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Abstract

Gnome is a simplified and revised version of the object oriented specification language
Oblog. A formal semantics based on temporal logic has already been defined, and
alternative semantics are also being studied. The goal of this article is to propose an
algebraic semantics for Gnome, using étoile.

étoile is an algebraic theory for the specification of systems, with an object oriented
specification style. It allows to specify objects with local states, systems and their in-
variants. There is also in étoile a logical system which is sound w.r.t. the algebraic
semantics.

Given a Gnome specification, we obtain an algebraic semantics for it by translating
the Gnome specification into an étoile specification. The main difficulties come from
the fact that Gnome is a concrete specification language with built-in primitives whilst
étoile is only a specification theory, and also from the way methods are called and
executed in Gnome.

Proofs can be performed from a Gnome specification using the étoile calculus.
Keywords: Object Oriented specifications, Algebraic semantics, Specification languages,
Formal proofs

1 Introduction

The work reported in this article is a proposal to give an algebraic semantics to Gnome (de-
veloped in Lisbon). For this purpose we use the new étoile algebraic formalism (developed
in Evry).

Gnome [SR94] is a simplified and revised version of the object-oriented specification lan-
guage Oblog [SGS92, SGG+92, SCS92, SRGS91, ESD93, CSS89]. As Oblog it supports
classes of objects with associated methods and attributes, dynamic object creation and dele-
tion, inheritance with overriding and some aditional features, such as state-dependent calling.
Troll [JSS91, JSHS91, Jun93, JSHS95] is another noteworthy dialect of Oblog.
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A formal semantics for Gnome, based on temporal logic, has been defined in [Ram95] on
an enrichment of OSL [SSC95, SS94]. This includes a calculus for reasoning about Gnome

specifications, with special emphasis on safety and response properties. A compiler of a
significant fragment of the language is also available [CP94].

The étoile specification formalism [Aig95a, AB95] is an algebraic theory which has
been developed to keep a specification as abstract as possible. The étoile syntax has been
designed in order to facilitate the description of the behaviour of methods, and the object
states are left as much implicit as possible in the specifications [ABBI94]. The specification
style is as close as possible to functional style, in the spirit of classical algebraic specifications
[GTW78, EM85]. Nevertheless, since the objects have states that can evolve, “interactive”
primitives have been introduced such as “ ; ”, to handle sequentiality, or the “alive” predicate
to specify the existence of an object.

One of the advantages of this work has been to test (and improve) the expressive power
of étoile: to be able to translate a significant part of an already recognized specification
language is a good experiment. Moreover, to give several alternative semantics to Gnome is
one step more in the long process of unifying the various Object Oriented approaches, and a
language like Gnome can play the role of a catalyst with that respect.

The solution we follow in this article is a translation from Gnome into étoile.
The difficulties raised by our “translation approach” result from the fact that Gnome is a

concrete specification language (with public and private methods, encapsulation, inheritance
and other built-in primitives) while étoile is only a specification theory without such prim-
itives. For instance, there is nothing in étoile to distinguish private operations from public
ones (however induction proofs have to be performed with respect to visible methods only).

After an informal presentation of Gnome is section 2 and of étoile in section 3 we
describe the translation in section 4. Section 5 shows how this translation can be used to
prove some properties using the étoile calculus.

2 Informal presentation of GNOME

There are in Gnome two types of actions: external (or public) actions (also called services)
and internal (or private) actions. An external action of an object can only happen when
called by some other object. An internal action of an object, on the other hand, cannot be
called by another object and it may happen whenever it is enabled. There is still another
possible way for objects to interact in Gnome, via event broadcasting. However this will not
be detailed here.

There is also in Gnome a new primitive for encapsulation: the region. In a region (which
is defined within a class) we can specify other classes, types, events, etc. . . , but these will be
encapsulated, i.e., will only be available for the instances of the class where we defined the
region and for the classes defined within that region. The region is specified in a different
module and its existence is indicated by the key word external in the body of the owner
class.

As to data types, Gnome has a fixed set of basic data types (e.g. integers, booleans,
lists. . . ), but, in opposition to Oblog, does not have any specific constructors for data type
specification.
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2.1 Gnome by example

In this section we present the syntax of Gnome through some examples and at the same time
give some hints about the semantics. Two other examples, without comments, are included
as appendices.

Example 2.0.1 (Producer-Consumer) Assume we want to specify a system which manipu-
late a set of triplets made of a producer, a consumer and a buffer with unbounded capacity.
In the next page we present a Gnome specification of such a system.

A class in Gnome has two main components: the interface and the body. In the
interface, we declare the public actions (services) and their arguments There are two types
of arguments: input arguments (also called parameters) and output arguments (also called
results). In the body we declare the attributes of the class (slots), the internal actions
and define the methods of all actions. A method can have four types of clauses: enabling
conditions; calling clauses; valuations and return clauses (this last clause can only be used
in the method of a service). The evaluation of a method in Gnome is atomic. Consider one
action, for instance the action consume of Consumer. The evaluation of the corresponding
method consists in evaluating the enabling conditions (in the case of consume there are none):

• if the conditions hold:

– call the services according to the calling clauses (in the present example, the service
get of the instance buf of class Buffer, which triggers the execution of the associated
method). The keyword of in each calling clause identifies the object being called,
and the keyword arg is used to actualize the parameters within a call;

– evaluate the expressions on the valuation clauses (in the present example, the
expression c);

– assign the result of the evaluations to the corresponding slots, (via <<);

• otherwise the action is not enabled and cannot be taken. If one of the called services
is not enabled the method of the action is not enabled and cannot be executed (in the
present example, if get is not enabled the method of consume cannot be executed).

Notice that the evaluation of the valuation clauses is simultaneous thus the final result is
independent of the order of these clauses. The same applies to the other clauses.

As the classes Producer, Consumer and Buffer are defined within the body of the class
ProdConsum they are encapsulated. For instance, the services of an instance of class Buffer
can only be called by the instance of ProdConsum where it was created or by the instance of
Producer or Consumer that were created at the same time.
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spec ProducerConsumer
. . .
class ProdConsum
interface

birth serv create
serv produce
serv consume

body

external

end ProdConsum

region of ProdConsum for ProducerConsumer
body

slot prod:Producer
slot cons:Consumer
slot buf:Buffer
serv create
call new of next:Buffer
call new of next:Producer
arg new.buf=Buffer.next

call new of next:Consumer
arg new.buf=Buffer.next

val buf<<Buffer.next
val prod<<Producer.next
val cons<<Consumer.next

serv produce
call produce of prod:Producer

serv consume
call consume of cons:Consumer

class Buffer
interface

birth serv new
serv put par item:nat
serv get res item:nat

body

slot contains:list(nat)
der slot size:nat by legth(contains)
serv new
val contains<<newlist

serv put
val contains<<append(contains,put.item)

serv get
enb not size=0
val contains<<tail(contains)
ret get.item=head(contains)

end Buffer

Producer
interface

birth serv new par buf:Buffer
body

slot mybuf:Buffer
slot nbprod:nat
serv new
val mybuf<<new.buf
val nbprod<<0

act produce
call put of mybuf:Buffer
arg put.item=0

the message is not relevant
val nbprod<<nbprod+1

end Producer

class Consumer
interface

birth serv new par buf:Buffer
body

slot mybuf:Buffer
slot nbcons:nat
serv new
val mybuf<<new.buf
val nbcons<<0

act consume
call get of mybuf:Buffer

we do not use the return
value of get

val nbcons<<nbcons+1
end Consumer

end reg
end spec

4



3 Informal presentation of “ÉTOILE” algebraic specifications

This section briefly outlines the formalism of étoile specifications, which is more rigorously
described in [AB95]. There are two levels of specification:

• object type specifications (Section 3.1), that describe the behaviour of an object class
independently of any system which might surround it,

• system specifications (Section 3.2), that contain several object type specifications and
specify the behaviour of a system, using them.

3.1 Object type specifications

Roughly speaking, a class is a set of objects sharing common behaviours [EGS91]. Thus,
to specify these common behaviours (i.e., an object type), it is sufficient to specify one of
these objects, conventionally called self . Moreover an object can use services from other
objects. Consequently, an object type specification describes “a view” (the one of self)
like a star (étoile in French), the center of which is the object self and whose branches
are these objects. Intuitively, self is fully specified while the branches only outline the
functionalities used by the center, as they are seen by self . The branches play the role of
parameters, they are not fully described, and their signatures are not exhaustive. In the
classical algebraic modular approaches, such parameter parts are also often distinguished in
a module [BEPP87, EGR94, NOS95].

j2j1
o2

used by self and the branches

and with, classical data types

i1

i2

k1 k2

o1

self

: is used by self

i1, i2 . . .: objects of type o1

j1, j2 . . .: objects of type o2

k1, k2 . . .: self may also use

objects belonging to its type

C

C = type of self (type of interest)

An object type specification is defined by a signature (Section 3.1.1) and a set of formulas
(Section 3.1.3). Examples can be found in Section 4 and in Appendix A.

3.1.1 Signature

Definition 3.1 A “ étoile-set” is a triplet S = (C,O,D) where O and D are sets, C 6∈D,
and O ∩D = ∅.

S is the type part of the view of self pictured above. O is the set of object types used by self .
C ∈ O is allowed. Intuitively, an element i of type o, with o ∈ O, will be an object identity,
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and D is the set of classical data types. To get a signature, it remains to have operations,
here functions and methods.

Definition 3.2 An object type signature Θ is a triplet 〈S,F , {M≀}≀∈{C}∪O〉 where:

• S is a étoile-set.

• F is a set of function names with an arity of the form (s1 · · · sn → s) where si ∈ S and
s ∈ S.

• for each o, Mo is a set of method names with an arity of the form (s1 · · · sn → [s])
where si ∈ S and s ∈ S (the notation [s] means that s is optional1).

Roughly, “étoile-algebras” contain:

• usual data sets indexed by D

• identity sets indexed by O

• local state sets indexed by (a copy of) {C} ∪O; moreover, to introduce dynamic aspects,
there is a preorder on local states which rigorously controls the side effects induced by
the methods.

Intuitively, identity sets can also be seen as supplementary data sets, and states are used as
“semantic modifiers” of the method semantics. Functions in F are classical operations as
for usual abstract data types ([GTW78, EM85]). Their semantics will not depend on object
states, nor modify them. By default, the methods in Mo can be performed by any object of
type o and their semantics will depend on (and will modify) the object states. Contrarily to
several approaches [EDS93, FCSM91, GD92, Dau92, DG94], we do not distinguish methods
which actually modify states (e.g., actions) from those which only observe them (e.g., at-
tribute observers) and we do not distinguish methods which create or delete objects. These
properties are dynamic and will be specified by axioms.

3.1.2 Terms

Let Θ = 〈S,F , {M≀}≀∈{C}∪O〉 be an object type signature and V be a S-indexed set of
variables.

• Of course, every variable is a term, and we admit all the usual terms of the form
f(t1, · · · , tn) where f : s1 · · · sn → s belongs to F and ti are terms of sort si.

• For a method m : s1 · · · sn → [s] belonging to Mo we have to identify the object which
is supposed to perform it. We write terms of the form: (t.m(t1, · · · , tn)) where ti are
terms of sort si and t is a term of sort o. (The term t denotes the identity of the
object supposed to perform m, possibly self if o = C, in which case we simply write
m(t1, · · · , tn) by notation abuse.)

Roughly, the evaluation of a term in a étoile-algebra is non-deterministic [WM95]. It
is based on a non-deterministic bottom-up strategy with state evolutions. Moreover, since
we consider implicit states, the order in which terms are performed is significant. Thus, we

1A method with an arity where s is missing can be seen as a simple procedure.
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also consider terms of the form: (t1 ; · · · ; tn) where the ti are well-formed terms as above.
Intuitively such a term denotes the values of its last term (i.e., tn) after all the ti have been
performed sequentially.

Lastly, the term (t1 ; · · · ; tn)↓t
denotes the state of an object identified by t after the

sequence (t1 ; · · · ; tn) has been performed. t can be self , in which case we simply write
(t1 ; · · · ; tn)↓ by notation abuse.

3.1.3 Formulas

There are two kinds of equational atoms:

• (t1 ; · · · ; tn) = (u1 ; · · · ;um) where tn and um have the same sort s ∈ S.
Intuitively, an instance of such an atom is satisfied if tn and um can get a unique equal
value after the ti (resp. the uj) have been performed.

• (t1 ; · · · ; tn)↓t
= (u1 ; · · · ;um)↓u

where t and u have the same sort o ∈ O.

Intuitively, an instance of such an atom is satisfied if the state of the object t after the
ti have been performed is the same as the state of u after the ui have been performed.

There are also three unary predicates to build atoms:

• succeed(t) means intuitively that the calculation of t always finishes (no deadlock)
whatever the state evolution is.

• wait(t) means intuitively that the calculation of t never finishes (it always raises a
deadlock) whatever the state evolution is.

• alive(t), where the type of t must belong to O, means that the objects identified by
the values of t do exist.

Notice that succeed(t) implies ¬wait(t) (or wait(t) implies ¬ succeed(t)) but they are not
equivalent. There are terms t whose evaluation can finish or not depending on the underlying
state evolutions, in that case neither succeed(t) nor wait(t) is satisfied.

The formulas are inductively defined from the atoms above, usual connectives belonging
to {¬,∧,∨, · · ·} and usual quantifiers belonging to {∀,∃}. Moreover, the notion of implicit
states induces an implicit notion of time, and we introduce two new operators (that resemble
the [ ] operator in [FM91] for instance):

• after
[

t1 ; · · · ; tn

](

ϕ
)

means intuitively that the formula ϕ must be true immediately

after the term (t1 ; · · · ; tn) has been performed

• when
[

ϕ1

](

ϕ2

)

means that at each time ϕ1 would be satisfied, the formula ϕ2 must

be satisfied.

Finally, an object type specification is a couple SP = (Θ, Ax) where Θ is an object type
signature and Ax is a set of well-formed formulas on Θ.
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3.2 System specifications

A system is obtained by gluing together several object types. Since object types can be
pictured as stars whose branches are partial views of other object types, a system can be
naturally pictured as a set of actualization arrows between stars. Arrows go from the center
of a star (≈ the actual parameter) to the branch of another one (≈ the virtual parameter).

= instanciation

= is used byo4

o3

o5

o2

o9 o2 o6 o7

o8

C3

C1

C2

There are of course some “consistency constraints” in order to ensure compatibility between
the assumed partial view in a branch and the exhaustive specification of the corresponding
center. For example, with respect to the picture above, it is required that the set of methods
Mo3 from the star of C1 (the middle star) is included in MC3 (from the left star), and there
are similar requirements for each instanciation arrow (and on classical data types).

Moreover, to define a system specification, we allow “global formulas” in order to express
system properties which cannot be specified inside a unique object type. These properties
can involve all the symbols from all the stars of the system under consideration.

The semantics of a system specification is defined as a set of models (one model of each
object type specification belonging to the system), satisfying some consistency constraints,
and satisfying the global formulas.

4 Mapping GNOME into ÉTOILE

In order to give an algebraic semantics to Gnome, we simply chose to provide an algorithm
that extract a étoile-specification from a Gnome specification. Then, the algebraic seman-
tics of Gnome is defined as the set of models of the translated étoile-specification, under a
few restrictions as seen in the next sub-section.

4.1 Main difficulties

In addition to the fact that Gnome is a concrete specification language while étoile is
only a specification formalism, another feature that makes the translation algorithm a little
bit complex is that in Gnome, once a method has been called, its result can be used
several times without executing the method again, whilst on the contrary, a étoile method
is executed every time it is referred to in a term. Consequently, it has been necessary to
“capture” the result of every called method in a fresh variable before using it in a étoile

term. This gives rise to tedious when statements and variable replacements in expressions.
Other minor difficulties have been:
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• All actions and slots are made visible in the étoile-specification, and thus we have
to keep in mind elsewhere that induction proofs have only to be done with respect to
the methods which translate available services.

• In Gnome, there is no difference between a boolean value and a formula. To handle
this peculiarity, we had to provide a boolean function to simulate each predicate. For
sake of clarity, this aspect will not be addressed in the rest of the article.

• Gnome has an object identity generator, next, a built-in operation which returns
a new identity each time it is called. In étoile, we had consequently to specify a
fictitious object gensym (generator of symbols) with, for each object type o, a method
nexto :→ o, and with axioms saying that nexto never generates twice the same identity,
and always succeeds. For lake of space, this aspect will not be addressed in the rest of
the article.

4.2 The translation algorithm

A Gnome system specification being given, the translation is simply obtained by translating
each Gnome class specification of the system into one object type specification in étoile.

To get an object type étoile-specification, we have first to get a étoile-set (Defini-
tion 3.1): the type of interest C is simply the identifier which follows the keyword class in
the Gnome specification, and for each type name that appears in the Gnome specification,
we put it in O if it is specified in another Gnome class specification, else in D.

In addition, Gnome allows methods to return more than one result (the res keyword)
while étoile does not. Thus, for every method that has more than one result, we introduce
a fictitious Cartesian product type in D, whose components are the res types.

Next, to get a signature (Definition 3.2), we have to fill in the set of functions F :

• for each built-in Gnome data type in D, put the corresponding functions

• for each fictitious Cartesian product type added to D, from a Gnome declaration of
the form “serv · · · res name1 : ς1 res name2 : ς2 · · · res namen : ςn ”, we have to
add the corresponding tuple generator “( , , · · · , ) : ς1 ς2 · · · ςn → prod” as well as the
projections “namei : prod→ ςi”

• moreover, Gnome has a special polymorphic constant to address undefined identities,
nil, thus, for each object type o ∈ O, we put “nilo :→ o” in F (only if it is used in the
specification)

To complete the signature, we have to fill in all the Mo for o ∈ {C} ∪O:

• The services and the actions are put in MC , and their arity is obtained by collecting
all the types of the parameters as domain and taking as codomain: nothing if there
is no result, the type of the result if there is only one, or else, the Cartesian product
mentioned before.

• For each non derived slot in the body, “slot sl : ς”, we define two methods in MC :
“sl :→ ς” and “slModif : ς →” (the first one to observe the slot value and the second
one to modify it). If the slot is a derived slot, we only define the observer sl.
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• Lastly, for each service which is called in the body, put it in the corresponding Mo. Its
arity is obtained by looking at the Gnome specification of the class o, as previously.

To obtain the axioms of the translated étoile-specification:

• For each fictitious Cartesian product type added to D, and each projection namei in
F , we put the axiom namei(x1, x2, · · · , xn) = xi

• For each nilo ∈ F we put the axiom ¬ alive(nilo)

• For each birth service declared in the Gnome interface,

birth serv s par p1 : ς1 par p2 : ς2 · · ·

we put the axiom after
[

(x.s(p1, p2 · · ·))
](

alive(x)
)

where the pi become étoile

variables of sort ςi and x is a fresh variable of type C.

Similarly, for each death service: after
[

(x.s(p1, p2 · · ·))
](

¬ alive(x)
)

• For each non derived slot sl and each other slot sl′ we put the four following axioms:

succeed(slModif(y))

when
[

sl′ = x
](

after
[

slModif(y)
](

sl′ = x
))

after
[

slModif(x)
](

sl = x
)

sl↓ = ↓

(a slot modifier always succeeds and only modifies the slot itself).

• For each declared derived slot, “der slot sl : ς by expression”, we put the two axioms:

sl = expression

sl↓ = ↓

Indeed, the actually deep considerations begin with the translation of the services in the
body of the Gnome specification.

A service is specified in Gnome by a set of alternatives where anyone of them can be
executed provided that it is successful, and if no one is successful, the service is not successful2:

serv s alt α1 · · · alt α2 · · · · · ·

This is translated as a disjunction of “guarded” formulas. The “guard” is a formula stating
if the alternative succeeds. Thus, for each service, we write an axiom of the form:





∨

{αi}

when
[

ψi

](

guardi ∧ Φi

)



 ∨









∧

{αi}

when
[

ψi

](

¬guardi

)



 ∧ wait(s(~x))





The reader should intuitively understand ψi as a sequence of “let · · · in · · ·” statements (like
in [AZ92]) in order to prepare the environment of the formula guardi ∧ Φi .
~x, ψi, guardi and Φi are explained below.

2If there is only one alternative, alt α1 is left implicit
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If the action s under consideration is not in the interface, then it has no parameter, thus
~x is empty. Else, in the interface where the service is defined, we collect all the “par pj : ςj”
and we let ~x = (p1, · · · , pm), where the parameter names pj are now considered as étoile

variables of type ςj.
An alternative is of the form

alt αi enb ϕi rest of the alternative

ψi is a conjunction of atoms, and guardi is of the form “ϕi ∧ succeed(τi)”, where τi is a
sequence term. τi and ψi are built as follows from the rest of the alternative:

For each call
call c [as c′] of t arg a1 = t1 · · · arg ak = tk

if as c′ is missing, then choose a fresh variable c′ and consider that it is present.

• if t is next then add “y = nexto” (where y is a fresh variable) to ψi and let t′ be the
term y, else let t′ be t itself

• let t′j be the term tj where the arguments s.p1 · · · s.pm of the service under consider-
ation are replaced by the variables p1 · · · pm of ~x, and where nil is replaced by the
corresponding nilo, if applicable

• if c has at least one result, then add “· · · ∧ (c′ = (t′.c(t′1, · · · , t
′
k)))” to the conjunction

ψi, where c′ is now considered as a (fresh) variable

• add “· · · ; (t′.c(t′1, · · · , t
′
k))” to the sequence term τi

succeed(τi) means of course that the alternative is successful.
Lastly, Φi is the formula “(s(~x)↓ = τ ′i↓)” if s does not return any result, else Φi is the

formula “(s(~x)↓ = τ ′i↓) ∧ (s(~x) = ~ri)”, where

• τ ′i is the sequence term obtained from τi by adding on the right, for each Gnome line
“val sl << expr”, the term “· · · ; slModif(expr′)”. The expression expr′ is obtained
from expr as follows:

– Every result of a call (c′.name) is replaced by, either c′ itself if name is the only
result of the corresponding c, or name(c′) if c has several results. (Remember
that the étoile variable c′ has been bound in ψi, and that, if c has several results,
the type of c′ is a fictitious Cartesian product and name is a projection.)

– The arguments s.p1 · · · s.pm of the service under consideration, are replaced by
the variables p1 · · · pm of ~x.

– Every occurrence of next is replaced by the corresponding étoile variable y (the
one bound in ψi).

– Every occurrence of nil is replaced by the corresponding well typed nilo.

• For each Gnome line of the form “ret s.namej = exprj” in the alternative αi, let
expr′j be obtained from exprj as above. If s returns several results then ~ri is the vector
(expr′1, expr

′
2, · · ·) where the expr′j are ordered according to the fictitious Cartesian

product defined for s, and if s returns only one result, ~ri = expr′1 (since there is only
one ret line in this case).
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4.3 Example

When we apply this translation to the ProducerConsumer Gnome specifification given in
Example 2.0.1, we have to translate four class specifications: ProdConsum, Buffer, Producer
and Consumer. The translation of ProdConsum is given as example below.

The signature is defined by:

• C = ProdConsum

O = {Producer,Consumer,Buffer}
D = ∅

• F = ∅

• MProdConsum = {create :→
produce :→
consume :→
prod :→ Producer

prodModif : Producer →
cons :→ Consumer

consModif : Consumer→
buf :→ Buffer

bufModif : Buffer →}

• MProducer = {new : Buffer →
produce :→}

• MConsumer = {new : Buffer→
consume :→}

• MBuffer = {new :→}

and the axioms are:

• after
[

(x.create)
](

alive(x)
)

• succeed(prodModif(y))
and 2 other similar axioms for consModif and bufModif respectively

• when
[

cons = x
](

after
[

prodModif(y)
](

cons = x
))

when
[

buf = x
](

after
[

prodModif(y)
](

buf = x
))

. . . and 2 other similar axioms for consModif, and 2 other ones for bufModif

• after
[

prodModif(x)
](

prod = x
)

and 2 other similar axioms for consModif and bufModif respectively

• prod↓ = ↓
and 2 other similar axioms for cons and buf respectively
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• when
[

(y1 = nextBuffer) ∧ (y2 = nextProducer) ∧ (y3 = nextConsumer)
]











succeed((y1.new) ; (y2.new(y1)) ; (y3.new(y1)))
∧

create↓ =

(

(y1.new) ; (y2.new(y1)) ; (y3.new(y1)) ;
bufModif(y1) ; prodModif(y2) ; consModif(y3)

)

↓











∨









when
[

(y1 = nextBuffer) ∧ (y2 = nextProducer) ∧ (y3 = nextConsumer)
]

(

¬ succeed((y1.new) ; (y2.new(y1)) ; (y3.new(y1)))
)

∧ wait(create)









Let us remark that this formula can be simplified as follows:

when
[

(y1 = nextBuffer) ∧ (y2 = nextProducer) ∧ (y3 = nextConsumer)
]





































succeed((y1.new) ; (y2.new(y1)) ; (y3.new(y1)))
∧

create↓ =

(

(y1.new) ; (y2.new(y1)) ; (y3.new(y1)) ;
bufModif(y1) ; prodModif(y2) ; consModif(y3)

)

↓











∨

(

¬ succeed((y1.new) ; (y2.new(y1)) ; (y3.new(y1)))
∧ wait(create)

)



























Moreover, create being an atomic method, either succeed(create) or wait(create) is
satisfied; and the satisfaction of an equality ensures that the left hand side succeeds
if and only if the right hand side does. Consequently, since slot modifiers are always
successful, the previous formula can again be simplified as:

when







(y1 = nextBuffer)
∧(y2 = nextProducer)
∧(y3 = nextConsumer)

























create↓ =



















(y1.new) ;
(y2.new(y1)) ;
(y3.new(y1)) ;
bufModif(y1) ;
prodModif(y2) ;
consModif(y3)



















↓



















• when
[

true
](

succeed((prod.produce)) ∧ produce↓ = (prod.produce)↓

)

∨

(

when
[

true
](

¬ succeed((prod.produce))
)

∧ wait(produce)
)

Similarly, this formula can be simplified as: produce↓ = (prod.produce)↓

• when
[

true
](

succeed((cons.consume)) ∧ consume↓ = (cons.consume)↓

)

∨

(

when
[

true
](

¬ succeed((cons.consume))
)

∧ wait(consume)
)

Similarly, this formula can be simplified as: consume↓ = (cons.consume)↓

5 Proving properties

Let us consider the Producer-Consumer system specification described in Section 4.3, and let
us prove the following formula ϕ for all objects pc of type ProdConsum:

(ϕ) ((pc.prod).nbprod) = ((pc.cons).nbcons) + ((pc.buf).size)

13



The inference rules we use come from the étoile-calculus [Aig95b]. They will be introduced
here on a “call-by-need” basis, just before their first use.

We firstly prove the following lemma:

For every “user-method” m : s1 · · · sn → [s] belonging to the Producer-Consumer
system (i.e., belonging to the root specification), for every identity variable id of
sort ProdConsum, and for every variables xi of sort si, we have:

ϕ =⇒ after
[

(id.m(x1, · · · , xn))
](

ϕ
)

Sketch of the proof: For lack of space, we will outline the proof for only one of these
methods (create). The other proofs are similar. We have to prove:

ϕ =⇒ after
[

(id.create)
](

ϕ
)

Let us assume that id = pc; in this case we will directly prove after
[

(pc.create)
](

ϕ
)

without

using the precondition ϕ. The proof can be done via 9 main steps:

1. From the producer specification, we have:

• new(x)↓ = (mybufModif(x) ;nbprodModif(0))↓

• after
[

nbprodModif(0)
](

nbprod = 0
)

2. From the first step, we can write:

• after
[

mybufModif(x) ;nbprodModif(0)
](

nbprod = 0
)

the rule we use to obtain the formula above is often called “modal generalization:”

after
[

t1 ; · · · ; tn

](

ϕ
)

after
[

t0 ; t1 ; · · · ; tn

](

ϕ
)

3. From the steps above we can deduce

• after
[

new(x)
](

nbprod = 0
)

because the “side effects” of new(x) and (mybufModif(x) ;nbprodModif(0) ) on the
producer state under consideration (self) are identical, as expressed by the axiom:

new(x)↓ = (mybufModif(x) ;nbprodModif(0))↓.

4. Since the formula obtained at the third step is satisfied for the representative producer
self , it is satisfied for every producer y. Consequently, we can write:

• after
[

(y.new(x))
](

(y.nbprod) = 0
)

5. Following similar proofs for consumers and for buffers, we obtain:

• after
[

(z.new(x))
](

(z.nbcons) = 0
)

14



• after
[

(x.new)
](

(x.size) = 0
)

6. The 6 following formulas can also be proved without difficulties (x being of sort Buffer,
y of sort Producer and z of sort Consumer):

• when
[

(x.size) = n
](

after
[

(y.new(x))
](

(x.size) = n
))

• when
[

(x.size) = n
](

after
[

(z.new(x))
](

(x.size) = n
))

• when
[

(y.nbprod) = n
](

after
[

(z.new(x))
](

(y.nbprod) = n
))

• when
[

(x.size) = n
]






after







bufModif(x) ;
prodModif(y) ;
consModif(z)







(

(x.size) = n
)







• when
[

(y.nbprod) = n
]






after







bufModif(x) ;
prodModif(y) ;
consModif(z)







(

(y.nbprod) = n
)







• when
[

(y.nbcons) = n
]






after







bufModif(x) ;
prodModif(y) ;
consModif(z)







(

(y.nbcons) = n
)







Consequently, it comes (from 4 and 5):

• after



















(x.new) ;
(y.new(x)) ;

(z.new(x)) ;

bufModif(x) ;
prodModif(y) ;
consModif(z)



















(

(x.size) = 0
)

• after















(y.new(x)) ;

(z.new(x)) ;

bufModif(x) ;
prodModif(y) ;
consModif(z)















(

(y.nbprod) = 0
)

• after











(z.new(x)) ;

bufModif(x) ;
prodModif(y) ;
consModif(z)











(

(z.nbcons) = 0
)

7. Using “modal generalization” on the three last formulas, we get respectively:

• after



















(x.new) ;
(y.new(x)) ;

(z.new(x)) ;

bufModif(x) ;
prodModif(y) ;
consModif(z)



















(

(x.size) = 0
)
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• after



















(x.new) ;
(y.new(x)) ;

(z.new(x)) ;

bufModif(x) ;
prodModif(y) ;
consModif(z)



















(

(y.nbprod) = 0
)

• after



















(x.new) ;
(y.new(x)) ;

(z.new(x)) ;

bufModif(x) ;
prodModif(y) ;
consModif(z)



















(

(z.nbcons) = 0
)

Thus from trivial arithmetic properties:

• after



















(x.new) ;
(y.new(x)) ;

(z.new(x)) ;

bufModif(x) ;
prodModif(y) ;
consModif(z)



















(

(y.nbprod) = (z.nbcons) + (x.size)
)

8. Using the following producer-consumer specification axiom:

• when







(y1 = nextBuffer)
∧(y2 = nextProducer)
∧(y3 = nextConsumer)

























create↓ =



















(y1.new) ;
(y2.new(y1)) ;
(y3.new(y1)) ;
bufModif(y1) ;
prodModif(y2) ;
consModif(y3)



















↓



















we have:

• when
[

y1 = nextBuffer ∧ y2 = nextProducer ∧ y3 = nextConsumer

]

(

after
[

create
](

(y2.nbprod) = (y3.nbcons) + (y1.size)
))

and from the axioms translating slots properties, it comes

• when







y1 = nextBuffer

∧ y2 = nextProducer

∧ y3 = nextConsumer







(

after
[

create
](

buf = y1 ∧ prod = y2 ∧ cons = y3

))

Since the two formulas above are satisfied for the representative ProdConsum object
self , they are in particular satisfied for pc. Consequently, we deduce:

• when
[

y1 = nextBuffer ∧ y2 = nextProducer ∧ y3 = nextConsumer

]





after
[

(pc.create)
]

(

((pc.prod).nbprod) = ((pc.cons).nbcons) + ((pc.buf).size)
)





and since y1, y2 and y3 do not appear in the when consequence, we deduce:
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• after
[

(pc.create)
](

ϕ
)

This proves the lemma when id = pc.

When id 6= pc, the three following formulas are not difficult to prove (similarly to step 6):

• ((pc.prod).nbprod) = n =⇒ after
[

(id.create)
](

((pc.prod).nbprod) = n
)

• ((pc.cons).nbcons) = n =⇒ after
[

(id.create)
](

((pc.cons).nbcons) = n
)

• ((pc.buf).size) = n =⇒ after
[

(id.create)
](

((pc.buf).size) = n
)

and they trivially imply that when id 6= pc :

• ϕ =⇒ after
[

(id.create)
](

ϕ
)

and the proof of the lemma is achieved by simple case reasoning.

In addition, the formula ϕ is obviously satisfied in the empty state (i.e., at the beginning
of the system, when no object exists). Moreover, our lemma implies that ϕ is an invariant
whatever a user does with the system. Consequently, ϕ is proved.

6 Concluding remarks

As announced in the introduction, we have described an algorithm to translate Gnome

specifications into étoile ones. Several primitives have not yet been considered, such as
visibility mechanism and event broadcasting.

We never aimed in this article at comparing the already existing alternative semantics
of Gnome with the étoile one, but we shall do so in the near future. Indeed, our main
motivation for the moment is to allow Gnome to take benefit of the abstract implementation
approach developed in étoile. And of course, in that respect the ability to reasonably
perform proofs was a important and useful indication.
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Université de Paris-Sud, Orsay, 1995.

[Aig95b] M. Aiguier. Un calcul pour les spécifications algébriques à objets: l’etoile-calcul.
LaMI report 14-95, Université d’Evry, 1995.
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Técnico, Secção de Ciência da Computação, Departamento de Matemática, 1096
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A Implemented buffers in ÉTOILE

This appendix presents an abstract implementation of buffers as linked lists of cells.
The signature Cell is defined by:

• C = Cell

O = {Elem}
D = ∅

• F = ∅

• MCell = {new : Elem Cell →
value :→ Elem

next :→ Cell

nextModif : Cell→}

• MElem = ∅

and the axioms are:

• after
[

(x.new(e, c))
](

alive(x) ∧ (x.value) = e ∧ (x.next) = c
)
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• value↓ = ↓

• after
[

nextModif(c)
](

next = c
)

• next↓ = ↓

The signature Implemented Buffer is defined by:

• C = ImplBuffer

O = {Cell, Elem}
D = ∅

• F = ∅

• M ImplBuffer = {new :→
put : Elem → Elem

get :→ Elem

first :→ Cell

firstModif : Cell →
last :→ Cell

lastModif : Cell →}

• MCell = {new : Elem Cell →
value :→ Elem

next :→ Cell

nextModif : Cell→}

• MElem = ∅

and axioms are:

• after
[

(x.new)
](

alive(x)
)

• after
[

firstModif(c)
](

first = e
)

• first↓ = ↓

• after
[

lastModif(c)
](

last = c
)

• last↓ = ↓

• get = (first.val)

• get↓ = firstModif(first.next)↓

• put(e)↓ = (new(e, last) ; (last.setnext(x)) ; setlast(x))↓
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B Stacks in GNOME

In this appendix we present a specification in Gnome of stacks as linked lists of nodes.

class Stack
interface

birth serv new
serv push par elm: int
serv ptop res elm: int

body

slot depth:nat
slot tn:Node
serv new
val depth<<0
val tn<<nil

serv push
call new of next:Node
arg new.nn=tn
arg new.dt=push.elm

val depth<<depth+1
val tn<<Node.next

serv ptop
enb not(depth=0)
call del of tn:Node
val depth<<depth-1
val tn<<del.nn
ret ptop.elm=del.dt

end Stack

class Node
interface

birth serv new par nn:Node par dt:int
death serv del res nn:Node res dt:int

body

slot nn:Node
slot dt:int
serv new
val nn<<new.nn
val dt<<new.dt

serv del
ret del.nn=nn
ret del.dt=dt

end Node

C Slidding Window Protocol in GNOME

In this appendix we present a specification of the slidding window protocol [Tel94]. This
protocol allows information to be sent between two processes P and Q, through a Channel.
The assumptions, requirements and protocol are completely symmetric w.r.t. P and Q. The
input of P consists of the information it must send to Q, the array in. The output of P
consists of the information it receives from Q, and is also modeled by an array out. There
are constants known by both P and Q, lp and lq. The constant lp (resp. lq) fixes the number
of messages that P (resp. Q) can send ahead of Q (resp. P), i.e., without having received an
acknowledgement from Q (resp. P).

This algorithm has been proved to be correct, i.e., no message is lost, no message is
duplicated and messages don’t change order, using the temporal semantics defined for Gnome

and the associated proof system.
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class P
interface

birth serv new
par in: array(data) par c: Channel

serv rec
par i: int par w: data

body

slot s: int
slot a: int
slot in: array(data)
slot out: array(data)
slot i:int
slot cha: Channel
serv new
val s<<0
val a<<0
val in<<new.in
val out<<undef
val i<<0
val cha<<new.c

serv rec
alt newmsg
enb out[rec.i]=undef
val out[rec.i]=rec.w
val a<<max{a,rec.i-lq+1}
val s<<min{j:out[j]=undef}
val i<<max{i,rec.i-lq+1}

alt old msg
enb not(out[rec.i]=undef)

act send
enb a<=i and i<s+lp
call recp of cha: Channel
arg recp.i=i
arg recp.w=in[i]

val i<<if i=s+lp-1 then a else i+1
end P

class Q
interface

birth serv new
par in: array(data) par c: Channel

serv rec
par i: int par w: data

body

slot s: int
slot a: int
slot in: array(data)
slot out: array(data)
slot i:int
slot cha: Channel
serv new
val s<<0
val a<<0
val in<<new.in
val out<<undef
val i<<0
val cha<<new.c

serv rec
alt newmsg
enb out[rec.i]=undef
val out[rec.i]=rec.w
val a<<max{a,rec.i-lp+1}
val s<<min{j:out[j]=undef}
val i<<max{i,rec.i-lp+1}

alt old msg
enb not(out[rec.i]=undef)

act send
enb a<=i and i<s+lq
call recq of cha: Channel
arg recq.i=i
arg recq.w=in[i]

val i<<if i=s+lq-1 then a else i+1
end Q
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class Channel
interface

birth serv new par p: P par q:Q
serv recp par i: int par w:data
serv recq par i: int par w:data

body

slot mp:list(pair)
slot mq:list(pair)
slot p: P
slot q: Q
serv new
val mp<<newlist
val mq<<newlist
val p<<new.p
val q<<new.q

serv recp
alt save
val mq<<app((recp.i,recp.w),mq)

alt loose
serv recq
alt save
val mp<<app((recq.i,recq.w),mp)

alt loose
act sendp
enb not(empty(mp))
call rec of p:P
arg rec.i=head(mp).i
arg rec.w=head(mp).w

val mp<<tail(mp)
act sendq
enb not(empty(mq))
call rec of q:Q
arg rec.i=head(mq).i
arg rec.w=head(mq).w

gval mq<<tail(mq)
end Channel

We assume defined a structure data type pair with two fields: i of type int and w of type
data.
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