
Observational Speci�cations and the IndistinguishabilityAssumptionGilles Bernot Michel Bidoit Teodor KnapikLIENS c.n.r.s. u.r.a. 1327Ecole Normale Sup�erieure45 Rue d'UlmF { 75230 Paris Cedex 05 Francee-mail: [bernot, bidoit, knapik] @dmi.ens.fr (Internet) or @frulm63.bitnet (Earn)AbstractTo establish the correctness of some software w.r.t. its formal speci�cation iswidely recognized as a di�cult task. A �rst simpli�cation is obtained when the semanticsof an algebraic speci�cation is de�ned as the class of all algebras which correspond to thecorrect realizations of the speci�cation. A software is then declared correct if it corre-sponds to some algebra of this class. We approach this goal by de�ning an observationalsatisfaction relation which is less restrictive than the usual satisfaction relation. Basedon this notion we provide an institution for observational speci�cations. The idea is thatthe validity of an equational axiom should depend on an observational equality, insteadof the usual equality. We show that it is not reasonable to expect an observational equalityto be a congruence. We de�ne an observational algebra as an algebra equipped with anobservational equality which is an equivalence relation but not necessarily a congruence.We assume that two values can be declared indistinguishable when it is impossibleto establish they are di�erent using some available observations. This is what we callthe Indistinguishability Assumption. Since term observation seems su�cient for datatype speci�cations, we de�ne an indistinguishability relation on the carriers of an algebraw.r.t. the observation of an arbitrary set of terms. From a careful case study it followsthat this requires to take into account the continuations of suspended evaluations ofobservable terms. Since our indistinguishability relation is not transitive, it is only anintermediate step to de�ne an observational equality. Our approach is motivated bynumerous examples.Keywords: algebraic speci�cation, observability, software correctness1 IntroductionA main purpose of formal speci�cations is to provide a rigorous basis for establishingsoftware correctness. Indeed, it is well known that proving the correctness of some piece ofsoftware without any formal reference makes no sense. Algebraic speci�cations are widelyadvocated as being one of the most promising formal speci�cation techniques. However, to beprovided with some algebraic speci�cation is not su�cient per se. A precise (and adequate)de�nition of software correctness is mandatory. This crucial prerequisite must be �rst ful�lledbefore one can develop the relevant veri�cation methods, and try to mechanize them.The adequacy of the chosen de�nition of software correctness has a great practical im-pact, and we should therefore de�ne software correctness according to the actual needs. In1



the framework of algebraic speci�cations, straightforward de�nitions of correctness turn outto be oversimpli�ed: most programs that should be considered as being correct (from a prac-tical point of view) are rejected. The �rst thing is then to formally de�ne the class of algebraswhich correspond to the correct implementations of a given speci�cation. It is well knownthat this class contains not only all the models of the speci�cation but also some algebraswhich do not satisfy (in the usual sense) all of the axioms of the speci�cation. In fact, thisclass should rather correspond to the algebras which satisfy them \up to observations". Forthis reason, in our approach, we loosen this too restrictive usual satisfaction relation, in orderto obtain an observational satisfaction relation \Oj=", more permissive than \j=" in the sensethat Oj= contains j=.Assume now that the elements of some data type can only be observed via some availableobservations. In this situation, it is impossible to distinguish some data type elements fromthe others. This fact can be re
ected by an indistinguishability relation, written \�", de�nedon a carrier of an algebra according to the following Indistinguishability Assumption:Two values are indistinguishable with respect to some observations when it isimpossible to establish that they are di�erent, using these observations.Now, the idea to loosen the satisfaction relation is to use \�" instead of \=" in the de�nitionof the satisfaction relation. The usual satisfaction A j= (t = t0) of an equational axiom isbased on the set-theoretical equality \=" of the results of the evaluation of both t and t0 inA, while an observational satisfaction should be based on whether these results are indistin-guishable (i.e. related by \�") or not. Then the crucial point is to de�ne the \�" relation,according to the Indistinguishability Assumption. Obviously, such a relation does not coin-cide with \=". Unlike in [16], [17] or [10] but similarly to [1] and [5] we want to considermore general observations than sort observation since sort observation does not provide thesatisfactory expressive power (as shown in [2]). Unfortunately, an indistinguishability rela-tion de�ned w.r.t. such general observations is not a congruence in general (see [5]). It mayeven not be an equivalence relation. As a matter of fact, according to the IndistinguishabilityAssumption, the observations only allow to decide that two elements should be distinct butnot to decide that they are equal. We overcome this problem by introducing an observationalequality \�=" included in \�". This leads us to the concept of observational algebras whichare of the form hA;�=i where A is an algebra (in the usual sense) equipped with an equivalencerelation �=.We discuss the conditions which make our formalism provide an institution [8], [9]. A�rst obvious condition is to attach the observations to some institution component. Sincethe observations act on the semantics of a speci�cation in the same way as the axioms, webelieve that the observations should be attached to the formulae part. Beside observationalalgebras, we also introduce observational formulae which are of the form h';Wi with ' a(usual) formula and W a set of observable terms attached to it. In order to de�ne an institu-tion in such an approach, we investigate the relations between the variance (translation) ofobservational formulae and the covariance (\�-reduct") of observational algebras.In [2], the existing observational techniques have been classi�ed in decreasing order ofexpressive power as follows: formula, atom, term, operation and sort observation. Thus weshould justify why we restrict now to term observation, while formula observation is the mostpowerful. The reason is that it is hard to de�ne an indistinguishability relation w.r.t. formulaor atom observation and requires a more elaborated framework [14]. In our opinion this isdue to the fact that formula and atom observations have no direct meaning at the (imple-2



menting) software level. On the contrary, observing some chosen terms may be viewed at thislevel as observing the results of some computations, since the evaluation of an instantiatedterm clearly corresponds to a computation. This is probably the reason why we did not �ndpractical examples which would motivate the necessity of formula or atom observations.The approach we develop in this paper attempts to extend the class of the models of analgebraic speci�cation by loosening the satisfaction relation. On the other hand there areapproaches where this extension is made by means of an equivalence relation �Obs on algebras(called behavioural equivalence) depending on some observations Obs. In these approaches,the class of \observational models" (also called behaviours), denoted by Beh[SP;Obs], whichshould correspond to the correct realization of a speci�cation SP, is usually de�ned in thefollowing way:Beh[SP;Obs] = fB 2 Alg[Sig[SP]] j 9 A 2 Alg[SP];A �Obs Bg (1:i)Based on this notion, in [19] Sannella and Tarlecki have developed an institution independentformalism.Even if very general, in our opinion, these approaches do not provide a satisfactory ob-servational semantics. It turns out that in some cases, we know of some realizations that wewould like to consider as being correct, but unfortunately these realizations cannot be shownto be behaviourally equivalent to any of the (usual) models of the speci�cation at hand. Atypical example of such a situation, namely when Alg[SP] = �, is given in the next section.2 A Motivating ExampleLet SWC (see Figure 2.1) be a usual speci�cation of sets of natural numbers with anadditional operation choose : Set! Nat, de�ned by the axiom s 6= �) choose(s) 2 s = true.By this axiom we require choose to return an arbitrary element of an nonempty set. Considera usual algebra L of lists of natural numbers. Clearly, lists behaves like sets provided that wedo not observe them directly but only via the membership operation. For this reason we canconsider L as an \observational model" of SWC, choose being realized by car. In this realiza-tion the lists nm and mn (with n 6= m) are observationally equal, since they are viewed as thesame set fn;mg. However choose(nm) and choose(mn) produces two Nat values which shouldnot be observationally equal. Accordingly, we should not request the indistinguishability re-lation to be a congruence. This opens new perspectives in writing speci�cations because someinconsistent speci�cations (in the usual sense) can be \observationally consistent" providedthat the inconsistencies are not observed. This allows some data types to be speci�ed in astraightforward way with less risk of introducing unexpected inconsistencies. For instance inFigure 2.1, sets of natural numbers with an operation enum, which enumerates a set to a list,have been speci�ed in a very natural way. Unfortunately this speci�cation is inconsistentin the usual sense. Thus in the approaches based on behavioural equivalence, from (1.i), wehave Beh[SP;Obs] = � for any set of observations Obs. On the contrary, in an approach withan observational satisfaction relation this speci�cation can have models (sets can be realizedby list, enum being the identity), provided that the inconsistencies are not observed (i.e. theterms in which enum occurs are not observable). Notice by the way that sort observation isnot su�cient in this case.As a summary we state the following claims:1. An observational equality depends on observations. Since they are proper to a datatype, each data type owns its proper observational equality.3



spec : SWEuse : LIST, NAT, BOOLsort : Setgenerated by :� : ! Setins: Nat Set ! Setoperations :2 : Nat Set ! Booldel : Nat Set ! Setenum : Set ! Listaxioms : 1: ins(x,ins(x,s)) = ins(x,s) 2: ins(x,ins(y,s)) = ins(y,ins(x,s)) 3: del(x,�) = � 4: del(x,ins(x,s)) = del(x,s) 5: x 6= y ) del(x,ins(y,s)) = ins(y,del(x,s)) 6: x 2 � = false 7: x 2 ins(x,s) = true 8: x 6= y ) x 2 ins(y,s) = x 2 s 9: enum(�) = nil 10: enum(ins(x,s)) = cons(x,enum(s))
spec : SWCuse : NAT, BOOLsort : Setgenerated by :� : ! Setins: Nat Set ! Setoperations :2 : Nat Set ! Booldel : Nat Set ! Setchoose : Set ! Nataxioms :ins(x,ins(x,s)) = ins(x,s)ins(x,ins(y,s)) = ins(y,ins(x,s))del(x,�) = �del(x,ins(x,s)) = del(x,s)x 6= y ) del(x,ins(y,s)) = ins(y,del(x,s))x 2 � = falsex 2 ins(x,s) = truex 6= y ) x 2 ins(y,s) = x 2 ss 6= �) choose(s) 2 s = trueFigure 2.1: Speci�cation of sets with enum and with choose2. The operations do not necessarily preserve observational equalities (i.e. \� " is notnecessarily a congruence).3. Two distinguishable elements cannot be equal. Two indistinguishable elements are notnecessarily equal.3 Basic De�nitionsWe assume that the reader is familiar with algebraic speci�cations (see e.g. [7] or [11]).A signature � consists of a �nite set S of sort symbols and a �nite set of operation nameswith arities ambiguously denoted by �. We assume that each signature � is provided withan S-sorted set of variables X such that Xs is countable for each s 2 S. We use the followingconventions. Given a signature � (resp. �0), S (resp. S0) denotes the sorts of � (resp. of �0)and X (resp. X0) denotes the variables of � (resp. of �0). A signature morphism � : �! �0maps each sort of S to a sort of S0, each operation (f : s1 : : : sn ! s) 2 � to an operation�(f) of �0 with the arity �(s1) : : :�(sn)! �(s) and each variable of Xs to a variable of X0�(s).Moreover, we assume that a signature morphism is always injective on variables1. Signatureswith signature morphisms form the usual category of signatures, written Sig.From T�(X), the \=" symbol, connectives (:, _, ^, ), etc.) and quanti�ers (8, 9) weconstruct the set W� [�] of well formed �-formulae. The de�nition of (total) �-algebrasand �-morphisms is the standard one, as well as the satisfaction relation between �-algebras1Without this assumption, which under a stronger form appears in [9] (page 36, De�nition 55), it wouldbe impossible to establish the satisfaction condition for most institutions.4



and �-formulae. The category of all �-algebras is denoted by Alg[�]. Given an S-sortedset E, we denote by T�(E) the free �-algebra over E. For instance T� (resp. T�(X)) denotesthe �-algebra of ground terms (resp. terms with variables), T�(A) (resp. T�(A[X)) de-notes the �-algebra of ground terms (resp. terms with variables) over the carriers of a�-algebra A. Given a signature morphism � : � ! �0 the �-reduct of a �0-algebra A0,written A0j� is de�ned in the usual way and extending it on �0-morphisms we obtain theforgetful functor j� : Alg[�0] ! Alg[�]. In the particular case of an inclusion � � �0, thecorresponding forgetful functor is written j�.A valuation is a morphism � : X ! A which maps each x 2 Xs to a value x� 2 As.The set of all valuations from X to A is written Val[X;A]. A partial valuation is a valu-ation preceded by an inclusion X0 � X. From the freeness of T�(X) any valuation (resp.partial valuation) � followed by the inclusion A � T�(A) (resp. A � T�(A [ X)) extends toa unique morphism (written ambiguously �) from T�(X) to T�(A) (resp. T�(A[X)) whichmaps each term t 2 (T�(X))s to a valued term t� 2 (T�(A))s (resp. partially valued termt� 2 (T�(A [ X))s). The evaluation morphism from T�(A) to A is de�ned as the unique�-morphism which maps each element of (T�(A))s \ As to itself. This morphism maps avalued term � to its evaluation result written � .A position p in a term t is a sequence of integers which describe the path from thetopmost position of t (denoted by the empty sequence) to the subterm of t at position pwritten tjp. The set of all the positions of t is denoted by Pos(t). The replacement of tjpby a term r in t is written t[r]p. The multiple replacement at parallel positions p1; : : : ; pn iswritten t[r1 : : :rn]p1:::pn .De�nition 3.1Given sorts S = fs1; : : : ; sng the set of contextual variables is the (S-indexed) set� = f�s1 ; : : :�sng with f�sig called the contextual variable of sort si. A multicontext (resp.context) over a �-algebra A is a partially valued term � with only one (resp. only one oc-currence of a) contextual variable. Consequently, the set of all multicontexts over A, writtenMC�(A) (the set of all contexts over A is written C�(A)) is de�ned as follows:MC�(A) = [s2ST�(A[ f�sg)Given � 2 MC�(A) (resp. � 2 C�(A)) we can write � : s! s0 instead of � 2 (T�(A[f�sg))s0.Application of � : s! s0 on a 2 As is written �[a].The following de�nitions and results are very technical and can be skipped at �rst reading.De�nition 3.2Given a signature morphism � : �! �0 and a �0-algebra A0, we de�ne �A0 as the uniqueapplication from A0j� to A0, which maps any element of (A0j�)s to the equal element of A0�(s).De�nition 3.3Let � : � ! �0 be a signature morphism, A0 be a �0-algebra. We de�ne�A0 : T�(A0j�)! T�0(A0) as the unique extension of both �A0 : A0j� ! A0 and � : T� ! T�0 .De�nition 3.4Given a signature morphism � : � ! �0 and a �0-algebra A0, we de�ne a �-reduct of avaluation �0 : X0 ! A0 as a valuation � 0j� : X! A0j� satisfying:8 x 2 X �(x)� 0 = �A0(x�0j�) (3:i)5



Notice that this de�nition makes sense, since � and �A0 are well de�ned. The notation � 0j�suggests that the relation j� de�ned on the valuations by Equation (3.i) is a function. Thefollowing lemma points out this fact.Lemma 3.5Let � : �! �0 be a signature morphism and A0 be a �0-algebra. The relation j� de�nedby Equation (3.i) is a total and surjective function j� : Val[X0;A0]! Val[X;A0j� ].Proof is given in the Appendix.Lemma 3.6Let � : � ! �0 be a signature morphism and A0 be a �0-algebra. For any valuation�0 : X0 ! A0 and any term t 2 T�(X) we have:�(t)� 0 = �A0(t�0j�)Proof is given in the Appendix.Corollary 3.7Let � : � ! �0 be a signature morphism and A0 be a �0-algebra. For any valued term� 2 T�(A0j�) we have: �A0(�) = �A0(�)ProofIt is a trivial consequence of Lemma 3.6 since � can always be written t� 0j� with t 2 T�(X) and�0 : X0 ! A0 (c.f. Lemma 3.5). 24 How to Observe and How to CompareAs mentioned in the introduction we need to de�ne an indistinguishability relation onthe carriers of an algebra in order to relax the satisfaction relation. Usually this is done usingthe concept of observable contexts. Since this concept was only de�ned for sort ([10], [12],[16]) or signature1 ([1], [5]) observations, we should start by de�ning it in the situation whenwe observe an arbitrary set of terms.In the most usual framework one considers a set of observable sorts SObs which is a subsetof the sorts of a speci�cation. Then an observable context is any context � : s ! s0 withs0 2 SObs. Given an element a 2 As we can observe it via � by evaluating �[a]. Hence wehave the following trivial fact:Fact 4.1For sort observation, all the elements of a carrier of an algebra have the same observablecontexts w.r.t. a set of observable sorts.Notice that it is unreasonable to hope that this fact could be extended to term observa-tion. This a�rmation is justi�ed by the speci�cation THREE (c.f. Figure 4.1). Let A be aSig[THREE]-algebra. It is clear that g(aA) does not produce an observable value, since g(a)is not an observable term. Consequently, we should consider g(�) as an observable contextof bA and cA only and, for a similar reason, f(�) as an observable context of aA and bA(but not of cA). It follows from the above that observable contexts cannot be taken into1In fact these approaches combine signature and sort observations.6



account independently of the elements on which they apply. Therefore, we need to de�nethe observable contexts of a given element of an algebra. Notice that such a de�nition issuper
uous for observable sorts.spec : THREEsort : Three, Visiblegenerated by :a, b, c : ! Threeoperations :f, g: Three ! Visibleaxioms :a = bb = cobservations : f(a), f(b), g(b), g(c) spec : AD-HOCuse : Boolsort : Hocgenerated by :a, b, c : ! Hocoperations :f : Hoc Hoc ! Boolg : Hoc ! Hocobservations : f(a, c), f(b, g(c))Figure 4.1: Two exotic speci�cationsSince Fact 4.1 cannot be extended to term observation we have a little trouble to declaresome a; b 2 As indistinguishable. It seems reasonable to compare a and b with the sameobservable contexts. Thus in the previous example we compare aA and bA (resp. bA andcA) only via the context f(�) (resp. g(�)). We also notice that aA and cA have no commonobservable context. Consequently, these two values cannot be compared. However, accordingto our Indistinguishability Assumption, we do not consider that two elements can either beindistinguishable, distinguishable or incomparable. Our point of view is close to �nal seman-tics ([3], [13], [20]): we consider indistinguishable these pairs of elements, for which we donot observe the contrary. This is stated in the undermentioned de�nition.For a while assume already de�ned the notion of observable contexts w.r.t. a set W ofobservable terms.De�nition (comparator, version 1)We call W-comparator (or shortly comparator) of elements a and b of a �-algebra, anobservable context of a and b w.r.t. a set W of �-terms. We say that a W-comparator �distinguishes a and b i� �[a] 6= �[b].We can now state the following de�nition of indistinguishability:De�nition 4.2We say that two elements a and b of a given carrier of a �-algebra are indistinguishablew.r.t. a set of terms W � T�(X) (or W-indistinguishable) written a �W b, if there is noW-comparator which distinguishes them.Now, the crucial point is to de�ne the observable contexts of an element of an algebra. Belowwe make a �rst attempt of such a de�nition. Next, this de�nition will be progressivelyre�ned. In this way we are going to introduce the concept of continuations which is one ofthe originalities of our approach.De�nition (observable contexts version 1)Let W � T�(X) be a set of terms and a 2 A be an element of a �-algebra. We say that acontext � 2 C�(A) is an observable context of a, if there is a term w 2W and a valuation7



true false

g

g
g

a b

f f

Bool

B

c

Hoc

Figure 4.2: A model of the speci�cation AD-HOC� : X! A such that w� has a leaf l verifying �[l] = w� and such that l is either the constantof � interpreted by A as a or l is already a itself.The underlying intuition of this de�nition is that an instantiated observable term w� denotesan \observable calculus" i.e. a calculus whose result can be directly observed. Consequently,an observable context � of a, instantiated by a represents an observable calculus with in-put a. Unfortunately, it is not adequate enough to rely only on input values. For instanceconsider the speci�cation AD-HOC (c.f. Figure 4.1). According to the current de�nition, theunique observable context of aA (resp. bA) is f(�; c) (resp. f(�; g(c))) independently of theSig[AD-HOC]-algebra A under consideration. Consequently, aA and bA are indistinguishable(no comparator) in any algebra A. Consider now the algebra B given in Figure 4.2 and tryto partially evaluate in b the observable contexts of aB and bB . Since g(c) evaluates to cB ,the evaluations of both f(�; c) and f(�; g(c)) yield f(�; cB). Then the question whether it isnot preferable to consider f(�; cB) as a comparator of aB and bB clearly arises. Notice thatthis comparator distinguishes these two values.Our �rst version of the de�nition of observable contexts has also another drawback: theentire carriers of some sorts can be, in an unreasonable way, devoid of observable context, asin the case of the speci�cation PASS-BY (c.f. Figure 4.3). Here the elements of AHidden haveno observable contexts in any algebra A. Thus they are all indistinguishable. Consequently,the algebras with the carrier of Hidden reduced to a singleton should be present among theobservational models of PASS-BY. However, this could prevent from preserving the observableproperties of Nat. In fact, the speci�cation PASS-BY requires all reachable elements of Nat to8



spec : PASS-BYsort : Nat, Hidden, Visiblegenerated by :0: ! Natsucc: Nat ! Natoperations :stage-one: Nat ! Hiddenstage-two: Hidden ! Visibleaxioms : 0 6= succ(x)x 6= succ(x) ) succ(x) 6= succ(succ(x))observations : stage-two(stage-one(x))
spec : SYMuse : BOOLsort : Symgenerated by :a, b : ! Symoperations :f : Sym Sym ! Boolobservations : f(a, a), f(b, b)Figure 4.3: Yet other exotic speci�cationsbe distinguishable i.e.stage-two(stage-one(succi(0))) 6= stage-two(stage-one(succj(0))) for i 6= jshould hold in any observational model. Of course, this is impossible when the carrier of Hid-den is a singleton. We conclude that in the above example we should consider stage-two(�)as an observable context of any element which is reachable by the evaluation of stage-one(x)properly instantiated.The examples PASS-BY and AD-HOC suggest that a better version of the de�nition ofobservable contexts should somehow take into account the super-terms of observable termsas well as their partial evaluations. Before to state this version, we need some remindersabout partial evaluation.De�nition 4.3Let A be a �-algebra. We de�ne the partial evaluation relation, written !pEv, on T�(A) asfollows. We say that a term �2 2 T�(A) is the result of the partial evaluation of �1 2 T�(A),written �1 !pEv�2, if there is a position p in �1 such that �1[�1jp]p = �2.Fact 4.4The re
exive-transitive closure of !pEv, written �!pEv, is an order. 2De�nition 4.5Let W � T�(X) be a set of terms and A be a �-algebra. The closure by partial evalua-tions of W in A, written fWA, is de�ned as follows:fWA = f� 2 T�(A) j 9 w 2W 9 � : X! A w� �!pEv�gThis de�nition can be used to state a better de�nition of observable contexts:De�nition (observable contexts, version 2)LetW � T�(X) be a set of observable terms and A be a �-algebra. We say that � 2 C�(A)is an observable context of a 2 As if �[a] 2 fWA.9



According to this de�nition, an observable context � of a 2 As is obtained from some valuedobservable term w� (� : X ! A), if a is an intermediate result of its evaluation. In fact,the above de�nition requires the term �[a] to be obtained from w� as a result of its partialevaluation. Thus the context � represents a calculus waiting for an input. If the value a isgiven as input, then the carrying out of this calculus corresponds exactly to a \continuation"of the evaluation of w�. However, the case of the speci�cation SYM (c.f. Figure 4.3) showsthat this approach is not yet satisfactory. For instance, let A be a Sig[SYM]-algebra such thatf A(aA; aA) = trueA and f A(bA; bA) = falseA. Applying the last de�nition we obtain:observable contexts of aA : f(�; a); f(a; �)observable contexts of bA : f(�; b); f(b; �)Since the elements aA and bA have no comparator, they are declared indistinguishable. Nev-ertheless, the evaluation of the terms f(a, a) and f(b, b) allows to distinguish aA and bA.This motivates to consider f(�; �) as a comparator of aA and bA. Consequently, an adequatede�nition of continuation should be based on multicontexts instead of contexts:De�nition 4.6Let W � T�(X) be a set of observable terms and a be an element of a �-algebra A. Wesay that a multicontext � 2 MC�(A) is a W-continuation via a (a continuation via a, forshort) if �[a] 2 fWA. The set of W-continuations via a is written contW(a). (If there is noambiguity we omit the index W in this notation.)The de�nition of indistinguishability (c.f. 4.2) remains unchanged provided that we modifythe de�nition of comparator which must be based on the notion of continuation.De�nition 4.7A W-comparator (comparator, for short) of elements a and b of a given carrier of �-algebra, is any W-continuation via a and b. The set of all comparators of a and b is denotedby cmpW(a; b). (If there is no ambiguity we omit the index W in this notation.) We saythat a W-comparator � distinguishes a and b i� �[a] 6= �[b].We illustrate the concepts introduced so far by means of the speci�cation SWE (see Figure2.1).Example 4.8Let �SWE be the signature of SWE except the enum operation. Consider the following setof observable terms ObsSWE = (T�SWE(X))Bool [ (T�SWE(X))Nat. Assume that we enrich SWEwith the operation idl : List ! List de�ned by the axiom idl(l) = l. (This operation, withoutany practical interest, aims at precisely de�ne an algebra as a �-reduct of another one.) SinceSWE is an enrichment of LIST we can writeSig[SWE] = Sig[LIST] + ��Then we consider the following signature morphism:� = �LIST +�� with �LIST : Sig[LIST] ! Sig[LIST]�� : �� ! Sig[LIST]where �LIST is the identity morphism and��(Set) = List ��(�) = nil ��(ins) = cons��(2) = member ��(del) = remove ��(enum) = idl10



Consider the Sig[LIST]-algebra L being the usual realization of lists. Then the Sig[SWE]-algebra we are interested in is L j�. The continuations of l 2 (L j�)List are the following ones:cont(l) = fcar(�);member(n; �) j n 2 (L j�)Nat; � 2 (MC�SWE(L j�))ListgTherefore, �ObsSWE is the set-theoretical equality on (L j�)List. The continuations ofs 2 (L j�)Set are the following ones:cont(s) = fn2� j n 2 (L j�)Nat; � 2 (MC�SWE(L j�))SetgThus s ; s 0 2 (L j�)Set are indistinguishable if they contain the same elements.We would like to propose an institution for observational speci�cations. Since our observa-tional satisfaction relation (which will be de�ned further) strongly depends on continuations,we must �rst study their properties w.r.t. the forgetful functor and the translation of observ-able terms. In this way, we are going to provide tools which will be useful to show that thesatisfaction condition holds in our formalism. Below we give the �rst important theorem. Itis a good opportunity to establish some interesting lemmas about partial evaluation.Theorem 4.9Let � : �! �0 be a signature morphism, W � T�(X) and W0 � T�0(X0) be sets of termssuch that �(W) �W0 and A0 be a �0-algebra. For any element a 2 A0j� and any multicontext� 2 MC�(A0j�) we have:� 2 contW(a) ) �A0(�) 2 contW0(�A0(a))We need the following lemmas for the proof:Lemma 4.10Let � : �! �0 be a signature morphism, and A0 be a �0-algebra. For all �1; �2 2 T�(A0j�)we have: �1!pEv�2 ) �A0(�1)!pEv�A0(�2)ProofBy De�nition 4.3 there exists a position p 2 Pos(�1) such that �1[�1jp]p = �2. By Corollary 3.7 wehave �A0(�1jp) = �A0(�1jp) = �A0(�1)jpHence �A0(�2) = �A0 (�1[�1jp]p) = �A0(�1)[�A0(�1jp)]p = �A0 (�1)[�A0(�1)jp]pThis proves �A0(�1)!pEv�A0(�2). 2Lemma 4.11Let � : �! �0 be a signature morphism, and A0 be a �0-algebra. For any �1; �2 2 T�(A0j�)we have: �1 �!pEv�2 ) �A0(�1) �!pEv�A0(�2)ProofFollows directly from the previous lemma. 211



Lemma 4.12Let � : �! �0 be a signature morphism, W � T�(X) and W0 � T�0(X0) be sets of termssuch that �(W) �W0 and A0 be a �0-algebra. For any � 2 T�(A0j�) we have:� 2 fWA0j� ) �A0(�) 2 fW0A0ProofAssume � 2fWA0j� . By De�nition 4.5 we have9 w 2W 9 � : X! A0j� w� �!pEv�By Lemma 4.11 we obtain 9 w 2W 9 � : X! A0j� �A0 (w�) �!pEv�A0(� ) (i)By Lemma 3.5 we know that there exists a valuation � 0 : X0 ! A0 such that � 0j� = �. It is obviousfrom De�nition 3.4 that �A0(w�) = �(w)� 0. Consequently, from (i), we deduce:9 w 2W 9 � 0 : X! A0 �(w)� 0 �!pEv�A0 (� )Now �(w) 2W0, hence 9 w0 2W0 9 � 0 : X! A0 w0� 0 �!pEv�A0 (� )By De�nition 4.5 this yields �A0(� ) 2 fW0A0 . 2Proof of Theorem 4.9Let � : � ! �0 be a signature morphism, W � T�(X) and W0 � T�0(X0) be sets of terms suchthat �(W) �W0 and A0 a be �0-algebra. Let a 2 A0j�.Assume � 2 contW(a). By De�nition 4.6 we have �[a] 2fWA0j� , hence by Lemma 4.12 we deduce�A0(�[a]) 2 fW0A0 . By De�nition 4.6 this yields �A0(�) 2 contW0 (�A0 (a)). 2Notice that the converse of the above theorem does not hold even if �(W) = W0:Example 4.13Consider the following signatures:� = ff1; f2 : s! sg �0 = ff 0 : s0 ! s0gLet W = ff1(x)g. Let � : �! �0 be the following signature morphism:�(s) = s0 �(f1) = �(f2) = f 0It is clear that for any �0-algebra A0, f2(�) is not a W-continuation via any element a 2 A0j�,whereas �(f2(�)) = f 0(�) 2 cont�(W)(�A0(a)).However, for injective signature morphisms the converse of Theorem 4.9 holds:Theorem 4.14Let � : �! �0 be an injective signature morphism, W � T�(X) be a set of terms and A0be a �0-algebra. For any a 2 A0j� and any � 2 MC�(A0j�) we have:� 2 contW(a) , �A0(�) 2 cont�(W)(�A0(a))Proof sketchSince � is injective, �A0 is too. Then, for W0 = �(W), the implications in lemmas 4.10, 4.11,4.12 become equivalences. Consequently, we obtain the proof we are looking for, by replacing theimplications in the proof of 4.9 by equivalences. 212



5 Properties of the Indistinguishability RelationThe de�nition 4.2 express in which situations two elements of a �-algebra are indistin-guishable. Indeed, it de�nes an S-sorted relation �W= (�W)s2S on an algebra, called theindistinguishability relation. Since this relation is the next step toward a complete descrip-tion of our institution for observational speci�cations, we must study its properties w.r.t. theforgetful functor and the translation of observable terms. This will be necessary for estab-lishing the satisfaction condition (see [9]) in a further section. After the following propositiondevoted to this aim, we study other interesting properties of the indistinguishability relation.Proposition 5.1Let � : � ! �0 be a signature morphism, let W � T�(X) and W0 � T�0(X0) be sets ofterms such that �(W) � W0 and A0 be a �0-algebra. For all a 0; b 0 2 A0�(s) and a; b 2 (A0j�)sverifying �A0(a) = a 0 and �A0(b) = b 0 we have:a0 �W0 b0 ) a �W bProof of Proposition 5.1Let a 0; b 0 2 A0�(s) such that a 0 �W0 b 0. Assume by contradiction that there exist a; b 2 (A0j�)ssuch that �A0(a) = a 0 �A0(b) = b 0 and a 6�W bAccording to De�nition 4.2 there exists � 2 cmpW(a; b) such that�[a] 6= �[b] (i)By de�nition of comparator (c.f. 4.7) � is an element of contW(a) and contW(b). On the other hand,it is clear that �A0(�)[a 0] = �A0(�[a]) and �A0(�)[b 0] = �A0(�[b]) (ii)From Corollary 3.7 we have therefore�A0 (�[a]) = �A0(�[a]) and �A0(�[b]) = �A0 (�[b]) (iii)From (i), (ii) and (iii) we obtain �A0(�)[a 0] 6= �A0(�)[b 0] (iv)Now, from Theorem 4.9 we know that �A0(�) is an element of contW0 (a 0) (resp. contW0 (b 0)). Accord-ingly, it is a comparator of a 0 and b 0 and by (iv) it distinguishes a 0 and b 0. This is in contradictionwith the starting hypothesis. 2As a corollary of this proposition, we have the following fact which makes clear the decreasingcharacter of the indistinguishability relation w.r.t. the inclusion sets of observable terms.Corollary 5.2Let W1;W2 be two sets of �-terms such that W1 �W2. On any �-algebra, the indistin-guishability relations �W1 and �W2 satisfy �W2� �W1 .ProofIt is enough to consider the previous proposition with � = �0, W = W1, W0 = W2 and � theidentity. 2The following fact is obvious from the de�nition of the indistinguishability relation.Fact 5.3The indistinguishability relation is re
exive and symmetric. 2The next fact fully agrees with our claims:13



Fact 5.4The indistinguishability relation is not a congruence in general.ProofIt is enough to go back to Example 4.8. Recall that in the algebra L j�, sets are represented bylists. Let then hn;mi and hm; ni be two representations of the set fn;mg in this algebra. On onehand we have hn;mi �ObsSWE hm; ni but on the other hand enumL j� (hn;mi) 6�ObsSWE enumL j� (hm; ni)because of the comparator car(�) which distinguishes them. 2spec : TRANSuse : BOOLsort : Transgenerated by :a, b, c : ! Transoperations :f, g, h : Trans ! Boolobservations :f(a), f(b), g(b), g(c), h(c), h(a)
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Figure 5.1: Speci�cation TRANS and one of its modelsWe have also an unexpected negative result:Fact 5.5The indistinguishability relation is not transitive in general.Consider the model A (see Figure 5.1) of the speci�cation TRANS. In this algebra we haveaA �W bA and bA �W cA, but not aA �W cA. The reason is that we did not imposeany restriction on the set of observable terms. Consequently, nothing ensures that all theelements of a given data type can be observed in the same way. In the algebra A each ofthe elements aA, bA, cA is observed di�erently, each pair among this elements is comparedin some proper way, di�erent from the others. This is the reason why the indistinguisha-bility relation is not transitive. In fact, this surprising property results directly from ourIndistinguishability Assumption according to which we have built de�nitions 4.2, 4.6 and 4.7.However, when all the elements of a given carrier of an algebra have the same continuations,the indistinguishability relation is transitive:Fact 5.6Let A be a �-algebra and W be a set of �-terms. If contW(a) = contW(b) for all a; b 2 Asthen the relation �W is transitive on A. 14



ProofObvious. 2It is possible to have a de�nition of \�W" which is always transitive. One may state thata and b are W-indistinguishable if they do in the sense of De�nition 4.2 and if additionallycontW(a) = contW(b). In our opinion, such a de�nition will distinguish too much. Forinstance, if in a speci�cation we observe only some ground terms then, according to De�nition4.2, a non reachable value will never be distinguished from any other value, whereas with themodi�ed version of this de�nition, a non reachable value will always be distinguished fromany reachable value. Consequently we are not enthusiastic about such a modi�cation.Fact 5.7The relation �ObsSWE from Example 4.8 is transitive.ProofFollows directly from the above proposition, since in Example 4.8 we have shown that the elementsof the same carrier of L j� have the same continuations. 2Fact 5.6 provides a semantical transitivity criterion of the indistinguishability relation.There exist also some syntactical criteria. We describe them in the next section.6 A Particular Case of Term ObservationAn interesting case arises when the set of observable terms is described by a partialsubsignature de�ned precisely by the following de�nition:De�nition 6.1Let � be a signature. A partial subsignature of � (partial signature for short) is a pairhS1;�0i such that �0 is a subsignature of � and S1 is a subset of sorts of �0. The set of termsThS1;�0i(X) of a partial signature hS1;�0i (the set of hS1;�0i-terms) is de�ned as follows:ThS1;�0i(X) = as2S1(T�0(X))sThis kind of sets of terms is interesting because the indistinguishability relation generated bysuch a set is transitive on any algebra. In order to make this point clear, we �rst introducean auxiliary de�nition of hS1;�0i-indistinguishability. This is a transitive relation. We showthen that this relation is the same that the ThS1;�0i(X)-indistinguishability (in the sense ofDe�nition 4.2). This last result allows to conclude that any ThS1;�0i(X)-indistinguishabilityis transitive on all �-algebras.De�nition 6.2Let hS1;�0i be a partial subsignature of � and A be a �-algebra. We say that a; b 2 Asare hS1;�0i-indistinguishable, written a �hS1 ;�0i b, if for any term t 2 ThS1;�0i(X) with atleast one variable xs of sort s and for all the valuations �1; �2 2 Val[X;A] which coincideeverywhere except at xs where xs�1 = a and xs�2 = b, we havet�1 = t�2Proposition 6.3Let hS1;�0i a partial subsignature of �. The relation of hS1;�0i-indistinguishability istransitive on all �-algebras. 15



ProofConsider a; b; c 2 As such that a �hS1;�0i b and b �hS1;�0i c. From De�nition 6.2, this amountsto say that t�1 = t�2 = t�3 for any term t 2 ThS1 ;�0i(X) and all the valuations �1; �2; �3 2 Val[X;A]which coincide everywhere except at an xs 2 Var[t] where xs�1 = a, xs�2 = b and xs�3 = c. Hence,we deduce immediately that a �hS1 ;�0i c 2Theorem 6.4Let hS1;�0i be a partial subsignature of � and A be a �-algebra. For all a; b 2 As wehave a �hS1;�0i b i� a �ThS1;�0i(X) bThe proof of this theorem requires a technical de�nition as well as some additional results.De�nition 6.5Let A be a �-algebra and � 2 T�(A) be a valued term. Consider the following set ofpositions. fp1; : : : ; png = fp 2 Pos(�) j � jp 2 AgWe call � -derived, a term t 2 T�(X) obtained from � by replacement of all its leaves atpositions p1; : : :pn by distinct variables. In other words t = � [x1; : : : ; xn]p1:::pn with xi 6= xjwhen i 6= j. We note der(� ) the set of all � -derived terms.Lemma 6.6Let hS1;�0i be a partial subsignature of �, t be a term of ThS1;�0i(X), A be a �-algebraand � : X! A be a valuation. If t� �!pEv� , where � 2 T�(A), then der(�) � ThS1;�0i(X).ProofObvious, since the sort of any term of der(� ) is in S1 and each operation occurring in it is in�0. 2Lemma 6.7Let hS1;�0i be a partial subsignature of � and A be a �-algebra. For all � 2 gThS1;�0i(X)Awe have der(�) � ThS1;�0i(X)ProofAssume � 2 gThS1 ;�0i(X)A. By De�nition 4.5 we have9 t 2 ThS1 ;�0i(X) 9 � : X! A t� �!pEv�Hence, by Lemma 6.6 we deduce that der(� ) � ThS1 ;�0i(X). 2Lemma 6.8Let hS1;�0i be a partial subsignature of � and a be an element of a �-algebra A. Forany � 2 contThS1;�0i(X)(a) we have der(�[a]) � ThS1;�0i(X)16



ProofAssume � 2 contThS1 ;�0i(X)(a). By De�nition 4.6 �[a] is an element of gThS1 ;�0i(X)A. Hence,applying Lemma 6.7, we obtain the result we are looking for. 2Lemma 6.9Let hS1;�0i be a partial subsignature of �, A be a �-algebra and let a; b 2 As. For any� 2 cmpThS1;�0i(X)(a; b) there exists a term t 2 ThS1;�0i(X), and valuations �1; �2 2 Val[X;A]which coincide everywhere except at xs 2 Var[t] where xs�1 = a and xs�2 = b and such that�[a] = t�1 and �[b] = t�2ProofLet � 2 cmpThS1;�0i(X)(a; b) and t0 2 der(�[a]). It is obvious that der(�[a]) = der(�[b]), thereforet0 2 der(�[b]). Let fp1; : : : ; png be all positions of �s in � and let xs 62 Var[t0]. Notice that Pos(�) =Pos(t0). Consequently, we can consider a term t = t0[xs]p1:::pn . Since by Lemma 6.8 t0 is inThS1 ;�0i(X), we have also t 2 ThS1 ;�0i(X). By construction of t, there exists a valuation �1 : X ! Asuch that t�1 = �[a]. Hence xs�1 = a. It is obvious that there exists a valuation �2 : X ! A whichcoincides with �1 everywhere except at xs where xs�2 = b. Then we are done since t�2 = �[b]. 2Proof of Theorem 6.4Let hS1;�0i be a partial subsignature of � and A be a �-algebra. We will proceed by an indirectproof. We show that for all a; b 2 As we have a 6�hS1;�0i b i� a 6�ThS1;�0i(X) b� )Let a; b 2 As such that a 6�hS1;�0i b. By de�nition 6.2, there exists a term t 2 ThS1 ;�0i(X) andvaluations �1; �2 2 Val[X;A] which coincide everywhere except at xs 2 Var[t] where xs�1 = a andxs�2 = b, such that t�1 6= t�2 (i)Let fp1; : : : ; png be the set of positions where xs occurs in t. Consider then a multicontext � =t�1[�]p1:::pn . It is obvious that � = t�2[�]p1:::pn and that �[a] = t�1 and �[b] = t�2. Now, by De�nition4.5 we have t�1; t�2 2 gThS1;�0i(X)A. So � 2 cmpThS1;�0i(X)(a; b) and according to (i), � distinguishesa and b, hence a 6�ThS1;�0i(X) b by De�nition 4.2.� (Let a; b 2 As such that a 6�ThS1;�0i(X) b. By De�nition 4.2, there exists � 2 cmpThS1;�0i(X)(a; b) suchthat �[a] 6= �[b] (ii)But according to Lemma 6.9 there exists a term t 2 ThS1 ;�0i(X), and valuations �1; �2 2 Val[X;A]which coincide everywhere except at xs 2 Var[t] where xs�1 = a and xs�2 = b and such that �[a] = t�1and �[b] = t�2. From (ii) we deduce that t�1 6= t�2. Hence a 6�hS1;�0i b, by De�nition 6.2. 2Corollary 6.10Let hS1;�0i be a partial subsignature of �. The relation of indistinguishability w.r.t. aset of terms ThS1;�0i(X) is transitive on all �-algebras.ProofFollows immediately from Theorem 6.4 and Proposition 6.3. 2We give below an example of an observation of a partial signature:Example 6.11Consider the observations ObsSWE from Example 4.8. Recall that ObsSWE =(T�SWE(X))Bool [ (T�SWE(X))Nat. In fact, this is an observation of a partial subsignatureof Sig[SWE], namely h�SWE; fBool;Natgi. 17



Partial signatures are used as observations in [1]. Observational equality w.r.t. hS1;�0ide�ned in this paper coincides with our hS1;�0i-indistinguishability on all reachable alge-bras. However these two relations do not coincide on non reachable algebras, not even ontheir reachable parts. If two elements are hS1;�0i-indistinguishable then they are also obser-vationally equal w.r.t. hS1;�0i (in the sense of [1]) but the converse is true only for reachablealgebras. This is due to the fact that our comparators are elements of MC�(A) while theseused in [1] can be viewed as elements of MC�. Since MC� � MC�(A) we have more possi-bilities than [1] to distinguish two elements.7 Observational AlgebrasIn Section 5 we have shown that the indistinguishability relation is not transitive ingeneral. For this reason, an observational satisfaction relation cannot be directly based onthe indistinguishability relation in contrast with the usual satisfaction relation based on theusual equality (of the elements of an algebra). Its non-transitive character (see 5.5) wouldmake impossible the replacement of equals by equals. On the contrary, the non-congruenceproperty (see 5.4) does not reject this possibility, provided that such exotic operations asenum (see Figure 2.1) are treated with care. For instance in some term t of SWE we canreplace its subterm tjp = ins(s(0); ins(0;�)) by ins(0; ins(s(0);�)) except when there is someenum in t over the position p.1 In addition we believe that there is no reason to expect an\observational equality" to be a congruence (as in [5]). This happens only in a particularcase of sort observation (see [10], [16]).We can conclude that at this moment the only problem is due to the non-transitive char-acter of the indistinguishability relation. For this reason, we introduce in this section thenotion of observational equality which, being transitive, is a step toward an observationalsatisfaction relation.At the end of Section 2 we have stated some claims as the result of the former discussion.They lead us now to the following conclusions:� Because of the second claim, an observational equality cannot be a congruence for thesame reason that the indistinguishability relation is not (c.f. 5.4).� The last claim suggests that on a given algebra, an observational equality is not unique.� The �rst claim suggests that observational equality should be an S-sorted relation.Putting these conclusions together, we state the following de�nition:De�nition 7.1Given a signature �, an observational �-algebra is a pair \hA;�=i" where A is a �-algebraand �= is an S-sorted equivalence relation on A, called observational equality on A. We noteOAlg[�] the class of all observational �-algebras.Notice that:� A �-algebra A can be considered in a straightforward way as an observational �-algebrahA;=i.1More precisely, this replacement is impossible only if each node on the path from p to the closest enumover p (if there is one) is of sort Set. 18



� In general we can form an in�nity of observational algebras from a �-algebra. For thisreason we use the notation �=� or �=� in order to distinguish between two relations whichcan form two observational algebras hA;�=�i and hA;�=�i from a given algebra A.The reader certainly realizes that our de�nition of observational algebras is similar to the oneof structures in First Order Logic where each predicate symbol is interpreted by a relation.We consider the equality symbol \=" in the axioms as a particular predicate symbol. Thissymbol is explicitly interpreted in an algebra by a particular relation, namely an observationalequality.Example 7.2Consider L j� and ObsSWE both de�ned in Example 4.8. Since �ObsSWE is an equivalencerelation (c.f. 5.7), the pair hL j�;�ObsSWE i is an observational Sig[SWE]-algebra.De�nition 7.3An observational �-morphism � : hA;�=Ai ! hB ;�=Bi is any (usual) �-morphism fromA to B which preserves the observational equalities i.e:8a; b 2 As a �=A b =) �(a) �=B �(b)It is obvious that OAlg[�] equipped with the observational �-morphisms forms a category.De�nition 7.4Let � : � ! �0 be a signature morphism. The �-reduct of an observational �0-algebrahA0;�=0i is the observational �-algebrahA0;�=0ij� = hA0j�; �=0j�iwhere A0j� is the usual �-reduct of the �0-algebra A0 and (�=0j�)s =�=0�(s) for all s 2 S.The mapping j� extends to observational morphisms as in the usual framework. Conse-quently, it de�nes the forgetful functor from OAlg[�0] to OAlg[�] associated to �. Thus wecan also view OAlg as a functor from the category of signatures Sig to the dual of the categoryof all categories Catop. OAlg maps an object � of Sig to the category of the observational�-algebras and a signature morphism � to the corresponding forgetful functor j�. Noticethat in the above we have provided components upon which an institution can be built.8 Validity of Observational FormulaeBefore introducing observational formulae and de�ning their validity in observationalalgebras we give some additional de�nitions and results.De�nition 8.1A solution of an equation l = r in an observational �-algebra hA;�=i is a valuation� : X! A such that l� �= r� . The set of all the solutions of an equation is written [l=r]hA;�=i.The set of solutions of a formula ' is de�ned recursively as follows:� if ' = : then [']hA;�=i = Val[X;A] c [ ]hA;�=i� if ' =  ^  0 then [']hA;�=i = [ ]hA;�=i \ [ 0]hA;�=i� if ' = 8x then [']hA;�=i == f� 2 Val[X;A] j 8 � 2 Val[X;A] (8 y 2 X c fxg y� = y�) ) � 2 [ ]hA;�=ig19



where  ;  0 are �-formulae.Since all the connectives of the classical logic as well as the existential quanti�er can beexpressed by means of :, ^ and 8, the solutions of an arbitrary �rst order logic �-formula(without predicate symbols) are well de�ned by the above de�nition.Before to put our formalism in an institutional framework we need to investigate therelationship between the solutions across the forgetful functor and the translation of formulae.This is done in the following theorem:Theorem 8.2Let � : �! �0 be a signature morphism and hA0;�=0i be an observational �0-algebra. Forany �-formula ' we have: [']hA0;�=0ij� = ([�(')]hA0;�=0i)j�The proof of this theorem requires the following lemmas:Lemma 8.3Let � : � ! �0 be a signature morphism, hA0;�=0i be an observational �0-algebra and� 2 Val[X;A0j�] be a valuation. For any �-formula  we have:either f� 0 2 Val[X0;A0] j � 0j� = �g � [�( )]hA0;�=0ior f�0 2 Val[X0;A0] j � 0j� = �g \ [�( )]hA0;�=0i = �ProofConsider two valuations � 01; � 02 2 Val[X0;A0] such that � 01j� = � 02j� = �. According to De�nition3.4, � 01 and � 02 di�er only on values they assign to variables of X0 c �(X). This di�erence cannothave any e�ect on the fact whether these valuations are solutions of �( ), because Var[�( )] � �(X).Consequently, either � 01 and � 02 are both solutions of �( ), or both are not. 2Lemma 8.4Let � : �! �0 be a signature morphism and hA0;�=0i be an observational �0-algebra. Forany �-formula  we have:Val[X0;A0]j� c ([�( )]hA0;�=0i)j� = (Val[X0;A0] c [�( )]hA0;�=0i)j�Proof� �This is an obvious set-theoretical inclusion.� �Let � 2 (Val[X0;A0]c [�( )]hA0;�=0i)j� . From Lemma 8.3 we havef� 0 2 Val[X0;A0] j � 0j� = �g \ [�( )]hA0 ;�=0i = �Hence � 62 ([�( )]hA0 ;�=0i)j� 2Lemma 8.5Let � : � ! �0 be a signature morphism, hA0;�=0i an observational �0-algebra and � 2Val[X;A0j�] be a valuation. For all �-formulae ';  we have:([�(')]hA0;�=0i)j� \ ([�( )]hA0;�=0i)j� = ([�(']hA0;�=0i \ [�( )]hA0;�=0i)j�20



Proof� �Let � 2 ([�(']hA0;�=0i)j� \ ([�( )]hA0 ;�=0i)j� . From lemma 8.3 we havef� 0 2 Val[X0;A0] j � 0j� = �g � [�(')]hA0;�=0iand f� 0 2 Val[X0;A0] j � 0j� = �g � [�( )]hA0 ;�=0iThus f� 0 2 Val[X0;A0] j � 0j� = �g � [�(')]hA0;�=0i \ [�( )]hA0;�=0iHence � 2 ([�(')]hA0 ;�=0i \ [�( )]hA0 ;�=0i)j�� �This is an obvious set-theoretical inclusion. 2Lemma 8.6Let � : �! �0 be a signature morphism, hA0;�=0i be an observational �0-algebra, x be avariable of X and  be a �-formula. For any valuation � 0 2 Val[X0;A0] we have:8 �0 2 Val[X0;A0] (8 y0 2 �(X) c f�(x)g y0�0 = y0�0) ) �0 2 [�( )]hA0;�=0i (i)i� 8 �0 2 Val[X0;A0] (8 y0 2 X0 c f�(x)g y0�0 = y0�0) ) �0 2 [�( )]hA0;�=0i (ii)ProofWe use the following notations in the proof:M�0 = f�0 2 Val[X0;A0] j 8 y0 2 �(X)c f�(x)g y0�0 = y0� 0gP�0 = f�0 2 Val[X0;A0] j 8 y0 2 X0 c f�(x)g y0�0 = y0�0gIt is obvious that M�0 � [�( )]hA0 ;�=0i (iii)is equivalent to (i). It is also obvious thatP�0 � [�( )]hA0 ;�=0i (iv)is equivalent to (ii). Consequently, it is enough to prove the equivalence between (iii) and (iv).� (iii)) (iv)Since in P�0 the quanti�cation domain corresponding to �(X)c f�(x)g of M�0 is extended toX0 c f�(x)g, we have P�0 �M�0, hence P�0 � [�( )]hA0 ;�=0i.� (iii)( (iv)Assume �0 2 M�0 and show that �0 2 [�( )]hA0 ;�=0i. It is clear that there exists %0 2 P�0 whichcoincides with �0 on �(X). Since Var[�(�)] � �(X), either �0 and %0 are solutions of �( ) or none ofthe both is. Now, by the hypothesis %0 is a solution of �( ), therefore �0 is also. 2Lemma 8.7Let � : �! �0 be a signature morphism, hA0;�=0i be an observational �0-algebra, x be avariable of X and  be a �-formula. For any valuation � 0 2 Val[X0;A0] we have:8 �0 2 Val[X0;A0] (8 y 2 X c fxg y0�0j� = y0�0j�) ) �0j� 2 ([�( )]hA0;�=0i)j� (i)i� 8 �0 2 Val[X0;A0] (8 y0 2 X0 c f�(x)g y0�0 = y0�0) ) �0 2 [�( )]hA0;�=0i (ii)21



ProofNotice �rst that the subformula y0�0j� = y0�0j� of (i) is equivalent to �A0 (y 0�0j�) = �A0(y 0� 0j�)since �A0 is injective, when restricted to the carrier of a given sort. By de�nition 3.4 the last equationis equivalent to �(y)�0 = �(y)� 0. We can therefore replace the left hand side of the implication in (i)by 8 y 2 Xc fxg �(y)�0 = �(y)� 0. Since � is injective on variables we can change the quanti�cationdomain and variable in order to obtain an equivalent formula:8 y0 2 �(X)c f�(x)g y0�0 = y0� 0 (iii)From Lemma 8.3, we can deduce that the right hand side of the implication in (i) is equivalent to�0 2 [�( )]hA;�=i. By substituting it as well as formula (iii) into (i) we obtain the following formulaequivalent to (i)8 �0 2 Val[X0;A0] (8 y0 2 �(X)c f�(x)g y0�0 = y0� 0) ) �0 2 [�( )]hA0 ;�=0iBy lemma 8.6 this last formula is equivalent to (ii). 2Proof of Theorem 8.2By structural induction on a formula ' 2W�[�] under the induction hypothesis that the theoremholds for all subformula of '.� Base step: ' is an equation l = rFrom De�nition 8.1 we have � 2 [l = r]hA0 ;�=0ij� if and only if � : X! A0j� andl� �=0j�r� (iv)From Lemma 3.5 we know that any � : X ! A0j� has the form � 0j� with � 0 : X0 ! A0 and that �0j�exists for any �0 : X0 ! A0. So (iv) is equivalent to l� 0j� �=0j�r� 0j�, by De�nition 7.4 is equivalent to�A0(l� 0j�) �=0 �A0(r� 0j�) and by Lemma 3.6 is equivalent to �(l)� 0 �=0 �(r)� 0. This last formula holds ifand only if � 0 2 [�(l) = �(r)]hA0 ;�=0i.� Induction step� ' = : [: ]hA0;�=0ij� = Val[X;A0j�]c [ ]hA0;�=0ij� = (By the induction hypothesis)= Val[X;A0j�]c ([�( )]hA0 ;�=0i)j� = (By the injectivity of j� )= (Val[X0;A0])j� c ([�( )]hA0;�=0i)j� = (By Lemma 8.4)= (Val[X0;A0]c [�( )]hA0;�=0i)j� = (By De�nition 8.1)= ([:�( )]hA0;�=0i)j� == ([�(: )]hA0;�=0i)j�� ' =  1 ^  2[ 1 ^  2]hA0;�=0ij� = [ 1]hA0 ;�=0ij� \ [ 2]hA0;�=0ij� = (By the induction hypothesis)= ([�( 1)]hA0;�=0i)j� \ ([�( 2)]hA0;�=0i)j� = (By Lemma 8.4)= ([�( 1)]hA0;�=0i \ [�( 2)]hA0 ;�=0i)j� = (By De�nition 8.1)= ([�( 1) ^ �( 2)]hA0 ;�=0i)j� == ([�( 1 ^  2)]hA0;�=0i)j�� ' = 8x  [8x  ]hA0;�=0i = f� 2 Val[X;A0j�] j 8 � 2 Val[X;A0j�] (8 y 2 Xc fxg y� = y�) ) � 2 [ ]hA;�=ig(by the induction hypothesis)22



= f� 2 Val[X;A0j�] j 8 � 2 Val[X;A0j�] (8 y 2 Xc fxg y� = y�) ) � 2 ([�( )]hA;�=i)j�g(by injectivity of j� on valuations)= f� 0 2 Val[X;A0] j 8 �0 2 Val[X0;A0] (8 y 2 Xc fxg y0�0j� = y0�0j�) ) �0j� 2 ([�( )]hA0 ;�=0i)j�gj�(by Lemma 8.7)= f� 0 2 Val[X;A0] j 8 �0 2 Val[X0;A0] (8 y0 2 X0 c f�(x)g y0�0 = y0� 0) ) �0 2 [�( )]hA0 ;�=0igj�(by De�nition 8.1)= ([8�(x) �( )]hA0;�=0i)j� = ([�(8x  )]hA0;�=0i)j� 2De�nition 8.8An observational �-formula is a pair h';Wi where ' 2 W�[�] is a �-formula andW � T�(X) is a set of terms. We note OW� [�] the set of all observational �-formulae.As in the usual framework, OW� is extended to a functor from the category of signaturesSig to Set (the category of sets). This functor maps an objet � of Sig to the set of allobservational �-formulae. An arrow � of Sig(�;�0) is mapped by OW� to the cartesianproduct of its usual extensions on W�[�] and T�(X). In other words:OW�[�](h';Wi) = h�('); �(W)i(We write ambiguously � instead of OW�[�].)We have already all the elements necessary to de�ne an observational satisfaction relation:De�nition 8.9We say that an observational �-algebra hA;�=i satis�es an observational formula h ;Wi,written hA,�=i Oj= h ,Wi, i�: [ ]hA;�=i = Val[X;A] (i)�= � �W (ii)Notice that in the above we have de�ned a family of relations fOj=�g�:Sig withOj=� � OAlg[�]�OW�[�]We examine now how our satisfaction relation behaves w.r.t. the variance of observa-tional formulae (translation) and the covariance of algebras (�-reduct). We start by the �rstrequirement of De�nition 8.9:Proposition 8.10Let � : � ! �0 be a signature morphism. For any set of terms W � T�(X), anyobservational �0-algebra hA0;�=0i and any �-formula ' we have:[�(')]hA0;�=0i = Val[X0;A0] i� [']hA0;�=0ij� = Val[X;A0j�]ProofWe have [�(')]hA0 ;�=0i = Val[X0;A0] equivalent to ([�(')]hA0 ;�=0i)j� = (Val[X0;A0])j�, which byTheorem 8.2 is equivalent to: [']hA0;�=0ij� = (Val[X0;A0])j� (i)According to Lemma 3.5, j� is surjective on the valuations. Consequently, we have (Val[X0;A0])j� =Val[X;A0j�]. Thus, the formula (i) is equivalent to [']hA0;�=0ij� = Val[X;A0j�]. 223



The next step is to study the second condition of De�nition 8.9 w.r.t. term translation andforgetful functor. We examine �rst the if part and then the converse part of this condition.Proposition 8.11Let � : �! �0 be a signature morphism. For all sets of terms W � T�(X),W0 � T�0(X0)such that �(W) �W0 and for any observational �0-algebra hA0;�=0i we have:�=0 � �W0 ) �=0j� � �Wwhere �W0 and �W are the indistinguishability relations on A0 and A0j� respectively.ProofAssume that 8 a 0; b 0 2 A0 a0 �=0 b 0 ) a 0 �W0 b0 (i)This holds particularly for a 0; b 0 2 A0�(s) (for some s 2 S). Since �A0 : A0j� ! A0 with range as2SA0�(s) ,from (i) we deduce that8 a; b 2 A0j� �A0 (a) �=0 �A0(b) ) �A0 (a) �W0 �A0(b)By De�nition 7.4, �A0 (a) �=0 �A0 (b) is equivalent to a �=0j�b. Hence8 a; b 2 A0j� a �=0j�b ) �A0(a) �W0 �A0(b)But from Proposition 5.1 it follows that �A0 (a) �W0 �A0(b) ) a �W b. Consequently8 a; b 2 A0j� a �=0j�b ) a �W0 b 2The next step should be to prove the converse of the above proposition restricted to W0 =�(W). Unfortunately this is not true in general. The following example illustrates this fact:Example 8.12Consider the following signatures� = f a; b : ! s �0 = f c; d : ! strue; false : ! Bool true; false : ! Boolf ; g : s! Bool g h : s! Bool gLet W = ff(a); g(b)g. Notice that in any �-algebra A we haveaA �W bA (i)because aA and bA have no comparator. Consider � : �! �0 de�ned by:�(Bool) = Bool �(true) = true �(a) = c�(s) = s �(false) = false �(b) = d�(f) = �(g) = hNotice that in any �0-algebra A0,cmp�(W)(cA0 ; dA0) = fh(�)g (ii)since �(W) = fh(c); h(d)g 24



Consider a reachable observational �0-algebra hA0;�=0i such thathA0(cA0) 6= hA0(dA0) (iii)cA0 �=0 dA0 (iv)Notice that �=0j� = f(aAj� ; bAj�)g. Therefore, according to (i) we have�=0j� � �Wbut we have not �=0 � ��(W) since from (ii) and (iii) we have cA0 6��(W) dA0 whereas from (iv)we have cA0 �=0 dA0 .From this negative result we may already conclude that, in order to establish institutionswithin our approach, we will be constrained to restrict somehow our formalism. This will bethe subject of Section 10.9 Observational Speci�cationsThis section is devoted to some general notions about observational speci�cations.De�nition 9.1An observational speci�cation OSP is a triplet h�;�;Wi, where � is the signature ofOSP, � the set of its axioms and W is a set of terms with variables, W � T�(X), calledobservations of OSP.The models are de�ned as in the usual approach except that we use the observational satis-faction instead of the usual one:De�nition 9.2Let OSP = h�;�;Wi be an observational speci�cation. We say that an observational�-algebra hA;�=i is a model of OSP i�:hA;�=i Oj= h�;WiWe note OAlg[OSP] the class of all observational models of OSP.In the above de�nition we have considered a set � = f'1; : : : ; 'ng of formulae as a con-junction of formulae � = '1 ^ : : : ^ 'n. Thus any pair h�;Wi can be viewed as a singleobservational formula. One may also de�ne an observational speci�cation as a pair h�;OAxiwith OAx = fh�1;W1i; : : : ; h�i;Wii; : : :g. The possibility to associate observations separatelyto each axiom would increase the expressive power. (In particular, it allows an in�nite setOAx.) However, in all examples it seems preferable to attach a unique set of observable termsto the whole speci�cation.Fact 9.3The observational algebra hL j�;�ObsSWE i, described in Example 7.2, is a model of theobservational speci�cation SWE.ProofSince the observational equality on hL j�;�ObsSWE i is just the indistinguishability relation, we onlyneed to prove that for any axiom � of SWE we have[�]hL j� ;�ObsSWE i = Val[X;L j�]25



� Notice that (L j�)jSig[LIST] = L. On the other hand from Example 4.8 we know that �ObsSWE is theusual equality on (L j�)jSig[LIST]. We have therefore:(hL j�;�ObsSWE i)jSig[LIST] = hL;=iand since L is a model of LIST, hL j�;�ObsSWE i satis�es all the axioms of LIST.� Since the elements observationally equal on (L j�)Set are di�erent representations of the same set,it is clear that for the \standard" axioms  1;  2; : : : ;  8 of sets (c.f. Figure 2.1), we have[ i]hL j�;�ObsSWE i = Val[X;L j�]� Notice that  9 and  10 are translated by � (c.f. 4.8) in the following way:�( 9) : idl(nil) = nil�( 10) : idl(cons(x; l)) = cons(x; idl(l))We have therefore [�( 9)]hL;=i = [�( 10)]hL;=i = Val[X;L]Then, according to the theorem 8.2, we obtain[ 9]hL j�;=i = [ 10]hL j�;=i = Val[X;L j�]Hence we can conclude that[ 9]hL j� ;�ObsSWE i = [ 10]hL j�;�ObsSWE i = Val[X;L j�]The last step is justi�ed by the fact that the axioms  9 and  10 are equations and that = � �ObsSWE .Obviously, for any �-equation t = t0, any �-algebra A and the observational equalities �=� � �=� onA, we have [t = t0]hA;�=�i � [t = t0]hA;�=� i 2In the above example we have considered a model of the form hA;�Wi. Of course, this ispossible only when �W is transitive. Moreover this model has a particular status: it is aterminal object in the category of all observational models formed with a given algebra A.(This is quite analogous to the �nal data type of [13].) Notice that when �W is not transitivethis category has often no terminal object. For instance the category of observational modelsof TRANS formed with the algebra A (see Figure 5.1) has no terminal object.The next result points out that our observational speci�cations together with their se-mantics generalize the usual approach. On one hand an algebra A can be viewed as theobservational algebra hA;=i. On the other hand, an algebraic speci�cation h�;�i can beconsidered as an observational one in the straightforward way: we just take h�;�;Xi. Therelationship between the both is stated by the following proposition:Proposition 9.4Let h�;�i be an algebraic speci�cation. Each model of h�;�;Xi is of the form hA;=iwith A 2 Alg[h�;�i].ProofNotice �rst that �X is the identity relation on any�-algebra. This is obvious since a variable x 2 Xsgives rise to an empty comparator �s which distinguishes all distinct a; b 2 As and we have assumedthat Xs is nonempty for any sort s. By De�nition 8.9, for any hA;�=i 2 OAlg[h�;�;Xi] we have�= � �X , thus �= is just the usual equality. From the requirement [�]hA;=i = Val[X;A] we deduce thatA 2 Alg[h�;�i]. Conversely, it is clear that for any B 2 Alg[h�;�i] we have hB ;=i 2 OAlg[h�;�;Xi].226



Up to now, we have not been studying modularity issues. We have only de�ned thesemantics of \
at" speci�cations. In fact, as in [1], our semantics extends to an observationalstrati�ed loose semantics without additional assumptions. For instance, the next theoremshows that our approach ful�lls the requirement of \reusing by restriction" [4].Theorem 9.5Let � : � ! �0 be a signature morphism. For all observational speci�cations OSP =h�;�;Wi and OSP0 = h�0;�0;W0i such that �(�) � �0 and �(W) �W0 we have:OAlg[OSP0]j� � OAlg[OSP]ProofFrom de�nitions 9.2 and 8.9 it is enough to prove:8 hA0;�=0i 2 OAlg[�0] [�0]hA0 ;�=0i = Val[X0;A0] ) [�]hA0;�=0ij� = Val[X;A0j�] (i)and 8 hA0;�=0i 2 OAlg[�0] �=0 � �W0 ) �=0j� � �W (ii)� Proof of (i)Let hA0;�=0i 2 OAlg[�0] such that [�0]hA0;�=0i = Val[X0;A0]Since �(�) � �0, by de�nition of solution of a conjunction of formulae (c.f. 8.1) we have�(�)hA0 ;�=0i � �0hA0 ;�=0i. Hence [�(�)]hA0 ;�=0i = Val[X0;A0] which according to Proposition 8.10implies that [�]hA0;�=0ij� = Val[X;A0j�]� Proof of (ii) follows directly from Proposition 8.11. 2This result corresponds to a very fundamental property which holds in most non observationalframeworks. Except for our case, in the approaches with an observational satisfaction re-lation the corresponding property holds only for equational speci�cations. It may alsohold for positive-conditional axioms under the hypothesis of observable preconditions. How-ever, this is a rather strong restriction. It may be then surprising that in our approach theformer theorem holds without restriction even if the axioms are arbitrary �rst order formulae.The reason is that our observational equality is not �xed by observations as the indistinguisha-bility relation does. Unlike [1], [5], [10], [16] and [17], our observational equality does notcoincide with the indistinguishability relation. This choice was dictated by the fact that theindistinguishability relation is \disconnected" from the forgetful functor. On the contrary,our observational equality, similarly to the usual equality, is always \transported" throughthe forgetful functor. The main di�erence of our approach with the above-mentioned worksis that our satisfaction relation is based on an observational equality which does not coincidewith the indistinguishability relation. This situation (partly) guarantees such a general resultas Theorem 9.5.The following corollary of the former theorem formalizes the phenomenon: \more obser-vations, less models".Corollary 9.6Let OSP1 = h�;�;W1i and OSP2 = h�;�;W2i be observational speci�cations such thatW1 �W2. Then: OAlg[OSP2] � OAlg[OSP1]27



ProofFollows directly from the previous theorem. 2We conclude from the above that observations acts on the semantics of a speci�cation ina quite similar way than the axioms, since by adding axioms, we diminish the class of themodels.10 Towards an Institution of Observational Speci�cationsIn this section, based on the formalism we have developed so far, we de�ne an institutionfor observational speci�cations. As mentioned in Section 8, this task requires to put somerestrictions on our general formalism.Recall that an institution (see [9]) is a tuple hSign;W� ;Mod; j= i where1. Sign is a category of \signatures",2. W� : Sign ! Set is a functor which maps a signature to the set of well formed formulaeover the signature,3. Mod : Sign ! Catop is a functor which maps a signature to the category of the inter-pretation structures (models),4. j= is a (jSignj-sorted) satisfaction relation (j=� � Mod[�]�W�[�]) such that for each� : �! � in Sign, each ' 2 W�[�] and each M 0 2 Mod[�0] the following satisfactioncondition holds: M 0 j= W�[�](') i� Mod[�](M 0) j= 'It is clear that the tuple hSig;OW� ;OAlg; Oj=i could be an institution provided that itwould ful�ll the satisfaction condition which in our formalism is expressed by the followingproperty:Property 10.1For any � : �! �0, any observational �-formula h';Wi and any observational �0-algebrawe have: hA0;�=0i Oj= �(h';Wi) i� hA0;�=0ij� Oj= h';WiBy de�nition 8.9 in order to show that this property holds, it is enough to prove8 hA0;�=0i 2 OAlg[�0] [�(')]hA0;�=0i = Val[X0;A0] , [']hA0;�=0ij� = Val[X;A0j�] (i)and 8 hA0;�=0i 2 OAlg[�0] �=0 � ��(W) , �=0j� � �W (ii)The �rst requirement is guaranteed by 8.10. From Proposition 8.11 we have the if conditionof the second requirement. Unfortunately, we know from Example 8.12 that its converse partdoes not hold without additional assumptions. The following is the necessary and su�cientcondition of the converse part of (ii).Property 10.2Let � : � ! �0 be a signature morphism and W � T�(X) be a set of terms. For all�0-algebra A0 and all a 0; b 0 2 A0�(s) �(W)-distinguishable, there exist a; b 2 (A0j�)s satisfying�A0(a) = a 0 and �A0(b) = b 0 such that: a 6�W b28



Proposition 10.3Let � : �! �0 be a signature morphism. The property 10.2 holds for a setW of �-termsif and only if �=0j� � �W ) �=0 � ��(W)holds on all hA0;�=0i 2 OAlg[�0].Proof� )Let hA0;�=0i 2 OAlg[�0]. Assume that8 a; b 2 A0j� a �=0j�b ) a �W b (i)By contradiction assume that there exist a1 ; b1 2 A0j� such that�A0 (a1 ) 6��(W) �A0(b1 ) (ii)�A0 (a1 ) �=0 �A0(b1 ) (iii)Using Property 10.2, from (ii) we deduce that there exist a2 ; b2 2 A0j� such that�A0(a2 ) = �A0(a1 ) (iv)�A0 (b2 ) = �A0(b1 ) (v)a2 6�W b2 (vi)But according to (iii), (iv) and (v) we conclude that a2 �=0j�b2 . We have thereforea2 �=0j�b2 6) a2 �W b2which is in contradiction with the assumption (i).� ((We prove it in an indirect way.) Let � : � ! � and W � T�(X) for which the property 10.2 doesnot holds. Consequently, there is a �0-algebra A0 with elements a 0; b 0 2 A0�(s0) (for some s0 2 S)�(W)-distinguishable, such that for any s 2 S satisfying �(s) = �(s0), all the elements a; b 2 (A0j�)swhich verify �A0(a) = a 0 and �A0 (b) = b 0 are W-indistinguishable. Equip A0 with �=0 such thatc0 �=0 d 0 ) c0 ��(W) d 0 for all c0; d 0 2 A0 except for a 0; b 0 where a 0 �=0 b0. It is clear from the proof of8.11 that for all these c0; d0 we have also that for all the elements c; d 2 (A0j�)s which verify �A0(c) = c0and �A0 (d) = d 0 the following holds c �=0j�d ) c �W dIt follows from the above formula that �=0j� ��W , since by De�nition 7.4 we have a �=0j�b and wehave assumed that a �W b. Now, �=0 6���(W) because a 0 �=0 b0 and we have assumed that a 0 6��(W) b 0.2We can conclude from the above that in our approach, the satisfaction condition does nothold in general. Only the if part of Property 10.1 holds. Consequently, according to [18], ourapproach de�nes a reduction-preserving pre-institution. The converse part of 10.1 holds onlyfor these signature morphisms and these observations which preserve 10.2. Consequently ourapproach could motivate more liberal formalizations than institutions of the notion of \logicalsystem" as e.g. speci�cation logic [6] or pre-institutions [18].Since the satisfaction condition holds only for some signature morphisms, in order tode�ne an institution in our framework, one could forget some problematic arrows of Sig andconsider as a category of signatures a category which has the same objects as Sig but less29



arrows. We retain this last solution. Then the question is which signature morphisms weshould eliminate in order to obtain an institution. It is easy to see that examples similar to8.12 can be constructed as soon as we have a non injective signature morphism. We concludethat an observational institution can be provided within our formalism under a restriction ofthe arrows of Sig to injective morphisms only.Proposition 10.4Consider the tuple OAlgSpec = hISig;OW� ;OAlg; Oj=i where ISig is the category whoseobjects are the usual signatures and whose arrows are the injective signature morphisms.Then OAlgSpec is an institution.ProofAccording to the discussion of this section, it is enough to prove that Property 10.2 holds forinjective signature morphisms.Let � : �! �0 be an injective signature morphism,W � T�(X) a set of terms, A0 a �0-algebra andlet a 0; b 0 2 A0�(s) �(W)-distinguishable. Let �0 2 cmp�(W)(a 0; b 0) a comparator which distinguishes a 0and b 0.Since � is injective, �A0 and �A0 are too, there exists a unique a 2 A0j� (resp. b 2 A0j�) such that�A0(a) = a 0 (resp. �A0(b) = b 0) and a unique � 2 MC�(A0j�) such that �A0(�) = �0. According toTheorem 4.14, � is a continuation of a and b. So � 2 cmpW(a; b). From Corollary 3.7 we have�0[a 0] = �A0(�[a]) = �A0(�[a])(resp. �0[b 0] = �A0 (�[b]) = �A0(�[b]))Since �0[a 0] 6= �0[b 0], we have �A0 (�[a]) 6= �A0 (�[b]) and since �A0 is injective we conclude that �[a] 6=�[b]. Thus a and b are distinguishable. 2Notice that OAlgSpec denotes in fact a family of institutions. Recall thatOW�[�] = fh';Wi j ' 2W�[�]; W � T�(X)gAccordingly, OAlgSpec is in some sense \parameterized" by W�. Recall that our approachdoes not take into account predicate symbols (other than =). Thus the W� functors accept-able for our purposes must send signatures to any subset of the Many-Sorted First OrderLogic with Equality without predicate symbols. Moreover, our approach can be easily en-riched with predicate symbols without loss of the results (as shown in [14]).11 Some Additional ExamplesIn this section we show on two examples how some (usual) algebraic speci�cation h�;�ican be completed with observations W, in order to get some interesting observational modelscorresponding to bounded realizations. Of course the examples of models we provide areonly in OAlg[h�;�;Wi] and not in Alg[h�;�i]. This motivates the use of an observationalapproach to handle bounded implementations of speci�cations which (in the usual sense)have no bounded models. In both examples we proceed as follows:1. Given a speci�cation h�;�i we provide a �-algebra A which is not a model of h�;�i.2. We equip A with an observational equivalence �= and we show that hA;�=i ful�lls the�rst requirement of the de�nition of our observational satisfaction relation 8.9, that is[�]hA;�=i = Val[X;A] for all � 2 �. 30



3. We give an appropriate set of observations W and we show that the second requirementof the de�nition of our satisfaction relation holds, that is �=��W .As a �rst example consider the speci�cation INT= h�1;�1i of integers (see Figure 11.1).The only reachable models of this speci�cation are ZZ and all the ZZ=nZZ. Assume thatspec : INTsort : Intgenerated by :0 : ! Ints, p : Int ! Intaxioms : p(s(x)) = xs(p(x)) = x
spec : STACKuse : NATsort : Stackgenerated by :emptystack : ! Stackpush : Nat Stack ! Stackoperations :top : Stack ! Natpop : Stack ! Stackaxioms : top(push( x, s)) = xpop(push(x, s)) = sFigure 11.1: Speci�cations INT and STACKwe need a realization of this speci�cation which behaves like ZZ at least inside an inter-val between the constants minint and maxint. Consider the following Sig[INT]-algebra A:
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overflowObviously, this algebra is not a model of INT.Let us equip A with the observational equality \�=" de�ned as the re
exive-symmetric-transitive closure of the relationfhminint ; under
owi; hmaxint ; over
owigIt is easy to show that Val[X;A] is the set of solutions of both axioms of INT in hA;�=i.Assume now that we observe the set W1 of all the ground terms which denote integersbetween minint and maxint. In this situation the contextual variable �Int is a continuation ofall the elements of A between minint and maxint. On the contrary, under
ow and over
owhave no continuations. Consequently�W1= f hb; bi; hc; di j b; c; d 2 AInt; fc; dg \ funder
ow ; over
owg 6= � gHence �= � �W1 and we conclude that hA;�=i is an observational model of h�1;�1;W1i.As a second example, we are going to study bounded stacks. Consider the speci�cationSTACK= h�2;�2i (see Figure 11.1) and assume that we are only interested in stacks of aheight bounded by a constant maxheight. Then the following algebra should be correct forour purposes: we consider an array-pointer realization with an array of length maxheight+1starting at the index 0. A full stack is then represented by the couple ht ;maxheighti and an31



erroneous stack by ht ; s(maxheight)i (s(maxheight) points outside of t). For both erroneousand correct stacks, the operation top is always realized in the standard way:top(ht ; s(i)i) = t [i ]On a correct stack the operations push and pop are also realized in the standard way:i 6= s(maxheight)) push(x ; ht ; ii) = ht [i ]:=x ; s(i)ii 6= maxheight ) pop(ht ; s(i)i) = ht ; iiThese operations act on an erroneous stack in the following way:push(x ; ht ; s(maxheight)i) = ht [maxheight ]:=x ; s(maxheight)ipop(ht ; s(maxheight)i) = ht ; s(maxheight)iIt is important to notice that it is impossible in this realization to make correct an erroneousstack by means of combinations of pushes and pops only.Let A be the above realization. We equip now the algebra A with the observationalequality \�=" de�ned as a the re
exive-symmetric-transitive closure of the following relation\�"1. ht ; ni � ht 0; ni if n � maxheight and t [i ] = t 0[i ] for all i � n2. ht ;maxheighti � ht 0; s(maxheight)i if t and t 0 di�er only at the index maxheight.Let us show that the set of solutions of any axiom of STACK in the observational algebrahA;�=i de�ned above is Val[X;A]. This is obvious for the non erroneous stacks. Considerthen a full stack ht ;maxheighti. We check the axiom top(push(x; s)) = x:top(push(a; ht ;maxheighti)) = top(ht [maxheight ]:=a; s(maxheight)i) == (t [maxheight ]:=a)[maxheight ] = aWe check the axiom pop(push(x; s)) = s:pop(push(a; ht ;maxheighti)) = pop(ht [maxheight ]:=a; s(maxheight)i) == ht [maxheight ]:=a; s(maxheight)iBut according to 2: ht [maxheight ]:=a; s(maxheight)i �= ht ;maxheighti.We check now both axioms for an erroneous stack ht; s(maxheight)i:top(push(a; ht ; s(maxheight)i)) = top(ht [maxheight ]:=a; s(maxheight)i) == (t [maxheight ]:=a)[maxheight ] = aOn the other hand:pop(push(a; ht ; s(maxheight)i)) = pop(ht [maxheight ]:=a; s(maxheight)i) == ht [maxheight ]:=a; s(maxheight)iBut according to 2 we haveht ; s(maxheight)i � ht ;maxheighti � ht [maxheight ]:=a; s(maxheight)iSince \�=" is the re
exive-symmetric-transitive closure of \�", we haveht ; s(maxheight)i �= ht [maxheight ]:=a; s(maxheight)i32



In this way we have shown that in hA;�=i, the solutions of both axioms of STACK are Val[X;A].Assume now that we observe the set W2 of all the ground terms of the form top(t) witht generated by emptystack, push and pop and representing a stack of height least or equal tomaxheight. It is clear that for two non erroneous stacks ht ; ni and ht0; ni we haveht ; ni �W2 ht 0; ni i� ht ; ni �= ht 0; niSince an erroneous stack has no continuations, it is indistinguishable with any other stack.Consequently �= � �W2and we have shown that hA;�=i is an observational model of the speci�cation h�2;�2;W2i.The reader have certainly realized that in both examples the corresponding observationshave been described in an informal way. In fact in this work we did not deal with a syntax fordescribing sets of observable terms. It is clear that no syntax may exist allowing to describe(in a �nite way) an arbitrary subset of T�(X).1 Consequently the choice of a particularsyntax will impose strong restrictions on possible observations. Nevertheless, under suchrestrictions, we can expect some additional results within this framework.12 Concluding RemarksWe have developed a loose observational semantics of algebraic speci�cations. We haveshown that, under some restrictions, our formalism provides an institution. First, we haveinvestigated how the elements of a carrier of an algebra should be observed through terms.We have pointed out that an adequate notion of observation requires to take into accountmulticontexts and partial evaluations of observable terms. In this way, we have introducedthe concept of continuation underlying our de�nition of the indistinguishability relation. Wehave shown that this relation is neither a congruence nor an equivalence relation. These bothresults fully agree with our Indistinguishability Assumption. Notice that when we restrict tosort observation, our indistinguishability relation becomes a congruence. Consequently, thisnotion becomes close to the Nerode congruence [10]. However, unlike in [16], in our approachtwo observational algebras di�ering on non observable junk do not satisfy the same observa-tional formulae. We do not privilege reachable elements, since this is most suitable for theobservational semantics of parameterized speci�cations in the loose framework (which is oneof the topics of further research). Moreover, one might think that our indistinguishabilityrelation would coincide with the Reichel's I-indistinguishability (see [17]) when we restrict ourapproach to sort observation and the Reichel's one to total algebras. This is not true, sincewe use multicontexts from MC�(A) instead of MC�. Consequently, in our approach, nonobservable junk can a�ect the indistinguishability of two elements of a carrier of an algebrawhile it cannot in other works with observational satisfaction relation. Thus he have fullyfollowed our claim not to privilege reachable elements.Being convinced that the possibility of replacements of equal by equal must be allowed,we have introduced in our semantics an additional stage over the indistinguishability rela-tion, namely observational equality. Then we have de�ned the observational algebras, theobservational formulae and the corresponding satisfaction relation. We have shown that therestriction to injective signature morphisms is a reasonably weak condition which enables our1There exist non recursive subsets of T�(X). 33
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