8 contains the fundamental results about exception algebras (directly deduced
from the properties of label algebras). These results allow us to handle structured
exception specifications.
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• Section 9 provides a wide collection of simple examples of exception specifications.
They illustrate many powerful aspects of exception specifications and show that all
the mentioned classes of exceptional cases (“intrinsic” exceptions, “dynamic” excep-
tions, bounded data structures) can easily be specified. Lastly, a simple proof example
illustrates our calculus.

• Recapitulation and perspectives can be found in Section 10.

We assume that the reader is familiar with algebraic specifications ([GTW78], [EM85],
[Wir90], [GB84]) and with the elementary terminology of category theory ([BW90]).

2 Crucial aspects of exception handling

In this section, we will illustrate how exception handling usually improves legibility and
terseness. We will also refer to the other classical desirable aspects.

2.1 Exception handling and programming languages

Let us consider a simple example of algorithm: a function which searches an element e in a
list. Naive programmers often make the following mistake:

current := first ;

while ((current <> nil) and (current.value <> e)) do. . .

This only works if they are lucky with respect to the compiler !1 Less naive programmers
write:

current := first ; found := false ;

while ((current <> nil) and (not found)) do found := (current.value = e) . . .

Similar solutions are not acceptable for specifications, because a specification has to be ab-
stract and legible. Moreover the test current <> nil is done many times, while the end of
the list is exceptional. Experienced programmers add a fictitious last cell at the end of a
list (thus the empty list contains one cell); they write

last.value := e ; current := first ;

while (current.value <> e) do current := current.next ;

. . . ;

and the search fails if and only if current=last at the end. Of course, this solution is not
abstract at all and the solution (as you may have guessed from the beginning of our story) is
exception handling. The exception handler plays a role similar to the fictitious cell:

when Illegal-pointer-access return . . . (the search has failed).

The main algorithm is as simple as possible:

current := first ;

while (current.value <> e) do current := current.next ;

. . . ;

and the search for instance returns the place of e if the handler has not been called.

1more precisely if “and” is a lazy operator which evaluates first the left hand side argument.
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In software engineering it is well known that the use of exception handling for situations
which are not erroneous improves software quality by reducing the size of programs and
improving legibility. Moreover, in languages such as CLU ([LG86]), this terseness does not
harm the easiness to reason about the program.

Conclusion: exception handling is not only used for error handling; it is also a great tool
for legibility and terseness.

• Legibility: the “rare cases” (e.g. “limit cases” as in bounded data structures) are
extracted from the main text so that it becomes easily readable.

• Terseness: the exception handler, as well as the main text, goes straight to the point.
Each statement has not to deal with the cases that it does not directly concern: the
application domains are handled implicitly by the underlying semantics.

2.2 Exception handling and abstract specifications

For abstract specifications, legibility and terseness should be a fortiori a great usefulness
of exception handling. We believe that a formal framework only capable of treating error
handling is not fully satisfactory; specification and abstraction can take benefit of a full
exception handling. From our point of view, an exception is not necessarily an error; it
simply requires a special treatment which has to be clearly distinguished from the main
properties. Thus, errors are only a particular case of exceptions.

Legibility can be improved as follows: in the text of a formal specification, the rare cases
can be specified as “exceptions” apart from the normal axioms and accordingly the semantics
has to implicitly restrict the scope of the normal axioms. When this partition is not available,
it is often necessary to write complex axioms where additional conditions appear to restrict
the scope of the axioms to normal (resp. exceptional) cases.

Terseness is rather a semantic issue: the specialized semantics for each part of the syn-
tax (exceptional/normal properties) has to implicitly handle obvious general properties of
exceptions. For instance, it is clear that errors should propagate by default (if a is erroneous,
then f(a) is also erroneous, except if it is recovered); such properties should not have to be
explicitly specified.

Moreover, the following principles have been widely recognized to be crucial for ab-
stract specifications with exception handling ([Gog78a], [GDLE84], [Bid84], [Ber86], [BBC86],
[Sch91]):

• each exceptional (resp. erroneous) case should be declared with some exception name
(resp. error message) which provides enough informations to treat it easily;

• all the relevant properties of exceptional state behaviours should be formally specified;

• the implicit exception propagation rule should nevertheless allow various recoveries of
exceptional cases.

3 Algebraic specifications with exception handling

The main difficulty of exception handling for algebraic specifications is that all the “simple”
semantics that we can imagine lead to inconsistencies. To illustrate this fact, let us try to
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specify natural numbers with exception handling. Bounded natural numbers raise all the
main difficulties of exception handling for algebraic specifications. We start with the simple
“intrinsic” exception pred(0), and we will add more and more sophisticated exceptional cases.
Step by step, we will show that more and more sophisticated semantics are needed. At the
end, we show that a legible and terse specification of bounded natural numbers with certain
recoveries requires semantics based on terms instead of values.

3.1 Errors as constant operations

A simple idea would be to use the classical ADJ semantics [GTW78] [EM85], adding a new
constant error of sort Nat and the axiom:

pred(0) = error

Of course, we have to face error propagation: what is the value of succ(error) ? A natural
idea is to add, for each operation f of the signature, axioms of the form:

f(. . . error . . .) = error

Unfortunately, the specification also contains the axiom:

x× 0 = 0(1)

thus we get error = 0 (with f = ×, via the assignment x = error). We meet here the
principle that “normal cases” should be distinguished from exceptional cases. The semantics
of “normal axioms” should be implicitly of the form:

x6=error =⇒ x× 0 = 0

Notice that the existence of an initial algebra is not ensured in general (a negative atom
appears in the axiom [WB80]). This fact has already been shown in [GTW78] where an
explicit introduction of an Ok predicate is proposed.

3.2 Errors and Ok predicates

If the specification contains a boolean sort, we can define an Ok predicate which checks if a
value is a normal value:

Ok(error) = false
Ok(0) = true
Ok(succ(n)) = Ok(n)
Ok(pred(0)) = false
Ok(pred(succ(n))) = Ok(n)
. . .
Ok(x× y) = Ok(x) and Ok(y)

If we want to express that an instance of the axiom (1) can be considered only if both members
of the equation are first checked as normal values, then we write:

Ok(x× 0) = true ∧ Ok(0) = true =⇒ x× 0 = 0

5



and the existence of an initial algebra is ensured. Unfortunately, this approach does not
succeed with respect to legibility and terseness, as already pointed out in [GTW78]: “the
resulting total specification (. . . ) is unbelievably complicated.” It is also shown that the
axioms defining Ok cannot be automatically generated without introducing inconsistencies
(true = false); this is particularly obvious when recoveries are allowed. To be convinced, let
the reader try to define the Ok predicate consistently when succ(pred(0)) is recovered. . . (See
also [Gog78a].)

3.3 Errors and partial functions

Clearly, these difficulties result from the explicit introduction of an erroneous value in the
signature. Moreover, the specification of the Ok predicate resembles the specification of
definition domains. Thus, a simple idea could be to consider partial functions instead of
total functions (e.g. pred(0) being undefined), see for instance the pioneering work of [BW82]
(many other references are relevant too). Unfortunately, specifying exceptions via partial
functions is not powerful enough for a full exception handling. For instance exceptional
cases can give rise to ulterior recoveries, especially for robust software: even if f(x) is not
defined, we can require for g(f(x)) to be defined (e.g. succ(pred(0))). More generally, we
have often to specify properties concerning exceptional cases, even if they are not recovered.
Consequently, exceptional cases should always keep some “semantic meaning,” as we allow
specific treatments of exceptional or erroneous values themselves. Partial functions do not
offer this feature.

Nevertheless, if the specifier is not interested in recoveries and does not want to attach
error messages to erroneous values, (s)he can use partial functions.

3.4 Error handling and subsorting

Since the work of Goguen in [Gog78b], the framework of order-sorted algebras has been widely
advocating to be a solution for exception handling (see also [FGJM85][GM89]): the Ok-part
of the sort Nat being a subsort OkNat of Nat .

For example, it is easy to declare that the sort OkNat is generated by 0 and succ, that
ErrNat is the sort reduced to the singleton {error}, and that Nat is the union of OkNat and
ErrNat . Then, we can restrict the scope of the axiom

x× 0 = 0

to the sort OkNat and this prevents from the inconsistency described above.

Notice that type inference is required in order to determine the scope of an axiom. To be
able to deduce that pred(0) belongs to ErrNat , and that pred(x) belongs to OkNat when x
is a positive natural number, a sort PosNat is declared, which is equal to succ(OkNat) (it is
not difficult to prove that PosNat is a subsort of OkNat). Then, roughly speaking, the arity
of pred is specified via overloading:

pred : PosNat → OkNat
pred : {0} → ErrNat
pred : ErrNat → ErrNat

6



which implies, for instance, that pred can be shown as an operation from OkNat to Nat .
Similarly, the Euclidean division can be specified with the arity

div : OkNat × PosNat → OkNat
div : Nat × {0} → ErrNat
div : Nat × ErrNat → ErrNat

and so on.

Unfortunately, things are not always so easy. This “subsorting approach” amounts to
describe for each operation of the signature, the arguments that do not need exceptional
treatments. It may be surprising but this approach is not terse at all. Let us specify the
subtraction. The definition domain of the subtraction “−” is the set of all (a, b) ∈ OkNat
such that a ≥ b. Contrarily to the division, this definition domain cannot be expressed as a
Cartesian product of Nat subsorts. The solution is to define a new sort Nat2 which is the
Cartesian product Nat×Nat and to explicitly define the domain of “−” as a subsort Dsub
of Nat2 . Even if we forget the large number of coercions required to type a simple expression
(such as (a− b)− pred(c)), it remains that the specification of Dsub will not be terse:

a ∈ OkNat =⇒ (a, 0) ∈ Dsub
(a, b) ∈ Dsub =⇒ (succ(a), succ(b)) ∈ Dsub

The point is that these two typing axioms have to be compatible with the semantics of
the subtraction; they require an effort from the specifier which is almost as difficult as the
definition of the Ok predicate of [GTW78].

Notice moreover that the propagation of errors is actually not implicit, since the definition
domain of each operation should be explicitly defined on all the elements of a sort.

The main advantage of the approaches based on subsorting is that the specification style
fulfills the legibility criterion in general. Moreover, the names of the (erroneous) subsorts
can be used to represent exception names (or error messages) in such a way that a precise
error handling can be performed. The lack of terseness is the main disadvantage of these
approaches because too many subsorts have to be explicitly defined in a specification (see
also Section 3.6 where another strong limitation of subsorting is explained).

More precisely, the terseness criterion for exception handling is better fulfilled when the
semantics are based on a declaration of the “Ok-codomain” of the operations rather than
their “Ok-domain.” The reason is simple: in general, all the operations of a data type share
the same Ok-codomain, while each of them has its own Ok-domain. Let us consider the two
following axioms defining the subtraction:

a− 0 = a
succ(a)− succ(b) = a− b

If b is greater than a, it is clear that the expression (a−b) is not reducible to a value of OkNat
according to these two axioms. We have in mind that it is sufficient to specify the subsort
OkNat. Roughly speaking, if the axioms defining “−” allow us to find a result for (a− b) in
OkNat then (a, b) implicitly belongs to Dsub, else (a− b) is exceptional. For example:

is the term (succ(0) − succ(succ(0))) is a normal case?
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Our axioms only allow to deduce that this term is equal to (0−succ(0)) and it is impossible to
combine the equalities up to a term belonging to OkNat (of the form succi(0)). Consequently,
we could automatically deduce that (succ(0) − succ(succ(0))) is exceptional (at least in the
initial algebra). On the contrary, (succ(succ(0))− succ(0)) reduces to succ(0) which belongs
to OkNat. Thus, it is a normal case. It seems clear that an explicit specification of Dsub
is not required. The same remark applies to pred: the explicit specification of PosNat is
superfluous.

The first framework that took advantage of this idea (even if it was not explicitly analysed
this way by the authors) is [GDLE84] where the Ok-part of a sort is described via “safe”
operations.

3.5 Safe and unsafe operations

The simplest idea to describe the Ok-part of each sort is to distinguish a set of operations
(subset of the signature) that generates the Ok-values. In [GDLE84][Gog87], the signature
Σ is partitioned into “safe” and “unsafe” operations. For example, 0, succ and + are safe
operations because, when applied to Ok-arguments, they always return Ok-results; on the
contrary, pred and “−” are unsafe because 0 is Ok but pred(0) is erroneous, and, for instance,
0 and succ(0) are Ok but 0 − succ(0) is erroneous. The main advantage of this approach is
that such a simple syntactic classification of functions describes the Ok and erroneous part
of each sort; the Ok-values are those generated by the safe operations, all the other values
are automatically erroneous. For example, the axioms defining the subtraction (previous
subsection) are sufficient to automatically deduce its “Ok-domain.” It is not difficult to
prove that (a − b) has an Ok-value (i.e. it is in the equivalence class of a term generated by
0, succ and +) if and only if a is greater or equal to b.

This way, we obtain a better terseness of specifications, but as shown in [GDLE84], this
idea is not fully sufficient to solve the inconsistencies mentioned so far. Let us return to the
axiom

x× 0 = 0

and let us consider an instance of x which is an erroneous value (say error). We would still
have that error× 0 = 0. This does not induce an inconsistency because error× 0 is not nec-
essarily equal to error thanks to the refined error propagation principle of [GDLE84][Gog87].
It is automatically recovered (according to the “codomain driven” strategy). Of course, this
implicit recovery is not necessarily wished by the specifier, and we have to provide a way
of preventing it if necessary. This is the reason why the authors introduce a special type of
variables (often denoted as “x+”) which can only serve for Ok-values. Then, the previous
implicit recovery can be avoided by writing

x+ × 0 = 0

where the assignment [x+ ← error] is not allowed. (This special kind of variables is also used
in [Bid84], but the proposed semantics is more complicated and gives less usable results, in
particular because the initial algebra does not exist).

One of the main advantages of the framework of [GDLE84] [Gog87] is that, given a set
of positive conditional axioms, a least congruence exists. Consequently an initial algebra
exists, a left adjoint functor to the forgetful functor exists, and parameterization can be
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easily defined. Structured specifications with error handling features can be easily studied in
this framework.

Moreover the terseness criteria is satisfied, because the erroneous cases have not to be
explicitly characterized. Legibility is also better achieved than with all the approaches men-
tioned above. However, in practice, the specifier has to be very careful in deciding when a
“normal variable” (x) or an “Ok-variable” (x+) should be used in an axiom. This is due to
the fact that this approach does not offer a distinction between “normal axioms” and “ex-
ceptional axioms” (see Section 2.2 above). Legibility would be improved if such a distinction
were provided.

An extension of this approach to order sorted algebras exists [Gog84]. All the mentioned
advantages remain, while preserving the simplicity of the semantics.

As already pointed out in [Ber86] [BBC86], the main problem of this framework is that
bounded data structures cannot be specified. The reason is simple: for bounded data struc-
tures almost all the operations are unsafe, except a few constants. For example, succ and
+ are not safe for bounded natural numbers (succ(Maxint) is erroneous while Maxint is
Ok); consequently the Ok-part of the sort Nat would be reduced to 0 (at least in the initial
algebra).

3.6 Bounded data structures and recovery axioms

The approaches mentioned above give solutions to the algebraic treatment of “intrinsic er-
rors” (such as pred(0)), with implicit error propagation and possible recovery, but they are
not able to treat the other kind of errors mentioned in Section 1, especially bounded data
structures. Nevertheless, software engineering requires a careful treatment of these bounded
data structures. If they are not taken into account at the specification level, then almost
all the specified properties are actually false; and precisely, in practice, software requires a
strong verification and validation effort near the bounds of the underlying data structures.

Let us sketch out a simple example to give an idea of the difficulties raised by bounded
data structures for algebraic specifications, especially when recoveries are allowed. To specify
bounded natural numbers it is indeed not too difficult to specify that all the values belonging
to [0 . . . Maxint] are Ok-values [BBC86]; let us assume that this is done. We also have to
specify that the operation succ raises an exception when applied to Maxint, e.g. TooLarge;
let us assume that this is done too. When specifying the operation pred, we have the following
axiom:

pred(succ(x)) = x(2)

which is a “normal property” and, as such, should be understood with certain implicit pre-
conditions such as “if x and succ(x) are Ok-values.” Assume now that we want to recover
all TooLarge values on Maxint. Then, we will necessarily have succ(Maxint) = Maxint.

Since these two values are equal, we have to choose: either both of them are erroneous
values, or both of them are Ok-values. The first case is not acceptable because it does not
cope with our intuition of “recovery”. (Moreover, when considering the value m = Maxint−1
we clearly need that pred(Maxint) = m, as a particular case of our “normal property” about
pred; thus succ(m) = Maxint must be considered as a normal value.) Unfortunately, since
succ(Maxint) is then a normal value, x = Maxint is an acceptable assignment for our “normal
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property” (2) and we get the following inconsistency:

m = pred(Maxint) = pred(succ(Maxint)) = Maxint

which propagates, and all values are equal to 0.

Remark 3.1 : A possible reaction to this inconsistency could be to say that “the specifier
should not have written such an inconsistent axiom; (s)he should have been careful and
written something like

x ≤ m = true =⇒ pred(succ(x)) = x
pred(Maxint) = m

because (s)he knew that succ(Maxint) = Maxint.” Our claim is that this way of
thinking contradicts the terseness and legibility principles explained in Section 2. Ex-
ception handling should allow the specifier to say “I declared succ(Maxint) exceptional,
consequently I should not have to worry about it when I write a normal property; the
semantics should discard automatically the assignment succ(Maxint) from the set of
acceptable assignments.”

As a matter of fact, this example precisely reveals the difference that we make between
“exception handling” and “error handling.” The term succ(Maxint) is not erroneous
but it is exceptional; even if the term succ(Maxint) is recovered on Maxint, the
exception name TooLarge should not be propagated to Maxint.

This leads to the following idea: the term succm(0) is1 an acceptable assignment for the
variable x in the equation (2) while the term succMaxint(0) is not, even though succ(succm(0))
and succ(succMaxint(0)) have the same value. The term succMaxint(0) (i.e. succ(succm(0)))
is not exceptional while the term succMaxint+1(0) (i.e. succ(succMaxint(0))) is exceptional.
Thus, exception handling requires taking care of terms inside the algebras and good func-
tional semantics for exception handling should allow such distinctions. This idea has been
formalized in [Ber86][BBC86], where “Ok-terms” are declared instead of the safe operations
of [GDLE84]. In this framework, the term succMaxint(0) is “labelled” by Ok while the term
succMaxint+1(0) is not; and the acceptable assignments of a normal property (called “Ok-
axiom”) are implicitly restricted to Ok-terms only. This approach solves the inconsistencies
generated by the recovery succMaxint+1(0) = Maxint. The declaration of Ok-terms looks like

succMaxint(0) ∈ Ok
succ(n) ∈ Ok ⇒ n ∈ Ok

Let us point out that subsorting (see Section 3.4 above) cannot be used to specify such
bounded data structures with recoveries. The axiom (2) necessarily gives rise to a similar
paradox because sorts are attached to values. Two terms having the same value share the
same subsorts; consequently succMaxint(0) and succMaxint+1(0) cannot be distinguished.

Another idea of [Ber86] [BBC86] is that several exceptional cases can require the same kind
of treatment, while keeping distinct values; they are grouped under common exception names.
In this framework, exception names are predicates on values. For example, the value of
succ(Maxint) belongs to TooLarge and this can be specified by succ(Maxint) ∈ TooLarge.

1succi(0) is an abbreviation for succ(succ(. . . (0) )) where succ appears i times.
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We showed that the special label Ok, which concerns normal cases, cannot be carried by
values. The following example shows that exception names have also to be carried by terms,
not values.

Example 3.2 : Let us assume that every value of the form succi(Maxint) (i ≥ 1) is attached
to the name TooLarge. Let us assume that we want to recover every TooLarge value
on Maxint. A possible way of expressing this recovery is to say “if the operation succ
raises the exception TooLarge, then do not perform it.” It is formally specified as:

succ(n) ∈ TooLarge ⇒ succ(n) = n(3)

When the exception name TooLarge is carried by values, the term succ(Maxint) being
equal to the term Maxint, both of them belong to TooLarge. For m = Maxint− 1, we
get the following inconsistency:

Maxint = succ(m) = m

because Maxint = succ(m) belongs to TooLarge, thus axiom (3) applies. This incon-
sistency propagates and all values are equal to 0.

Remark 3.3 : Not all readers will accept this idea of recovery from exceptions within
specifications. However, one should not forget that such semantics of exception handling
are usual and well founded in programming languages (e.g. CLU [LG86]). It would be a
pity if specification languages had semantics with a weaker expressive power. Moreover,
it is the only way to specify recoveries of exceptions after they have been declared.

Consequently, in the framework of [Ber86] [BBC86], it was not possible to specify this kind
of recovery. This was the case for all existing algebraic frameworks for exception handling,
because exception names (if provided) were always carried by values.

Nevertheless, the solution is simple: even if succ(Maxint) is recovered on Maxint, the
exception name TooLarge does not propagate to Maxint. Exception names do not go through
recoveries. As a consequence, exception names should be treated in a similar way as the label
Ok; they concern terms, not values.

3.7 Other extensions with multityping

Roughly speaking, exception handling requires a special “typing” of terms. We shall call
labels these special “types”. From this point of view, the label algebras defined below are
an extension of more standard algebraic approaches with “multityping” such as order sorted
algebras [Gog78b][FGJM85]. It is why we give a brief overview of several other approaches
also based on “multityping”.

Unified algebras in [Mos89], Equational typed algebras in [MSS89] or G-algebras in
[Meg90] allow to explicitly mention sorts (type names) within the axioms. For such ex-
tensions of the notion of sorts, we can imagine to take benefit of an explicit manipulation of
the type names in order to manipulate them as exception names. For example in [MSS89], the
signature does not contain a set of sorts, but formulas admit an additional binary predicate
“:”. An atom of the form t : t′ means that t is of type t′. In order to represent the TooLarge
exception name, one could imagine to introduce a constant operation TooLarge (with arity
0); then, one could write, as in Example 3.2:
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succMaxint+1(0) : TooLarge
succ(n) : TooLarge⇒ succ(n) = n

Unfortunately, in [MSS89] as well as in [Mos89] and [Meg90], types pass through equalities
(i.e. two terms having the same value share the same types). Consequently, they lead to the
same inconsistencies as ordinary subsorts described in Sections 3.4 and 3.6.

From another point of view, [Mos89] and [MSS89] allow to treat sorts exactly as ordinary
terms: one can consider operations taking sorts as arguments (in particular one can introduce
exception names with arguments). Our framework of label algebras will not allow such
facilities.

Few logical frameworks allow to distinguish two terms having the same value. They
mainly have been introduced to solve some type inference problems within “simple” order
sorted algebras. The main weakness of the first approaches of subsorting ([Gog78b][FGJM85])
was that typing was implicit in the formulas. The smallest type of a term was consequently
very difficult to determine (when it exists). Worse: it was sometimes undecidable. For
theorem proving purposes, several recent works about “constraints” have been developed
(e.g. [CD91] but many other references are relevant too).

In these frameworks with constraints, the considered formulas are of the form:

ϕ⇒ ψ

where ϕ belongs to a logic L1 and ψ to a logic L2; L1 and L2 sharing a sub-signature Σ0.
The formula ϕ is said to be “the constraint.” The formula ψ is then considered “under the
constraint ϕ.” The point is that ϕ is assumed decidable.

Roughly speaking, from an algebraic point of view, the semantics rely on a Σ0-morphism
µ : D → A where D is a domain such that every formula of L1 is decidable and A is any
domain for L2. The formula ϕ⇒ ψ is satisfied if and only if at each time ϕ is valid in D, ψ
is valid in A for every corresponding substitution that factors through µ.

Closer to our motivations, this approach can be applied to:

• D = TΣ with L1 = {t : s | t ∈ TΣ, s is a type name}

• A is a Σ-algebra with L2 allowing equalities or positive conditional equalities.

provided that we have a complete, static type inference on terms. It is then possible to type
terms in D = TΣ independently of their value in A. This allows to write axioms such as:

succ(n) : Toolarge⇒ succ(n) = n

without the inconsistencies mentioned above.

Unfortunately, the point is that in all these approaches, it is impossible to write axioms
of the reversed form

ψ ⇒ ϕ

with ψ ∈ L2 and ϕ ∈ L1 (properties of D cannot be consequences of properties of A).

This limitation forbids a credible and complete treatment of exception handling. For
example a specifier is not allowed to write :

heigt(X) ≥Maxheigt = true⇒ push(x,X) : Overflow
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where, of course, the equality heigt(X) ≥Maxheigt = true has to be checked in A while the
typing push(x,X) : Overflow is checked in D = TΣ.

The framework proposed in [Poi87] can be considered as a particular case of this approach,
where typing is decided via a proposed set of inference rules. Accordingly, as pointed out in
[Poi87], this does not allow to treat bounded data structures.

4 Label algebras

All these considerations have been our main motivation to develop the new framework of
label algebras. The rest of this paper is devoted to define and study label specifications, label
algebras and their applications.

4.1 About values, terms and labels

Usually, algebras are (heterogeneous) sets of values [GTW78][EM85]. A signature is usually
a couple Σ = <S,F > where S is a finite set of sorts (or type names) and F is a finite
set of operation names with arity in S; the objects (algebras) of the category Alg(Σ) are
heterogeneous sets, A, partitioned as A = {As}s∈S , and with, for each operation name
“f : s1 . . . sn → s” in Σ (0 ≤ n), a total function fA : As1

× . . .×Asn
→ As ; the morphisms of

Alg(Σ) (Σ-morphisms) being obviously the sort preserving, operation preserving applications.

As a consequence of our approach, labelled terms are also considered as “first class citizen
objects.” Given an algebra A, the satisfaction of a property is defined using terms (instead
of the usual definition which only involves values). A simple idea could be to consider both
A and TΣ (the ground term algebra over the signature Σ) when defining the satisfaction
relation. Unfortunately, such an approach does not allow satisfactory treatments of the non
finitely generated algebras, i.e. algebras such that the initial Σ-morphism from TΣ to A is not
surjective. How is one to deal with both terms and non reachable values ? The algebra TΣ(A)
allows us to consider both terms and non reachable values, let us remember its definition.

Given a heterogeneous “set of variables” V = {Vs}s∈S , the free Σ-term algebra with
variables in V is the least Σ-algebra TΣ(V ) (with respect to the preorder induced by the
Σ-morphisms) such that V ⊆ TΣ(V ).

Since V is not necessarily finite or countable, we can consider in particular TΣ(A) for every
algebra A. An element of TΣ(A) is a Σ-term such that each leaf can contain either a constant of
the signature, or a value of A. For example, if A = ZZ = {. . . ,−2,−1, 0, 1, 2, . . .} is the algebra
of all integers over the signature <{Nat}, {zero :→ Nat; succ , pred : Nat→ Nat}>, then
succ(succ(zero)), succ(succ(0)), succ(1), etc. are distinct elements of TΣ(ZZ), even though
they have the same value when evaluated in ZZ.

The main technical point underlying our framework is to systematically use TΣ(A) directly
inside the label algebras in order to have a refined treatment of labelling. For example, Maxint
and succ(Maxint), are distinct elements of TΣ(A) (only succ(Maxint) being exceptional,
labelled by TooLarge). This allows us to have a very precise definition of the satisfaction
relation, using assignments with range in TΣ(A) instead of A.

Intuitively, a term represents the “history” of a value; it is a “sequence of calculations”
which results in a value. Of course, several histories can provide the same value. This is
the reason why labelling is more powerful than typing: it allows to “diagnose” the history in
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order to apply a specific treatment or not. Nevertheless, we can relate each term to its final
value via the canonical evaluation morphism:

evalA : TΣ(A) −→ A

deduced from the Σ-algebra structure of A:

∀a ∈ A, evalA(a) = a (remember that A ⊆ TΣ(A))
∀f ∈ Σ, ∀t1 . . . tn ∈ TΣ(A), evalA(f(t1, . . . , tn)) = fA(evalA(t1), . . . , evalA(tn))

Of course, in the end , the satisfaction of an equality is checked on values; thus, evalA is a
crucial tool for defining the satisfaction relation on equational atoms. However, the considered
assignments can be precisely restricted to certain kinds of terms/histories before checking
equalities on values (via conditional axioms), and this is the reason why all the inconsistencies
mentioned above can be solved via label algebras.

We shall use the following simplified notations:

Notation 4.1 : Given a Σ-algebra A, TΣ(A) will be denoted by A. Moreover, let µ : A→ B
be a Σ-morphism, µ : A→ B denotes the unique canonical Σ-morphism which extends
µ to the corresponding free algebras. Let us note that: µ ◦ evalA = evalB ◦ µ.

4.2 Basic definitions

Definition 4.2 : A label signature is a triple ΣL = <S,F,L> where Σ = <S,F > is a
(usual) signature and L is a (finite) set of labels.

Definition 4.3 : Given a label signature ΣL = <Σ, L>, a ΣL-algebra A is a couple
(A, {lA}l∈L) where:

• A is a Σ-algebra,

• {lA}l∈L is a L-indexed family such that, for each l in L, lA is a subset of A.

Notice that there are no conditions about the subsets lA: they can intersect several sorts,
they are not necessarily disjoint and their union (

⋃

l∈L

lA) does not necessarily cover A.

Example 4.4 : Let <{Nat}, {zero :→ Nat, succ : Nat→ Nat}, {TooLarge}> be a label
signature for the natural numbers. An example of label algebraA = <A, {TooLarge}>
can be defined on this signature as follows:

• A is the interval [0..Maxint] of IN with zeroA = 0, succA(i) = i + 1 for i in
[0..Maxint[ and succA(Maxint) = Maxint.
Then Ā = {succi(a) | i ∈ IN, a ∈ A ∪ {zero}}.

• TooLargeA = {succi(a) | i ∈ N, a ∈ A ∪ {zero}, i + evalA(a) = Maxint + 1} (It
would have been also possible to choose i+ evalA(a) ≥Maxint+ 1).

Notice that in this example, we illustrate the fact that two terms having the same value
may not be labelled in the same manner. Thus, the terms succ(Maxint) and Maxint
have the same value, but succ(Maxint) is labelled by TooLarge while Maxint is not.

The label TooLarge serves to mark the terms which are an overstepping of the bound
Maxint.
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Definition 4.5 : Let A = (A, {lA}l∈L) and B = (B, {lB}l∈L) be two ΣL-algebras, a ΣL-
morphism h : A → B is a Σ-morphism from A to B such that h : A→ B preserves the
labels: ∀l ∈ L, h(lA) ⊆ lB.

When there is no ambiguity about the signature under consideration, ΣL-algebras and
ΣL-morphisms will be called label algebras and label morphisms, or even algebras and mor-
phisms. Given a label signature ΣL, label algebras and label morphisms (with the usual
composition) clearly form a category:

Definition 4.6 : The category of all ΣL-algebras is denoted by AlgLbl(ΣL).

Definitions 4.7 : Let ΣL = <Σ, L> be a label signature. Let A = (A, {lA}l∈L) be a ΣL-
algebra.

• A ΣL-relation with labels (or label relation) on A is a couple R = (R, {lR}l∈L)
where R is a binary relation on A compatible with the sorts1 and {lR}l∈L is a
family of subsets of A.

• A ΣL-congruence (or label congruence) is a ΣL-relation Θ = (≡Θ, {lΘ}l∈L) such
that ≡Θ is a usual Σ-congruence on A and lA ⊆ lΘ for each l in L.

Proposition 4.8 : Let A = (A, {lA}l∈L) be a ΣL-algebra and let Θ = (≡Θ, {lΘ}l∈L) be a
ΣL-congruence. Let A/Θ be the usual quotient Σ-algebra of A by the Σ-congruence ≡Θ

and q : A→ A/Θ the corresponding quotient Σ-morphism. Let {lA/Θ
}l∈L be defined by

lA/Θ
= q(lΘ) for each l in L.

The couple (A/Θ, {lA/Θ
}l∈L) is a ΣL-algebra, denoted by A/Θ, and q is a label mor-

phism. This label algebra is called the quotient algebra of A by Θ.

(The proof is immediate)

Notations 4.9 : Let ΣL be a label signature.

• Given a set of variables V , TΣL(V ) is the ΣL-algebra such that the underlying
Σ-algebra is the term algebra TΣ(V ) and for each l in L, lTΣ(V ) is empty.

• TΣL is defined by TΣL = TΣL(Ø) and is called the ground term ΣL-algebra.

• Triv is the trivial ΣL-algebra defined by the underlying Σ-algebra Triv which
contains only one element in Trivs for each s in S, and for each l in L, lTriv = Triv.

The ΣL-algebra TΣL (resp. Triv) is clearly initial (resp. terminal) in AlgLbl(ΣL). Moreover,
as usual, a ΣL-algebra A is called finitely generated if and only if the initial ΣL-morphism
from TΣL to A is an epimorphism. It is clear from the definitions that A is finitely generated
if and only if the underlying morphism from TΣ to A is surjective, which means that every
value of A is reachable by a ground term.

Definitions 4.10 : The full subcategory of AlgLbl(ΣL) containing all the finitely generated
algebras is denoted by GenLbl(ΣL). Moreover, the signature ΣL is said sensible if and
only if Triv belongs to GenLbl(ΣL).

1R ⊆

⋃

s∈S

As × As or equivalently R is a family of disjoint binary relations Rs for s ∈ S with Rs ⊆ As ×As.
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The category GenLbl(ΣL) has the same initial object as AlgLbl(ΣL), and if ΣL is sensible
(i.e. if there exists at least one ground term of each sort) then it has the same terminal object
too.

Not surprisingly, a “label specification” will be defined by a (label) signature and a set of
well formed formulae (axioms):

Definition 4.11 : Given a label signature ΣL, a ΣL-sentence (or axiom) is a well formed
formula built on:

• equational atoms of the form (u = v) where u and v are Σ-terms with variables, u
and v belonging to the same sort,

• labelling atoms of the form (w ǫ l) where w is a Σ-term with variables and l is a
label belonging to L,

• connectives belonging to {¬,∧,∨,⇒} and quantifiers belonging to {∀,∃}.

(Every variable is implicitly universally quantified.)

The predicate “ ǫ ” should be read “is labelled by”.

Definition 4.12 : A label specification is a pair SP = <ΣL,Ax> where ΣL is a label
signature and Ax is a set of ΣL-sentences.

The satisfaction relation is the main definition of this section. It is of first importance to
remark that we consider assignments with range in A = TΣ(A) (terms) instead of A (values):

Definition 4.13 : Let A = (A, {lA}l∈L) be a ΣL-algebra.

• Let u and v be two terms of the same sort in TΣ(V ). Let σ : V → A be an
assignment (V covering all the free variables of u and v). A satisfies (u = v) with
respect to σ (i.e. A |=σ (u = v)) means that evalA(σ(u)) = evalA(σ(v)) [evalA
being the canonical evaluation morphism from A to A and the symbol “=” being
the set-theoretic equality in the carrier of A].

• Let w ∈ TΣ(V ), l ∈ L and let σ : V → A be an assignment (V covering all the
free variables of w). A satisfies (w ǫ l) with respect to σ (i.e. A |=σ (w ǫ l)) means
that σ(w) ∈ lA [the symbol “∈” being the set-theoretic membership].

• A satisfies a ΣL-sentence ϕ (i.e. A |= ϕ) if and only if for all assignments
σ : V → A (V covering all the free variables of ϕ), A |=σ ϕ.

• Given two ΣL-sentences ϕ1 and ϕ2, A satisfies (ϕ1 ∧ ϕ2) if and only if A satisfies
ϕ1 and A satisfies ϕ2.

• Given a ΣL-sentence ϕ, A satisfies (¬ϕ) if and only if for all assignments σ : V → A
(V covering all the free variables of ϕ), A does not satisfies ϕ with respect to σ.

• Given a ΣL-sentence ϕ, A satisfies (∀x, ϕ) if and only if A satisfies ϕ.

• Given a ΣL-sentence ϕ, A satisfies (∃x, ϕ) if and only if there exists a term t ∈ A
such that A satisfies ϕ with respect to all assignments σ : V → A such that
σ(x) = t (V covering all the free variables of ϕ).

• Similar rules apply for axioms of the form (ϕ1 ∨ ϕ2) or (ϕ1 ⇒ ϕ2) where ϕi are
ΣL-sentences.
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A label algebra satisfies a label specification if and only if it satisfies all its axioms.

Example 4.14 : Let us consider the label signature of natural numbers given in Exam-
ple 4.4. We can consider the following axiom (mentioned in Example 3.2):

succ(n) ǫ TooLarge ⇒ succ(n) = n

The label algebra A defined in Example 4.4 satisfies this axiom. In this algebra, the
term succMaxint+1(0) is labelled by TooLarge while the term succMaxint(0) is not. Thus
the assignment [n ← succMaxint(0)] satisfies the premises while [n ← succMaxint−1(0)]
does not, even though succ(n) gets the same value in both cases.

Given a label specification SP , the full subcategory of AlgLbl(ΣL) containing all the
algebras satisfying SP is denoted by AlgLbl(SP ). (A similar notation holds for GenLbl.)

Notice that AlgLbl(SP ) or GenLbl(SP ) can be empty categories (for example when SP
contains ϕ and ¬ϕ). Provided that the axioms of SP never contain the connective “¬”,
AlgLbl(SP ) has the same terminal object as AlgLbl(ΣL): Triv. However, as usual, initiality
results can be easily obtained only for positive conditional specifications [WB80]. These
results are provided in Section 5.

Definition 4.15 : A ΣL-sentence is called positive conditional if and only if it is of the
form:

a1 ∧ . . . ∧ an ⇒ a

where the ai and a are (positive) atoms (if n = 0 then the sentence is reduced to a).
A specification is called positive conditional if and only if all its axioms are positive
conditional sentences.

4.3 Some applications of label algebras

Although we have introduced the theory of label algebras as a general framework for the
purpose of exception handling, it can also be used for many other purposes. We have men-
tioned so far that labels can be used to represent exception names. More generally, labels
provide a great tool to express several other features already developed in the field of (first
order) algebraic specifications. In this section, we outline some possible applications of the
framework of label algebras.

We have mentioned in Section 3.6 that the framework of label algebras can be shown as
an extension of more standard algebraic approaches based on “multityping.” More precisely,
we can specify multityping by means of label specifications. The difference between a label
and a type is that labels are carried by terms (in A) while type names are carried by values
(in A). However, a label l can easily play the role of a type name: it is sufficient to saturate
each fiber of evalA : A→ A which contains a term labelled by l. This is easily specified by a
ΣL-sentence of the form:

x ǫ l ∧ x = y =⇒ y ǫ l

where x and y are variables. For every model A satisfying such axioms for every l belonging
to L, two terms u and v of A having equal values in A are necessarily labelled by the same
labels, thus labels can play the role of types. Notice that we should write one axiom of
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this form for each sort belonging to S because the variables x and y are typed with respect
to S in our framework. Nevertheless, insofar as we intend to simulate types by labels, S
should be a singleton. Thus, the “typing” of terms, as well as variables, becomes explicit
in the precondition of each axiom. This approach leads to consider typing as “membership
constraint.” (see section 3.7).

An advantage of such an approach is that additional properties about types, according to
the needs of the considered application, can be easily specified within the same framework.
For example, let us consider a property such as s ≤ s′ between two sorts in the frame-
work of order sorted algebras [FGJM85]. It can be specified within the framework of label
specifications:

x ǫ s =⇒ x ǫ s′

where s and s′ are labels which simulate the corresponding (sub)sorts.

In the same way, it is possible to specify dependent types such as binary search tree (the
specifications of natural numbers and booleans are supposed already written):

S = {All}
Σ = {empty :→ All;node : All All All→ All; root,max,min : All → All}
L = {Bool,Nat,Notdefined,Bst, Sta,Gta}
(Bst for Binary Search Tree; Sta for Smaller-Than-All and Gta for Greater-Than-All)

with the following axioms, under initial semantics:

empty ǫ Bst
max(empty) ǫ Sta
min(empty) ǫ Gta
x ǫ Sta ∧ n ǫ Nat =⇒ x ≤ n = true
x ǫ Gta ∧ n ǫ Nat =⇒ n ≤ x = true
a ǫ Bst ∧ b ǫ Bst ∧ n ǫ Nat ∧max(a) ≤ n = true ∧ n ≤ min(b) = true =⇒ node(a, n, b) ǫ Bst
root(empty) ǫ Notdefined
node(a, n, b) ǫ Bst =⇒ root (node(a, n, b)) = n

Algebraic specifications with partial functions can also be represented by label specifications.
Algebraic specifications for partial algebras often rely on an additional predicate D which is
used to specify the definition domain of each operation of the signature ([BW82] and others).
Thus, atoms are either equalities, or of the form D(t), where t is a term with variables. It
is of course not difficult to translate D(t) to (t ǫ IsDefined); we simply have to specify the
propagation of the definition domains with respect to any operation f of the signature:

f(x1, . . . , xn) ǫ IsDefined =⇒ x1 ǫ IsDefined ∧ . . . ∧ xn ǫ IsDefined

Then, the label IsDefined can be used in the preconditions of the axioms defining the partial
operations in such a way that every label algebra A satisfying the resulting label specification
has the property that evalA(IsDefinedA) is a subset of A that behaves like a partial algebra
satisfying the original specification (see also [AC91]).

In the same way, labels can be used to give a refined semantics of the predefined predicates
of specification languages. For example in the language Pluss [Bid89] [Gau92], an expression
of the form “t is defined when something” can be specified by the following label axiom:

something =⇒ t ǫ IsDefined
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More generally, labels are simply unary predicates on terms; thus, they can at least be
used as predicates on values without any exception handling connotation. The advantage
of such predicates is that their semantics is not defined via a hidden boolean sort: using
booleans to define predicates is often unsatisfactory because it assumes that the specification
is consistent with respect to boolean values. An example is given below:

0 ǫ Even
n ǫ Even ⇒ succ(n) ǫ Odd
n ǫ Odd ⇒ succ(n) ǫ Even
exp(n, 0) = succ(0)
succ(m) ǫ Odd ⇒ exp(n, succ(m)) = exp(n,m)× n
m ∈ Even ⇒ exp(n,m) = exp(n× n , m div succ(succ(0)) )

Another possible application of the framework of label algebras is the one of algebraic
specifications with observability issues. A crucial aspect of observational specifications is
that “what is observable” has to be carefully specified. It is often very difficult to prove
that two values are observationally equal (while it is sufficient to exhibit two observations
which distinguish them to prove that they are distinct). In [Hen89], R. Hennicker uses a
predicate Obs to characterize the observable values. This powerful framework leads to legible
specifications and it provides some theorem proving methods. Of course, the predicate Obs
can be represented by a label. Moreover, it has been shown in [BB91] that there are some
specifications which are inconsistent when observability is carried by values. It is shown
that these inconsistencies can be avoided when observability is expressed with respect to a
subset ΣObs of the signature Σ (leading consequently to a subset of the terms instead of
values). The framework of [BB91] introduces two distinct notions that induce a hierarchy in
the definition of observability. The terms that only contain operations belonging to ΣObs are
said to “allow observability” (the other ones can never be observed). Then, a term “allowing
observability” really becomes “observable” only if it belongs to an observable sort. It is not
difficult to specify the observational hierarchy defined in [BB91] by using two distinct labels
denoted AllowsObs and Obs. For each operation f allowing observability (i.e. belonging to
the considered subset ΣObs of the signature), it is sufficient to consider the following label
axiom:

x1 ǫ AllowsObs ∧ . . . ∧ xn ǫ AllowsObs =⇒ f(x1, . . . , xn) ǫ AllowsObs

The fact that a term allowing observability becomes observable if and only if it belongs to an
observable sort s can easily be specified by the label axiom (one axiom for each observable
sort):

x ǫ AllowsObs =⇒ x ǫ Obs

where x is a variable of sort s. Hopefully, the advantages of Hennicker’s approach are pre-
served, since they mainly rely on the explicit specification of the predicate Obs.

Summing up, the framework of label algebras is clearly not directly usable by a “working
specifier.” All the possible applications mentioned above require some generic label axioms
which are implicit . These axioms should be considered as modifiers of the semantics, in order
to preserve legibility and terseness of the specifications. Thus, the framework of label algebras
provides us with “low level” algebraic specifications. When an algebraic specification SP is
written according to some special semantics (e.g. observational specifications or exception
algebras), it has to be “compiled” (translated) to a label specification Tr(SP ).
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5 Fundamental results

5.1 Initiality results

This section deals with initiality results for positive conditional label specifications. We show
that the classical results of [GTW78] can be extended to the framework of label algebras.
The important results of this section are mainly the theorems 5.1, 5.4 and 5.12. The other
results of this section, and all the proofs, can be skipped in a first reading.

We will first prove the following fundamental technical result.

Theorem 5.1 : Let SP be a positive conditional ΣL-specification. Let X = (X, {lX}l∈L)
be a ΣL-algebra. Let R = (R, {lR}l∈L) be a label relation over X . There is a least
SP -algebra Y (according to the preorder relation induced by the label morphisms) such
that:

1. there exists a label morphism hY : X → Y;

2. (Y, hY ) is compatible with R (i.e. ∀x, y ∈ X, x R y =⇒ hY (x) = hY (y) and
∀t ∈ TΣ(X), x ∈ lX =⇒ hY (t) ∈ lY ).

Proof : Let F be the family of all (Z , hZ : X → Z), where Z is a SP -algebra and hZ is
a label morphism such that (Z, hZ) satisfies the conditions (1) and (2) of the theorem. F is
not empty because Triv (with the unique trivial morphism from X to Triv) clearly belongs
to F . Thus, we can consider the ΣL-congruence ΘF = (≡F , {lF }l∈L) defined as follows:

• ∀x, y ∈ X, ( x ≡F y ⇔ (∀(Z, hZ) ∈ F, hZ(x) = hZ(y)) )

• ∀l ∈ L, ∀x ∈ X, ( x ∈ lF ⇔ (∀(Z, hZ) ∈ F, hZ(x) ∈ lZ) )

Let us remark that ≡F is clearly a Σ-congruence (the compatibility with the operations of Σ
results from the one of all the hZ such that (Z, hZ) belongs to F ). Let us also remark that,
for the same reason, lF contains lX for each l. Thus, ΘF is a ΣL-congruence on X . Let Y be
the quotient algebra X/ΘF

and hY the corresponding quotient label morphism1.

Moreover, for every Z such that (Z, hZ) is in F , there exists a ΣL-morphism µZ from Y
to Z: it is defined by ∀x ∈ X, µZ(hY (x)) = hZ(x) (µZ exists by definition of hY , and we
have µZ ◦ hY = hZ). Consequently, if (Y, hY ) belongs to F then it is its smallest element
and the theorem is proved. It is trivial from the definition of (Y, hY ) that it satisfies the
conditions (1) and (2) of the theorem. Thus it is sufficient to prove that Y satisfies SP . It is
the purpose of the next lemma. ♦

Lemma 5.2 : Y (as defined in the proof of Theorem 5.1) satisfies each axiom of SP .

Proof : Let ( a1 ∧ . . . ∧ an ⇒ a ) be an axiom of SP (ai and a being positive atoms). Let
σ : V → Y be any assignment covering all the variables of the axiom. By definition of Y, we
have:

(∀i = 1..n, Y |= σ(ai)) ⇐⇒ (∀(Z, hZ) ∈ F, (∀i = 1..n, (Z |= µZ(σ(ai)))))

1ΘF is indeed the kernel of hY
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Since all Z such that (Z, hZ) ∈ F satisfy SP , it comes:

(∀i = 1..n, Y |= σ(ai)) =⇒ (∀Z ∈ F, Z |= µZ(σ(a)))

By definition of Y, we get:

(∀i = 1..n, Y |= σ(ai)) =⇒ Y |= σ(a)

and we obtain that Y satisfies the axiom under consideration. It proves the lemma, and
concludes the proof of Theorem 5.1. ♦

The following lemma shows a universal property of Y.

Lemma 5.3 : With the notations of Theorem 5.1, for every SP -algebra Z satisfying condi-
tions (1) and (2), there exists a unique morphism µZ : Y → Z such that µZ ◦ hY = hZ .

Proof : Existence: already been proved; unicity: from the surjectivity of hY . ♦

Theorem 5.4 : Let SP be a positive conditional label specification.

The categories AlgLbl(SP ) and GenLbl(SP ) have an initial object, denoted TSP . More-
over, Triv is final in AlgLbl(SP ) (and in GenLbl(SP ) if the signature is sensible).

Proof : The assertion about Triv is trivial. The label algebra TSP is obtained by applying
Theorem 5.1 with X = TΣL and TSP = Y, R being the empty binary relation. ♦

The purpose of the remainder of this subsection is to study structured positive condi-
tional label specifications. We define the forgetful functor Uµ associated with a structured
specification and the synthesis functor Fµ; and we prove that Fµ is left adjoint to Uµ.

Definition 5.5 : Let ΣL1 and ΣL2 be two label signatures. Let µ : ΣL1 → ΣL2 be a
signature morphism.2 The forgetful functor Uµ : AlgLbl(ΣL2)→ AlgLbl(ΣL1) is defined
as follows:

• for each ΣL2-algebra A, Uµ(A) is the ΣL1-algebra B defined by:

∀s ∈ S1, Bs = Aµ(s) ; ∀l ∈ L1, lB = µ(l)A ∩B ; and ∀f ∈ Σ1, fB = µ(f)A ;

• for each ΣL2-morphism η : A → A′, Uµ(η) : Uµ(A) → Uµ(A′) is the ΣL1-
morphism Uµ(η) defined by all the restrictions of η of the form:

Uµ(η)s = ηµ(s) : Aµ(s) → A′
µ(s).

Uµ(η) clearly preserves the labels of L1; thus Uµ(η) is actually a ΣL1-morphism.

In the sequel, we only consider the signature morphisms which correspond to signature
inclusions. The corresponding forgetful functor is then denoted by U . It is not difficult to
show that all our results still apply for arbitrary morphisms µ (the injectivity of µ is never
used). This simplification allows us to ignore the syntactic transformation induced by µ; it
considerably clarifies the sequel of this section.

2Signature morphisms are defined in an obvious way: S1 → S2, Σ1 → Σ2 and L1 → L2

21



Theorem 5.6 : Let SP 1 and SP 2 be two label specifications such that SP 1 ⊆ SP 2. Let
U be the forgetful functor from AlgLbl(ΣL2) to AlgLbl(ΣL1). The restriction of U to
AlgLbl(SP 2) can be co-restricted to AlgLbl(SP 1).

More generally, given two signatures ΣL1 ⊆ ΣL2, for all ΣL2-algebras A and for all
ΣL1-sentences ϕ we have:

A |= ϕ =⇒ U(A) |= ϕ

Proof : Let V be the set of variables of ϕ. We have to prove:

(∀σ : V → A, A |= σ(ϕ) ) =⇒ (∀σ : V → U(A), U(A) |= σ(ϕ) )

Since U(A) is included in A and the labels are preserved, this implication is trivial. ♦

Remark 5.7 : Theorem 5.6 never requires for the sentence ϕ to be positive conditional. In
particular SP 1 and SP 2 are not necessarily positive conditional specifications.

Let us remark that the reverse implication of Theorem 5.6 is not valid in general, as shown
in the following example. Consequently, the so-called “satisfaction condition” does not hold
for label algebras; the framework of label algebras is not an institution (see [GB84]), at least
with the natural definitions of signature morphisms and sentence translations.

Example 5.8 : Let ΣL1 be the label signature defined by

S1 = { thesort }, F1 = { c1 :→ thesort } and L1 = { thelabel }

Let ΣL2 be the label signature defined by

S2 = S1, F2 = { c1 :→ thesort , c2 :→ thesort } and L2 = L1.

We clearly have ΣL1 ⊂ ΣL2.

Let A be the ΣL2-algebra defined by A = {a = c1A = c2A} (A is a singleton) and
thelabelA = { a , c1 } (let us remind that TΣ2

(A) = { a , c1 , c2 }).

The ΣL1-algebra U(A) is then characterized by

U(A) = {a = c1U(A)} and thelabelU(A) = { a , c1 }

thus, thelabelU(A) = TΣ1
(U(A)).

Consequently, U(A) satisfies the ΣL1-sentence “x ǫ thelabel” while A does not (as c2
does not belong to thelabelA).

The following technical notation defines a free algebra which will be useful to define the
synthesis functor.

Notation 5.9 : Let ΣL1 and ΣL2 be two label signatures such that ΣL1 ⊆ ΣL2. Let A
be a ΣL1-algebra. Let TΣ2

(A) be the usual free Σ2-algebra with variables in A and
let TΣ2

(A) be the corresponding ΣL2-algebra with empty label sets. The ΣL2-relation
with labels RA = (RA, {lR}l∈L) is defined as follows:
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1. ∀t, t′ ∈ TΣ2
(A), (t RA t′)⇔ (t ∈ TΣ1

(A)) ∧ (t′ ∈ TΣ1
(A)) ∧ (evalA(t) = evalA(t′))

2. Let α : A→ TΣ2
(A) be the inclusion of A into TΣ2

(A).
Let α : TΣ1

(A) → TΣ1
(TΣ2

(A)) be the canonical Σ1-morphism which extends α.
Let ι : TΣ1

(TΣ2
(A)) → TΣ2

(TΣ2
(A)) be the canonical inclusion deduced from the

inclusion Σ1 ⊆ Σ2.
Let (finally) i : TΣ1

(A)→ TΣ2
(TΣ2

(A)) be the composition of α and ι.

For every label l ∈ L1, the set lR is the subset of TΣ2
(TΣ2

(A)) defined by lR = i(lA).

3. For every label l ∈ (L2 − L1), lTΣ2
(A) is empty.

TΣ2
( ) is sometimes called the free functor w.r.t Σ2 over Σ1.

Definition 5.10 : Let SP 1 and SP 2 be two positive conditional label specifications such
that SP 1 ⊆ SP 2. Let A be a SP 1-algebra and let us consider the label relation RA

defined in Notation 5.9. By definition, F (A) is the least SP 2-algebra such that:

1. there exists a morphism hA : TΣ2
(A)→ F (A);

2. (F (A), hA) is compatible with RA.

(F (A) exists, from Theorem 5.1.)

Theorem 5.11 : With the notations of Definition 5.10, for each SP 1-morphism ν : A → A′,
let the SP 2-morphism F (ν) be defined as follows:

• let ν be the canonical ΣL2-morphism from TΣ2
(A) to TΣ2

(A′) deduced from ν.
Let h = hA′ ◦ ν (from TΣ2

(A) to F (A′)).

• (F (A′), h) satisfies the conditions (1) and (2) with respect to A. Consequently
there exists a unique morphism µF (A′) : F (A)→ F (A′) such that h = µF (A′) ◦ hA

(cf. Lemma 5.3).

• By definition, F (ν) = µF (A′).

Then, F is a functor from AlgLbl(SP 1) to AlgLbl(SP 2).

Proof : We have to show that F (ν ′ ◦ν) = F (ν ′)◦F (ν) for all SP 1-morphisms ν ′ : A′ → A′′

and ν : A → A′. This directly results from ν ′ ◦ ν = ν ′ ◦ ν and from the unicity of the
morphism µF (A′′) : F (A)→ F (A′′), which is by definition equal to F (ν ′ ◦ ν). ♦

Theorem 5.12 : Let SP 1 and SP 2 be two positive conditional label specifications such that
SP 1 ⊆ SP 2.

The synthesis functor F : AlgLbl(SP 1)→ AlgLbl(SP 2) is a left adjoint3 for the forgetful
functor U : AlgLbl(SP 2)→ AlgLbl(SP 1).

Proof : Let A be a SP 1-algebra. Let α : A → TΣ2
(A) be the inclusion of A into TΣ2

(A).
Let IA : A→ F (A) denote the composition of α and hA: IA = hA ◦α. Let us remark that IA
can be co-restricted to U(F (A)), as A only contains values of sort belonging to S1. Since hA

3Following a classical terminology in mathematics, notice that the synthesis functor is not a free functor
as it includes some quotients (w.r.t. the axioms of SP2).
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is compatible with the relation RA (as defined in Notation 5.9), IA is compatible with the
operations of Σ1 and with the labels of L1. Consequently IA is a ΣL1-morphism from A to
U(F (A)).

From the Yoneda lemma [BW90], it results that it suffices to prove that (F (A), IA) is a
universal arrow to the forgetful functor U . This means that for all SP 2-algebras B and all
SP 1-morphism η : A → U(B), there exists a unique SP 2-morphism η′ : F (A)→ B such that
η = U(η′) ◦ IA.

Let us first remark that there exists a unique ΣL2-morphism hB : TΣ2
(A) → B which

extends η. Moreover, (B, hB) satisfies the conditions (1) and (2) of Definition 5.10. From
Lemma 5.3, there exists a unique ΣL2-morphism η′ from F (A) to B such that hB = η′ ◦ hA.

It comes hB ◦α = η′ ◦hA ◦α. Since hB is an extension of η, and hA ◦α an extension of IA,
this equality contains our result: η = U(η′) ◦ IA. Moreover, any other morphism ρ satisfying
η = U(ρ) ◦ IA is then such that ρ ◦ hA is an extension of η. But hB is the unique extension
of η, thus ρ ◦ hA = hB . Finally, the unicity of η′ (i.e. η′ = ρ) results from Lemma 5.3. ♦

Remark 5.13 : (For experienced readers. . . ) We showed in this subsection that the frame-
work of label algebras does not form an institution [GB84], even if restricted to posi-
tive conditional sentences (cf. Example 5.8). However, it forms a pre-institution with
the “rps” property [SS91]. We also proved in [LeG93] that the framework of posi-
tive conditional label algebras forms a specification frame which has free constructions
[EBO91][EBCO91]. In this paper, we imposed an unnecessary restriction: renaming
and non-injective signature morphisms have not been dealt with. We have been moti-
vated by a pedagogical approach. We believe that some of our technical definitions (in
particular Notation 5.9) would have been much harder to understand if the signature
morphisms had been explicit.

Let us point out that the specification frame of label algebras has not amalgamations
(as defined in [EBCO91]). The reason a priori is that we have shown in Section 4.3
that observational semantics can be modeled within label algebras, and [EBCO91] has
proved that observational semantics have not amalgamations in general. It is the same
for extensions (at least if we do not restrict the definition of morphisms).

5.2 The label calculus

We show in this section that the label calculus presented below is sound. Moreover we prove
that it is complete w.r.t. positive conditional ground formulas.

Definition 5.14 : Given a label signature ΣL = <S,F,L> and a heterogeneous set of
variables V , the label calculus is defined by the following set of inference rules, where
Ax denotes a set of positive conditional axioms, a and b denote atoms, Γ denotes a finite
associative and commutative conjunction4 of atoms, t, ti, uj and vj denote Σ-terms with
variables, ρ : V → TΣ(V ) denotes a substitution and f : s1. . .sn → s denotes any
operation of F , uj and vj being of sort sj.

4More precisely, the preconditions of label axioms are considered as finite sets of atoms, the symbol ∧ being
the insertion in those sets. This exempt the user from explicitly managing associativity and commutativity
rules for the conjunction in the inference steps.
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Axiom introduction:
if (Γ⇒ a) is an axiom of Ax then Ax ⊢ (Γ⇒ a)

Tautology:
Ax ⊢ (a⇒ a)

Monotonicity:
if Ax ⊢ (Γ⇒ a) then Ax ⊢ (Γ ∧ b⇒ a)

Modus Ponens:
if Ax ⊢ (Γ ∧ b⇒ a) and Ax ⊢ (Γ⇒ b) then Ax ⊢ (Γ⇒ a)

Reflexivity:
Ax ⊢ t = t

Symmetry:
if Ax ⊢ (Γ⇒ t1 = t2) then Ax ⊢ (Γ⇒ t2 = t1)

Transitivity:
if Ax ⊢ (Γ⇒ t1 = t2) and Ax ⊢ (Γ⇒ t2 = t3) then Ax ⊢ (Γ⇒ t1 = t3)

Replacement:
if, ∀ j = [1..n], Ax ⊢ (Γ⇒ uj = vj) then Ax ⊢ ( Γ⇒ f(u1..un) = f(v1..vn) )

Substitution:
if Ax ⊢ (Γ⇒ a) then Ax ⊢ (ρ(Γ)⇒ ρ(a))

We recognize classical rules of equational reasoning (taking into account positive conditional
formulas) except the Leibniz law (replacement equal by equal). More precisely, for some

properties P, the deduction rule P(x) , x=y
P(y) would not be sound with respect to the semantics

of label algebras. We saw that the Leibniz law has not to be satisfied with respect to the label
algebra semantics (cf. the algebra A of Example 6.6 in the Section 6.2 below). There is no
rule which specifically concerns labelling, except the rule Substitution that constructs new
label atoms. On the contrary all other algebraic approaches require specific rules to ensure
the Leibniz law (e.g. Equational Typed Logic [MSS89]).

Theorem 5.15 : (Soundness of the label calculus)

Let Ax be a set of positive conditional label axioms. Let ϕ be any positive conditional
formula. If the underlying signature is sensible, then we have:

[ Ax ⊢ ϕ ] =⇒ [ ∀ A ∈ AlgLbl(Ax) , A |= ϕ ]

Proof sketch : (The signature has to be sensible because, else, the Transitivity rule would
not be sound.) We prove the soundness by induction on the proof length. Let us assume that
the last rule applied is Substitution.

Let Γ ⇒ a be a formula and ρ : V → TΣ(V ) be a substitution such that (ρ(Γ) ⇒ ρ(a))
is the formula ϕ. The induction hypothesis is: ∀A ∈ Alg(Ax), A |= (Γ ⇒ a). By definition
of the satisfaction relation, it means: ∀σ : V → A, A |= (σ(Γ) ⇒ σ(a)). In particular
∀σ′ : V → A, A |= (σ′(ρ(Γ)) ⇒ σ′(ρ(a)) ) (via σ′ ◦ ρ = σ). Therefore, by definition of the
satisfaction relation, we get: A |= (ρ(Γ)⇒ ρ(a)).

We have already pointed out that Substitution is the most specific rule to treat labelling;
we will not treat the other rules in this article (they behave in a similar way). ♦
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In order to prove the completeness of the label calculus for positive conditional ground
formulas we follow a proof similar to the Birkhoff’s one [Bir35] (also similar to the one of
[MSS89]).

Lemma 5.16 : Let Σ = <S,F > be a signature. Let A be a S-set such that As is never
empty. Let V be a S-set of variables. For any substitution µ : V → TΣ(A) there exist
two substitutions µ1 : V → TΣ(V ) and µ2 : V → A such that µ = µ2 ◦ µ1.
Moreover, they can be chosen in such a way that µ2 is injective on the variables occuring
in all the terms in the image of µ1. Consequently there exists a map µ3 : A→ V such
that µ1 = µ3 ◦ µ.
In addition, if A is a Σ-algebra then the substitution µ2 ◦ µ1 : V → A is equal to
evalA ◦ µ2 ◦ µ1.

(the proof is trivial)

Definition 5.17 : With the notations of Definition 5.14, we note ΘΓ = (≡Γ, {lΓ}l∈L) the
ΣL-relation defined on TΣL as follows.

• For all terms u and v of TΣ(V ), u ≡Γ v if and only if

∃u′, v′ ∈ TΣ(V ) , ∃η : V → TΣ s.t. u = η(u′), v = η(v′) and Ax ⊢ (Γ⇒ u′ = v′)

• For any term w of TΣ(TΣ), w ∈ lΓ if and only if

∃w′ ∈ TΣ(V ) , ∃η : V → TΣ(TΣ) s.t. w = η(w′) and Ax ⊢ (Γ⇒ w′ ǫ l)

By notation abuse, we will write:

ΘΓ = { η(a) | η : V → TΣ(TΣ), Ax ⊢ (Γ⇒ a) }

with the convention that η stands for evalTΣ
◦ η if a is an equational atom.

Notations 5.18 : From Reflexivity, Symmetry, Transitivity and Replacement the
relation ≡Γ is a usual congruence and, the label sets being empty in TΣL (Notations 4.9),
ΘΓ is a label congruence. Let TΓ = TΣL/ΘΓ

denote the corresponding quotient algebra
and q : TΣL → TΓ the quotient morphism.

We also denote ι : V → TΣ(V ) the inclusion of V in TΣ(V ).

Remark 5.19 : For every substitution σ : V → TΣ(TΓ), there exists a substitution ρ from
V to TΣ(TΣ) such that σ = q ◦ ρ.

Lemma 5.20 : For any conjunction of atoms Γ and for any atom a of Γ, we have TΓ |= a.

Proof : From Tautology and Monotonicity we get: Ax ⊢ (Γ⇒ a) . Thus, by definition
of ΘΓ for all η : V → TΣ(TΣ) , η(a) ∈ ΘΓ. Consequently, for all η, we have: TΓ |= q(η(a)).
From Remark 5.19 we deduce that for all σ, we have: TΓ |= σ(a). ♦

Lemma 5.21 : For any ground conjunction of atoms Γ and for any ground atom a, if TΓ |= a
then Ax ⊢ (Γ⇒ a).
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Proof : TΓ |= a implies that for any σ : V → TΣ(TΓ), TΓ satisfies σ(a). In particular
it satisfies q(ι(a)). Since a does not contain variables, q is injective on ι(a), so we have
ι(a) = η(a′) with Ax ⊢ (Γ ⇒ a′). Moreover, a = evalTΣ

(ι(a)) = evalTΣ
(η(a′)). From

Substitution, Ax ⊢ (evalTΣ
(η(Γ)) ⇒ evalTΣ

(η(a′))). Since Γ is a conjunction of ground
atoms, we get Ax ⊢ (Γ⇒ evalTΣ

(η(a′))). ♦

Lemma 5.22 : For any ground conjunction of atoms Γ and for any ground atom a, if
TΓ |= (Γ⇒ a) then Ax ⊢ (Γ⇒ a).

(Trivially results from Lemmas 5.20 and 5.21).

Lemma 5.23 : For any ground conjunction of atoms Γ and for any atom a, if TΓ satisfies
σ(a) with σ = σ2 ◦ σ1 as in Lemma 5.16, then Ax ⊢ (Γ⇒ σ1(a)).

Proof : TΓ satisfies σ(a) means that there exist an atom a′ and a substitution η : V → TΣ(TΣ)
such that σ2(σ1(a)) = q(η(a′)) and Ax ⊢ (Γ ⇒ a′). Let σ3 as in Lemma 5.16 and let
µ = σ3 ◦ q ◦η , we have µ(a′) = σ1(a). From Substitution and from the fact that Γ does not
contain variables, it comes Ax ⊢ (Γ⇒ µ(a′)) i.e. Ax ⊢ (Γ⇒ σ1(a)). ♦

Lemma 5.24 : For any ground conjunction of atoms Γ, TΓ |= Ax.

Proof : Let (Γ′ ⇒ a′) ∈ Ax and σ : V → TΣ(TΓ). Let us assume that TΓ satisfies σ(Γ′).
Let σ = σ2 ◦ σ1 as in Lemma 5.16.

From Axiom introduction: Ax ⊢ (Γ′ ⇒ a′).

From Substitution: Ax ⊢ (σ1(Γ
′)⇒ σ1(a

′)).

From Monotonicity: Ax ⊢ (Γ ∧ σ1(Γ
′)⇒ σ1(a

′)).

From Lemma 5.23 and Modus Ponens: Ax ⊢ (Γ⇒ σ1(a
′)) , which means that for any

η : V → TΣ(TΣ), TΓ satisfies η(σ1(a
′)). The conclusion comes by choosing η = σ2. ♦

Theorem 5.25 : (Completeness of the label calculus on ground formulas)

Let Ax be a set of label axioms. Let ϕ be any positive conditional ground formula. If
the underlying signature is sensible, then we have:

[ ∀ A ∈ AlgLbl(Ax) , A |= ϕ ] =⇒ [ Ax ⊢ ϕ ]

Proof : (Let us notice that the signature must be sensible in order to justify the use of
Lemma 5.16 in all the previous proofs.) Let us assume that:

∀ A ∈ AlgLbl(Ax) , A |= ϕ

From Lemma 5.24 TΓ ∈ AlgLbl(Ax), thus TΓ |= ϕ and Lemma 5.22 allows to conclude. ♦

Our calculus is only a slight generalization of the standard many-sorted Horn-clauses calculus,
thus it seems at least not surprising that it works when ground formulas are examined.
Unfortunately (against all the hopes of the authors...) Maura Cerioli proved that our label
calculus is not complete and it seems that big troubles arise if we look for a calculus that is
complete for elementary formulas with variables.
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Example 5.26 : (due to Maura Cerioli)

Let us consider the label signature defined by: S = {s1, s2}; the set of operations
consists of one constant c :→ s1 and a ternary function f : s1 × s1 × s1 → s2; and a
unique label l. (The signature is sensible.) Consider the following set of axioms Ax:

x = c
f(x, x, y) ǫ l
f(x, y, x) ǫ l
f(y, x, x) ǫ l

Let A be an algebra which satisfies Ax. Its carrier of sort s1 is a singleton because of
the first axiom. Hence the carrier of TΣ(A) is reduced to 2 elements of sort s1: aA and
a. Therefore, for every evaluation σ : V → TΣ(A), at least two among σ(x), σ(y), σ(z)
coincide and hence, because of the last three axioms, f(x, y, z) ǫ l holds for all algebras
satisfying Ax. Unfortunately, the label calculus does not allow to deduce this formula
with variables.

Such formulas get a strange implicit validity. It seems rather “illogical” that a formula holds
essentially because there is not a sufficient number of elements to distinguish the variables, but
that this lack is not carried out by equality (as it happens for Equational Typed Logic [MSS89]
for example).

6 Exception algebras

The framework of exception algebras presented below is a specialization of the one of label
algebras, where the labels are used for exception handling purposes. For convenience, we
keep the same terminology “exception algebra” as in the framework of [Ber86], [BBC86], but
it is not the same underlying formalism. Our approach is much simpler and more appropriate
(cf. Example 3.2 in Section 3.5).

6.1 Introduction: label algebras and exception algebras

As already explained, the normal cases and the exceptional ones will be distinguished without
any ambiguity in an exception algebra. Thus a particular label will be distinguished to
characterize the normal cases. As in almost all the frameworks about algebraic specifications
with exception handling, it will be named Ok. Moreover, exception names and error messages
shall be represented by labels (of course, distinct from Ok). This allows us to take exception
names into account in the (label) axioms; thus, an extremely wide spectrum of exception
handling and error recovery cases can be specified. Intuitively, when t ∈ lA in an exception
algebra A for l 6=Ok, it will mean that the calculation defined by t leads to the exception
name l; if l = Ok, it will mean that the calculation defined by t is a “normal” calculation
(i.e. it does not need an exceptional treatment and the calculation is successful). Most of the
time, if t ∈ OkA then all its subterms are labeled by Ok and lead to Ok-values.1

As shown in Section 3, when specifying a data structure with exception handling fea-
tures, the specifier has first to declare the desired Ok-domain. For instance the interval
[0 . . .Maxint] can be declared as follows:

1except for certain data structures such as intervals which do not contain 0, see Section 9.2.
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succMaxint(0) ǫ Ok
succ(n) ǫ Ok =⇒ n ǫ Ok

(where succMaxint(0) stands for succ(succ(. . . (succ(0))..)), the operation succ being applied
Maxint times.) Let us assume that the specification contains the following “normal axiom:”

pred(succ(n)) = n

Then, for example, the term pred(succ(0)) should also belong to the Ok-domain because its
calculation does not require any exceptional treatment and leads to the Ok-term 0 via the
previous normal axiom. We showed in Section 3 that the terseness criteria is not fulfilled when
we explicitly describe all the normal terms in an exhaustive manner. Thus, labelling by Ok
should preferably be implicitly propagated through the axioms kept for normal cases. These
axioms will be called Ok-axioms, and this implicit propagation rule will be an important
component of their semantics, as described in Section 7.2. Consequently, the semantics of
exception specifications will be more elaborated than the semantics of label specifications, as
label algebras have no implicit aspects.

Another important implicit aspect required by exception handling is the so-called “com-
mon future” property. Let us assume that A is an algebra such that a term u has the same
value than a term v (i.e. evalA(u) = evalA(v); e.g. u can be an exceptional term recovered
on the Ok-term v). We clearly need that for every operation f of the signature, f(. . . , u, . . .)
behaves exactly as f(. . . , v, . . .) does. This means that f(. . . , u, . . .) and f(. . . , v, . . .) have
the same value and raise the same exception names. For example, let A represent the natural
numbers bounded by Maxint; the terms succi(0) with 0 ≤ i ≤Maxint being labelled by Ok.
Let us assume that succMaxint+1(0) is recovered on succMaxint(0). Intuitively, once this re-
covery is done, we want that everything happens as if succMaxint+1(0) were never raised; this
is the very meaning of the word recovery. The recovery should simply work as a systematic
replacement of succMaxint+1(0) by succMaxint(0). The same succession of operations applied
to succMaxint(0) or to succMaxint+1(0) should always give the same results; it should return
the same value and raise exactly the same exception names. For example if succMaxint+1(0) is
labelled by TooLarge then the term t = succMaxint+2(0) should also be labelled by TooLarge,
as succMaxint+1(0) = t[succMaxint+1(0)←succMaxint(0)].

Notice that, in a label algebra A, evalA(u) = evalA(v) implies that evalA(f(. . . , u, . . .))
is equal to evalA(f(. . . , v, . . .)), but it does not imply that the terms f(. . . , u, . . .) and
f(. . . , v, . . .) have the same labels. The common future property means more generally that,
for every term t containing u as strict subterm, the term t[u←v] is labelled by the same
exception labels than t. This property is called “common future” and will be an important
implicit aspect of the semantics of exception algebras.

6.2 Exception signatures

Definition 6.1 : An exception signature ΣExc is a label signature <S,F,L> such that
Ok, Exc and Err do not belong to L. The elements of L are called exception labels.

The labels Ok, Exc and Err are not allowed as exception labels because they will be used
to characterize the Ok-terms, exceptional terms and erroneous terms respectively.

Example 6.2 : NatExc = <{Nat}, {0, succ , pred }, {Negative, TooLarge}> is a possi-
ble exception signature for an exception specification of bounded natural numbers.
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As motivated in Section 6.1, exception algebras over the signature ΣExc cannot be directly
defined as label algebras over the same signature. We add the label Ok and we also have to
add the “common future” property.

Notation 6.3 : Let ΣExc = <S,F,L> be an exception signature. In the sequel of this
paper, L̃ will denote L ∪ {Ok}. Moreover ΣL̃ will be the label signature <S,F, L̃>
(deduced from ΣExc).

Definition 6.4 : A satisfies the common future property for l if and only if for all operations
f : s1 . . . sn → s of the signature with n > 0, and all terms u1 . . . un and v1 . . . vn of A
(of sort s1 . . . sn respectively), we have:

(
n∧

i=1

evalA(ui) = evalA(vi) ) ∧ f(u1, . . . , un) ∈ lA =⇒ f(v1, . . . , vn) ∈ lA

Definition 6.5 : An exception algebra over the exception signature ΣExc is a label algebra
A over the signature ΣL̃ that satisfies the common future property for every l in L.

This definition calls for some comments:

• Our definition of common future property is strictly less restrictive than:

∀t, t′ ∈ A , evalA(t) = evalA(t′) =⇒ (t ∈ lA ⇔ t′ ∈ lA)

If we consider this last property, everything happens exactly as if labelling were attached
to values. Consequently our semantics would be equivalent to the ones of [BBC86] and
we have shown in Example 3.2 that this is not suitable. Precisely, the common future
property is a weaker constraint than the labelling of values, and it ensures a significant
difference; for instance Example 3.2 gets the suitable initial model (see also Section 9).

• Remark that the label Ok is not concerned with the common future property. Other-
wise, if succ(Maxint) is recovered on Maxint, we would have that pred(succ(Maxint))
is labelled by Ok (pred(Maxint) being labelled by Ok). Clearly, even if the term
pred(succ(Maxint)) is recovered, it remains exceptional because an exceptional treat-
ment has been required in its history. The axiom pred(succ(x)) = x being a normal
axiom, if pred(succ(Maxint)) was not considered as exceptional then the assignment
x = Maxint would be an acceptable assignment and we would have the inconsistency
pred(Maxint) = Maxint (see also Section 7.2).

• Notice that the common future property implies that the labelling of a term t by an
exception label mainly relies on the heading symbol of t. More precisely, for every
operation f of the signature, if we have evalA(ui) = evalA(vi) for all i in {1, . . . , n},
then f(u1, . . . , un) and f(v1, . . . , vn) carry the same exception labels. Consequently,
for every operation f , we can inventory the set of labels that can be raised by f . It
represents the classical exception declarations of programming languages with exception
handling, such as CLU or ADA (see for instance [LG86]), where a given function can
raise only a subset of the exception names, which are declared in the heading of the
function.
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Example 6.6 : According to the exception signature NatExc defined above, we can con-
sider for example the exception algebra A = (A, {lA}l∈L̃

) defined by:

• A = {. . . ,−2,−1, 0, 1, 2, . . . ,Maxint}
the operations succA and predA are defined as usual on integers with the restriction
succA(Maxint) = Maxint.

• NegativeA =




. . . , pred(pred(0)), pred(0), succ(pred(0)), . . . ,

. . . , −2, −1, succ(−1), succ(succ(−1)),

. . . , succ(−3), succ(−2), succ(succ(−2)), . . . ,





NegativeA contains here at the same time negative values and terms. All these
terms have a negative value by classical evaluation in the set of integers or else
have at least a subterm which would have a negative value by evaluation.

• TooLargeA = {succMaxint+1(0), succ(Maxint), succ(succ(Maxint)), . . .}

• OkA =





. . . , succ(0), succ(1), . . . , . . . ,
0, 1, 2, 3, . . . , Maxint

pred(1), pred(2), pred(3), . . . , . . . , pred(Maxint)





Definition 6.7 : Let A and B be two exception algebras with respect to the exception
signature ΣExc. An exception morphism µ : A → B is a ΣL̃-morphism from A to B.

We accept ΣExc-signature, ΣExc-algebra, ΣExc-morphism as additional notations respec-
tively for exception signature, exception algebra and exception morphism with respect to the
exception signature ΣExc.

Definition 6.8 : Given an exception signature ΣExc, the category of all ΣExc-algebras,
and ΣExc-morphisms, is denoted by AlgExc(ΣExc).

Definition 6.9 : GenExc(ΣExc) is the full subcategory of AlgExc(ΣExc) containing all the
finitely generated algebras.

Theorem 6.10 : Let ΣExc be an exception signature. Let FutΣ,L be the positive condi-

tional label specification which contains all the ΣL̃-axioms of the form:

x1 = y1 ∧ . . . ∧ xn = yn ∧ f(x1, . . . , xn) ǫ l =⇒ f(y1, . . . , yn) ǫ l

where f is any non-constant operation of Σ (i.e. n > 0), xi and yi are variables of sorts
given by the arity of f , and l is any exception label of L.

The label specification FutΣ,L specifies the ΣExc-algebras, i.e. AlgExc(ΣExc) is equal
to AlgLbl(FutΣ,L).

Proof : From Definition 4.13 and Definition 6.4, a ΣL̃-algebra A satisfies FutΣ,L if and
only if it satisfies the common future property. Thus, AlgExc(ΣExc) = AlgLbl(FutΣ,L). ♦

If there are p non-constant operations in Σ and q exception labels in L, then FutΣ,L

contains p× q axioms.
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Theorem 6.11 : AlgExc(ΣExc) has an initial object denoted TΣExc.

Proof : AlgExc(ΣExc) is included in AlgLbl(ΣL̃) and the initial object of AlgLbl(ΣL̃), T
ΣL̃

,
satisfies the common future property. Thus TΣExc = T

ΣL̃
is initial in AlgExc(ΣExc). ♦

6.3 Exceptions and errors

By analogy with programming languages, a term is exceptional if and only if it raises an
exception name in its history.

Definition 6.12 : Let A be a ΣExc-algebra. The set of exceptional terms according to A
is the least subset of A, denoted by ExcA, such that:

1. for all labels l ∈ L, lA ⊆ ExcA ;

2. for all non-constant operations (f : s1 . . . sn → s) of the signature (n > 0), for all
terms t1, . . . , tn (according to the arity of f), if at least one of the ti belongs to
ExcA then f(t1, . . . , tn) belongs to ExcA.

Notice that, of course, l = Ok is not taken into account in this definition.

Let us remark that an exceptional term is not necessarily erroneous because it can be
recovered on an Ok-value. Nevertheless it remains exceptional because its recovery is an
exception handling.

Definition 6.13 : LetA be a ΣExc-algebra; the set of Ok-values of A isAOk = evalA(OkA).

Notice that OkA is a set of terms (subset of A) while AOk is a set of values (subset of A).
Then, erroneous terms can easily be defined:

Definition 6.14 : Let A be a ΣExc-algebra. The set of erroneous terms according to A is
the least subset of A, denoted by ErrA, such that:

1. for all labels l ∈ L, for all terms t ∈ lA, if evalA(t) 6∈ AOk then t ∈ ErrA; i.e.:

[(
⋃

l∈L

lA)− eval−1
A (AOk)] ⊆ ErrA

2. for all non-constant operations (f : s1 . . . sn → s) of the signature (n > 0), for all
terms t1, . . . , tn (according to the arity of f), if at least one of the ti belongs to
ErrA and if evalA(f(t1, . . . , tn)) 6∈ AOk then f(t1, . . . , tn) belongs to ErrA .

Moreover, the set of erroneous values of A is by definition AErr = evalA(ErrA) .

These definitions call for some comments.

1. By construction of AErr, we have AOk ∩AErr = Ø. However, AOk ∪AErr does not nec-
essarily cover A. Intuitively, in this case, it represents partial functions. For example,
let us assume that A is an algebra representing natural numbers such that the terms
n div 0 are not labelled, but do not get an Ok-value. Then it means that the operation
div does not raise an explicit exception, and the division by 0 is undefined.
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2. Every erroneous term is exceptional (ErrA ⊆ ExcA), but the converse is false because
an exception can be recovered. However, let us remark that ErrA is not equal to
(ExcA −OkA), and also that it is not equal to (ExcA − eval

−1
A (AOk)). More precisely

we have:
ErrA ⊆ (ExcA − eval

−1
A (AOk)) ⊆ (ExcA −OkA)

but none of the reverse inclusions is ensured. For example, let A be an algebra repre-
senting bounded natural numbers where succ(Maxint) = Maxint, the terms n div 0
being not labelled (as in the previous example). Then the term (succ(Maxint) div 0)
is exceptional (because succ(Maxint) is exceptional), it is not recovered, but it is not
erroneous (succ(Maxint) is not erroneous, since it is recovered). It is simply equal to
(Maxint div 0), and undefined.

3. Notice that the definitions of ErrA, ExcA, AOk and AErr are independent of any
specification; they are intrinsically defined from the exception algebra A.

4. Of course, we can consider that Exc and Err are new labels, and automatically build a
label algebra over the label signature <S,Σ, L ∪ {Ok,Exc,Err}> from any exception
algebra. However, we should be aware that exception morphisms do not preserve the
label Err, because exception morphisms can add recoveries (see Example 6.16 below).
It is not difficult to show that they preserve the label Exc, i.e. µ(ExcA) ⊆ ExcB .

Definition 6.15 : An exception algebra A is called total if A = AOk ∪AErr.

Example 6.16 : In the exception algebra A described in Example 6.6 of the previous
section, we have for instance:

• pred(0) and all the terms that contain pred(0) as subterm are exceptional because
pred(0) belongs to NegativeA;

• succMaxint+1(0) is recovered since it is exceptional and its value is equal to the
value of the Ok-term succMaxint(0);

• pred(0) is an erroneous term since it belongs to NegativeA without belonging to
eval−1

A (AOk);

• −1 is an erroneous value since it is the result of the evaluation of the erroneous
term pred(0);

• If we consider an algebra B that additionally recovers pred(0) on 0, there exists
an exception morphism from A to B, which is the quotient morphism, but it does
not preserve the label Err, as pred(0) does not belong to ErrB.

7 Exception specifications

As shown in Section 2, it is preferable to separate the axioms concerning exceptional cases
from the ones concerning normal cases in order to preserve legibility and terseness of specifi-
cations. The axioms of an exception specification will be separated in two parts.

• The first part, called GenAx, is mainly devoted to exception handling. It has three
main purposes:
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1. We have shown in the sections 3.4 and 3.5 that it is first necessary to characterize
theOk-domains of the underlying data structures. They will be specified inGenAx
by positive conditional axioms with a conclusion of the form t ǫ Ok, whose meaning
is that t will be a normal term. Thus, these axioms will be used as starting point
to generate the set of Ok-terms.

2. It is also necessary to attach exception names to the exceptional cases, in order to
facilitate the specification of specialized exception handling. They will be specified
in GenAx by positive conditional axioms with a conclusion of the form t ǫ l where
l belongs to L, whose meaning is that the heading function of the term t raises
the exception name l.

3. The third purpose of GenAx is to handle the exceptional cases, in particular to
specify recoveries, according to the previous labelling of terms. They will have a
conclusion of the form u = v.

As the axioms of GenAx concern all the terms, exceptional or not, the satisfaction of
such axioms does not require some particular mechanism; it will simply be the same as
for label axioms. It is the reason why the three purposes mentioned above are grouped
under the name “generalized axioms” (they have common semantics); however, for a
concrete syntax devoted to exception specifications, it could be preferable to distinguish
these three purposes.

• The second part, called OkAx, is entirely devoted to the normal cases, and will only
concern terms labelled by Ok. As extensively shown in Section 3, the semantics of OkAx
will be carefully restricted to Ok-assignments only, in order to avoid inconsistencies.

We will define a special semantics for Ok-axioms that will both specify equalities be-
tween Ok-terms and carefully propagate labelling by Ok through these equalities (fol-
lowing the motivation given in Section 6.1).

An exception specification SPEC is defined as a triple <ΣExc,GenAx,OkAx> where ΣExc
is an exception signature, GenAx a set of generalized axioms (defined in Section 7.1 below)
and OkAx a set of Ok-axioms (defined in Section 7.2 below).

7.1 Generalized axioms

Definition 7.1 : Let ΣExc be an exception signature. A set of generalized axioms with
respect to the exception signature ΣExc is a set GenAx of positive conditional label
axioms with respect to the label signature ΣL̃.

Definition 7.2 : Given an exception signature ΣExc, an exception algebra A satisfies a
generalized axiom “α” (A |= α) if and only if the underlying label algebra of A satisfies
it, regarded as a label axiom.

Given a set GenAx of generalized axioms, A satisfies GenAx if and only if A satisfies
all the axioms of GenAx.

Example 7.3 : Let NatExc = <{Nat}, {0, succ , pred }, {TooLarge,Negative}> be the
exception signature given in Example 6.2. An example of GenAx for a specification of
natural numbers bounded by Maxint is given by:
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succMaxint(0) ǫ Ok
succ(n) ǫ Ok ⇒ n ǫ Ok
succMaxint+1(0) ǫ TooLarge
pred(0) ǫ Negative
succMaxint+1(0) = succMaxint(0)

The two first axioms specify the Ok domain of Nat. In most examples, they define
recursively the set of “normal forms” which belong to the intended Ok domain. It is
not necessary to declare all theOk-terms (the labelOk will automatically be propagated
to terms such as pred(succ(0)) via the Ok-axioms, as described in Section 7.2). Even if
it is generally easier to specify the Ok domain this way, it is not mandatory. We never
require for the axioms of an exception specification to be canonical term rewriting
systems, and a fortiori, we never require to actually specify normal forms. It is only
desirable to declare at least one term for each intended Ok-value.

The third and fourth axioms declare exception names. Their meaning is that the op-
eration succ (resp. pred) raises the exception TooLarge (resp. Negative) when applied
to Maxint (resp. 0).

The last axiom recovers succMaxint+1(0) on succMaxint(0). Let us note that the gen-
eralized axiom succMaxint+1(0) ǫ TooLarge is then not directly necessary, but it could
have been useful if we replaced the last axiom by:

n ǫ TooLarge =⇒ n = succMaxint(0)

which can make the specification more easily understandable, or by

succ(n) ǫ TooLarge =⇒ succ(n) = n

which is consistent now, because the label TooLarge is not propagated to succMaxint(0)
(see Example 3.2). On the contrary, since pred(0) is not recovered, it is necessary to
label it in order to write a “self complete” specification (defined in Section 8.1).

Let us note that we operate in a total framework; however this does not force to always
define a recovery condition. For example, this specification does not imply for pred(0)
to be equal to an Ok-term; consequently, in the initial model, it denotes an exceptional
term since it is labelled by Negative. More precisely, as soon as pred(0) is labelled by
Negative and not recovered, it becomes erroneous. This fact can be understood as an
error exit.

Theorem 7.4 : Let ΣExc be an exception signature and let GenAx be a set of gen-
eralized axioms. The class of exception algebras which satisfies GenAx is equal to
AlgLbl(FutΣ,L ∪GenAx). (FutΣ,L is defined in Theorem 6.10.)

(The proof is immediate).

7.2 Ok-axioms

Definition 7.5 : Let ΣExc be an exception signature. A set of Ok-axioms with respect to
the exception signature ΣExc is a set OkAx of positive conditional ΣL̃-axioms with a
conclusion of the form: v = w. Thus, an Ok-axiom is of the form

u1 ǫ l1 ∧ . . . ∧ um ǫ lm ∧ v1 = w1 ∧ . . . ∧ vn = wn =⇒ v = w
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where the ui, vj , wj , v and w are Σ-terms with variables and the li are labels of L̃.
(m or n may be equal to 0.)

Definition 7.6 : Let ΣExc be an exception signature. An exception algebra A satisfies an
Ok-axiom of the form:

u1 ǫ l1 ∧ . . . ∧ um ǫ lm ∧ v1 = w1 ∧ . . . ∧ vn = wn =⇒ v = w

if and only if for all assignments σ with range in A (covering all the variables of the
axiom) which satisfy the precondition, i.e.

(
m∧

i=1

σ(ui) ∈ liA) ∧ (
n∧

j=1

evalA(σ(vj)) = evalA(σ(wj)))

the two following properties hold:

1. Ok propagation: if at least one of the terms σ(v) or σ(w) belongs to OkA and the
other one is of the form f(t1, . . . , tp) with all the ti belonging to OkA (p may be
equal to 0), then both σ(v) and σ(w) belong to OkA.

2. Ok equality : if σ(v) and σ(w) belong to OkA then evalA(σ(v)) = evalA(σ(w)).

A satisfies OkAx if and only if A satisfies all the Ok-axioms of OkAx.

The semantics of OkAx call for some comments.

1. The first property of the definition models a propagation of the Ok label: a term can
be labelled by Ok through an Ok-axiom only if all its direct strict subterms (i.e. all
the arguments of the heading function) are already Ok. This rule allows us to care-
fully propagate the label Ok. It corresponds to an innermost evaluation which avoids
inconsistencies: a recovered exceptional term cannot be treated by the Ok-axioms. In-
tuitively, an innermost evaluation models an implicit propagation of exceptions: if t is
not an Ok-term then f(. . . , t, . . .) cannot be turned into an Ok-term via the Ok-axioms
(recoveries are handled by generalized axioms because they are exceptional treatments).
Thus, t ∈ OkA does not mean “t has an Ok value;” it means “t does not require an
exceptional treatment in its history.”

Let us note that this propagation starts from the Ok-terms declared in GenAx.

2. The second property specifies the equalities that hold for the normal cases. Two terms
are required to have the same evaluation according to an Ok-axiom only if they are
both labelled by Ok.

Example 7.7 : Let NatExc = <{Nat}, {0, succ , pred }, {TooLarge,Negative}> and let
GenAx be given as in Example 7.3. The set OkAx of Ok-axioms has only to specify
the operation pred in all normal cases. It can be given by the single following axiom:

pred(succ(n)) = n

Notice that OkAx is actually terse and legible, compared to the approaches described
in Section 3. Moreover the inconsistency raised by the recovery

succMaxint+1(0) = succMaxint(0)
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does not occur any more; the instance

pred(succMaxint(0)) = pred(succMaxint+1(0)) = succMaxint(0)

is no longer an instance of the Ok-axiom because the term succMaxint+1(0) [there-
fore the term pred(succMaxint+1(0))] is not required to be an Ok-term in our frame-
work (even though evalA(succMaxint+1(0)) is equal to evalA(succMaxint(0))). Thus,
pred(succMaxint+1(0)) = succMaxint(0) is not a consequence of OkAx. This is a good
example of our restricted propagation of the label Ok through the Ok-axioms; it shows
how the semantics of Ok-axioms models an implicit propagation of exceptions.

Definition 7.8 : An exception specification is a triple <ΣExc,GenAx,OkAx> where
ΣExc is an exception signature, GenAx is a set of generalized axioms and OkAx is
a set of Ok-axioms.

Let SPEC = <ΣExc,GenAx,OkAx>. A ΣExc-algebraA satisfies SPEC if and only if
it satisfies GenAx and OkAx, as sets of generalized axioms and Ok-axioms respectively.

We denote by AlgExc(SPEC) the full subcategory of AlgExc(ΣExc) containing all the
algebras satisfying SPEC (SPEC-algebras for short). GenExc(SPEC) is the full sub-
category of AlgExc(SPEC) containing the finitely generated SPEC-algebras.

Note that the semantics of an axiom with a conclusion of the form v = w vary whether it
is considered as a generalized axiom or as an Ok-axiom, according to the principle that the
specification of normal cases and exceptional cases are distinguished, with different implicit
semantics.

Remark 7.9 : Let BoundedNat be the exception specification given in the example above.
The exception algebra A described in Example 6.6 satisfies BoundedNat.

Remark 7.10 : As a consequence of the semantics of OkAx, non-strict operations or lazy
evaluation cannot be specified by means of Ok-axioms because of the innermost eval-
uation principle. However, the specification of non-strict operations or lazy evaluation
may be specified by using generalized axioms. More precisely, this kind of specification
intrinsically relies on exception handling because it concerns all the terms, even if they
contain exceptional or erroneous subterms. Consequently, such operations have to be
specified via generalized axioms. For example, to specify a non-strict if then else
operation, the two following axioms have to be put into GenAx:

if true then u else v = u

if false then u else v = v

Being considered as generalized axioms, they concern all the terms σ(u) and σ(v),
including the non-Ok ones. Even if σ(v) is erroneous, the term σ(if true then u else v)
can result in an Ok-value, as soon as σ(u) has an Ok-value. This particular case of
using recovery exactly coincides with the usual notion of lazy evaluation.

Let us note that the first “naive” (but terse) algorithm given in Section 2.1 works
correctly provided that the operation and is a lazy operator which evaluates first the
left hand side argument. This lazy evaluation can be specified in GenAx as follows:

false and v = false

the other usual axiom (true and v = v) can be left in OkAx for instance.
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Lemma 7.11 : Let ΣExc be an exception signature. Let α be an Ok-axiom. There is a
set of ΣL̃-axioms, denoted Tr(α), such that for every ΣExc-algebra A, A satisfies the
Ok-axiom α if and only if the underlying ΣL̃-algebra of A satisfies Tr(α), regarded
as a set of label axioms. The transformation Tr : α → Tr(α) only depends on the
signature ΣL̃.

Proof : By definition, the Ok-axiom α is of the form

P =⇒ v = w

where P is the precondition of α (P may be empty). Three cases can occur, depending on
whether the terms v and w are reduced to a variable or not.

1. If v and w are not reduced to variables, then v = f(v1, . . . , vp) and w = g(w1, . . . , wq)
where f and g belong to the signature and vi and wj are terms with variables (p or q
may be equal to 0). Let Tr(α) be the following set of ΣL̃-axioms:

P ∧ (
p∧

i=1

vi ǫ Ok) ∧ w ǫ Ok =⇒ v ǫ Ok

P ∧ v ǫ Ok ∧ (
q∧

j=1

wj ǫ Ok) =⇒ w ǫ Ok

P ∧ v ǫ Ok ∧ w ǫ Ok =⇒ v = w

From Definition 4.13, the underlying label algebra of an exception algebra A satisfies
the two first label axioms if and only if it satisfies the Ok propagation of Definition 7.6;
moreover, A satisfies the last label axiom if and only if it satisfies the Ok equality of
Definition 7.6. Consequently, A satisfies α as an Ok-axiom if and only if it satisfies
these three axioms as label axioms.

2. If exactly one of the terms v or w is reduced to a variable, say v, then w is is of the
form g(w1, . . . , wq). Let n be the cardinal of the signature (the number of operations
belonging to ΣExc). For each operation f of ΣExc, let σf be the assignment defined
by σf (v) = f(z1, . . . , zp) where zi are fresh variables1 and σf (x) = x for all the other
variables x appearing in α. Let, finally, Tr(α) be the set containing the following n+ 2
label axioms:

σf (P ) ∧ (
p∧

i=1

zi ǫ Ok) ∧ σf (w) ǫ Ok =⇒ σf (v) ǫ Ok

(for all f in the signature) and

P ∧ v ǫ Ok ∧ (
q∧

j=1

wj ǫ Ok) =⇒ w ǫ Ok

P ∧ v ǫ Ok ∧ w ǫ Ok =⇒ v = w

Let us note that for each assignment σ with range in A, either σ(v) is a constant element
of A, or there exists an assignment γ and a σf such that σ = γ ◦ σf . Consequently,

1according to the arity of f ; p may be equal to 0.
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for the same reason as before, the underlying label algebra of an exception algebra A
satisfies the (n+1) first axioms if and only if it satisfies the Ok propagation; moreover,
it satisfies the last axiom if and only if it satisfies the Ok equality of Definition 7.6.
Consequently, A satisfies α as an Ok-axiom if and only if it satisfies these (n+2) axioms
as label axioms.

3. If v and w are two distinct variables (if they are equal Tr(α) = Ø is sufficient), let
Tr(α) be the set containing the following (2n + 1) label axioms:

σf (P ) ∧ (
p∧

i=1

zi ǫ Ok) ∧ w ǫ Ok =⇒ σf (v) ǫ Ok

(for all f in the signature) and

τg(P ) ∧ v ǫ Ok ∧ (
q∧

j=1

zj ǫ Ok) =⇒ τg(w) ǫ Ok

(for all g in the signature, the τg being defined with respect to w in a similar manner
as the σf have been defined with respect to v) and

P ∧ v ǫ Ok ∧ w ǫ Ok =⇒ v = w

For the same reasons as before, an exception algebra A satisfies the Ok-axiom α if and
only if it satisfies these (2n+ 1) label axioms.

This proves the lemma. ♦

Theorem 7.12 : Let SPEC = <ΣExc,GenAx,OkAx> be an exception specification.
Let Tr(SPEC) be the label specification defined by the label signature ΣL̃ and the set
of label axioms containing: all the axioms of FutΣ,L (defined in Theorem 6.10), GenAx
and all the Tr(α) for α ∈ OkAx (defined in Lemma 7.11 above).
We have AlgExc(SPEC) = AlgLbl(Tr(SPEC)). Tr(SPEC) is called the translation of
the exception specification SPEC into a label specification.

Proof : Directly results from Theorem 7.4 and Lemma 7.11. ♦

Let us note that Tr(SPEC) contains only positive conditional axioms. Section 8.1 uses
Tr(SPEC) to obtain initiality results for exception algebras. An example of translation can
be found in Section 9.3.

8 Main results and structured exception specifications

8.1 Fundamental results

The translations proved in Section 7 above ensure that all the initiality results obtained for
label algebras hold for exception algebras.
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Theorem 8.1 : Let SPEC be an exception specification.

AlgExc(SPEC) and GenExc(SPEC) have an initial object, denoted TSPEC .

Moreover, Triv is final in AlgExc(SPEC) (and in GenExc(SPEC) if the signature is
sensible).

Proof : Tr(SPEC) being a positive conditional label specification, it results from:
AlgExc(SPEC) = AlgLbl(Tr(SPEC)) and GenExc(SPEC) = GenLbl(Tr(SPEC)). ♦

Definition 8.2 : An exception specification SPEC is called self complete if and only if the
algebra TSPEC is total (see Definition 6.15).

Definition 8.3 : Let ΣExc1 and ΣExc2 be exception signatures such that ΣExc1 ⊆ ΣExc2
(i.e. S1 ⊆ S2, Σ1 ⊆ Σ2 and L1 ⊆ L2).
The forgetful functor U : AlgExc(ΣExc2) → AlgExc(ΣExc1) is defined as the forgetful
functor on the underlying label algebras.

This definition is sensible because for every exception algebra A, the label algebra U(A) is
an exception algebra (i.e. satisfies the common future property). Indeed, from Theorem 6.10,
U can also be shown as the forgetful functor from AlgLbl(FutΣ2,L2

) to AlgLbl(FutΣ1,L1
), the

FutΣi,Li
being defined as in Theorem 6.10.

Theorem 8.4 : Let SPEC1 and SPEC2 be exception specifications with SPEC1 ⊆ SPEC2.
Let U be the forgetful functor from AlgLbl(ΣExc2) to AlgLbl(ΣExc1). The restriction
of U to AlgLbl(SPEC2) can be co-restricted to AlgLbl(SPEC1).

More generally, given two exception signatures ΣExc1 ⊆ ΣExc2, for every ΣExc2-
algebra A and for every ΣExc1-axiom ϕ (Ok or generalized) we have:

A |= ϕ =⇒ U(A) |= ϕ

Proof : If ϕ is a generalized axiom, it directly results from Theorem 5.6. If ϕ is an
Ok-axiom, it results from Theorem 5.6 and from the fact that ΣExc1 ⊆ ΣExc2 implies
TrΣExc1(ϕ) ⊆ TrΣExc2(ϕ). ♦

Definition 8.5 : Let SPEC1 and SPEC2 be exception specifications with SPEC1 ⊆ SPEC2.
The synthesis functor F : AlgExc(SPEC1) → AlgExc(SPEC2) is by definition the syn-
thesis functor F : AlgLbl(Tr(SPEC1))→ AlgLbl(Tr(SPEC2)) defined on label algebras
in Theorem 5.11.

Theorem 8.6 : Let SPEC1 and SPEC2 be exception specifications with SPEC1 ⊆ SPEC2.
The synthesis functor F : AlgExc(SPEC1) → AlgExc(SPEC2) is a left adjoint for the
forgetful functor U : AlgExc(SPEC2)→ AlgExc(SPEC1).

Proof : Trivially results from AlgExc(SPEC i) = AlgLbl(Tr(SPEC i)), from the definitions
of U and F that coincide with the ones on label algebras, and from Theorem 5.12. ♦
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8.2 Structured exception specifications

The initiality results given in Section 8.1 can be used to define hierarchical consistency and
sufficient completeness for structured exception specifications in a similar way as usual.

Definition 8.7 : Let SPEC1 and SPEC2 be two exception specifications. The specification
SPEC2 is an enrichment of the specification SPEC1 if and only if SPEC1 ⊆ SPEC2 (i.e.
S1 ⊆ S2, Σ1 ⊆ Σ2, etc.). In this case, SPEC1 is often called the predefined specification
and ∆SPEC = SPEC2 − SPEC1 is often called the presentation of interest .

Example 8.8 : Stack can be specified as an enrichment of BoundedNat (BoundedNat is
specified in Example 6.6).

∆S : Stack

∆Σ : empty :→ Stack
push : Stack Nat→ Stack
pop : Stack → Stack
top : Stack → Nat

∆L : Underflow
BadAccess

∆GenAx : empty ǫ Ok
p ǫ Ok ∧ n ǫ Ok =⇒ push(p, n) ǫ Ok
pop(empty) ǫ Underflow
top(empty) ǫ BadAccess

∆OkAx : top(push(p, n)) = n
pop(push(p, n)) = p

Where : n : Nat ; p : Stack

This presentation is rather simple with respect to exception handling; no recovery
is specified. Nevertheless, the most important thing is that the two Ok-axioms of
Stack only concern assignments σ such that both σ(p) and σ(n) are Ok-terms. In
particular, the exceptional terms of the predefined specification BoundedNat are au-
tomatically excluded from the semantics of the Ok-axioms. For example, the term
top(push(empty, pred(0))) does not result to pred(0) (via the first Ok-axiom of Stack)
because it is not an Ok-term.

Let us remember that hierarchical consistency means that the presentation does not introduce
new equalities over the predefined values (the so-called “no collapse” property). Without
exception handling, hierarchical consistency is expressed by means of the unit of adjunction
with respect to F and U : it should be injective on the initial object TSPEC1

. With exception
handling, the labels should also be taken into account. Hierarchical consistency has to forbid
the existence of new labelling of predefined terms by predefined labels. For example, Stack
should not imply that pred(0) becomes labelled by TooLarge if this is not a consequence
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of BoundedNat. A similar definition of hierarchical consistency has already been given
in [Ber86], [BBC86].

Definition 8.9 : Let SPEC1 and SPEC2 be exception specifications with SPEC1 ⊆ SPEC2.
The associated enrichment is hierarchically consistent if and only if:

1. the unit of adjunction ITSPEC1
is injective;

2. ∀l ∈ L̃1, ∀t ∈ TΣ1
(TSPEC1

), ITSPEC1
(t) ∈ lU(TSPEC2

) =⇒ t ∈ lTSPEC1
.

Remarks 8.10 :

1. From Theorem 8.6, for all SPEC1-algebra A, HomSPEC1
(A, U(F (A))) is canoni-

cally isomorphic to HomSPEC2
(F (A), F (A)) (see [BW90]). The unit of adjunction

is the exception morphism from A to U(F (A)) associated with the identity of
HomSPEC2

(F (A), F (A)). This morphism is the morphism IA defined in the proof
of Theorem 5.12. If A is the initial exception algebra TSPEC1

, then F (A) = TSPEC2

because left adjoint functors preserve initial objects. Thus, the unit of adjunction
ITSPEC1

is indeed the initial morphism from TSPEC1
to U(TSPEC2

).

2. The reverse implication of the second property is always satisfied since ITSPEC1
is

an exception morphism (ITSPEC1
preserves the labels).

The presentation Stack given in Example 8.8 is hierarchically consistent: no collapses are
added in the sort Nat and no predefined labelling is added since the axioms only concern the
new labels.

Let us recall that sufficient completeness means that the presentation does not add new
values in the predefined sorts (the so-called “no junk” property). Without exception handling,
sufficient completeness means that the unit of adjunction ITSPEC1

is surjective. With exception
handling, such a definition is not suitable. For example, the term top(empty) is of predefined
sort Nat but its value does not belong to the ones defined by BoundedNat. The value of
top(empty) is a new erroneous value which has been introduced by the stack data structure,
and there is no reason to take such errors into account when specifying BoundedNat. The
only important point is that the presentation Stack allows us to deduce that top(empty)
is erroneous (as it is labelled by BadAccess and not recovered). It is logical that, when
specifying natural numbers, we do not foresee all the possible erroneous values introduced by
all the possible ulterior enrichments. Thus, we have to accept new values of predefined sorts,
provided that they are erroneous. A similar definition of sufficient completeness has already
been given in [Ber86] [BBC86].

Definition 8.11 : Let SPEC1 and SPEC2 be exception specifications with SPEC1⊆ SPEC2.
The associated enrichment is sufficiently complete if and only if

U(TSPEC2
− TSPEC2,Err) ⊆ ITSPEC1

(TSPEC1
)

(In the notation “U(TSPEC2
−TSPEC2,Err),” U should not be understood as the forgetful

functor defined on exception algebras because (TSPEC2
− TSPEC2,Err) is not an algebra.

Here, U should be understood as the underlying forgetful functor simply defined on
heterogeneous sets.)
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The presentation Stack given in Example 8.8 is sufficiently complete: all the new values
added to the sort Nat are erroneous, as they are obtained by evaluation of terms containing
top(empty) or pop(empty) as subterms (which are labelled by BadAccess or Underflow
respectively).

In this section, we have more or less restricted our study to the initial approach. In
particular, our definitions about “structured specifications” deal with the initial models only.
This approach is not always satisfactory for specifying realistic software, where a “loose”
approach is often suitable. It has been shown in [Ber87] that it is not suitable to define
hierarchical consistency or sufficient completeness on all the models of AlgExc(SPEC) or
GenExc(SPEC). More elaborated modular semantics should be used. However, even if we
are only interested in loose semantics, initiality results are often very convenient to avoid
trivial models. For example, in [Bid89], the so-called “basic specifications” (the ones that do
not import other specifications) must have an initial model. We believe that our definitions
of hierarchical consistency and sufficient completeness provide a good starting point to define
what “protecting an imported data structure” means in a loose approach. We have shown in
particular that erroneous junk is allowed; thus, a naive definition of “conservative extensions”
is not convenient for exception or error handling. This fact should have an important impact
on the general definitions of the semantics of modularity. Let us point out that all the existing
frameworks for modularity ([AW86], [Bid89], [EBO91] and others), which follow a more or
less “institution independent” viewpoint, are not suitable for a framework with exception
or error handling because they all consider such a naive definition of conservative property
(consequently, they do not allow erroneous junk such as top(empty) for the stack module).

9 Some examples

Section 9.1 gives several possible exception specifications of natural numbers. In order to
give some insights into the semantics of exception specifications, the impact of the axioms on
the initial algebra is described carefully.
Section 9.2 gives several exception specifications of classical data structures. These specifi-
cations are not difficult to understand (as already mentioned, the specification of bounded
natural numbers raises all the difficulties of exception handling for algebraic specifications);
they mainly give an overview of how exception specifications look like.
Section 9.3 gives an example of proof according to the label calculus, from a specification of
natural numbers.

9.1 Several versions of natural numbers

Let us first specify natural numbers without bound. The specification Nat1 given below,
over the signature NatExc = <{Nat}, {0, succ , pred }, {Negative}>, is rather similar to
the specifications of natural numbers that can be done in the framework of [GDLE84]: the
first two generalized axioms mean that 0 and succ are “safe operations.”

GenAx : 0 ǫ Ok
n ǫ Ok =⇒ succ(n) ǫ Ok

OkAx : pred(succ(n)) = n

Where : n : Nat

43



• The first two generalized axioms imply that the terms succi(0) with 0 ≤ i are Ok-terms.

• pred(succ(n)) = n is an Ok-axiom; therefore it only applies to Ok-terms, in particular
n = pred(0) is not an acceptable assignment (to obtain the same result in the framework
of [GDLE84] it is necessary to explicitly replace n by n+, see Section 3.5).

• pred(0) is not an Ok-term because the propagation of the label Ok through the Ok-
axioms never matches the term pred(0). More generally, the Ok-terms are the terms t
such that every subterm of t contains at least as many occurrences of succ as occurrences
of pred.

• The Ok-axiom implies that each Ok-term t has the same value that the term of the
form succi(0), where i is the difference between the number of occurrences of succ and
pred in t.

• Notice that pred(0) is not labelled by an exception name. Thus, in our framework, the
specification Nat1 is not self complete. (The label Negative is not used in GenAx1.)

All the examples Nat2 to Nat7 given in this section contain Nat1, and have the same
signature NatExc. Moreover, Nat2 to Nat7 will not contain any additional Ok-axiom, nor
additional generalized axiom with a conclusion of the form “u ǫ Ok”. Consequently, the set
of Ok-terms will not change; pred(0), even if it is recovered, will always remain exceptional.
Nat2 to Nat7 show how the idea of labelling terms can be used in order to reach a very
precise specification of fine exception handling features.

As Nat1 is not self complete, let us consider Nat2, which contains Nat1, such that
GenAx2 contains GenAx1 and the following additional generalized axiom:

pred(0) ǫ Negative

Since pred(0) is labelled byNegative and not recovered, it is erroneous. Nat2 is self complete.

Let us remark that Nat2 labels only one term in the initial model: pred(0). There is no
explicit propagation of the error raised by pred on 0. All terms containing pred(0) as strict
subterm are not labelled. For high quality software, it is sometimes convenient to require
exception handlers that explicitly forward the exception names through the operations (if
they do not recover them). Let us consider Nat3, which contains Nat2, such that GenAx3
contains the following two additional generalized axioms:

n ǫ Negative =⇒ succ(n) ǫ Negative
n ǫ Negative =⇒ pred(n) ǫ Negative

The specification Nat3 clearly fulfills this requirement; all erroneous terms are labelled by
Negative, modeling the innermost error that has been raised in the term.

Let us note that, even if all the erroneous terms are labelled by Negative, they remain dis-
tinct. If we want to have a single erroneous value, as in the approach proposed in [GTW78], it
is sufficient to consider Nat4, which contains Nat3, such that GenAx4 contains the following
additional generalized axiom:

n ǫ Negative =⇒ n = pred(0)
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Nat4 is an example where the generalized axioms are not only used for recovery purposes.
Here, the additional axiom is used to collapse all the exceptional terms on a single erroneous
value.

Instead of labelling the exceptional terms in order to reach self completeness (as in ex-
amples Nat2 to Nat4), it is possible to directly recover the non Ok-terms, without labelling
them. Let us consider Nat5, which contains Nat1, such that GenAx5 contains GenAx1 and
the following additional generalized axiom:

pred(0) = 0

This axiom recovers all the exceptional ground terms. More precisely, pred(0) is recovered
on 0, succ(pred(pred(0))) is recovered on succ(0) and so on. Let us note that Nat5 remains
nevertheless consistent because the terms pred(0), succ(pred(pred(0))), etc. are not Ok-
terms, even if they are recovered; thus they are not acceptable assignments of the Ok-axioms.
The initial model of Nat5 actually behaves on the Ok-part as natural numbers do.

In Nat5, pred(0) is silently recovered, the intermediate exceptional state is not signaled
(i.e. it is not labelled by an exception name). Even if it is recovered, this exception can be
signaled by specifying Nat6, which contains Nat5, such that GenAx6 contains GenAx5 and
the following additional generalized axiom:

pred(0) ǫ Negative

Intuitively, we can consider that the label Negative plays the role of a warning message.

Many other exception handling examples can be provided. For example the exception
specification Nat7 over NatExc = <{Nat}, {0, succ , pred }, {Negative}> differs from the
two previous recovery cases:

GenAx : 0 ǫ Ok
n ǫ Ok =⇒ succ(n) ǫ Ok
pred(0) ǫ Negative
n ǫ Negative =⇒ pred(n) ǫ Negative
n ǫ Negative ∧ n = m =⇒ m ǫ Negative
succ(pred(n)) = n

OkAx : pred(succ(n)) = n

Nat7 does not directly describe an explicit recovery of a particular exceptional term (as the
axiom pred(0) = 0 does). It describes a general property, succ(pred(n)) = n, that concerns
exceptional cases as well as normal cases. Several instances are recoveries, provided that the
exceptional term under consideration contains more occurrences of succ than of pred. For
instance, succ(succ(pred(0))) is recovered on the Ok-term succ(0).

We sum up below the different features of Nat1 to Nat7.

Nat1 Nat2 Nat3 Nat4 Nat5 Nat6 Nat7

recovery No No No No Yes Yes Yes

labelling No Yes Yes Yes No Yes Yes

explicit propagation of
labelling

No No Yes Yes No No Yes

property on exceptional
terms

No No No Yes No No Yes
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9.2 Other examples

We give an example of an exception specification of binary trees over natural numbers.

∆S : Tree

∆Σ : empty :→ Tree
node : Tree Nat Tree → Tree
root : Tree→ Nat
left : Tree→ Tree
right : Tree→ Tree

∆L : V oid

∆GenAx : empty ǫ Ok
t1 ǫ Ok ∧ t2 ǫ Ok ∧ n ǫ Ok =⇒ node(t1, n, t2) ǫ Ok
root(empty) ǫ V oid
left(empty) ǫ V oid
right(empty) ǫ V oid
t ǫ V oid =⇒ t = empty

∆OkAx : left(node(t1, n, t2)) = t1
right(node(t1, n, t2)) = t2
root(node(t1, n, t2)) = n

Where : n : Nat ; t, t1, t2 : Tree

BinTree is a presentation of interest, whose predefined specification can be any specification
of natural numbers (e.g. Nat2 to Nat7). Let us note that the exception label V oid intersects
two different sorts (Tree and Nat): for example the terms left(empty) and root(empty) are
labelled by V oid. In this example, we have chosen to recover every exceptional binary tree
labelled by V oid on the empty tree. Let us note that the variable t in the last generalized
axiom is of sort Tree; thus, the exceptional term root(empty), of sort Nat, is of course not
collapsed with the empty tree because it is not an acceptable assignment of t.

We give an example of exception specification of queues (FIFO) over the natural numbers.

∆S : Queue

∆Σ : empty : → Queue
add : Nat Queue→ Queue
remove : Queue→ Queue
first : Queue→ Nat

∆L : Underflow , ErrorQueue , ErrorF irst

∆GenAx : empty ǫ Ok
q ǫ Ok ∧ n ǫ Ok =⇒ add(n, q) ǫ Ok
remove(empty) ǫ Underflow
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first(empty) ǫ ErrorF irst
q ǫ Underflow =⇒ remove(q) ǫ ErrorQueue
q ǫ Underflow ∧ n ǫ Ok =⇒ add(n, q) = add(n, empty)

∆OkAx : remove(add(n, empty)) = empty
remove(add(n, add(m, q))) = add(n, (remove(add(m, q))))
first(add(n, empty)) = n
first(add(n, add(m, q)))) = first(add(m, q))

Where : n,m : Nat ; q : Queue

Let us note that we have specified two kind of exceptional queues. On the one hand, if
only one remove is applied to the empty queue (leading to Underflow), then it remains
possible to add an Ok natural number to it; the resulting queue is recovered to the queue
containing this natural number. (Notice that, however, a queue labelled by Underflow is
not directly recovered to the empty queue.) On the other hand, if another remove is applied
to such an erroneous queue, or if an erroneous natural number is added to a queue, then
there are no specified recoveries; only one exceptional application of remove is allowed for
recovering add. This exception specification gives a good example where partial functions
are not powerful enough to describe the same data structure; remove(empty) is not defined,
but add(n, remove(empty)) is defined (see Section 3.3).

We give an example of bounded stacks over the natural numbers. It is rather similar to
the bounded natural number example studied so far in the paper.

∆S : Stack

∆Σ : empty : → Stack
push : Nat Stack → Stack
pop : Stack → Stack
top : Stack → Nat

∆L : Underflow , Overflow , ErrorTop

∆GenAx :
∧

i=1..Max

xi ǫ Ok =⇒ push(x1, push(x2, . . . , push(xMax, empty))) ǫ Ok

push(x,X) ǫ Ok =⇒ X ǫ Ok
pop(empty) ǫ Underflow
top(empty) ǫ ErrorTop
push(x1, push(x2, . . . , push(xMax+1, empty))) ǫ Overflow
push(x,X) ǫ Overflow =⇒ push(x,X) = X

∆OkAx : pop(push(x,X)) = X
top(push(x,X)) = x

Where : x1, . . . , xMax+1, x : Nat ; X : Stack

The last generalized axiom means “if the operation push raises Overflow then do not perform
it.” Let us remember that this specification is consistent within our framework; it would lead
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to a trivial initial algebra in all the other existing frameworks because it requires for the
exception label Overflow to be carried by terms, not by values (see Example 3.2).

In practice, it is unpleasant to deal with terms such as push(x1, . . . , push(xMax, empty)).
We would prefer to specify the height of a stack and use it to characterize the Ok-terms.
This leads to the following specification:

∆S : Stack

∆Σ : empty : → Stack
push : Nat Stack → Stack
height : Stack → Nat
pop : Stack → Stack
top : Stack → Nat

∆L : Underflow , Overflow , ErrorTop

∆GenAx : empty ǫ Ok
X ǫ Ok ∧ height(X) < Max = true ∧ x ǫ Ok =⇒ push(x,X) ǫ Ok
pop(empty) ǫ Underflow
top(empty) ǫ ErrorTop
height(X) = Max =⇒ push(x,X) ǫ Overflow
push(x,X) ǫ Overflow =⇒ push(x,X) = X

∆OkAx : height(empty) = 0
height(push(x,X)) = succ(height(X))
pop(push(x,X)) = X
top(push(x,X)) = x

Where : x : Nat ; X : Stack

Notice that the before last generalized axiom cannot be replaced by

Max < height(X) = true =⇒ X ǫ Overflow

because the operation height is only defined on Ok-terms (as height is defined in OkAx).
Moreover, putting the axioms defining height in GenAx without adding any precondition is
not hierarchically consistent because it would lead to succ(Max) = Max, according to the
last recovery axiom. Similarly, the two first generalized axioms cannot be replaced by

height(X) ≤Max = true =⇒ X ǫ Ok

because it does not imply that the Ok-stacks only contain Ok natural numbers; moreover,
in this case, there would be no Ok-term of sort stack at all in the initial algebra if height
remains defined in OkAx.

An example of exception specification of intervals is given below, where the interval [3, 8]
is specified (with ΣExc = <{Interv}, {0, succ , pred }, {TooLow, TooLarge}>).

GenAx : succ8(0) ǫ Ok
succ4(n) ǫ Ok =⇒ succ3(n) ǫ Ok
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succ2(0) ǫ TooLow
succ(n) ǫ TooLow =⇒ n ǫ TooLow
pred(succ3(0)) ǫ TooLow
succ9(0) ǫ TooLarge

OkAx : pred(succ(n)) = n

Where : n : Interv

The only interesting point of this example is to illustrate the fact that a subterm of an
Ok-term is not necessarily an Ok-term (succ3(0) is Ok while succ2(0) is not).

Our last example belongs to the “dynamic” class of exceptional cases. We give a speci-
fication of bounded arrays, where a new array is not supposed initialized. The ranges of an
array are of sort Index, that can be any sort such that the boolean operations “<” “≤” and
“eq” are provided; usually it is required for “≤” to define a total order; natural numbers can
be used for example. The elements stored in the array belong to the sort Elem, which can
be any sort.

∆S : Array

∆Σ : create : Index Index→ Array
store : Elem Array Index→ Array
fetch : Array Index→ Elem
lower : Array → Index
upper : Array → Index

∆L : BadRange , OutOfRange , NonInitialized

∆GenAx : low ǫ Ok ∧ up ǫ Ok ∧ low ≤ up = true =⇒ create(low, up) ǫ Ok



a ǫ Ok ∧ ind ǫ Ok ∧ x ǫ Ok
∧ lower(a) ≤ ind = true
∧ ind ≤ upper(a) = true




⇒ store(x, a, ind) ǫ Ok

low ≤ up = false =⇒ create(low, up) ǫ BadRange
ind < lower(a) = true =⇒ store(x, a, ind) ǫ OutOfRange
upper(a) < ind = true =⇒ store(x, a, ind) ǫ OutOfRange
ind < lower(a) = true =⇒ fetch(a, ind) ǫ OutOfRange
upper(a) < ind = true =⇒ fetch(a, ind) ǫ OutOfRange
lower(a) ≤ ind = true ∧ ind ≤ upper(a) = true =⇒

fetch(create(low, up), ind)) ǫ NonInitialized
eq(ind1, ind2) = false ∧ fetch(a, ind1) ǫ NonInitialized =⇒

fetch(store(x, a, ind2), ind1) ǫ NonInitialized

∆OkAx : lower(create(low, up)) = low
upper(create(low, up)) = up
lower(store(x, a, ind)) = lower(a)
upper(store(x, a, ind)) = upper(a)
store(x, store(y, a, ind), ind) = store(x, a, ind)
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eq(ind1, ind2) = false =⇒
store(x, store(y, a, ind1), ind2) = store(y, store(x, a, ind2), ind1)

fetch(store(x, a, ind), ind) = x

Where : low, up, ind, ind1, ind2 : Index ; x, y : Elem ; a : Array

The term create(low, up) creates a new array of range [low, up]. The operations lower and
upper retrieve the acceptable range of an array. Notice that the last generalized axiom is
useful, even if it seems redundant with the three last Ok-axioms, because the Ok-axioms only
concern the Ok-terms, while the purpose of the last generalized axiom is to label erroneous
terms. Another possibility would be to remove the last generalized axiom and to move
the three last Ok-axioms into GenAx (then, they would apply to all terms, including the
exceptional ones).

9.3 An example of proof using the label calculus

In section 9.1, we presented an example of exception specification called Nat7. Let us prove
for example, from this specification, the sentence

pred(pred(succ(0))) ǫ Negative

using the rules of label calculus (Definition 5.14, Section 5.2). As the label calculus is devoted
to label algebras, one cannot use directly Nat7 since it is an exception specification and not
a label specification. However Nat7 can be translated into an equivalent label specification
by the Definition 6.4 and Lemma 7.11 of the section 7.2. Tr(Nat7) is the set of 12 following
axioms:

1. 0 ǫ Ok
2. n ǫ Ok ⇒ succ(n) ǫ Ok
3. pred(0) ǫ Negative
4. n ǫ Negative⇒ pred(n) ǫ Negative
5. n ǫ Negative ∧ n = m⇒ m ǫ Negative
6. succ(pred(n)) = n
7. n ǫ Ok ∧ succ(n) ǫ Ok ⇒ pred(succ(n)) ǫ Ok
8. n ǫ Ok ∧ pred(succ(succ(n))) ǫ Ok ⇒ succ(n) ǫ Ok
9. n ǫ Ok ∧ pred(succ(pred(n))) ǫ Ok ⇒ pred(n) ǫ Ok
10. n ǫ Ok ∧ pred(succ(n)) ǫ Ok ⇒ pred(succ(n)) = n
11. n = m ∧ succ(n) ǫ Negative⇒ succ(m) ǫ Negative
12. n = m ∧ pred(n) ǫ Negative⇒ pred(m) ǫ Negative

Axioms 7, 8, 9 and 10 come from the translation described in Lemma 7.11 of the Ok-axiom
pred(succ(n)) = n; they specify the propagation of the label Ok and the equality between
Ok-terms. The axioms 11 and 12 result from Definition 6.4; they specify the common future
property.

From the label calculus and the specification above, one have following inference steps:

[a] 0 ǫ Ok
[from axiom 1]
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[b] 0 ǫ Ok ⇒ succ(0) ǫ Ok
[from axiom 2 and Substitution with n← 0]

[c] succ(0) ǫ Ok
[from Modus Ponens applied to [a ] and [b ]]

[d] 0 ǫ Ok ∧ succ(0) ǫ Ok ⇒ pred(succ(0)) ǫ Ok
[from axiom 7 and Substitution with n← 0 ]

[e] pred(succ(0)) ǫ Ok
[from Modus Ponens applied to [a ], [c ] and [d ]]

[f] 0 ǫ Ok ∧ pred(succ(0)) ǫ Ok ⇒ pred(succ(0)) = 0
[from axiom 10 and Substitution with n← 0 ]

[g] pred(succ(0)) = 0
[from Modus Ponens applied to [a ], [e ] and [f ]]

[h] pred(0) ǫ Negative
[from axiom 3 ]

[i] pred(0) ǫ Negative ∧ 0 = pred(succ(0)) ⇒ pred(pred(succ(0))) ǫ Negative
[from axiom 12 and Substitution with n← 0 and m← pred(succ(0)) ]

[j] pred(pred(succ(0))) ǫ Negative
[from Modus Ponens applied to [g ] [h ] and [i ] ]

10 Conclusion

We have introduced a distinction between exception handling and error handling for algebraic
specifications. According to our terminology, exception handling is more powerful because
some cases can take benefit of exceptional treatments without being erroneous. This improves
legibility and terseness of specifications. We have shown that exception handling requires a
refined notion of the satisfaction relation for algebraic specifications. The scope of an axiom
should be restricted to carefully chosen patterns, because a satisfaction relation based on
assignments with range in values often raises inconsistencies. A more elaborated notion of
assignment is considered: assignment with range in terms. This allows us to restrict the scope
of an axiom to certain suitable patterns, and solves the inconsistencies raised by exception
handling.

We have also shown that exception names, or error messages, are better carried by terms,
and that they are advantageously represented by labels. Labels do not go through equational
atoms; thus, two terms having the same value do not necessarily carry the same labels. We
have first defined the framework of label algebras, that defines suitable semantics for labels.
The scope of the label axioms is carefully delimited by labels which serve as special marks
on terms.

Then, we have proposed a new algebraic framework for exception handling, based on label
algebras, which is powerful enough to cope with all suitable exception handling features such
as implicit propagation of exceptions, possible recoveries, declaration of exception names, etc.
As shown in Section 9, all the exceptional cases can easily be specified (“intrinsic” exceptions
of an abstract data type, “dynamic” exceptional cases and bounded data structures). This
approach solves all the inconsistencies raised by all the existing frameworks (see Section 3) and
succeeds with respect to legibility and terseness of specifications, that are two crucial criteria
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for formal specifications with exception handling. More precisely, legibility and terseness are
obtained because two different kinds of axioms have been distinguished, with distinct implicit
semantics: the generalized axioms treat the exceptional cases, and the Ok-axioms only treat
the normal cases.

The usual inconsistencies raised by exception handling for algebraic specifications are
solved in our framework because we carefully define the difference between exception and
error . An error is an exception which has not been recovered. Even if an exceptional term
has been recovered, it remains exceptional because an exceptional treatment has been required
in its “history.”

Although we have introduced the theory of label algebras as a general framework for ex-
ception handling purposes, the application domain of label algebras seems much more general
than exception handling. Labels provide a great tool to express several other features devel-
oped in the field of (first order) algebraic specifications. We have outlined in Section 4.3 how
label algebras can be used to specify several more standard algebraic approaches such as or-
der sorted algebras [Gog78b], partial functions [BW82] or observability issues [Hen89][BB91].
However, all the specific applications of label algebras require certain implicit label axioms
in order to preserve legibility and terseness. Thus, the framework of label algebras provides
us with “low level” algebraic specifications: in a generic way, the specific semantic aspects of
a given approach (e.g. subsorting or exception handling) are specified by a well chosen set of
label axioms.

When restricting our approach to positive conditional label formulas, we retrieve the clas-
sical results of the standard positive conditional approach of [GTW78] such as the existence
of initial algebras and the existence of left adjoint functors for structured specifications. We
also proposed a sound calculus, the label calculus, which is complete with respect to positive
conditional ground formulas.

Although we have studied “structured” exception specifications in Section 8.2, we have not
studied “modular constraints” according to elaborated modular semantics such as the ones
of [AW86], [Bid89] or [EBO91]. Nevertheless, we have shown in Section 5 that the framework
of label algebras restricted to positive conditional axioms, and consequently the one of excep-
tion algebras, form a specification frame which has free constructions [EBO91][EBCO91].1

These results provide us with a first basis to study more elaborated notions of modularity
for label specifications. However, modularity should be studied according to the specific ap-
plication under consideration (behavioural specifications, exception specifications, etc.): for
instance, we showed in Section 8.2 that the definition of “sufficient completeness” for ex-
ception specifications allows erroneous junk. We also pointed out in Section 8.2 that the
existing frameworks for modularity do not cope with exception handling because they do not
allow erroneous junk. Consequently, the definition of a suitable modular approach capable
of treating algebraic frameworks with exception handling remain an open question.

Several other extensions of the framework of label algebras will probably give promising
results. Intuitively, labels are unary predicates on terms. In order to facilitate certain appli-
cations of label algebras, we intend to generalize labels to “labels with multiple arguments.”
Higher order label specifications may also be dealt with in future work, as well as a complete
label calculus compatible with these generalizations.

Last, but not least, let us mention that bounded data structures play a crucial role in
the theory of testing because test data sets should contain many elementary tests near the

1but it does not form a liberal institution [GB84].
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bounds. In [LeG93], exception algebras are used to extend to exception handling the theory
of test data selection from algebraic specifications described in [BGM91], [BGLM93].
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