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Université Evry-Val d’Essonne, Bd des Coquibus

F-91025 Evry cedex, France
E-mail: {aiguier,bernot}@lami.univ-evry.fr

1. Introduction

Object oriented programming languages are more and more popular and the “ob-

ject oriented approaches” seem to be increasingly appreciated for software engineering
tasks. We believe that it would be a pity if classical formal specification languages

would not follow this evolution. A lot of works have already been done 11,7,8,5,2; they
often address the problem of defining models to reflect object oriented issues, or to

provide a suitable logic. Our goal is to take up the challenge of defining a theory for

object oriented algebraic specifications.
An abstract specification should describe what the system is supposed to do; it

should not describe how it is supposed to do it. Consequently, the axioms of an object
oriented algebraic specification should be considered as requirements; our goal is not

to define a formalism allowing to explicitly solve concrete implementation problems
such as concurrency (e.g. safety, liveness,...) (although the axioms can imply the

satisfaction of such properties). Nevertheless, we will make use of certain connectivesa

in order to express some temporal constraints on the system evolution.

Axioms express properties about the behaviour of a system or of an object type.
However, as concurrency can modify system (or object) behaviours, it should be taken

into account. So, we will only specify the observable consequences of concurrency,
which can be represented by non-determinism.

A major difference between object oriented algebraic specification and classical
algebraic specifications is the introduction of methods whose semantics can change

according to an implicit internal state. So, a peculiarity of our approach is to con-
sider local states as dynamic modifiers of the method semantics. While Dauchy and

Gaudel4 only allow one global state, we allow several local states. We get advantage

of having as many states as objects in the system. With respect to the semantic side,
another difference of our approach with other works4,2,10 is that states are simple

elements of one algebra instead of considering one different algebra by state.
We also introduce the concept of object type which can be seen as an extension

of the concept of specification module. Object types can be combined in order to
build a system. Dependences between object types within a system allow cycles, as

a
after and when



opposed to the classical notion of module. In this article, we focus on the specification
of object types only (for more details, see the Aiguier’s thesis1).

The following sections contain the main definitions of object types without ex-
tended comments. A running example should help the reader to understand the

definitions.

2. Object type specifications

Intuitively, an object type specification will define the behaviour of an arbitrary

object of this type, called self . Consequently, an object type specification will describe
an “egocentric view”, the center of which is self . The objects belonging to the view

of self are those which can provide services to self in order to help it to define its
behavior.
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An object type specification is defined by a signature (Section 2.1) and a set of
formulas (Section 2.2).

2.1. Signature

Intuitively, an object type signature is structured like a “star”: its “center” is
the object type of interest κ (the one we are specifying, i.e. the one of self); the

“branches” represent an abstract, simplified view of the object types that provide



some functionalities to self . The center is supposed to be fully specified (through
self) while the branches only outline the functionalities used by the center.
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An object type signature declares some sorts and operation names.

Definition 1 An object type signature Θ is a tuple <S, F, {Mo}o∈O > where:

• S = (κ, O, S) is a “star set” i.e.: S is a set, O ⊆ S and κ ∈ O.

Every element belonging to S is called a sort, every sort belonging to O is called

an object sort, the sort κ is called the sort of interest and every sort belonging
to S \ O is called a data sort.

• F is a set of operation names with an arity of the form (α → β) where α ∈ S∗

and β ∈ S.

(Intuitively, F describes a set of classical operations as in ADJ9, the semantics

of which do not depend on the states of the objects).

• for every o ∈ O, Mo is a set of operation names with an arity of the form

(α → β) where α ∈ S∗ and β is either an element of S, or of the form new o′

where o′ ∈ O, or empty.

The operations of Mo will be called methods.



Comments

• The sort κ is the sort of self . The sorts belonging to O are the object types for
which self uses objects to define its behaviour. The others sorts (i.e. the sorts

belonging to S \ O) are data types used by self or the objects of the others
object types oi.

• For any o ∈ O, o can be understood as the sort of all object identities of type

o, while new o is only a notation which indicates the creation of an object of
type o (new o is not a new sort).

• The set F contains the operations associated to data types. We do not restrict

the arities to the classical data type part (S\O). Indeed, we want to manipulate
identities as classical data. For example, we may want to specify a classical data

type “queue” where the elements added to the queue are identities of object.

• For every o ∈ (O \{κ}), the set Mo only contains the methods that self can use

in an object of sort o. It does not necessarily contain all the methods defined
in the full specification of the type o. On the contrary, the set Mκ contains all

the methods that the object type κ can give to the outside.

• Lastly, we do not distinguish, among the methods of a signature, those which
modify the state of objects and those which only observe them. If we specify

the dynamic stacks, we can have a method “top&pop” with an arity of the form
“→ elem” (the stack is implicitly contained in the state) whose behaviour is

to return the first element and to remove it from the stack. Such a method
observes the sate and modifies it.

Example 1 Obviously, we specify the “Hanöı tower” game by means of two object

type signatures, respectively called “Tower” and “Disk”. The signature of Tower is
defined by:

Tower signature:

S is defined by: sort of interest: κ = tower

other object sorts: disk (i.e. O = {tower, disk})
data sorts: int, bool (i.e. S = {tower, disk, int, bool})

F contains all operations belonging to the abstract data types int and bool.
M tower = {empty : → bool,

push : disk → ,

pop : → ,

top : → disk ,

height : → int}

Mdisk = {diameter : → int}

Let us remark that Disk is another type signature where, this time, κ = disk:



Disk signature:

S is defined by: sort of interest: κ = disk

other object sorts: (none)
data sorts: int

F contains all operations belonging to the abstract data type int.

Mdisk = {diameter : → int,

weight : → int}

Let us remark that Tower does not use the weight method of Disk. The advantage

of putting in the definition of an object type signature the methods that self can use
(and not only the object sorts that self can use) is to define autonomous semantics

to object type specifications, without knowing the surrounding system. Moreover,
only the minimal requirements about the context are specified. This allows to give

“modular” specifications of systems, in which each object description is somehow
“parameterized” on the context.

2.2. Terms and formulas

The first syntactical element of formulas is the notion of term. The terms are
built inductively from the operations belonging to an object type signature and a set

of variables.

Let Θ =<S, F, {Mo}o∈O > be an object type signature and V be a S-indexed set

of variables.

• Of course, every variable is a term, and we admit all the usual terms of the
form f(t1, . . . , tn) where f : s1, . . . , sn → s belongs to F and ti are terms of sort

si. We also admit the conventional constant self , of sort κ.

• With regard to a method (i.e. an operation belonging to Mo with o ∈ O) we
have to consider the identity of the object which performs it. Consequently, we

introduce the key word “in”. So, we write terms of the form: (m(t1, . . . , tn) in t)

where m : s1, . . . , sn → s (or s1, . . . , sn → ε) belongs to Mo, ti are terms of sort
si and t is a term of sort o. The term t denotes the identity of an object able

to perform the method m.

• Lastly, to consider the methods of the form m : s1, . . . , sn → new o′ which
create an object of sort o′, we use the key word “as” to introduce the new object

identity. We consider the following terms: (m(t1, . . . , tn) as x in t) where x is a
variable of sort o′. This variable will intuitively capture the identity of the new

object.

Moreover, since we consider implicit states, the order in which terms are performed
is significant. Thus, we introduce the notation “;” which defines a sequence of terms



and we allow terms of the form: (t1; . . . ;tn), called sequence terms, where the ti are
well-formed terms. We will consider that such a sequence term denotes the value

of the last term of the sequence (i.e. tn) after that all the ti have been performed
sequentially.

Lastly, we can be interested in the state of an object after the term (t1; . . . ;tn) has
been performed instead of looking at the result of tn. Consequently, we introduce the

notation “↓” to write terms such as: (t1; . . . ;tn)↓t
the value of which is the state of t

(or rather: the state of the object whose identity is the value of t) after the sequence
(t1; . . . ;tn) has been performed. Such terms are called projective terms.

The canonical object self is provided with a fictitious identity, also denoted self .
To facilitate the reading of formulas, we leave the identity self implicit. Consequently,

instead of writing (m(t1, . . . , tn) in self) and (t1; . . . ;tn)↓self
, we will respectively write

m(t1, . . . , tn) or (t1; . . . ;tn)↓ for short.

From terms, we can build atoms. We have two kinds of atoms:

1. (t1; . . . ;tn) = (u1; . . . ;um) where tn and um have the same sort s ∈ S which is
intuitively satisfied if the value of tn after that the ti have been performed, is

equal to the value of um after that the ui have been performed.

2. (t1; . . . ;tn)↓t
= (u1; . . . ;um)↓u

where t and u have the same sort o ∈ O which is

intuitively satisfied if the state of the object t after that the sequence (t1; . . . ;tn)
has been performed, is equal to (or is not distinguishable from) the state of u

after that the sequence (u1; . . . ;um) has been performed.

The formulas are inductively defined from the atoms, usual connectives belonging

to {¬,∧,∨} and usual quantifiers belonging to {∀, ∃}. Moreover, since the notion of
implicit states induces an implicit notion of evolution w.r.t. time, we introduce two

new connectives: after and when. We choose the following syntactic notation for

these formulas:

• after [(t1; . . . ;tn)] (ϕ)

• when [ϕ1] (ϕ2)

where ϕ, ϕ1 and ϕ2 are formulas.

Intuitively, the formula after [(t1, . . . , tn)] (ϕ) means that the formula ϕ must be true
immediately after the sequence term (t1; . . . ;tn) has been performed. The formula

when [ϕ1] (ϕ2) means that at each time ϕ1 would be true, the formula ϕ2 must be
true. For example, for the Tower specification, we can write the following properties:

1. top↓ = ↓ % top is an observer that does not change the states,
% “ ” denotes the empty sequence term



2. when [empty = true] (height = 0)

3. when [(diameter in d) ≤ (diameter in top) = true] ((push(d) ; pop)↓ = ↓)

4. when [(height = h) ∧ empty = false] (after [pop] (height = h − 1))

Finally, an object type specification SP is a couple (Θ, Ax) where Θ is an object

type signature and Ax is a set of formulas built on Θ.

3. Semantics

3.1. Object type algebras

In the remainder, we will assume that ∆ is an additional symbol which does not
belong to the set of sorts S.

Definition 2 Let S = (κ, O, S) be a star set. A pre-carrier defined on S is a tuple
(A, A

↔

,≺A) where:

• A is a (heterogeneous) set partitioned as subsets (As) indexed by S.

(Or equivalently, A is a S-indexed family of disjoint sets As).

• A
↔

is a (heterogeneous) set partitioned as subsets (A
↔

o) indexed by (O ∐ {∆}).

(Or equivalently, A
↔

is a (O ∐ {∆})-indexed family of disjoint sets A
↔

o).

• ≺A is a preorder defined on A
↔

and such that: ≺A⊆
∐

o∈O∐{∆}

(A
↔

o × A
↔

o) i.e.:

∀(η1, η2) ∈ (A
↔

× A
↔

), η1 ≺
A η2 =⇒ (∃o ∈ (O ∐ ∆), η1 ∈ A

↔

o ∧ η2 ∈ A
↔

o)

(Or equivalently, ≺A is a (O∐{∆})-indexed family of preorders on the sets A
↔

o).

Comments

• For s ∈ (S \ O), As should be understood as the set of all classical data of sort
s, as for the classical (ADJ9) approach. Respectively, for s ∈ O, As should be

understood as the set of all possible identities for objects of type o, usable by
self .

• For o ∈ O, A
↔

o should be understood as the set of all possible apparent states of
any object of type o. The set A

↔

o contains the view that self has of the possible

object states of sort o. A state η ∈ A
↔

o can also be considered as a “modifier”
which modifies the semantics of any method of type o (in Mo).



• A
↔

∆ should be understood as the set of all possible true local states of self

(intuitively, it simulates the attributs of self in an object oriented programming
language; the states in A

↔

∆ are abstractions of the values of the attributs).

• The preorder ≺A takes into account all side effects of every method. It simulates

the evolution from a state to another state. Intuitively, η1 ≺
A η2 means that if

a given object is in the state η1 then it may get the state η2 later.

When a method is performed by self , the side effects and the used results can
concern all objects belonging to its (star) view. Consequently, the behaviour of self

is defined by its true local state (i.e. an element of A
↔

∆) and the state of every object

belonging to its (star) view. Moreover, we have said that a state can be seen as a

“semantic modifier” which defines the behaviour of any method. So, given a pre-
carrier (A, A

↔

,≺A), a (global) state of self is characterized by an application γ from

the set of all identities viewed by self (i.e. (
∐

o∈O

Ao)∐{self}) to the corresponding set

of possible states (i.e. A
↔

).

Definition 3 Let (A, A
↔

,≺A) be a pre-carrier. A global state of self in this pre-

carrier is an application γ : (
∐

o∈O

Ao) ∐ {self} → A
↔

such that :

• ∀o ∈ O, ∀a ∈ Ao, γ(a) ∈ A
↔

o.

• γ(self) ∈ A
↔

∆.

(Or equivalently, if we conventionally note A∆ = {self}, γ is a (O ∐ {∆})-indexed

family of applications from Ao to A
↔

o)

We note St[A] the set of all global state of self in the pre-carrier (A, A
↔

,≺A), and

we extend the preorder ≺ to St[A] by:

∀(γ, γ′) ∈ (St[A] × St[A]), γ ≺ γ′ ⇐⇒ (∀a ∈ (
∐

o∈O

Ao ∐ {self}), γ(a) ≺A γ′(a))

From one hand, the set St[A] defines all possible states of the “local system” that
self can directly use. An element γ of St[A] suffices to determine the semantics of

any method performed by self (since it gives the state of all objects that self can call
for and its “internal attributs” in A

↔

∆).

From another hand, A
↔

κ is the set of all possible apparent states (i.e. behaviour) of
self when used by an “external” object. According to this intuition, we ask for A

↔

κ to

be an abstraction of St[A]. Formally, this abstraction is represented by a surjective
application absA defined from St[A] to A

↔

κ.

Definition 4 Let S = (κ, O, S) be a star set. A S-carrier is a tuple (A, A
↔

,≺A, absA)
where:



• (A, A
↔

,≺A) is a pre-carrier built on S.

• absA : St[A] → A
↔

κ is a surjective application such that:

∀(γ, γ′) ∈ St[A] × St[A], γ ≺ γ′ =⇒ absA(γ) ≺A absA(γ′)

Definition 5 Let Θ =<S, F, {Mo}o∈O > be an object type signature. A Θ-algebras

A is defined by:

• a S-carrier (A, A
↔

,≺A, absA).

• for every operation (f : α → β) ∈ F , an applicationb fA : Aα → Aβ.

• for every o ∈ O, every method (m : α → β) ∈ Mo and every state η ∈ A
↔

o:

– an application:

{

mA
η : Aα → Aβ if β ∈ S

m
↔

A

η
: Aα → A

↔
o′ if β = new o′

– an application: m
→

A

η
: Aα → A

↔

o

• for every method (m : α → β) ∈ Mκ and every global state γ ∈ St[A]:

– an application:

{

mA
γ : Aα → Aβ if β ∈ S

m
↔

A

γ
: Aα → A

↔
o′ if β = new o′

– an application: m
→

A

γ
: Aα → St[A].

satisfying the following conditions:

• ∀o ∈ O, ∀(m : α → β) ∈ Mo, ∀a ∈ Aα, ∀η ∈ A
↔

o, η ≺A m
→

A

η
(a)

• ∀(m : α → β) ∈ Mκ, ∀a ∈ Aα, ∀γ ∈ St[A], γ ≺ m
→

A

γ
(a)

Comments

• with regard to the methods m ∈ Mo:

– mA
η represents the behaviour of the method mA with respect to the state

η of an object of the type o.

– if m does not return a value but creates a new object, the application m
↔

A

η

gives the initial state for this new object.

– lastly, m
→

A

η
represents the state evolution: when we perform m(a) from the

state η, we obtain the new state m
→

A

η
(a).

b Let Aα = As1
× ... × Asn

for α = s1...sn.



• We have another semantics for methods belonging to Mκ when performed by
self . The side effects induced by a method performed by self do not only

concern the internal state of self . It also concerns all the objects in its view:
in order to perform one of its own method, self can ask for any method of any

object in its view.

• Let us note that the different local states in the branches of the view of self

are not interrelated. A method m executed in an object i, with i 6= self ,
cannot make visible a state evolution in another object i′. To ignore this kind

of “sharing” between different subobjects is deliberate. The point is that we are
specifying self and no other object; consequently, every method m performed

by another object i is indeed called by a method m0 of self . If m has to call
m′ in i′, then the side effect of m′ will be taken into account by m0

→

A (roughly

speaking, everything goes as if m′ were called by m0).

The notion of morphisms in the category of Θ-algebras is defined in the Aiguier’s

thesis1.

3.2. Evaluations of terms in a model

The evaluations of terms in a Θ-algebra A is defined on terms with leavesc belong-

ing to A and from a global state γ belonging to St[A]. The result of every evaluation
is either a value for a sequence term or a state for a projective term.

Every evaluation of a term (t1; . . . ;tn) or (t1; . . . ;tn)↓t
begins by sequentially eval-

uating the ti. The evaluation of each ti is a “bottom-up” evaluation. Moreover, we

have to take into account that each evaluation of a term directly evaluable (called
flat term) modifies the global state from which it is evaluated. Consequently, there is

a synchronism on the global states belonging to St[A].

Definition 6 We call flat term, a term of the form:

• (m(a1, . . . , an) in a)

• (m(a1, . . . , an) as a′ in a)

where ai, a and a′ are elements of A.

At each evaluation step, there are choices on the flat terms to evaluate which

can provide different evaluations. To cover this kind of concurrency, we adopt a

non-deterministic evaluation by considering the set of all possible evaluations.

Moreover, we have two kinds of evaluations: isolated evaluation and normal evalu-
ation. Intuitively, an isolated evaluation does not consider a possible system which

c More precisely, it means that we consider terms inductively defined exactly as in Section 2.2, but

replacing the set of variables V by A.



might surround the “star” of self . Consequently, the evolutions of global states
γ ∈ St[A] are only the result of the operation under consideration in the term. If we

rather consider a “normal” evaluation, the global state may have been moved by the
surrounding system (not by self) before to evaluate a flat term.

Definition 7 Let t be a flat term. Let γ ∈ St[A] be a global state. (v, γ′) ∈ (A×St[A])
is an isolated reduction of (t, γ) if and only if:

• if t is of the form f(a1, . . . , an) then:

– v = fA(a1, . . . , an).

– γ′ = γ.

• if t is of the form (m(a1, . . . , an) in a) (resp. (m(a1, . . . , an) as a′ in a)) then:

– if a 6= self :

∗ v = mA
γ(a)(a1, . . . , an).

∗ γ′(a) = m
→

A

γ(a)
(a1, . . . , an) (resp. γ′(a′) = m

↔

A

γ(a)
(a1, . . . , an)).

∗ ∀a′′ ∈ (
∐

o∈O

Ao \ {a}) (resp. a ∈ (
∐

o∈O

Ao \ {a, a′})), γ′(a′′) = γ(a′′).

– if a = self :

∗ v = mA
γ (a1, . . . , an).

∗ γ′ = m
→

A

γ
(a1, . . . , an) (except for a′ where γ′(a′) = m

↔

A

γ
(a1, . . . , an)).

Definition 8 With the notations of Definition 7, (v, γ′) is a (normal) reduction of

(t, γ) if and only if there exists γ′′ ∈ St[A] such that:

• γ ≺ γ′′ with γ′′(self) = γ(self).

• (v, γ′) is an isolated reduction of (t, γ′′).

The evaluation of a term ti in an Θ-algebra A is defined as the set of all values
resulting from any sequences of evaluations of flat subterms until we obtain a finale

value.

We can extend Definition 7 and Definition 8 to every sequence term and projective

term. When we evaluate a term such as (t1; . . . ;tn) with a “normal” evaluation, the
global state can change independently after the evaluation of ti, before starting the

evaluation of ti+1, for every i ∈ [1, n − 1].

Definition 9 Let (t1; . . . ;tn) be a sequence term. Let γ ∈ St[A] be a global state.



• (v, γ′) is an isolated reduction of ((t1; . . . ;tn), γ) if and only if there exists a

finite sequence ((v1, γ1), . . . , (vn, γn)) ∈
n

∏

i=1

(A × St[A]) such that:

– v = vn and γ′ = γn.

– for every i ∈ [1, n], (vi, γi) is an isolated reduction of (ti, γi−1) where γ0 =
γ.

• (v, γ′) is a normal reduction of ((t1; . . . ;tn), γ) if and only if there exists two

finite sequences ((v1, γ1), . . . , (vn, γn)) ∈
n

∏

i=1

(A × St[A]) and

(γ′
1, . . . , γ

′
n−1) ∈

n−1
∏

i=1

St[A] such that:

– v = vn and γ′ = γn.

– for every i ∈ [1, n], γi ≺ γ′
i.

– for every i ∈ [1, n], (vi, γi) is an isolated reduction of (ti, γ
′
i−1).

We call an isolated evaluation (resp. normal evaluation) of ((t1; . . . ;tn), γ) the first

component of an isolated reduction (resp. normal reduction) of ((t1; . . . ;tn), γ). The
second component is simply a global state resulting from the isolated evaluation (resp.

normal evaluation) of ((t1; . . . ;tn), γ).

Lastly, we define the evaluation of the projective terms.

Definition 10 Let (t1; . . . ;tn)↓t
be a projective term. Let γ ∈ St[A] be a global state.

(v, γ′) is an isolated reduction (resp. normal) of ((t1; . . . ;tn)↓t
, γ) if and only if:

• γ′ is a global state resulting from the isolated evaluation (resp. normal evalua-

tion) of ((t1; . . . ;tn), γ).

• v is an isolated evaluation of (t, γ′).

3.3. Satisfaction of formulas

We define the semantics of formulas, i.e. the satisfaction relation between algebras
and formulas.

3.3.1. Simple satisfaction of formulas

Here, we directly interpret the projective atoms as equalities between the states

of the objects under consideration. Such a satisfaction is simpler than a satisfaction
defined according to an observational approach (cf. the next Section).



Definition 11 Let A be a Θ-algebra. Let V be a set of variables. Let ϕ be a well
formed formula on V and Θ. A satisfies ϕ for an interpretation I : V → A and a

global state γ ∈ St[A] (i.e. A |=I,γ ϕ) if and only if:

• if ϕ = (t = u) where t and u are sequence terms then:

A |=I,γ t = u if and only if for every normal evaluation v1 of (I(t), γ) and every

normal evaluation v2 of (I(u), γ), we have: v1 = v2.

• if ϕ = (t = u) where t and u are projective terms then:

A |=I,γ t = u if and only if for every normal reduction (v1, γ1) of (I(t), γ) and
every normal reduction (v2, γ2) of (I(u), γ):

– v1 = v2 = self =⇒ γ1 = γ2.

– v1 = self ∧ v2 6= self =⇒ absA(γ1) = γ2(v2).

– v1 6= self ∧ v2 = self =⇒ γ1(v1) = absA(γ2).

– v1 6= self ∧ v2 6= self =⇒ γ1(v1) = γ2(v2).

• if ϕ = after [t] (ϕ1) then A |=I,γ ϕ if and only if for every global state γ′

resulting from the evaluation of (t, γ), A |=I,γ′ ϕ1.

• if ϕ = when [ϕ1] (ϕ2) then A |=I,γ ϕ if and only if A |=isol
I,γ ϕ1

d implies

A |=I,γ ϕ2.

• the satisfaction of other connectives and quantifiers is handled as usual.

A Θ-algebra A satisfies a formula ϕ, denoted by A |= ϕ, if and only if for every
interpretation I : V → A and every global state γ ∈ St[A], A |=I,γ ϕ.

Lastly, a Θ-algebra A satisfies an object type specification SP =< Θ, Ax > if and
only if A satisfies all formulas belonging to Ax.

Comments

1. To satisfy an atom of the form t = ... from a global state γ, we ask in particular

for the first element of any reduction (v, γ′) of (t, γ) to be the samee. So, we
considerably reduce the non-determinism of models which satisfy the atom.

This constraint has already been proposed in the PhD thesis of A. Deo3.

2. A formula of the form: when [ϕ1] (ϕ2) describes a condition. The formula ϕ1

is the precondition, and it describe some “instantaneous condition” about the
current state (as viewed by self). It means something like “take a snapshot of

d |=isol means that we do an isolated evaluation.
e i.e. all possible evaluations lead in fact to a unique value.



the view of self , verify ϕ1 on the snapshot, and then evaluate ϕ2 in the real
world.” Thus, ϕ1 is an instant observation. It is the reason why we check the

satisfaction of ϕ1 via isolated evaluations, while ϕ2 has to be considered with
respect to normal evaluations.

3.3.2. Observational satisfaction of formulas

The simple satisfaction is not fully satisfactory because it does not reflect the
encapsulation principle. More precisely, a state η should be visible only through all

the semantics of the methods mη. This principle leads to an observational equality
between projective terms.

Classically, we firstly define the notion of context.

Definition 12 Let Θ be an object type signature.

• A context defined on Θ, denoted by C, is a sequence term of a sort s ∈ S

with only one variable x, such that the key word in takes place just before all

occurrences of x in the term C.

• Given a context C, we denote by o → s its arity where o is the sort of the

variable x and s the sort of the sequence term C.

• We denote by CΘ the whole set of context defined on Θ.

We only give the observational satisfaction of projectives atoms. For the others
atoms and connectives, we follow Definition 11.

Definition 13 Let A be a Θ-algebra. Let t↓t′
= u↓u′

be a projective atom of the sort

o ∈ O. A satisfies (t↓t′
= u↓u′

) for an interpretation I : V → A and a global state

γ ∈ St[A] (i.e. A |=I,γ (t↓t′
= u↓u′

)) if and only if:

for every normal reduction (v1, γ1) of (I(v), γ), for every normal reduction (u1, γ2)
of (I(u), γ), for every context (C : o → s) ∈ CΘ, for every isolated evaluation v′

1 of

(C(v1), γ1) and for every isolated evaluation u′
2 of (C(u1), γ1), we have u′

1 = u′
2.

Remark The contexts are used as “snapshots” of the state of the objects under
consideration in projective terms. It is the reason why their evaluation is isolated in

the previous definition.

4. From object types to systems

The definition of a system is not addressed in this article. Roughly speaking,

a system specification is a collection of object type specifications, the semantics of



which is represented by a collection of models, with some compatibility conditions.
Moreover, we allow “global formulas” in a system specification in order to express

properties which cannot be specified on a “local” basis. For example, the Hanoi
Tower Game is a system where three constant identities of sort Tower are declared

(say A, B, C :→ Tower), and we can specify that the global number of disks is
always equal to n:

(height in A) + (height in B) + (height in C) = n

Assuming that we have specified a method in the system which initializes a pyramid

of size n (pyramid : Nat × Tower →), and another one which executes a list of
elementary moves from the top of a tower to another one (exec : MoveList →) it

is not difficult to characterize the lists of moves l that solve the problem (to move a
pyramid from A to C). They are the solutions of the following formulaf

∀x : Tower, (pyramid(n, A) ; exec(l))↓x
= pyramid(n, C)↓x

We have also defined the important notion of abstract implementation where
an object type specification is implemented by a system made of more elementary

objects1. We have obtained the following compatibility result:
“if a system S satisfies a property ϕ and if I is a correct abstract implementation of

one of the object type T belonging to S, then the system obtained by replacing T by
I still satisfies ϕ”.

Such a result for object oriented algebraic specifications replaces usual modularity
techniques in classical software engineering.

5. Conclusion

The research briefly exposed here is only our first proposal for an object oriented
approach in the framework of algebraic specification. We are aware that our defini-

tions are still rather complex and we daily work to simplify them. Nevertheless, we
believe that our framework is actually interesting, because it proves for the first time

that terse object oriented specifications can be achieved within an algebraic theory
(syntax and semantics).

Our approach has been first to define a syntax powerful enough to specify a
collection of examples, and to content colleagues who have the habit of using object

oriented programming languages. Then, we have defined the corresponding semantics

and satisfaction relation in order to cope with (our and their) intuition. This approach
ensures a sufficient expressive power, but it has the drawback to produce complex

definitions of the semantics, leaving a great research work to simplify them.

f Remember that a specification describes what is wanted, and not how to obtain it... However it

is not difficult in this case to establish, by induction on n, that the usual recursive solution works

well...



According to this approach, the two connectives after and when have been chosen
from experimental considerations, as well as the term construction. They have the

advantage to cope with the common understanding of programmers, and up to now,
we have been able to treat all current examples (e.g. a window manager).

Unfortunately, such an approach does not facilitate our task to provide a corre-
sponding logic, with a finite set of inference rules. Up to now, when trying to establish

that some formulas are consequences of some specification, the proofs have been per-

formed by using standard mathematics (directly using the definitions given in this
article). The practice shows that there is some analogy between our set St[A] with the

possible worlds and our preorder ≺A with the accessibility relation of Kripke seman-
tics. Also, there is some analogy between our connective after and the modalities [e]t

and [e]p as in the work of J. Fiadeiro and T. Maibaum6 for example. Nevertheless, it
seems to be only analogies, they are distinct in details. For example, one of the new

features of our approach is the distinction between isolated evaluation and normal
evaluation, which considerably refines the specification of objects (in particular for

the connective when).
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