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Abstract:

When defining new specification formalisms, some notions are systematically defined in
order to prove some properties of the formalism. Then it seems useful to work at a more
abstract level, for several formalisms in a unique proof or definition. That is the goal of
specification formalisms.

Terms are among those notions used by many specification formalisms. Together
with congruences, they can lead to initial models or left-adjunct to the forgetful functor
provided they exist. The goal of this work is to give a semantical characterization of
terms, and to give some example of their use in a meta-formalism framework.

Introduction

In the field of algebraic specifications, a lot of different syntax/semantics have been developed. Each
of those theories answers (or tries to answer) to some specific aspect related to the activity of formally
specifying (observability, subsorting, exception handling, theorem proving issues, modularity issues,
etc.). Most of the time, beside the original idea underlying a new theory, the authors have to
develop a lot of inevitable formal results which generalize (to the new framework) some “well known
classical results”. We all know that these “formalities” (as Peter Mosses call them in [Mos89]) are
not the most exiting part of our research activity. . .

They often follow a standard process such as: define signatures Σ, define the category of Σ-
models, identify the model of Σ-terms with variables, define formulas (via predicates on Σ-terms,
connectives and quantifiers), define the satisfaction relation, define a notion of quotient model
(e.g. via congruences), prove the existence of colimits (e.g. via a smallest congruence generated
by something), propose a calculus, establish the completeness of the calculus with respect to a
particular kind of formulas (e.g. Horn clauses, via a Birkhoff’s like proof), and so on and so on.

Since the work of J. Goguen and R. Burstall introducing institutions [GB84], it has been estab-
lished that such standard processes can be formalized themselves (what we call a “meta-formalism”1).
More recently, other meta-formalisms have been proposed, such as pre-institutions [SS91] or spec-
ification frames [EJO93]. A meta-formalism dedicated to algebraic specifications could provide us
with a toolbox in order to facilitate quick developments of specialized specification frameworks: in
software engineering, programming languages are tuned according to the target application, we
could reach the same flexibility for algebraic specifications.

In the framework of institutions, A. Tarlecki and D. Sannella proposed several tools for such a
toolbox [Tar85][ST88]. In this article our purpose is quite modest: we only aim at modelizing the
(meta-)notions of terms with variables, substitutions, smallest congruences,. . . , without syntactical
restrictions about what a signature is. We believe that these notions are basic and simple enough

1similarly to the terminology “méta-mathématiques” proposed by the French Bourbaki group
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to get a valuable idea of the “pragmatic” adequacy of our (meta-)definitions (with respect to the
practice of an author of algebraic specification theories).

A major difference between our approach and the existing ones is that we start from a refined
definition of pre-institution which considers carriers of models. Thus, our approach is less abstract
than the usual works about institutions; however, the notion of carrier is rather intuitive and we
will see that it considerably facilitates the understanding of what a variable is. Moreover, we give
up the idea that the model of terms is an initial model because it does not directly cope with some
existing theories of algebraic specification.

In our framework, we systematically choose our definitions in such a way that a “naive” author
of a specification theory can instantiate the meta-formalism with his (her) own definitions without
effort. Else, if the effort to turn his (her) theory into an institution (or whatever) and the effort to
instantiate the suitable meta-notions and meta-results are greater than the effort to directly establish
the desired results, then (s)he will never use our toolbox, and we would miss the point. Such a
method may give rise to less elegant definitions than institutions, pre-institutions or specification
frames; we believe it is the price to pay for a pragmatic, usable “toolbox” for an author of a new
specification theory.

In Section 1 we discuss two deliberate choices of this article: pre-institutions with carriers and
set of terms as models. Ground terms and terms with variables are (meta-)defined in Section 2
and their first applications (evaluations, substitutions) are developed in Section 3. In Section 4, we
present a typical meta-result (with respect to what we intend to offer): it is sufficient to establish
the existence of a smallest congruence (generated by a relation on carriers) in order to ensure (for
free) that initial model and left adjoint to the forgetful functor exist.

1 General Setting

Since there are several meta-formalisms, we have to choose one that fits our needs. Our main purpose
is to define a notion of terms, and terms rarely form a model of a specification. They rather form a
model of a signature. Thus we need a meta-formalism dealing explicitly with signatures. This leads
us to use either institutions [GB84] or pre-institutions [SS91]. In fact the difference between those
formalisms deals with the satisfaction of axioms. Since we do not use this concept, we can equally
use each of those meta-formalisms.

1.1 Category of Carriers

We want to use a notion of variables. In most cases, the so called “sets of variables” are not sets;
they are more structured. For instance, in the standard multi-sorted algebraic formalisms, variables
are typed, and the “sets” of variables are indeed S-sets. We can also notice that models are defined
by enriching those structures: the carriers of the models are just S-sets.

This leads to the following definition, which is a slight modification of the definition of [SS91]:

Definition 1.1 A pre-institutions with carriers is a pre-institution (i.e. a tuple 〈Sig, Sen,Mod, |=〉)
with a functor Carr : Sigop → Cat, which associates to each signature the category of carriers over
the signature, and a natural transformation |_| : Mod → Carr.

From now on, we will work in such pre-institutions with carriers.
For each signature Σ there is consequently a new kind of “forgetful functor” |_|Σ : Mod(Σ) →

Carr(Σ). By notation abuse, we will note |_| instead of |_|Σ when there is no ambiguity about
the signature Σ under consideration.
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1.2 Terms form a model

Usually terms are defined in a syntactical way. But in our case, since we do not know anything
about the signatures (except the fact they form a category), we cannot define them that way. So
we have to define them semantically. In this article, we define a notion of model of terms rather
than terms themselves.

It is a bit restrictive, since in some theories terms do not form a model of the signature: in
[Deo], there are terms of the form “iter f on X” which are not individual values but only denote
another term where “iter” does not appear.

Having a model of terms also helps to define evaluations, since they are carried by morphisms
(except for some specification formalisms where morphisms are partial while evaluations are total).
Moreover a lot of applications (such as the Birkhoff’s completeness proof for the equational calculus)
use the fact that terms form a model.

We consider in our work that morphisms are (sort of) functions which preserve the structure
of the objects. For instance morphisms of S-sets are compatible with the sorts: they preserve
the structure of the S-sets; similarly, being compatible with sorts and operations, morphisms of
algebras preserve the structure of algebras. Under such an intuition, it seems reasonable to admit
that evaluations of terms are morphisms.

2 Main Definitions

2.1 Ground Terms

To define what we will call “ground terms” in our meta-formalism, we are guided by the properties
we want them to have.

• It seems obvious that we can evaluate a ground term in any model of the signature, so the
first idea could have been to define the model of ground terms on a signature Σ as the
initial object of Mod(Σ) (since we decided to consider models of terms and morphisms of
evaluation, cf Section 1.2). But this definition would not be accurate. We may need several
possible evaluations from the model of terms (TΣ ) to some of the models. Especially in non-
deterministic cases (for instance it is the case of [WM93]), we may need several morphisms
TΣ →M to reflect this non-determinism.

• Moreover, we will say that “Syntax is deterministic”: a ground term cannot be evaluated on
another, distinct, ground term and two ground terms are equal if and only if they “have the
same syntax”. In the model described in [GTW78], we say that “a + b” and “b + a” are two
different terms; a different behavior would mean we consider implicit congruences, which could
perturb our intuition of terms.

To deal with these requirements, we define a somewhat weaker notion of initiality: the semi-
initiality.

Definition 2.1 Let C be a category. An object I of C is said to be semi-initial in C if and only if

1. For each object M in C, Hom(I,M) 6= ∅

2. Hom(I,I) = {IdI}

Lemma 2.2 All semi-initial objects in C are isomorphic

Proof : Let I and I ′ be two semi-initial objects in C. Since I is semi-initial, there is a morphism
µ : I → I ′. Similarly there is a morphism ν : I ′ → I. µ ◦ ν is a morphism I ′ → I ′, and
Hom(I ′, I ′) = {IdI′}, so µ ◦ ν = IdI′ . Similarly ν ◦ µ = IdI , so I and I ′ are isomorphic. 2
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We will now speak of the semi-initial object, since it is unique up to isomorphism.
Moreover, it is straightforward that if C has an initial object, then this object is also semi-initial

in C. Thus:

Corollary 2.3 If C has an initial object, then it is the only semi-initial object (up to isomorphism).

We now can define what we call the model of ground terms.

Definition 2.4 Given a signature Σ, if Mod(Σ) has a semi-initial object, then it is called the model
of ground terms, denoted TΣ .

Example 2.1 In [WM93], the word multi-structure MW (Σ) is not initial in Mod(Σ), but it is
semi-initial. In this framework, the signatures are made of functions with their arity and MW (Σ)
is syntactically built as the usual ground terms (trees). However, the function are non-deterministic,
and fA(a1, . . . , an) denotes the set of all possible values of f in A given the arguments a1, . . . , an

(values of A). Then there is a morphism µ : A → B if, for each values a1, a2, . . . , an in A,
µ(fA(a1, . . . , an)) ⊆ fB(µ(a1), . . . , µ(an)). Consequently there are several morphisms from MW (Σ)
to the non-deterministic models A; they correspond to all possible choices of the value of f(t1, . . . , tn)
in the sets of the form fA(µ(t1), . . . , µ(tn)).

Example 2.2 In the ADJ case of heterogeneous algebras2 (as in [GTW78]), Mod(Σ) has an initial
model of ground terms, which is semi-initial (Corollary 2.3), and thus is the model of ground terms
according to our definition.

Counter-example 2.3 If we do not demand semi-initiality, but only the existence of at least one
morphism from TΣ to any model, then we loose the unicity of this model of ground terms, and
obtain more models than we want: in the ADJ example, for any set of variable X, TΣ(X) would be
considered as a model of ground terms.

By convention, we will now call non deterministic a formalism which has ground terms and in
which there are signatures Σ such that TΣ is not initial in Mod(Σ).

2.2 Terms with Variables

Before (meta-)defining terms with variables, let us write down the properties we want them to have.
We demand them to form a model, for the same reason as ground terms. We want the terms with
variables to be an “obvious” extension of ground terms, with the same claim:

• Evaluation of terms is not necessarily deterministic

• “Syntax is deterministic”, i.e. each variable occurrence in a term is a place in this term, and the
evaluation of a term with variables on another term is entirely characterized by an assignment
of its variables.

This gives some conditions on the functor which associates TΣ(V ) to V .

Remark 2.5 Since we have a sort of forgetful functor |_| : Mod(Σ) → Carr(Σ), it seems interesting
to consider a left adjunct to this functor for defining the terms with variables.

Let us first remark that left adjuncts do not preserve semi-initiality. Let us consider the categories
A and B on Fig. 1:

2We will simply call this case “ADJ”
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a′

a

Id
b

b ◦ b = b

b ◦ a′ = b ◦ a = a′

Idfb fb ◦ fb = fb

B

A

FT

UFT

T

Id

Figure 1: Counter-Example

Let us define the following functors:

U(FT ) = UFT

U(fb) = b

F (a) = Id

F (a′) = fb

F (b) = fb

F is a left adjunct to U : We have a natural bijection if there are 2 bijections g et d, ( g :
Hom(T,UfT ) → Hom(F (T ), F (T )), d = g−1) verifying

1. ∀µ : T → UfT

∀αT ′ → T

g(µ ◦ α) = g(µ) ◦ F (α)

2. and ν : F (T ) → B

β : B → B′

d(β ◦ ν) = U(β) ◦ d(ν)

Verification of 1: µ is either a or a′, and α is Id. Then g(µ ◦ α) = g(µ) = g(µ) ◦ F (α)
Verification of 2: g(a) = Id and g(a′) = b, so d(b) = a′ and d(Id) = a. ν and β are either Id

or b. We get :
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1. For d(β ◦ ν) :
ν

β
Id b

Id a a′

b a′ a′

2. For U(β) ◦ d(ν) :
ν

β
Id b

Id a a′

b a′ a′

Then F is left adjunct to U . T is obviously semi-initial in B, but F (T ) is not semi-initial in A.

Fortunately, what we really want is a functor TΣ : Carr(Σ) → Mod(Σ), such that if Carr(Σ)
has an initial model O, then TΣ(O) is semi-initial in Mod(Σ). Then a left adjunct functor would be
too strong: in non-deterministic cases, we have no left adjunct functor, but we want to be able to
define terms with variables.

We need to define a somewhat weaker notion than adjunction, which we call semi-adjunction.

Definition 2.6 Let U : C1 → C2 a functor. F : C2 → C1 is said to be left semi-adjunct to U if
and only if:

1. For each A object of C1 and each B object of C2, there is a natural surjection

s : Hom(F (B), A)→→Hom(B,U(A)).

2. For each B and B′ objects of C2,

Hom(F (B), F (B′)) ≈ Hom(B,U(F (B′)))

Property 2.7 If F is left-adjunct to U , then F is left semi-adjunct to U .

Property 2.8 If F : C → C ′ is left semi-adjunct to U : C ′ → C, and C has an initial object O,
then F (O) is semi-initial in C ′

Proof : There are two points in the demonstration:

• LetM be an object of C ′. There is a natural surjection fromHom(F (O),M) toHom(O,U(M)).
Since O is initial, Hom(O,U(M)) is non-empty, so there is at least one morphism µ : F (O) →
M.

• Since Hom(F (O), F (O)) ≈ Hom(O,U(F(O))) and O is initial in C, then

Hom(F (O), F (O)) = {IdF (O)}

Then we deduce that F (O) is semi-initial in C ′. 2

We can now use this notion of semi-adjunction to (meta-)define terms with variables.

Definition 2.9 Let Σ be a signature, |_|Σ : Mod(Σ) → Carr(Σ) the functor from models of Σ to
their carriers3, If |_|Σ has a left semi-adjunct TΣ, then we say that TΣ(V ) is the model of terms
over V .

Remark 2.10 From this definition and Proposition 2.8, we can conclude that if Carr(Σ) has an
initial object ∅, and the functor TΣ exists, then TΣ(∅) is semi-initial in Mod(Σ), hence TΣ(∅) = TΣ.

3Remember that the “sets of variables” are in Carr(Σ)
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3 First Properties and Applications

3.1 Sensible Signatures

A sensible signature is, in the usual formalisms, a signature such that there are ground terms of
each sort. In other words, each variable can be instantiated by a ground term. In our setting this
leads to the following definition:

Definition 3.1 A sensible signature is a signature Σ such that for each V in Carr(Σ), there is a
morphism V → |TΣ| in Carr(Σ).

3.2 Variables and Terms

We have Hom(TΣ(V ),TΣ(V )) ≈ Hom(V, |TΣ(V )|), hence we have a unit of semi-adjunction which
gives us a (canonical) morphism iV : V → |TΣ(V )|. One could think it modelizes the inclusion of
V in TΣ(V ), but this is not always true. Consider a theory where, for each signature Σ, Mod(Σ) =
{TrivΣ} (i.e. the algebra in which each sort has only one value), Carr(Σ) is the category of all
heterogeneous sets. Then we can define TΣ(V ) as TrivΣ, and V 6⊂ |TΣ(V )|, this is however a very
rare case, and happens when Mod(Σ) is “poorer” than Carr(Σ).

3.3 Evaluations

Let us consider TΣ(|A|), where A is a model of Σ. We will say that a morphism from TΣ(|A|) to
A is an evaluation over A, if it preserves the values in A. Let iA : A → TΣ(|A|) be the unit of
semi-adjunction, then we can define EvalA = {µ : TΣ(|A|) → A \ |µ| ◦ iA = Id|A|}.

EvalA is the set of evaluations and the evaluations are the sections of iA. Notice that if EvalA
is non-empty, then |iA| is a mono-morphism (i.e., |A| ⊂ |TΣ(|A|)|).

Lemma 3.2 If Σ is a sensible signature then, for each “set of variables” V in Carr(Σ), there is a
unique evaluation morphism eV : TΣ(TΣ(V )) → TΣ(V ).

We need the following technical lemma in order to prove the property:

Lemma 3.3 If Σ is sensible, then for each V in Carr(Σ) and each M in Mod(Σ), there is a
morphism ν : TΣ(V ) →M .

Proof : Since Σ is sensible, there is a morphism φ : V → |TΣ|. Since TΣ is left semi-adjunct to
|_|, we have Hom(V, |TΣ|) ≈ Hom(TΣ(V ), TΣ), so there is a morphism ψ : TΣ(V ) → TΣ. Since
TΣ is semi-initial there is a morphism µ : TΣ → M , so by composition, there is a morphism
ν : TΣ(V ) →M . 2

Note 3.4 From now on, in this proof, we will note T for TΣ(V ).

Proof of Lemma 3.2: Let us remind what semi-adjunction means (see Fig. 2): Hom(F (A), B) ≈
Hom(A,U(B)) means: ∃µ = (µAB)AB∈α×β a family of isomorphisms such that:

∀f :A′ → A

∀g:B → B′

∀ ι :A→ B

µA′B′(F (f); ι; g) = f ;µAB(ι);U(g)

In our particular case, if A = |T |, B = TΣ(T ), U = |_|Σ and F = TΣ, ι = IdB , A′ = V and
B′ = T , we get4

4g exists from Lemma 3.3
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µA′B′

µAB

gf

[f ◦ _ ◦ U(g)]

F (f) ◦ _ ◦ g

A′B′

Homα(F (A′), B′)

Homβ(A′, U(B′))

Homβ(A,U(B))

Homα(F (A), B)

AB

Figure 2: Hom isomorphism

∀f :V → |T |
∀g:TΣ(T ) → T

µV T (TΣ(f); g) = f ; iB ; |g|

Then, if g is an evaluation TΣ(T ) → T , (i.e. iB ; |g| = Id), we can deduce that f = µV T (TΣ(f); g),
and if f = Id|T |, we can deduce that g = µ−1

|T |T (Id|T |), which gives the unicity of the evaluation as
the semi-adjunction co–unit, and since this co–unit always exist, it also give its existence.

3.4 Substitutions

Definition 3.5 Given a (carrier) morphism I : V → |B|, which represents the instantiation of
the variables of V by values in B, since Hom(V, |TΣ(B)|) ≈ Hom(TΣ(V ),TΣ(B)) (from the semi-
adjunction), there is a one to one correspondence between I and a morphism θI : TΣ(V ) → TΣ(B)
which is the corresponding substitution morphism.

Let us remark that the previous definition only describes a kind of “syntactical” substitution,
i.e. a substitution whose only effect is to replace the variables in the term by their value, giving a
morphism from TΣ(V ) to TΣ(B). However it is always possible to compose it with an evaluation
morphism to get a more usual substitution from TΣ(V ) to B.

4 Initiality Result5

Having defined the terms, we can now use them for some “standard” demonstrations, like the exis-
tence of an initial model among those satisfying a specification. However a part of this demonstration
strongly depends on the intimate structure of the formalism and cannot be made at our high level
of abstraction. Thereafter we will present a meta-result which is applicable only to formalisms
that satisfies a strong property, which we define below as the smallest congruences property. Even
if this requirement seems to be strong (it may demand a long demonstration to the author of a
specification formalism), practically we have seen that it cuts the proof by the half (it is the case
for ADJ, label algebras [BLGA94], . . . )

We suppose that the models of a signature Σ satisfying a specification Sp form a sub-category
of Mod(Σ) that we will note Mod(Sp).

5This result was not presented in Santa Margherita
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ν

κ

m

|µ|Σ
|Y |Σ|X |Σ

Kχ

Figure 3: Commutation

m ν

κ

|µ|Σ

|µ′|Σ

|h|Σ

ν′

|Y ′|Σ

|X |Σ |Y |Σ

Kχ

Figure 4: Minimality

4.1 Smallest Congruences

Definition 4.1 Let Σ be a signature. Let Sp be a specification built over Σ. Let χ ∈ Carr(Σ) and
X ∈ Mod(Σ). Let m : χ → |X| be a monomorphism and κ : χ → K an epimorphism in Carr(Σ).
We say that Σ has smallest congruences if for each choice of Sp, X, χ, m and κ, there is a model Y
in Mod(Sp), a morphism µ : X → Y in Mod(Σ) and a morphism ν : K → |Y | in Carr(Σ) verifying
that the diagram 3 commutes, that for all Y ′ in Mod(Sp), µ′ : X → Y ′ in Mod(Σ) and ν ′ : K → |Y ′|
making a similar commutative diagram, there is a unique h : Y → Y ′ in Mod(Sp) such that the
diagram 4 commutes, and that if Y together with morphisms µ′ and ν ′ makes a commutative diagram
such as in Fig. 4, then µ = µ′ and ν = ν ′.

Intuitively, the kernel of µ can be considered as the smallest congruence generated by the kernel
of κ.

If every signature Σ has smallest congruences, then we say that the pre-institution has smallest
congruences

Remark 4.2 We can remark that the smallest congruences are very similar to pushouts, the only
difference coming from restriction on the morphisms involved.

4.2 Initial Model

Let us suppose that we are in a deterministic framework (i.e. TΣ is initial in Mod(Σ)). Let us take
X = TΣ, χ = K = |TΣ| and m = κ = Id|TΣ|. Let us consider now the model Y given by the smallest
congruence. This model is initial in Mod(Sp).
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Proof : Let us consider Y ′ in Mod(Sp), since Mod(Sp) is a sub-category of Mod(Σ), there is
a unique morphism from TΣ to Y ′, so the smallest congruence says there is a unique morphism
h : Y → Y ′ in Mod(Sp), thus Y is initial in Mod(Sp). 2

4.3 Semi-initial Model

Similarly, in non deterministic cases (i.e. if TΣ is semi-initial), there is a semi-initial model in
Mod(Sp) under the same conditions:

Since TΣ is semi-initial, for each Y ′ there is at least one morphism from TΣ to Y ′, so the smallest
congruences property ensures there is at least one morphism from Y to Y ′

4.4 Left adjoint to the forgetful functor

The “smallest congruence” property is a bit sophisticated to only establish a simple meta-result
such as the existence of an initial model. As the reader may have guessed, this property has been
designed in order to establish more powerful meta-results: mainly the existence of a left-adjoint to
the forgetful functor.

More precisely, in a deterministic pre-institution with carriers where the Eval sets are not empty,
if for each signature morphism ρ : Σ1 → Σ2, Carr(ρ) has a left adjunct and if the “smallest
congruence” property is satisfied, then the forgetful functors in Mod(Sp) have left-adjuncts.

Unfortunately, the demonstration of this meta-result [Dav] is several pages long and needs a lot
of intermediate concepts which we cannot expose here for lack of space.

Conclusion

Our goal is to propose a useful meta-formalism which is a compromise between

• “enough generality”: the meta-formalism should cover (almost) all the specification formalisms
which are known up to now, and the concepts used by the meta-formalism should be sufficiently
abstract and simple to establish understandable and general results

• “low effort to instantiate”: from our experiments [Dav92], it is sometimes difficult to instantiate
in a natural way a meta-formalism by some given specification theory. For example it may be
necessary to extract from “what anybody would consider as the natural set of axioms” some
formulas (of a given form) and to artificially put them into the signature, in order to cope with
the meta-definitions. We believe that the author of a specification formalism should not have
to deeply rearrange his (her) concepts in order to apply the meta-results (even if the price to
pay is a little loss of generality in the definition of our meta-formalism). If the “rearrangement
effort” is comparable to the effort of a direct proof, then the meta-results will not be used.

Among the general “natural” concepts which are (almost) always used by the authors of an
algebraic specification formalism, the notion of carrier is very useful. In this article, we concentrated
our meta-results around the notion of term and we showed that a category of carriers is suitable; it
allows in particular to easily define a meta-notion of set of variables.

Moreover, we have introduced semi-initiality and semi-adjunction and used them to give the
meta-definitions of the model of ground term and the model of terms with variables (with respect
to a given “set of variables”). The advantage of using semi-initiality and semi-adjunction instead
of initiality and adjunction is to take into account specification theories with non-determinism in a
natural way.

Of course a meta-formalism is useful only if it has a corresponding “toolbox” of meta-results.
We have outlined several such “tools” (meta-results) that rely on our meta-notion of terms: term
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evaluations, sensible signatures, substitutions, initiality and adjunction results for free6 if smallest
congruences exist.

Future works will be dedicated to the enrichment of the “toolbox”, for example:

• to study the case where terms do not directly form a model

• to define a meta-notion for subterms

• to investigate how a meta-notion of term could be used in order to make more precise the
structure of formulas. The form of a formula is never addressed in institutions, pre-institutions
or specification frames; nevertheless logical formulas are almost always build following meta-
rules such as: build atoms from terms and predicates, add connectives, add quantifiers, define
positive conditional formulas (e.g. Horn clauses), etc. An example where the form of a formula
can play a central role is the Birkhoff’s completeness proof for positive conditional formulas. . .
is it possible to propose a meta-version of such a result? For the moment this article is far
from answering the question !
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